Science.gov

Sample records for fermions scientific setting

  1. Representing scientific data sets in KML: Methods and challenges

    NASA Astrophysics Data System (ADS)

    Ballagh, Lisa M.; Raup, Bruce H.; Duerr, Ruth E.; Khalsa, Siri Jodha S.; Helm, Christopher; Fowler, Doug; Gupte, Amruta

    2011-01-01

    Virtual Globes such as Google Earth and NASA World Wind permit users to explore rich imagery and the topography of the Earth. While other online services such as map servers provide ways to view, query, and download geographic information, the public has become captivated with the ability to view the Earth's features virtually. The National Snow and Ice Data Center began to display scientific data on Virtual Globes in 2006. The work continues to evolve with the production of high-quality Keyhole Markup Language (KML) representations of scientific data and an assortment of technical experiments. KML files are interoperable with many Virtual Globe or mapping software packages. This paper discusses the science benefits of Virtual Globes, summarizes KML creation methods, and introduces a guide for selecting tools and methods for authoring KML for use with scientific data sets.

  2. Association Analysis for Visual Exploration of Multivariate Scientific Data Sets.

    PubMed

    Liu, Xiaotong; Shen, Han-Wei

    2016-01-01

    The heterogeneity and complexity of multivariate characteristics poses a unique challenge to visual exploration of multivariate scientific data sets, as it requires investigating the usually hidden associations between different variables and specific scalar values to understand the data's multi-faceted properties. In this paper, we present a novel association analysis method that guides visual exploration of scalar-level associations in the multivariate context. We model the directional interactions between scalars of different variables as information flows based on association rules. We introduce the concepts of informativeness and uniqueness to describe how information flows between scalars of different variables and how they are associated with each other in the multivariate domain. Based on scalar-level associations represented by a probabilistic association graph, we propose the Multi-Scalar Informativeness-Uniqueness (MSIU) algorithm to evaluate the informativeness and uniqueness of scalars. We present an exploration framework with multiple interactive views to explore the scalars of interest with confident associations in the multivariate spatial domain, and provide guidelines for visual exploration using our framework. We demonstrate the effectiveness and usefulness of our approach through case studies using three representative multivariate scientific data sets.

  3. Entanglement in fermionic systems

    SciTech Connect

    Banuls, Mari-Carmen; Cirac, J. Ignacio; Wolf, Michael M.

    2007-08-15

    The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. The behavior of the various classes when taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit. We illustrate the differences and relations by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY Hamiltonian with transverse magnetic field.

  4. Entrepreneurial Academics: Developing Scientific Careers in Changing University Settings

    ERIC Educational Resources Information Center

    Duberley, Joanne; Cohen, Laurie; Leeson, Elspeth

    2007-01-01

    This paper examines the impact of entrepreneurial initiatives within universities on scientific careers. Based on the career accounts of university-based bioscientists involved in a government-sponsored entrepreneurship training initiative, the paper explores the concept of academic entrepreneurialism. Three groups were identified in the data.…

  5. Dehumanization in organizational settings: some scientific and ethical considerations.

    PubMed

    Christoff, Kalina

    2014-01-01

    Dehumanizing attitudes and behaviors frequently occur in organizational settings and are often viewed as an acceptable, and even necessary, strategy for pursuing personal and organizational goals. Here I examine a number of commonly held beliefs about dehumanization and argue that there is relatively little support for them in light of the evidence emerging from social psychological and neuroscientific research. Contrary to the commonly held belief that everyday forms of dehumanization are innocent and inconsequential, the evidence shows profoundly negative consequences for both victims and perpetrators. As well, the belief that suppressing empathy automatically leads to improved problem solving is not supported by the evidence. The more general belief that empathy interferes with problem solving receives partial support, but only in the case of mechanistic problem solving. Overall, I question the usefulness of dehumanization in organizational settings and argue that it can be replaced by superior strategies that are ethically more acceptable and do not entail the severely negative consequences associated with dehumanization.

  6. Dehumanization in organizational settings: some scientific and ethical considerations

    PubMed Central

    Christoff, Kalina

    2014-01-01

    Dehumanizing attitudes and behaviors frequently occur in organizational settings and are often viewed as an acceptable, and even necessary, strategy for pursuing personal and organizational goals. Here I examine a number of commonly held beliefs about dehumanization and argue that there is relatively little support for them in light of the evidence emerging from social psychological and neuroscientific research. Contrary to the commonly held belief that everyday forms of dehumanization are innocent and inconsequential, the evidence shows profoundly negative consequences for both victims and perpetrators. As well, the belief that suppressing empathy automatically leads to improved problem solving is not supported by the evidence. The more general belief that empathy interferes with problem solving receives partial support, but only in the case of mechanistic problem solving. Overall, I question the usefulness of dehumanization in organizational settings and argue that it can be replaced by superior strategies that are ethically more acceptable and do not entail the severely negative consequences associated with dehumanization. PMID:25309401

  7. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  8. Lattice fermions

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.

  9. Perspectives of Educators Across Clinical and Scholarly/Scientific Work Settings.

    ERIC Educational Resources Information Center

    Pickle, Judy

    1983-01-01

    Tested 40 teachers and teacher educators to determine whether educators associated with clinical vs. scholarly/scientific work settings would view classroom events using different perspectives. These educators responded to three videotaped and six written scenarios of classroom events. Significant differences were found between work-setting…

  10. Hourglass Fermions

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Alexandradinata, A.; Cava, Robert J.; Bernevig, B. Andrei

    Spatial symmetries in crystals are distinguished by whether they preserve the spatial origin. We show how this basic geometric property gives rise to a new topology in band insulators. We study spatial symmetries that translate the origin by a fraction of the lattice period, and find that these nonsymmorphic symmetries protect a novel surface fermion whose dispersion is shaped like an hourglass; surface bands connect one hourglass to the next in an unbreakable zigzag pattern. These exotic fermions are materialized in the large-gap insulators: KHg X (X = As,Sb,Bi), which we propose as the first material class whose topology relies on nonsymmorphic symmetries. Beside the hourglass fermion, a different surface of KHg X manifests a 3D generalization of the quantum spin Hall effect. To describe the bulk topology of nonsymmorphic crystals, we propose a non-Abelian generalization of the geometric theory of polarization. Our nontrivial topology originates not from an inversion of the parity quantum numbers, but rather of the rotational quantum numbers, which we propose as a fruitful in the search for topological materials. Finally, KHg X uniquely exemplifies a cohomological insulator, a concept that we will introduce in a companion work.

  11. SAF - Sets and Fields parallel I/O and scientific data modeling system

    SciTech Connect

    Matzke, Robb; Illescas, Eric; Espen, Peter; Jones, Jake S.; Sjaardema, Gregory; Miller, Mark C.; Schoof, Larry A.; Reus, James F.; Arrighi, William; Hitt, Ray T.; O'Brien, Matthew J.

    2005-07-01

    SAF is being developed as part of the Data Models and Formats (DMF) component of the Accelerated Strategic Computing Initiative (ASCI). SAF represents a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or mesh objects to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or mesh objects. SAF addresses this problem by providing a small set of mathematical building blocks, sets, relations and fields, out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. Sets and fields building blocks are at once, both primitive and abstract: * They are primitive enough to model a wide variety of scientific data. * They are abstract enough to model the data in terms of what it represents in a mathematical or physical sense independent of how it is represented in an implementation sense. For example, while there are many ways to represent the airflow over the wing of a supersonic aircraft in a computer program, there is only one mathematical/physical interpretation: a field of 3D velocity vectors over a 2D surface. This latter description is immutable. It is independent of any particular representation or implementation choices. Understanding this what versus how relationship, that is what is represented versus how it is represented, is key to developing a solution for large scale integration of scientific software.

  12. The Categorification of Fermions

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, Rui; Wang, Zhi-Xi; Wu, Ke; Yang, Jie; Yang, Zi-Feng

    2015-02-01

    In this paper, we lift Fermions to functors acting on some homotopy category by the Boson-Fermion correspondence and get the categorified relations of Fermions. In this way, both the categorified Bosons and the categorified Fermions can be viewed as functors on the same category. We also give actions of these functors on the charged Young diagrams (or equivalently Maya diagrams), so that the classical theory of Boson-Fermion correspondence is very well recovered as a result of such a categorification.

  13. EUDAT and EPOS moving towards the efficient management of scientific data sets

    NASA Astrophysics Data System (ADS)

    Fiameni, Giuseppe; Bailo, Daniele; Cacciari, Claudio

    2016-04-01

    This abstract presents the collaboration between the European Collaborative Data Infrastructure (EUDAT) and the pan-European infrastructure for solid Earth science (EPOS) which draws on the management of scientific data sets through a reciprocal support agreement. EUDAT is a Consortium of European Data Centers and Scientific Communities whose focus is the development and realisation of the Collaborative Data Infrastructure (CDI), a common model for managing data spanning all European research data centres and data repositories and providing an interoperable layer of common data services. The EUDAT Service Suite is a set of a) implementations of the CDI model and b) standards, developed and offered by members of the EUDAT Consortium. These EUDAT Services include a baseline of CDI-compliant interface and API services - a "CDI Gateway" - plus a number of web-based GUIs and command-line client tools. On the other hand,the EPOS initiative aims at creating a pan-European infrastructure for the solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the mission of EPOS is to integrate the diverse and advanced European Research Infrastructures for solid Earth Science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through the integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. To achieve this integration challenge and the

  14. Using Scent Detection Dogs in Conservation Settings: A Review of Scientific Literature Regarding Their Selection

    PubMed Central

    Beebe, Sarah C.; Howell, Tiffani J.; Bennett, Pauleen C.

    2016-01-01

    Dogs are widely used for scent detection work, assisting in searches for, among other things, missing persons, explosives, and even cancers. They are also increasingly used in conservation settings, being deployed for a range of diverse purposes. Although scent detecting dogs have been used in conservation roles for over 100 years, it is only recently that the scientific literature has begun to document their effectiveness and, importantly, how suitable dogs should initially be selected by organizations wanting to develop a detection program. In this paper, we review this literature, with the aim of extracting information that might be of value to conservation groups considering whether to invest in the use of dogs. We conclude that selection of appropriate dogs is no easy task. While olfactory ability is critical, so also are a range of other characteristics. These include biological, psychological, and social traits. At present, no validated selection tools have been published. Existing organizations have adapted selection instruments from other contexts for their use, but very little published information is available regarding the effectiveness of these instruments in a conservation setting. In the absence of clear guidelines, we urge those wanting to invest in one or more dogs for conservation purposes to proceed with extreme caution and, preferably, under the watchful eyes of an experienced professional. PMID:27840815

  15. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits

    PubMed Central

    Dankovic, D. A.; Naumann, B. D.; Maier, A.; Dourson, M. L.; Levy, L. S.

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties—typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also

  16. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.

    PubMed

    Dankovic, D A; Naumann, B D; Maier, A; Dourson, M L; Levy, L S

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties-typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has

  17. Nonlinear fermions and coherent states

    NASA Astrophysics Data System (ADS)

    Trifonov, D. A.

    2012-06-01

    Nonlinear fermions of degree n (n-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation AA† + A†nAn = 1. The (n + 1)th-order nilpotency of these operators follows from the existence of unique A-vacuum. Supposing appropriate (n + 1)th-order nilpotent para-Grassmann variables and integration rules the sets of n-fermion number states, ‘right’ and ‘left’ ladder operator coherent states (CS) and displacement-operator-like CS are constructed. The (n + 1) × (n + 1) matrix realization of the related para-Grassmann algebra is provided. General (n + 1)th-order nilpotent ladder operators of finite-dimensional systems are expressed as polynomials in terms of n-fermion operators. Overcomplete sets of (normalized) ‘right’ and ‘left’ eigenstates of such general ladder operators are constructed and their properties are briefly discussed. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  18. Patient involvement in a scientific advisory process: setting the research agenda for medical products.

    PubMed

    Elberse, Janneke Elisabeth; Pittens, Carina Anna Cornelia Maria; de Cock Buning, Tjard; Broerse, Jacqueline Elisabeth Willy

    2012-10-01

    Patient involvement in scientific advisory processes could lead to more societally relevant advice. This article describes a case study wherein the Health Council of the Netherlands involved patient groups in an advisory process with a predefined focus: setting a research agenda for medical products development. A four-phase approach was developed to stimulate needs-articulation concerning future medical products for a broad range of patient groups covering 15 disease domains. 119 (expert) patients and 92 non-patient representatives were consulted using interviews and focus groups. In a facilitated way, patients appeared capable and willing to provide input useful for an advisory process. A broad range of medical products was defined serving different purposes. This study showed two dilemmas: first, finding a balance between a predefined focus and being sufficiently broad to enable patients and patient representatives to contribute, and second, finding a balance between relevance for many patients groups and saturation of data for a lower number of patient groups. By taking the context of patients' daily life as starting point patient groups provided new insights. The predefined focus was sometimes perceived as constraining. The GR considered the articulated needs constructive and incorporated patients' input in their advice to the Minister of Health.

  19. Stereoscopy in Static Scientific Imagery in an Informal Education Setting: Does It Matter?

    NASA Astrophysics Data System (ADS)

    Price, C. Aaron; Lee, H.-S.; Malatesta, K.

    2014-12-01

    Stereoscopic technology (3D) is rapidly becoming ubiquitous across research, entertainment and informal educational settings. Children of today may grow up never knowing a time when movies, television and video games were not available stereoscopically. Despite this rapid expansion, the field's understanding of the impact of stereoscopic visualizations on learning is rather limited. Much of the excitement of stereoscopic technology could be due to a novelty effect, which will wear off over time. This study controlled for the novelty factor using a variety of techniques. On the floor of an urban science center, 261 children were shown 12 photographs and visualizations of highly spatial scientific objects and scenes. The images were randomly shown in either traditional (2D) format or in stereoscopic format. The children were asked two questions of each image—one about a spatial property of the image and one about a real-world application of that property. At the end of the test, the child was asked to draw from memory the last image they saw. Results showed no overall significant difference in response to the questions associated with 2D or 3D images. However, children who saw the final slide only in 3D drew more complex representations of the slide than those who did not. Results are discussed through the lenses of cognitive load theory and the effect of novelty on engagement.

  20. Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing

    SciTech Connect

    Adams, David H.

    2008-05-15

    To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalar meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.

  1. Entanglement in fermion systems and quantum metrology

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Floreanini, R.; Marzolino, U.

    2014-03-01

    Entanglement in fermion many-body systems is studied using a generalized definition of separability based on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the geometric structure of the corresponding state space. These results have direct applications in fermion quantum metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary state entangling operation.

  2. Inhomogeneous state of few-fermion superfluids.

    PubMed

    Bugnion, P O; Lofthouse, J A; Conduit, G J

    2013-07-26

    The few-fermion atomic gas is an ideal setting to explore inhomogeneous superfluid pairing analogous to the Larkin-Ovchinnikov state. Two up and one down-spin atom is the minimal configuration that displays an inhomogeneous pairing density, whereas imbalanced systems containing more fermions present a more complex pairing topology. With more than eight atoms trapped the system approaches the macroscopic superfluid limit. An oblate trap with a central barrier offers a direct experimental probe of pairing inhomogeneity.

  3. Heavy fermion quantum criticality.

    PubMed

    Nazario, Zaira; Santiago, David I

    2008-09-26

    During the last few years, investigations of rare-earth materials have made clear that heavy fermion quantum criticality exhibits novel physics not fully understood. In this work, we write for the first time the effective action describing the low energy physics of the system. The f fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. The effective theory is amenable to numerical studies as it is bosonic, circumventing the fermion sign problem. Via effective action techniques, renormalization group studies, and Callan-Symanzik resummations, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).

  4. Using the mystery box as a means to explore the scientific method in an undergraduate lecture setting

    NASA Astrophysics Data System (ADS)

    Cook, H. M.; Cook, G. W.

    2015-12-01

    The mystery box is a well-known and well-loved teaching tool designed to encourage students to engage in making observations in order to draw conclusions. We have adapted this exercise, normally used in laboratory settings, for use in a lecture setting in introductory earth science classes. We have tied it to the scientific method such that students are engaging in mystery-box- based inquiry while exploring the steps of the scientific method. It is used in conjunction with a PowerPoint presentation that illustrates and discusses the steps and process integral to the scientific method, which is fundamental to science. Students are encouraged to explore the formal and informal use of the scientific method throughout their educational careers and in their daily lives. Furthermore, students are challenged to analyze the necessity of the scientific method as means for conducting scientific inquiry and exploring the results of such inquiry. A follow-up assignment to the activity asks students to evaluate the efficacy of the activity and associated PowerPoint and discussion. Students consistently report having enjoyed and learned from the process.

  5. The Ethics of Randomized Controlled Trials in Social Settings: Can Social Trials Be Scientifically Promising and Must There Be Equipoise?

    ERIC Educational Resources Information Center

    Fives, Allyn; Russell, Daniel W.; Canavan, John; Lyons, Rena; Eaton, Patricia; Devaney, Carmel; Kearns, Norean; O'Brien, Aoife

    2015-01-01

    In a randomized controlled trial (RCT), treatments are assigned randomly and treatments are withheld from participants. Is it ethically permissible to conduct an RCT in a social setting? This paper addresses two conditions for justifying RCTs: that there should be a state of equipoise and that the trial should be scientifically promising.…

  6. Interactive volume rendering of thin thread structures within multivalued scientific data sets.

    PubMed

    Wenger, Andreas; Keefe, Daniel F; Zhang, Song; Laidlaw, David H

    2004-01-01

    We present a threads and halos representation for interactive volume rendering of vector-field structure and describe a number of additional components that combine to create effective visualizations of multivalued 3D scientific data. After filtering linear structures, such as flow lines, into a volume representation, we use a multilayer volume rendering approach to simultaneously display this derived volume along with other data values. We demonstrate the utility of threads and halos in clarifying depth relationships within dense renderings and we present results from two scientific applications: visualization of second-order tensor valued magnetic resonance imaging (MRI) data and simulated 3D fluid flow data. In both application areas, the interactivity of the visualizations proved to be important to the domain scientists. Finally, we describe a PC-based implementation of our framework along with domain specific transfer functions, including an exploratory data culling tool, that enable fast data exploration.

  7. Setting scientific standards: publishing in medical societies in nineteenth-century Belgium.

    PubMed

    Vandendriessche, Joris

    2014-01-01

    This article examines the publishing procedures of nineteenth-century medical societies, using the Medical Society of Ghent (Belgium) as a case study. It argues, more precisely, that the introduction of formalized review procedures in medical societies can be considered part of the emergence of a professional scientific culture in the first half of the nineteenth century. First, by participating in these procedures physicians took on different stylized roles, for example of the contributing author, the righteous judge, or the punctual secretary, and articulated new professional values such as contributing to science. Second, the publishing procedures of medical societies also provide insight into the mechanisms of reaching consensus in nineteenth-century medicine. By developing new scientific genres, such as the published meeting report, medical societies aimed to extend the community of peers beyond the group of society members and establish trust and agreement throughout the medical community.

  8. Dirac fermions in an antiferromagnetic semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-12-01

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  9. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  10. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  11. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  12. Stereoscopy in Static Scientific Imagery in an Informal Education Setting: Does It Matter?

    ERIC Educational Resources Information Center

    Price, C. Aaron; Lee, H.-S.; Malatesta, K.

    2014-01-01

    Stereoscopic technology (3D) is rapidly becoming ubiquitous across research, entertainment and informal educational settings. Children of today may grow up never knowing a time when movies, television and video games were not available stereoscopically. Despite this rapid expansion, the field's understanding of the impact of stereoscopic…

  13. Visualization and Evolution of the Scientific Structure of Fuzzy Sets Research in Spain

    ERIC Educational Resources Information Center

    Lopez-Herrera, A. G.; Cobo, M. J.; Herrera-Viedma, E.; Herrera, F.; Bailon-Moreno, R.; Jimenez-Contreras, E.

    2009-01-01

    Introduction: Presents the first bibliometric study on the evolution of the fuzzy sets theory field. It is specially focused on the research carried out by the Spanish community. Method. The CoPalRed software, for network analysis, and the co-word analysis technique are used. Analysis: Bibliometric maps showing the main associations among the…

  14. An Analysis Framework Addressing the Scale and Legibility of Large Scientific Data Sets

    SciTech Connect

    Childs, Hank R.

    2006-01-01

    Much of the previous work in the large data visualization area has solely focused on handling the scale of the data. This task is clearly a great challenge and necessary, but it is not sufficient. Applying standard visualization techniques to large scale data sets often creates complicated pictures where meaningful trends are lost. A second challenge, then, is to also provide algorithms that simplify what an analyst must understand, using either visual or quantitative means. This challenge can be summarized as improving the legibility or reducing the complexity of massive data sets. Fully meeting both of these challenges is the work of many, many PhD dissertations. In this dissertation, we describe some new techniques to address both the scale and legibility challenges, in hope of contributing to the larger solution. In addition to our assumption of simultaneously addressing both scale and legibility, we add an additional requirement that the solutions considered fit well within an interoperable framework for diverse algorithms, because a large suite of algorithms is often necessary to fully understand complex data sets. For scale, we present a general architecture for handling large data, as well as details of a contract-based system for integrating advanced optimizations into a data flow network design. We also describe techniques for volume rendering and performing comparisons at the extreme scale. For legibility, we present several techniques. Most noteworthy are equivalence class functions, a technique to drive visualizations using statistical methods, and line-scan based techniques for characterizing shape.

  15. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union

    PubMed Central

    Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R. Thomas

    2016-01-01

    , Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant to setting regulatory criteria to identify endocrine disrupting substances in the European Union. Environ Health Perspect 124:1497–1503; http://dx.doi.org/10.1289/EHP217 PMID:27108591

  16. Fermionic light in common optical media.

    PubMed

    Novoa, David; Michinel, Humberto; Tommasini, Daniele

    2010-11-12

    Recent experiments have proved that the response to short laser pulses of common optical media, such as air or oxygen, can be described by focusing Kerr and higher order nonlinearities of alternating signs. Such media support the propagation of steady solitary waves. We argue by both numerical and analytical computations that the low-power fundamental bright solitons satisfy an equation of state which is similar to that of a degenerate gas of fermions at zero temperature. Considering, in particular, the propagation in both O2 and air, we also find that the high-power solutions behave like droplets of ordinary liquids. We then show how a grid of the fermionic light bubbles can be generated and forced to merge in a liquid droplet. This leads us to propose a set of experiments aimed at the production of both the fermionic and liquid phases of light, and at the demonstration of the transition from the former to the latter.

  17. The structure and material composition of ossified aortic valves identified using a set of scientific methods

    NASA Astrophysics Data System (ADS)

    Zeman, Antonín; Šmíd, Michal; Havelcová, Martina; Coufalová, Lucie; Kučková, Štěpánka; Velčovská, Martina; Hynek, Radovan

    2013-11-01

    Degenerative aortic stenosis has become a common and dangerous disease in recent decades. This disease leads to the mineralization of aortic valves, their gradual thickening and loss of functionality. We studied the detailed assessment of the proportion and composition of inorganic and organic components in the ossified aortic valve, using a set of analytical methods applied in science: polarized light microscopy, scanning electron microscopy, X-ray fluorescence, X-ray diffraction, gas chromatography/mass spectrometry and liquid chromatography-tandem mass spectrometry. The sample valves showed the occurrence of phosphorus and calcium in the form of phosphate and calcium carbonate, hydroxyapatite, fluorapatite and hydroxy-fluorapatite, with varying content of inorganic components from 65 to 90 wt%, and with phased development of degenerative disability. The outer layers of the plaque contained an organic component with peptide bonds, fatty acids, proteins and cholesterol. The results show a correlation between the formation of fluorapatite in aortic valves and in other parts of the human bodies, associated with the formation of bones.

  18. Scattering of fermions by gravitons

    NASA Astrophysics Data System (ADS)

    Ulhoa, S. C.; Santos, A. F.; Khanna, Faqir C.

    2017-04-01

    The interaction between gravitons and fermions is investigated in the teleparallel gravity. The scattering of fermions and gravitons in the weak field approximation is analyzed. The transition amplitudes of M\\varnothing ller, Compton and new gravitational scattering are calculated.

  19. Bipartite Composite Fermion States

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Tőke, C.; Wójs, A.; Jain, J. K.

    2011-08-01

    We study a class of ansatz wave functions in which composite fermions form two correlated “partitions.” These “bipartite” composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  20. Bipartite composite fermion States.

    PubMed

    Sreejith, G J; Toke, C; Wójs, A; Jain, J K

    2011-08-19

    We study a class of ansatz wave functions in which composite fermions form two correlated "partitions." These "bipartite" composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  1. Fermionic T-duality in fermionic double space

    NASA Astrophysics Data System (ADS)

    Nikolić, B.; Sazdović, B.

    2017-04-01

    In this article we offer the interpretation of the fermionic T-duality of the type II superstring theory in double space. We generalize the idea of double space doubling the fermionic sector of the superspace. In such doubled space fermionic T-duality is represented as permutation of the fermionic coordinates θα and θbarα with the corresponding fermionic T-dual ones, ϑα and ϑbarα, respectively. Demanding that T-dual transformation law has the same form as initial one, we obtain the known form of the fermionic T-dual NS-R and R-R background fields. Fermionic T-dual NS-NS background fields are obtained under some assumptions. We conclude that only symmetric part of R-R field strength and symmetric part of its fermionic T-dual contribute to the fermionic T-duality transformation of dilaton field and analyze the dilaton field in fermionic double space. As a model we use the ghost free action of type II superstring in pure spinor formulation in approximation of constant background fields up to the quadratic terms.

  2. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies.

  3. Fermion number anomaly with the fluffy mirror fermion

    NASA Astrophysics Data System (ADS)

    Okumura, Ken-ichi; Suzuki, Hiroshi

    2016-12-01

    Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.

  4. Tripartite composite fermion states

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Wu, Ying-Hai; Wójs, A.; Jain, J. K.

    2013-06-01

    The Read-Rezayi wave function is one of the candidates for the fractional quantum Hall effect at filling fraction ν=2+⅗, and thereby also its hole conjugate at 2+⅖. We study a general class of tripartite composite fermion wave functions, which reduce to the Rezayi-Read ground state and quasiholes for appropriate quantum numbers, but also allow a construction of wave functions for quasiparticles and neutral excitations by analogy to the standard composite fermion theory. We present numerical evidence in finite systems that these trial wave functions capture well the low energy physics of a four-body model interaction. We also compare the tripartite composite fermion wave functions with the exact Coulomb eigenstates at 2+⅗, and find reasonably good agreement. The ground state as well as several excited states of the four-body interaction are seen to evolve adiabatically into the corresponding Coulomb states for N=15 particles. These results support the plausibility of the Read-Rezayi proposal for the 2+⅖ and 2+⅗ fractional quantum Hall effect. However, certain other proposals also remain viable, and further study of excitations and edge states will be necessary for a decisive establishment of the physical mechanism of these fractional quantum Hall states.

  5. (Strongly interacting fermion system)

    SciTech Connect

    Not Available

    1990-01-01

    Research has been concentrated primarily in three areas: heavy fermions, physics of high-temperature superconductivity, and electronic properties. In heavy fermions a peak in the attenuation coefficient of ultrasound just below the superconducting transition temperature can be explained in the context of conventional (BCS) superconductivity theory by recognizing how profoundly that theory is reorganized in heavy fermion systems in which the sound velocity is comparable to electron Fermi velocity. In high-temperature superconductors there have been development of a model for magnetism in one alloy which shows unusual first-order phase transitions in a magnetic field, a possible mechanism for high-temperature superconductivity based on an electric quadrupole moment of Cu in tetragonal crystal geometry, and a neat resolution of a paradox between a theory connecting gaps in spectrum with the degeneracy of the system and a prominent current theoretical view that there is a gap and no degeneracy. It turns out there is a topological degeneracy that had not been previously recognized. In electronic structure we have shown that the finite element approach can be used for electronic systems with an efficient code using more than a half-million local basis functions. In addition, we have developed a variational principle for determining optimal meshes for solving differential equations --- such as the Schroedinger equation.

  6. Fermion mass without symmetry breaking

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2016-01-01

    We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.

  7. Hadron Properties with FLIC Fermions

    SciTech Connect

    James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang

    2003-07-01

    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.

  8. Snapshots of Dirac fermions near the Dirac point in topological insulators.

    PubMed

    Luo, C W; Wang, H J; Ku, S A; Chen, H-J; Yeh, T T; Lin, J-Y; Wu, K H; Juang, J Y; Young, B L; Kobayashi, T; Cheng, C-M; Chen, C-H; Tsuei, K-D; Sankar, R; Chou, F C; Kokh, K A; Tereshchenko, O E; Chulkov, E V; Andreev, Yu M; Gu, G D

    2013-01-01

    The recent focus on topological insulators is due to the scientific interest in the new state of quantum matter as well as the technology potential for a new generation of THz optoelectronics, spintronics and quantum computations. It is important to elucidate the dynamics of the Dirac fermions in the topologically protected surface state. Hence we utilized a novel ultrafast optical pump mid-infrared probe to explore the dynamics of Dirac fermions near the Dirac point. The femtosecond snapshots of the relaxation process were revealed by the ultrafast optics. Specifically, the Dirac fermion-phonon coupling strength in the Dirac cone was found to increase from 0.08 to 0.19 while Dirac fermions were away from the Dirac point into higher energy states. Further, the energy-resolved transient reflectivity spectra disclosed the energy loss rate of Dirac fermions at room temperature was about 1 meV/ps. These results are crucial to the design of Dirac fermion devices.

  9. Cloaking two-dimensional fermions

    SciTech Connect

    Lin, De-Hone

    2011-09-15

    A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.

  10. A set of scientific issues being considered by the United States Environmental Protection Agency regarding pollinator risk assessment framework.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On September 11-14, 2012, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the Office of Pesticides Program’s (OPP) proposed “Pollinator Risk Assessment Framework”. Several sources have reporte...

  11. Setting Up a Bibliographic Database from National Inventory of Scientific and Technical Literature. The CIDST Experience in Madagascar.

    ERIC Educational Resources Information Center

    Andriamparany, Louis Marius; And Others

    1991-01-01

    Describes the development of a bibliographic database in Madagascar through a national inventory of scientific and technical literature. The roles of the Ministry of Scientific and Technological Research for Development (MRSTD) and its information service, CIDST, are described; database products are discussed; and future prospects are suggested.…

  12. Fault tolerant quantum random number generator certified by Majorana fermions

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Duan, Lu-Ming

    2013-03-01

    Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for robust generation of certified random numbers, which has important applications in cryptography and other related areas. This work was supported by the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), the IARPA MUSIQC program, the ARO and the AFOSR MURI program.

  13. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  14. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  15. Unconventional superconductivity in heavy-fermion compounds

    NASA Astrophysics Data System (ADS)

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-07-01

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  16. Dynamical symmetries for fermions

    SciTech Connect

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.

  17. Dirac Fermions in Borophene

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Sugino, Osamu; Liu, Ro-Ya; Zhang, Jin; Yukawa, Ryu; Kawamura, Mitsuaki; Iimori, Takushi; Kim, Howon; Hasegawa, Yukio; Li, Hui; Chen, Lan; Wu, Kehui; Kumigashira, Hiroshi; Komori, Fumio; Chiang, Tai-Chang; Meng, Sheng; Matsuda, Iwao

    2017-03-01

    Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β12 sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β12 sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

  18. Fault-tolerant quantum random-number generator certified by Majorana fermions

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Duan, Lu-Ming

    2013-07-01

    Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for the implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a perspective to apply Majorana fermions for the robust generation of certified random numbers, which has important applications in cryptography and other related areas.

  19. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    NASA Technical Reports Server (NTRS)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  20. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  1. Composite fermion-boson mapping for fermionic lattice models.

    PubMed

    Zhao, J; Jiménez-Hoyos, C A; Scuseria, G E; Huerga, D; Dukelsky, J; Rombouts, S M A; Ortiz, G

    2014-11-12

    We present a mapping of elementary fermion operators onto a quadratic form of composite fermionic and bosonic cluster operators. The mapping is an exact isomorphism as long as the physical constraint of one composite particle per cluster is satisfied. This condition is treated on average in a composite particle mean-field approach, which consists of an ansatz that decouples the composite fermionic and bosonic sectors. The theory is tested on the 1D and 2D Hubbard models. Using a Bogoliubov determinant for the composite fermions and either a coherent or Bogoliubov state for the bosons, we obtain a simple and accurate procedure for treating the Mott insulating phase of the Hubbard model with mean-field computational cost.

  2. Linear dependencies between composite fermion states

    NASA Astrophysics Data System (ADS)

    Meyer, M. L.; Liabøtrø, O.; Viefers, S.

    2016-09-01

    The formalism of composite fermions (CFs) has been one of the most prominent and successful approaches to describing the fractional quantum Hall effect, in terms of trial many-body wave functions. Testing the accuracy of the latter typically involves rather heavy numerical comparison to exact diagonalization results. Thus, optimizing computational efficiency has been an important technical issue in this field. One generic (and not yet fully understood) property of the CF approach is that it tends to overcount the number of linearly independent candidate states for fixed sets of quantum numbers. Technically speaking, CF Slater determinants that are orthogonal before projection to the lowest Landau level, may lead to wave functions that are identical, or possess linear dependencies, after projection. This leads to unnecessary computations, and has been pointed out in the literature both for fermionic and bosonic systems. We here present a systematic approach that enables us to reveal all linear dependencies between bosonic compact states in the lowest CF ‘cyclotron energy’ sub-band, and almost all dependencies in higher sub-bands, at the level of the CF Slater determinants, i.e. before projection, which implies a major computational simplification. Our approach is introduced for so-called simple states of two-species rotating bosons, and then generalized to generic compact bosonic states, both one- and two-species. Some perspectives also apply to fermionic systems. The identities and linear dependencies we find, are analytically exact for ‘brute force’ projection in the disk geometry.

  3. EDITORIAL: International Conference on Finite Fermionic Systems: Nilsson Model 50 Years

    NASA Astrophysics Data System (ADS)

    2006-06-01

    In 1955 Sven Gösta Nilsson published the paper `Binding States of Individual Nucleons in Strongly Deformed Nuclei'. This eminent work has been crucial for the understanding of the structure of deformed atomic nuclei. Moreover, the so-called Nilsson model has been widely used for the description of other types of finite systems of fermions such as quantum dots and cold fermionic atoms. During one week in June 2005 we celebrated in Lund the 50th anniversary of the Nilsson model with the International Conference on Finite Fermionic Systems - Nilsson Model 50 Years. With the historical view in mind, the conference focused on present and future problems in nuclear structure physics as well as on the physics of other types of finite Fermi systems. As a background to the recent developments Nobel Laureate Ben Mottelson presented a recollection of early applications and achievements of the Nilsson model in the first talk of the conference, including a personal view of Sven Gösta Nilsson. We are particularly pleased that this contribution could be included in these proceedings. The scientific programme was structured according to the following subjects: Shell structure and deformations The heaviest elements and beyond Nuclei far from stability Pairing correlations Nuclear spectroscopy: large deformations Nuclear spectroscopy: rotational states Order and chaos Cold fermionic atoms Quantum dots Many new and interesting results were presented in the 15 invited talks, 30 oral contributions, and in the 33 papers of the poster sessions. The present volume of Physica Scripta contains most of the talks, as well as the short contributions of the posters. We thank the speakers and all participants who actively contributed to give this memorable conference a very high scientific level in the presented contributions, as well as in numerous discussions inside and outside the sessions. We also thank the international advisory committee for their invaluable work in helping us setting up

  4. Spontaneous compactification and chiral fermions

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.; Yamamoto, Katsuji

    The question is addressed of which chiral fermions survive in spontaneously compactified solutions of the generalized Einstein-Yang-Mills field equations for higher even space-time dimensions. First, we study the allowed fermion representations of SU( N) which have no gauge or gravitational chiral anomalies in arbitrary even dimension and show how to find all such representations for the case of totally antisymmetric SU( N) tensors. Second, we look explicitly at monopole-induced spontaneous compactification in six dimensions; here, interesting chiral fermions in four dimensions do not occur easily but instead require highly artificial assignments of quantum numbers under the U(1) gauge group associated with the monopole. Finally, we consider instanton-induced spontaneous compactification in eight dimensions; for this case, we may readily obtain acceptable chiral fermions in four dimensions, including Georgi's three-family SU(11) model.

  5. Observing remnants by fermions' tunneling

    SciTech Connect

    Chen, D.Y.; Wu, H.W.; Yang, H. E-mail: iverwu@uestc.edu.cn

    2014-03-01

    The standard Hawking formula predicts the complete evaporation of black holes. In this paper, we introduce effects of quantum gravity into fermions' tunneling from Reissner-Nordstrom and Kerr black holes. The quantum gravity effects slow down the increase of Hawking temperatures. This property naturally leads to a residue mass in black hole evaporation. The corrected temperatures are affected by the quantum numbers of emitted fermions. Meanwhile, the temperature of the Kerr black hole is a function of θ due to the rotation.

  6. Fermions as generalized Ising models

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-04-01

    We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  7. Majorana fermions in a box

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Shalaby, A. M.; Wiese, U.-J.

    2017-03-01

    Motivated by potential applications to ultracold matter, we perform a theoretical study of Majorana fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint extension parameters. While the boundary conditions for Dirac fermions in (1 +1 )-d are characterized by a 1-parameter family, λ =-λ*, of self-adjoint extensions, for Majorana fermions λ is restricted to ±i . Based on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval. The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the Majorana equation as a single-particle equation. Furthermore, the equation is related to a relativistic Schrödinger equation that does not suffer from these problems. Here we restrict ourselves to theoretical considerations without yet focusing on concrete cold matter applications.

  8. The Set Point Theory of Well-Being Has Serious Flaws: On the Eve of a Scientific Revolution?

    ERIC Educational Resources Information Center

    Headey, Bruce

    2010-01-01

    Set-point theory is the main research paradigm in the field of subjective well-being (SWB). It has been extended and refined for 30 years to take in new results. The central plank of the theory is that adult set-points do not change, except temporarily in the face of major life events. There was always some "discordant data," including…

  9. Fermions and gravitational gyrotropy

    NASA Astrophysics Data System (ADS)

    Helfer, Adam D.

    2016-12-01

    In conventional general relativity without torsion, high-frequency gravitational waves couple to the chiral number density of spin one-half quanta: the polarization of the waves is rotated by 2 π N5ℓPl2, where N5 is the chiral column density and ℓPl is the Planck length. This means that if a primordial distribution of gravitational waves with E-E or B-B correlations passed through a chiral density of fermions in the very early Universe, an E-B correlation will be generated. This in turn will give rise to E-B and T-B correlations in the cosmic microwave background (CMB). Less obviously but more primitively, the condition Albrecht called "cosmic coherence" would be violated, changing the restrictions on the class of admissible cosmological gravitational waves. This altered class of waves would, generally speaking, probe earlier physics than do the conventional waves; their effects on the CMB would be most pronounced for low (≲100 ) multipoles. Rough estimates indicate that if the tensor-to-scalar ratio is less than about 10-2, it will be hard to constrain a spatially homogeneous primordial N5 by present data.

  10. Fermions, Skyrmions and the 3-sphere

    NASA Astrophysics Data System (ADS)

    Goatham, Stephen W.; Krusch, Steffen

    2010-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  11. Staggered Fermion Thermodynamics using Anisotropic Lattices

    NASA Astrophysics Data System (ADS)

    Levkova, L.

    2003-05-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with 2-flavors of dynamical fermions where all bare parameters and hence the physics scales are kept constant while the temperature is changed in small steps by varying only the number of the time slices. The results from a series of zero-temperature scale setting simulations are used to determine the Karsch coefficients and the equation of state at finite temperatures.

  12. Studying fermionic ghost imaging with independent photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2016-12-01

    Ghost imaging with thermal fermions is calculated based on two-particle interference in Feynman's path integral theory. It is found that ghost imaging with thermal fermions can be simulated by ghost imaging with thermal bosons and classical particles. Photons in pseudothermal light are employed to experimentally study fermionic ghost imaging. Ghost imaging with thermal bosons and fermions is discussed based on the point-to-point (spot) correlation between the object and image planes. The employed method offers an efficient guidance for future ghost imaging with real thermal fermions, which may also be generalized to study other second-order interference phenomena with fermions.

  13. Standard electromagnetically driven cosmology coupled with fermionic source

    SciTech Connect

    Mello, M. M. C.; Klippert, R.

    2015-03-10

    Dirac fermions and electromagnetic fields are considered as the source of gravitation in the framework of standard Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology. It is shown that all solutions for the scale-factor a(t) are non-singular, provided the cosmological constant Λ is set to be less than the positive inverse of a quantum scale.

  14. Mapping the changing landscape of fish-related journals: Setting a course for successful communication of scientific information

    USGS Publications Warehouse

    Mather, M. E.; Parrish, D.L.; Dettmers, J.M.

    2008-01-01

    In the last 25 years, the number and scope of fish-related journals have changed. New and existing journals are increasingly specialized. Journals that are read and cited are changing because of differential accessibility via electronic databases. In this review, we examine shifts in numbers and foci of existing fish-related journals. We ask how these fish-related metrics differ across type of application, ecological system, taxa, and discipline. Although many journals overlap to some extent in content, there are distinct groups of journals for authors to consider. By systematically reviewing the focus of an individual manuscript, comparing it to the suite of journals available and examining the audience for the manuscript, we believe that authors can make informed decisions about which journals are most suitable for their work. Our goal here is to help authors find relevant journals and deliver scientific publications to the appropriate readership.

  15. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE PAGES

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  16. Staggered fermions, zero modes, and flavor-singlet mesons

    SciTech Connect

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.

  17. Writing a Scientific Research ("Testable") Question: The First Step in Using Online Data Sets for Guided Inquiry Assignments

    ERIC Educational Resources Information Center

    Graves, Chiron; Rutherford, Sandra

    2012-01-01

    Educational research focused on questioning techniques used in classroom settings is quite extensive. However, research regarding a teacher's ability to generate research questions is virtually nonexistent. Posing research or "testable" questions is a key component of inquiry-based instruction, and teachers must be able to both generate…

  18. New and emerging weight management strategies for busy ambulatory settings: a scientific statement from the American Heart Association

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this statement is to provide an overview of new and emerging tools and strategies for discussing weight and assisting overweight and obese patients. Only tools and strategies that can be used practically in busy ambulatory settings are included. The goal is to provide clinicians with ...

  19. Fermion localization on thick branes

    SciTech Connect

    Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David

    2006-02-15

    We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

  20. Local spin operators for fermion simulations

    NASA Astrophysics Data System (ADS)

    Whitfield, James D.; Havlíček, Vojtěch; Troyer, Matthias

    2016-09-01

    Digital quantum simulation of fermionic systems is important in the context of chemistry and physics. Simulating fermionic models on general purpose quantum computers requires imposing a fermionic algebra on qubits. The previously studied Jordan-Wigner and Bravyi-Kitaev transformations are two techniques for accomplishing this task. Here, we reexamine an auxiliary fermion construction which maps fermionic operators to local operators on qubits. The local simulation is performed by relaxing the requirement that the number of qubits should match the number of single-particle states. Instead, auxiliary sites are introduced to enable nonconsecutive fermionic couplings to be simulated with constant low-rank tensor products on qubits. The additional number of auxiliary qubits required per fermionic degree of freedom depends only on the degree of connectivity of the Hamiltonian. We connect the auxiliary fermion construction to topological models and give examples of the construction.

  1. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    2015-11-11

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  2. Frame-like gauge-invariant description of massive fermionic higher spins in 3D

    NASA Astrophysics Data System (ADS)

    Permiakova, M. Yu.; Snegirev, T. V.

    2017-03-01

    We give the frame-like gauge-invariant Lagrangian description for massive fermionic arbitrary spin fields in three-dimensional AdS space. The Lagrangian, complete set of gauge transformations and gauge-invariant curvatures are obtained.

  3. Data, models, and views: towards integration of diverse numerical model components and data sets for scientific and public dissemination

    NASA Astrophysics Data System (ADS)

    Hofmeister, Richard; Lemmen, Carsten; Nasermoaddeli, Hassan; Klingbeil, Knut; Wirtz, Kai

    2015-04-01

    Data and models for describing coastal systems span a diversity of disciplines, communities, ecosystems, regions and techniques. Previous attempts of unifying data exchange, coupling interfaces, or metadata information have not been successful. We introduce the new Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de), a novel coupling framework that enables the integration of a diverse array of models and data from different disciplines relating to coastal research. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. We demonstrate how diverse coastal system constituents were integrated into this modular framework and how we deal with the diverging development of constituent data sets and models at external institutions. Finally, we show results from simulations with the fully coupled system using OGC WebServices in the WiMo geoportal (http://kofserver3.hzg.de/wimo), from where stakeholders can view the simulation results for further dissemination.

  4. Constructing entanglement measures for fermions

    NASA Astrophysics Data System (ADS)

    Johansson, Markus; Raissi, Zahra

    2016-10-01

    In this paper we describe a method for finding polynomial invariants under stochastic local operations and classical communication (SLOCC) for a system of delocalized fermions shared between different parties, with global particle-number conservation as the only constraint. These invariants can be used to construct entanglement measures for different types of entanglement in such a system. It is shown that the invariants, and the measures constructed from them, take a nonzero value only if the state of the system allows for the observation of Bell-nonlocal correlations. Invariants of this kind are constructed for systems of two and three spin-1/2 fermions and examples of maximally entangled states are given that illustrate the different types of entanglement distinguished by the invariants. A general condition for the existence of SLOCC invariants and their associated measures is given as a relation between the number of fermions, their spin, and the number of spatial modes of the system. In addition, the effect of further constraints on the system, including the localization of a subset of the fermions, is discussed. Finally, a hybrid Ising-Hubbard Hamiltonian is constructed for which the ground state of a three-site chain exhibits a high degree of entanglement at the transition between a regime dominated by on-site interaction and a regime dominated by Ising interaction. This entanglement is well described by a measure constructed by the introduced method.

  5. Wilson fermions at finite temperature

    SciTech Connect

    Creutz, M.

    1996-09-17

    The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses.

  6. Strongly Interacting Fermions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Koetsier, A. O.

    2009-07-01

    This thesis explores certain extraordinary phenomena that occur when a gas of neutral atoms is cooled to the coldest temperatures in the universe --- much colder, in fact, than the electromagnetic radiation that permeates the vacuum of interstellar space. At those extreme temperatures, quantum effects dominate and the collective behaviour of the atoms can have unexpected consequences. For example, Bose-Einstein condensation may occur where the atoms lose their individual identities to coalesce into a macroscopic quantum particle. Although such ultracold atomic gases are interesting in their own right, much of the excitement generated in this field is due to the possibility that studying these gases could shed light on intractable problems in other areas of physics. This is predominantly due to the uniquely high degree of control over various physical parameters that ultracold atomic gases afford to experimentalists. Recent technological advances exploit this advantage to study quantum phenomena in a detail that would not be possible in other systems. For instance, atoms can be made to attract or repel each other, the strength of this interaction can be set to almost any value, and external potentials of various geometries and periodicities can be introduced. In this way, atoms can be used to model phenomena as diverse as the quark-gluon plasmas arising in high-energy particle physics, the colour superfluids conjectured to exist in the core of neutron stars, and the high-temperature superconductivity exhibited by electrons on the ion lattice of certain compounds. Indeed, ultracold atomic gases also have a demonstrated applicability to quantum information and computation. Due to a subtle interplay between electronic and nuclear spins known as the hyperfine interaction, atoms can have either an integer or half-integer total spin quantum number, making them either bosonic or fermionic at low temperatures, respectively. With the exception of chapter 7, the work

  7. Pure Pairing Modes in Trapped Fermion Systems

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  8. Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2014-07-01

    We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.

  9. Fermion Fractionalization to Majorana Fermions in Dimerized Kitaev Superconductor

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2015-03-01

    We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.

  10. High temperature thermostatistics of fermionic Fibonacci oscillators with intermediate statistics

    NASA Astrophysics Data System (ADS)

    Algin, Abdullah; Arikan, Ali Serdar; Dil, Emre

    2014-12-01

    In this study, we pursue an original idea about whether unique deformed particle algebra could effectively describe a set of crucial quantum properties including the non-standard statistics of particles, the internal structure of particles, and the interaction of particles. Following such an idea, we consider a specific Fermi gas model containing the two-parameter deformed fermionic particles called fermionic Fibonacci oscillators. For such a system, several thermostatistical functions such as the total number of particles, the internal energy, and the entropy are calculated in the thermodynamical limit by means of some properties of the Fibonacci calculus. A virial expansion of the equation of state for the system is also obtained, and the first five virial coefficients are derived in terms of the real independent deformation parameters q and p. From the results obtained here, it is first found that for two and three spatial dimensions, the present deformed Fermi gas model shows an interpolation between fermionic and boson-like systems, and secondly, it is concluded that the two-parameter deformation of fermions leads to a suitable framework for an effective description of interacting composite particle systems.

  11. Superdeformations and fermion dynamical symmetries

    SciTech Connect

    Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.

  12. Gauge theory of fermions on R X S{sup 3} spacetime

    SciTech Connect

    Dariescu, M.A.; Dariescu, C.; Gottlieb, I.

    1995-06-01

    A Lorentz-invariant gauge theory for massive fermions on R X S{sup 3} spacetime is built up. Using the symmetry of S{sup 3}, the authors obtain Dirac-type equations and derive the expression of the fermionic propagator. Finally, starting from the SU(N) gauge-invariant Lagrangian, they obtain the set of Dirac-Yang-Mills equations on R X S{sup 3} spacetime, pointing out major differences from the Minkowskian case.

  13. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  14. Multipartite concurrence for identical-fermion systems

    NASA Astrophysics Data System (ADS)

    Majtey, A. P.; Bouvrie, P. A.; Valdés-Hernández, A.; Plastino, A. R.

    2016-03-01

    We study the problem of detecting multipartite entanglement among indistinguishable fermionic particles. A multipartite concurrence for pure states of N identical fermions, each one having a d -dimensional single-particle Hilbert space, is introduced. Such an entanglement measure, in particular, is optimized for maximally entangled states of three identical fermions that play a role analogous to the usual (qubit) Greenberger-Horne-Zeilinger state. In addition, it is shown that the fermionic multipartite concurrence can be expressed as the mean value of an observable, provided two copies of the composite state are available.

  15. Spin Tqfts and Fermionic Phases of Matter

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Kapustin, Anton

    We study lattice constructions of gapped fermionic phases of matter. We show that the construction of fermionic Symmetry Protected Topological orders by Gu and Wen has a hidden dependence on a discrete spin structure on the Euclidean space-time. The spin structure is needed to resolve ambiguities which are otherwise present. An identical ambiguity is shown to arise in the fermionic analog of the string-net construction of 2D topological orders. We argue that the need for a spin structure is a general feature of lattice models with local fermionic degrees of freedom and is a lattice analog of the spinstatistics relation.

  16. Aharonov-Bohm radiation of fermions

    SciTech Connect

    Chu Yizen; Mathur, Harsh; Vachaspati, Tanmay

    2010-09-15

    We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.

  17. Calculating weak matrix elements using HYP staggered fermions

    SciTech Connect

    T. Bhattacharya; G. T. Fleming; G. Kilcup; R. Gupta; W. Lee; S. Sharpe

    2004-03-01

    We present preliminary results of weak matrix elements relevant to CP violation calculated using the HYP (II) staggered fermions. Since the complete set of matching coefficients at the one-loop level became available recently, we have constructed lattice operators with all the g{sup 2} corrections included. The main results include both {Delta}I = 3/2 and {Delta}I = 1/2 contributions.

  18. STOUT SMEARING FOR TWISTED FERMIONS.

    SciTech Connect

    SCHOLZ,W.; JANSEN, K.; McNEILE, C.; MONTVAY, I.; RICHARDS, C.; URBACH, C.; WENGER, U.

    2007-07-30

    The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our

  19. Dipole oscillations in fermionic mixtures

    SciTech Connect

    Chiacchiera, S.; Macri, T.; Trombettoni, A.

    2010-03-15

    We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.

  20. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  1. Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Cheng, Jiong; Zhang, Wen-Zhao; Han, Yan; Zhou, Ling

    2015-02-01

    A maximal steady-state fermionic entanglement of a nanoelectronic system is generated in finite temperature non-Markovian environments. The fermionic entanglement dynamics is presented by connecting the exact solution of the system with an appropriate definition of fermionic entanglement. We prove that the two understandings of the dissipationless non-Markovian dynamics, namely, the bound state and the modified Laplace transformation, are completely equivalent. For comparison, the steady-state entanglement is also studied in the wide-band limit and Born-Markovian approximation. When the environments have a finite band structure, we find that the system presents various kinds of relaxation processes. The final states can be thermal or thermal-like states, quantum memory states, and oscillating quantum memory states. Our study provides an analytical way to explore the non-Markovian entanglement dynamics of identical fermions in a realistic setting, i.e., finite-temperature reservoirs with a cutoff spectrum.

  2. Quantum electrodynamics with complex fermion mass

    SciTech Connect

    McKellar, B.J.H. . School of Physics); Wu, D.D. . School of Physics Academia Sinica, Beijing, BJ . Inst. of High Energy Physics Superconducting Super Collider Lab., Dallas, TX )

    1991-08-01

    The quantum electrodynamics (QED) with a complex fermion mass -- that is, a fermion mass with a chiral phase -- is restudied, together with its chirally rotated version. We show how fake electric dipole moment can be obtained and how to avoid it. 10 refs.

  3. Mass-induced transition in fermion number

    SciTech Connect

    Aragao de Carvalho, C.; Pureza, J. M.

    1989-05-15

    We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

  4. Coherent states in the fermionic Fock space

    NASA Astrophysics Data System (ADS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions.

  5. Superalgebra and fermion-boson symmetry

    PubMed Central

    Miyazawa, Hironari

    2010-01-01

    Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617

  6. Tunable Dirac fermion dynamics in topological insulators.

    PubMed

    Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2013-01-01

    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.

  7. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    NASA Astrophysics Data System (ADS)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  8. Fermion hierarchy from sfermion anarchy

    DOE PAGES

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-12-31

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first andmore » second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.« less

  9. Cosmology of fermionic dark matter

    SciTech Connect

    Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2007-11-15

    We explore a model for a fermionic dark matter particle family which decouples from the rest of the particles when at least all standard model particles are in equilibrium. We calculate the allowed ranges for mass and chemical potential to be compatible with big bang nucleosynthesis (BBN) calculations and WMAP data for a flat universe with dark energy ({omega}{sub {lambda}}{sup 0}=0.72, {omega}{sub M}{sup 0}=0.27, h=0.7). Futhermore we estimate the free streaming length for fermions and antifermions to allow comparison to large scale structure data (LSS). We find that for dark matter decoupling when all standard model particles are present even the least restrictive combined BBN calculation and WMAP results allow us to constrain the initial dark matter chemical potential to a highest value of 6.3 times the dark matter temperature. In this case, the resulting mass range is at most 1.8 eV{<=}m{<=}53 eV, where the upper bound scales linearly with g{sub eff}{sup s}(T{sub Dec}). From LSS we find that, similar to ordinary warm dark matter models, the particle mass has to be larger than {approx}500 eV [meaning g{sub eff}{sup s}(T{sub Dec})>10{sup 3}] to be compatible with observations of the Ly {alpha} forest at high redshift, but still the dark matter chemical potential over temperature ratio can exceed unity.

  10. Fermion hierarchy from sfermion anarchy

    SciTech Connect

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-12-31

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.

  11. Thermalization of Fermionic Quantum Walkers

    NASA Astrophysics Data System (ADS)

    Hamza, Eman; Joye, Alain

    2017-03-01

    We consider the discrete time dynamics of an ensemble of fermionic quantum walkers moving on a finite discrete sample, interacting with a reservoir of infinitely many quantum particles on the one dimensional lattice. The reservoir is given by a fermionic quasifree state, with free discrete dynamics given by the shift, whereas the free dynamics of the non-interacting quantum walkers in the sample is defined by means of a unitary matrix. The reservoir and the sample exchange particles at specific sites by a unitary coupling and we study the discrete dynamics of the coupled system defined by the iteration of the free discrete dynamics acting on the unitary coupling, in a variety of situations. In particular, in absence of correlation within the particles of the reservoir and under natural assumptions on the sample's dynamics, we prove that the one- and two-body reduced density matrices of the sample admit large times limits characterized by the state of the reservoir which are independent of the free dynamics of the quantum walkers and of the coupling strength. Moreover, the corresponding asymptotic density profile in the sample is flat and the correlations of number operators have no structure, a manifestation of thermalization.

  12. FIFRA Scientific Advisory Panel Minutes No. 21015-04. A set of scientific issues being considered by the Environmental Protection Agency regarding integrated endocrine bioactivity and exposure-based prioritization & screening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On December 2-4, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “Integrated Endocrine Bioactivity and Exposure-Based Prioritization and Screening” methods. EPA is proposing ...

  13. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions

    PubMed Central

    Dong, Xiao; Hu, Meng; He, Julong; Tian, Yongjun; Wang, Hui-Tian

    2015-01-01

    Searching for novel functional carbon materials is an enduring topic of scientific investigations, due to its diversity of bonds, including sp-, sp2-, and sp3-hybridized bonds. Here we predict a new carbon allotrope, bct-C12 with the body-centered tetragonal I4/mcm symmetry, from the compression of carbon nanotubes. In particular, this structure behaviors as the Dirac fermions in the kz direction and the classic fermions in the kx and ky directions. This anisotropy originates from the interaction among zigzag chains, which is inherited from (n, n)-naotubes. PMID:26030232

  14. Resonances of Spin-1/2 Fermions in Eddington-Inspired Born-Infeld Gravity

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Ming; Zhao, Li; Du, Yun-Zhi; Gu, Bao-Min

    2016-03-01

    We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired Born-Infeld (EiBI) theory. In order to localize fermion on the brane, it needs to be considered the Yukawa coupling between the fermion and the background scalar field. In our models, since the background scalar field has kink, double kink, or anti-kink solution, the system has rich resonant Kaluza-Klein (KK) modes structure. The massive KK fermionic modes feel a volcano potential, which result in a fermionic zero mode and a set of continuous massive KK modes. The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions. Supported in part by the National Natural Science Foundation of China under Grant No. 11075065, the Huo Ying-Dong Education Foundation of Chinese Ministry of Education under Grant No. 121106 and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2014-31

  15. Noncommutativity Parameter and Composite Fermions

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed

    We determine some particular values of the noncommutativity parameter θ and show that the Murthy Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of θ. This measurement can be obtained by considering some values of the filling factor ν and other ingredients, magnetic field B and electron density ρ. Moreover, it is found that θ can be quantized either fractionally or integrally in terms of the magnetic length l0 and the quantization is exactly what Murthy and Shankar formulated recently for the FQHE. On the other hand, we show that the mapping of the FQHE in terms of the composite fermion basis has a noncommutative geometry nature and therefore there is a more general way than the Murthy Shankar method to do this mapping.

  16. New fermions in the bulk

    NASA Astrophysics Data System (ADS)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  17. Flavor symmetries and fermion masses

    SciTech Connect

    Rasin, Andrija

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, Vub/Vcb = √mu/mc and Vtd/Vts = √md/ms, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  18. Cooling a Band Insulator with a Metal: Fermionic Superfluid in a Dimerized Holographic Lattice

    NASA Astrophysics Data System (ADS)

    Haldar, Arijit; Shenoy, Vijay B.

    A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states. Reference: Scientific Reports 4, 6665 (2014). Work supported by CSIR, DST and DAE.

  19. Instantons and Massless Fermions in Two Dimensions

    DOE R&D Accomplishments Database

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  20. Fermion localization on a split brane

    SciTech Connect

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  1. A New Zealand Scientific Perspective on 20+ Years of Efforts to Introduce Policies Setting Limits on Emissions: What's the Way Forward?

    NASA Astrophysics Data System (ADS)

    Baisden, T. W.

    2013-12-01

    Setting limits on pollution is an inherently political process negotiated between stakeholders within society. Science has a critical, but not dominant role in setting environmental limits. Over the past 20 years, nations have had the opportunity to build on a period of major international successes, limiting ozone-depleting chemicals and sulphur emissions causing acid rain. The science and politics of solutions attempted during this time has become vastly more complicated, and the outcome has been disappointing: global greenhouse gas emissions remain at business-as-usual trajectories. It seems logical and timely to examine the landscape before forging onward. In a brief review of lessons learned from the perspective of earth-system science within New Zealand, I highlight key examples and opportunities for creating more promising way forward. Among the lessons are that small-scale limit setting can host important innovation, while collapses can occur when systems that are too-big-to-fail but lack critical pre-requisites. In this sense, implementation of cap-and-trade for water quality may represent the former, while the collapse of C prices highlight the latter. Of critical importance is the simple observation that perceived uncertainties must be brought within bounds that make decisions possible. The way in which system are framed scientifically can be of overarching significance. Cap and trade for nutrients in New Zealand catchments has enabled small-scale illustrations of how the system frame can be vital in successful policy. For example, the N budget of Lake Taupo is simplified by focusing on inputs to the land, while 100-year forcing equivalence still raises questions about managing climate change. Relationships between emissions and activity must be distilled based on sound science, in a manner simple and certain enough for people and businesses to meaningfully consider in decisions that are made every day. With trust becoming a major limiting factor in the

  2. Two-dimensional fermionic Hong-Ou-Mandel interference with massless Dirac fermions

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Leuenberger, Michael N.

    2014-08-01

    We propose a two-dimensional Hong-Ou-Mandel (HOM) type interference experiment for massless Dirac fermions in graphene and 3D topological insulators. Since massless Dirac fermions exhibit linear dispersion, similar to photons in vacuum, they can be used to obtain the HOM interference intensity pattern as a function of the delay time between two massless Dirac fermions. We show that while the Coulomb interaction leads to a significant change in the angle dependence of the tunneling of two identical massless Dirac fermions incident from opposite sides of a potential barrier, it does not affect the HOM interference pattern. We apply our formalism to develop a massless Dirac fermion beam splitter (BS) for controlling the transmission and reflection coefficients. We calculate the resulting time-resolved correlation function for two identical massless Dirac fermions scattering off the BS.

  3. Simple Messages Help Set the Record Straight about Scientific Agreement on Human-Caused Climate Change: The Results of Two Experiments

    PubMed Central

    Myers, Teresa A.; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents’ estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an “estimation and reveal” technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed. PMID:25812121

  4. Simple messages help set the record straight about scientific agreement on human-caused climate change: the results of two experiments.

    PubMed

    Myers, Teresa A; Maibach, Edward; Peters, Ellen; Leiserowitz, Anthony

    2015-01-01

    Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents' estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an "estimation and reveal" technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed.

  5. Building the full fermion-photon vertex of QED by imposing multiplicative renormalizability of the Schwinger-Dyson equations for the fermion and photon propagators

    SciTech Connect

    Kizilersue, Ayse; Pennington, Michael R.

    2009-06-15

    In principle, calculation of a full Green's function in any field theory requires knowledge of the infinite set of multipoint Green's functions, unless one can find some way of truncating the corresponding Schwinger-Dyson equations. For the fermion and boson propagators in QED this requires an ansatz for the full 3-point vertex. Here we illustrate how the properties of gauge invariance, gauge covariance and multiplicative renormalizability impose severe constraints on this fermion-boson interaction, allowing a consistent truncation of the propagator equations. We demonstrate how these conditions imply that the 3-point vertex in the propagator equations is largely determined by the behavior of the fermion propagator itself and not by knowledge of the many higher-point functions. We give an explicit form for the fermion-photon vertex, which in the fermion and photon propagator fulfills these constraints to all orders in leading logarithms for massless QED, and accords with the weak coupling limit in perturbation theory at O({alpha}). This provides the first attempt to deduce nonperturbative Feynman rules for strong physics calculations of propagators in massless QED that ensure a more consistent truncation of the 2-point Schwinger-Dyson equations. The generalization to next-to-leading order and masses will be described in a longer publication.

  6. General form of the boson-fermion interaction in the interacting boson-fermion model-2

    NASA Astrophysics Data System (ADS)

    Matus, F. A.; Barea, J.

    2017-03-01

    The boson-fermion interaction in the interacting boson-fermion model-2 (IBFM-2) is derived in a systematic and general form from a quadrupole-quadrupole force using several nondegenerate levels. The boson-fermion quadrupole operator employed is obtained from the boson-fermion image of the one nucleon transfer operator which in turn can be calculated following two alternative schemes: the Otsuka-Arima-Iachello and generalized Holstein-Primakoff schemes. Four different terms (two quadrupole and two exchange) were obtained. Application of the new expressions to a single-j model is studied and analyzed.

  7. Thermostatistics of bosonic and fermionic Fibonacci oscillators

    NASA Astrophysics Data System (ADS)

    Algin, Abdullah; Arik, Metin; Senay, Mustafa; Topcu, Gozde

    2017-01-01

    In this work, we first introduce some new properties concerning the Fibonacci calculus. We then discuss the thermostatistics of gas models of two-parameter deformed oscillators, called bosonic and fermionic Fibonacci oscillators, in the thermodynamical limit. In this framework, we analyze the behavior of two-parameter deformed mean occupation numbers describing the Fibonacci-type bosonic and fermionic intermediate-statistics particles. A virial expansion of the equation of state for the bosonic Fibonacci oscillators’ gas model is obtained in both two and three dimensions, and the first five virial coefficients are derived in terms of the real independent deformation parameters p and q. The effect of bosonic and fermionic p, q-deformation on the thermostatistical properties of Fibonacci-type p, q-boson and p, q-fermion gas models are also discussed. The results obtained in this work can be useful for investigating some exotic quasiparticle states encountered in condensed matter systems.

  8. Majorana Fermions and Topology in Superconductors

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-07-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.

  9. Bilinear forms on fermionic Novikov algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqi; Zhu, Fuhai

    2007-05-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian super-operator in a super-variable. In this paper, we show that there is a remarkable geometry on fermionic Novikov algebras with non-degenerate invariant symmetric bilinear forms, which we call pseudo-Riemannian fermionic Novikov algebras. They are related to pseudo-Riemannian Lie algebras. Furthermore, we obtain a procedure to classify pseudo-Riemannian fermionic Novikov algebras. As an application, we give the classification in dimension <=4. Motivated by the one in dimension 4, we construct some examples in high dimensions.

  10. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  11. Quantum-Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.

    2015-05-01

    We realize a quantum-gas microscope for fermionic 40K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.

  12. Fermionic Orbital Optimization in Tensor Network States

    NASA Astrophysics Data System (ADS)

    Krumnow, C.; Veis, L.; Legeza, Ö.; Eisert, J.

    2016-11-01

    Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such nonlocal fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this Letter, we propose a way to overcome this challenge. We suggest a method intertwining the optimization over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalizes basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimization in tensor network methods.

  13. Two-photon interactions with Majorana fermions

    NASA Astrophysics Data System (ADS)

    Latimer, David C.

    2016-11-01

    Because Majorana fermions are their own antiparticles, their electric and magnetic dipole moments must vanish, leaving the anapole moment as their only static electromagnetic property. But the existence of induced dipole moments is not necessarily prohibited. Through a study of real Compton scattering, we explore the constraints that the Majorana fermion's self-conjugate nature has on induced moments. In terms of the Compton amplitude, we find no constraints if the interactions are separately invariant under charge conjugation, parity, and time reversal. However, if the interactions are odd under parity and even under time reversal, then these contributions to the Compton amplitude must vanish. We employ a simple model to confirm these general findings via explicit calculation of the Majorana fermion's polarizabilities. We then use these polarizabilities to estimate the cross section for s -wave annihilation of two Majorana fermions into photons. The cross section is larger than a naive estimate might suggest.

  14. The physics and chemistry of heavy fermions.

    PubMed Central

    Fisk, Z; Sarrao, J L; Smith, J L; Thompson, J D

    1995-01-01

    The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems. PMID:11607558

  15. Evolution of boson-fermion stars

    NASA Astrophysics Data System (ADS)

    Valdez-Alvarado, Susana; Palenzuela, Carlos; Alic, Daniela; Ureña-López, L. Arturo; Becerril, Ricardo

    2012-08-01

    The boson-fermion stars can be modeled with a complex scalar field coupled minimally to a perfect fluid (i.e., without viscosity and non-dissipative). We present a study of these solutions and their dynamical evolution by solving numerically the Einstein-Klein-Gordon-Hydrodynamic (EKGHD) system. It is shown that stable configurations exist, but stability of general configurations depends finely upon the number of bosons and fermions.

  16. Canonical approach to Ginsparg-Wilson fermions

    SciTech Connect

    Matsui, Kosuke; Okamoto, Tomohito; Fujiwara, Takanori

    2005-06-01

    Based upon the lattice Dirac operator satisfying the Ginsparg-Wilson relation, we investigate canonical formulation of massless fermion on the spatial lattice. For free fermion system exact chiral symmetry can be implemented without species doubling. In the presence of gauge couplings the chiral symmetry is violated. We show that the divergence of the axial vector current is related to the chiral anomaly in the classical continuum limit.

  17. Quantum Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  18. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  19. First-principle Simulations of Heavy Fermion Materials

    NASA Astrophysics Data System (ADS)

    Dong, Ruanchen

    Heavy fermion materials, one of the most challenging topics in condensed matter physics, pose a variety of interesting properties and have attracted extensive studies for decades. Although there has been great success in explaining many ground- state properties of solids, the well-known theoretical calculations based on density functional theory (DFT) in its popular local density approximation (LDA) fail to describe heavy fermion materials due to improper treatment of many-body correlation effects. Here with the implementations of dynamical mean-field theory (DMFT) and the Gutzwiller variational method, the computational simulation of the heavy fermion materials is explored further and better compared with experimental data. In this dissertation, first, the theoretical background of DMFT and LDA+G methods is described in detail. The rest is the application of these techniques and is basically divided into two parts. First, the continuous-time quantum Monte Carlo (CT-QMC) method combined with DMFT is used to calculate and compare both the periodic Anderson model (PAM) and the Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For spin and orbital degeneracy N = 2 case, a special particle-hole symmetric case of PAM at half-filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f-electrons directly from KLM. The method is further applied to higher degenerate cases and to the realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. Second, a series of Cerium based heavy fermion materials is studied using a combination of local

  20. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  1. Fermionic entanglement that survives a black hole

    SciTech Connect

    Martin-Martinez, Eduardo; Leon, Juan

    2009-10-15

    We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.

  2. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe; Orús, Román; Bauer, Bela; Vidal, Guifré

    2010-04-01

    We explain how to implement, in the context of projected entangled-pair states (PEPSs), the general procedure of fermionization of a tensor network introduced in P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009). The resulting fermionic PEPS, similar to previous proposals, can be used to study the ground state of interacting fermions on a two-dimensional lattice. As in the bosonic case, the cost of simulations depends on the amount of entanglement in the ground state and not directly on the strength of interactions. The present formulation of fermionic PEPS leads to a straightforward numerical implementation that allowed us to recycle much of the code for bosonic PEPS. We demonstrate that fermionic PEPS are a useful variational ansatz for interacting fermion systems by computing approximations to the ground state of several models on an infinite lattice. For a model of interacting spinless fermions, ground state energies lower than Hartree-Fock results are obtained, shifting the boundary between the metal and charge-density wave phases. For the t-J model, energies comparable with those of a specialized Gutzwiller-projected ansatz are also obtained.

  3. Spectrum structure of a fermion on Bloch branes with two scalar–fermion couplings

    NASA Astrophysics Data System (ADS)

    Xie, Qun-Ying; Guo, Heng; Zhao, Zhen-Hua; Du, Yun-Zhi; Zhang, Yu-Peng

    2017-03-01

    It is known that the Bloch brane is generated by an odd scalar field ϕ and an even one χ. In order to localize a bulk fermion on the Bloch brane, the coupling between the fermion and scalars should be introduced. There are two localization mechanisms in the literature, the Yukawa coupling -η \\bar{\\Psi}{{F}1}≤ft(φ,χ \\right) \\Psi and non-Yukawa coupling λ \\bar{\\Psi}{ΓM}{{\\partial}M}{{F}2}≤ft(φ,χ \\right){γ5} \\Psi . The Yukawa coupling has been considered. In this paper, we consider both couplings between the fermion and the scalars with {{F}1}={χm}{φ2p+1} and {{F}2}={χn}{φ2q} , and investigate the localization and spectrum structure of the fermion on the Bloch brane. It is found that the left-handed fermion zero mode can be localized on the Bloch brane under some conditions, and the effective potentials have rich structure and may be volcano-like, finite square well-like, and infinite potentials. As a result, the spectrum consists of a series of resonant Kaluza–Klein fermions, finite or infinite numbers of bound Kaluza–Klein fermions. Especially, we find a new feature of the introduction of both couplings: the spectrum for the case of finite square well-like potentials contains discrete quasi-localized and localized massive KK modes simultaneously.

  4. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    PubMed

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  5. Plutonium-Based Heavy-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Bauer, E. D.; Thompson, J. D.

    2015-03-01

    An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

  6. Plaquette boson-fermion model of cuprates

    NASA Astrophysics Data System (ADS)

    Altman, Ehud; Auerbach, Assa

    2002-03-01

    The strongly interacting Hubbard model on the square lattice is reduced to the low energy plaquette boson fermion model (PBFM). The four bosons (an antiferromagnon triplet and a d-wave hole pair), and the fermions are defined by the lowest plaquette eigenstates. We apply the contractor renormalization method of Morningstar and Weinstein to compute the boson effective interactions. The range-3 truncation error is found to be very small, signaling short hole-pair and magnon coherence lengths. The pair-hopping and magnon interactions are comparable, which explains the rapid destruction of antiferromagnetic order with emergence of superconductivity, and validates a key assumption of the projected SO(5) theory. A vacuum crossing at larger doping marks a transition into the overdoped regime. With hole fermions occupying small Fermi pockets and Andreev coupled to hole pair bosons, the PBFM yields several testable predictions for photoemission, tunneling asymmetry, and entropy measurements.

  7. Thermofield dynamics and Casimir effect for fermions

    SciTech Connect

    Queiroz, H. . E-mail: hebe@fis.ufba.br; Silva, J.C. da . E-mail: jcsilva@cefetba.br; Khanna, F.C. . E-mail: khanna@phys.ualberta.ca; Malbouisson, J.M.C. . E-mail: jmalbou@phys.ualberta.ca; Revzen, M. . E-mail: revzen@physics.technion.ac.il; Santana, A.E. . E-mail: asantana@fis.unb.br

    2005-05-01

    A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons.

  8. Fermions on one or fewer kinks

    SciTech Connect

    Chu Yizen; Vachaspati, Tanmay

    2008-01-15

    We find the full spectrum of fermion bound states on a Z{sub 2} kink. In addition to the zero mode, there are int[2m{sub f}/m{sub s}] bound states, where m{sub f} is the fermion and m{sub s} the scalar mass. We also study fermion modes on the background of a well-separated kink-antikink pair. Using a variational argument, we prove that there is at least one bound state in this background, and that the energy of this bound state goes to zero with increasing kink-antikink separation, 2L, and faster than e{sup -a2L} where a=min(m{sub s},2m{sub f}). By numerical evaluation, we find some of the low lying bound states explicitly.

  9. Effective low-energy potential for slow Dirac fermions in Einstein-Cartan gravity with torsion and chameleon field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2015-12-01

    We derive the most general effective low-energy potential to order O (1 /m ) for slow Dirac fermions with mass m , coupled to gravitational, chameleon and torsion fields in the Einstein-Cartan gravity. The obtained results can be applied to the experimental analysis of gravitational, chameleon and torsion interactions in terrestrial laboratories. We discuss the use of rotating coordinate systems, caused by rotations of devices, for measurements of the torsion vector and tensor components, caused by minimal torsion-fermion couplings [A. N. Ivanov and M. Wellenzohn, Phys. Rev. D 92, 065006 (2015)]. Using the most general form of a metric tensor of curved spacetimes in rotating coordinate systems, proposed by Obukhov, Silenko, and Teryaev [Phys. Rev. D 84, 024025 (2011)], we extend this metric by the inclusion of the chameleon field and calculate the set of vierbein fields, in terms of which Dirac fermions couple to the torsion vector and tensor components through minimal torsion-fermion couplings. For such a set of vierbein fields we discuss a part of the effective low-energy potential for slow Dirac fermions, coupled to gravitational, chameleon and torsion fields to order O (1 ) in the large fermion mass expansion.

  10. Quantum Phases of Fermionic Cold Atoms Through Pairing and Dissociation

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen; Timmermans, E.; Lin, Chi-Yong

    2011-03-01

    Cold atom experiments have realized molecule creation consisting of paired fermions and dissociation of weakly bound molecules into correlated fermions by tuning of the interactions with external fields [1,2]. We study many-body correlations in such system where molecules are weakly bound and therefore pairs of fermionic atoms convert into and dissociate from the bound molecule state. This exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. We employ a functional renormalization-group approach to search for instabilities from the disordered quantum liquid phase that may arise from a boson mediated fermion-fermion interaction. We calculate the renormalized frequency-dependent fermion interactions vertices and renormalized molecular binding energy.

  11. Inferences about interactions: Fermions and the Dirac equation

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.

    2013-08-01

    At a fundamental level every measurement process relies on an interaction where one entity influences another. The boundary of an interaction is given by a pair of events, which can be ordered by virtue of the interaction. This results in a partially ordered set (poset) of events often referred to as a causal set. In this framework, an observer can be represented by a chain of events. Quantification of events and pairs of events, referred to as intervals, can be performed by projecting them onto an observer chain, or even a pair of observer chains, which in specific situations leads to a Minkowski metric replete with Lorentz transformations. We illustrate how this framework of interaction events gives rise to some of the well-known properties of the Fermions, such as Zitterbewegung. We then take this further by making inferences about events, which is performed by employing the process calculus, which coincides with the Feynman path integral formulation of quantum mechanics. We show that in the 1+1 dimensional case this results in the Feynman checkerboard model of the Dirac equation describing a Fermion at rest.

  12. Fermion boson metamorphosis in field theory

    SciTech Connect

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered.

  13. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    PubMed

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  14. Topological susceptibility in staggered fermion chiral perturbation theory

    SciTech Connect

    Billeter, Brian; DeTar, Carleton; Osborn, James

    2004-10-01

    The topological susceptibility of the vacuum in quantum chromodynamics has been simulated numerically using the Asqtad improved staggered fermion formalism. At nonzero lattice spacing, the residual fermion doublers (fermion tastes) in the staggered fermion formalism give contributions to the susceptibility that deviate from conventional continuum chiral perturbation theory. In this brief report, we estimate the taste-breaking artifact and compare it with results of recent simulations, finding that it accounts for roughly half of the scaling violation.

  15. Maximum entanglement in squeezed boson and fermion states

    SciTech Connect

    Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S.

    2007-08-15

    A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

  16. Global analysis of fermion mixing with exotics

    NASA Technical Reports Server (NTRS)

    Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele

    1991-01-01

    The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.

  17. Condensation of gauge interacting massless fermions

    SciTech Connect

    Siringo, Fabio

    2004-09-15

    A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.

  18. Massless rotating fermions inside a cylinder

    SciTech Connect

    Ambruş, Victor E.; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal.

  19. Composite Fermion Theory for the Fractional Quantum Hall Wigner Crystal State

    NASA Astrophysics Data System (ADS)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2000-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the recent hamiltonian composite fermion theory developed by Shankar and Murthy [SM] (R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437, (1997); G. Murthy and R. Shankar, Chapter 4 of "Composite Fermions", O. Heinonen, Ed. (World Scientific, Teaneck, NJ, 1998).. Previous studies have either concentrated on Wigner crystal states of electrons in the Hartree-Fock approximation (D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979); D. Yoshioka and P. A. Lee, Phys. Rev. B 27, 4986 (1983); A. H. MacDonald, Phys. Rev. B 30, 4392 (1984); R. Cote and A. H. MacDonald, Phys. Rev. B 44, 8759 (1991). or studied correlated crystal states numerically (P. K. Lam and S. M. Girvin, Phys. Rev. B 30), 473 (1984); H. Yi and H. A. Fertig, Phys. Rev. B, 58, 4019 (1998).. Using the new SM approach we study the correlated states as Hartree-Fock states of composite fermions, which is known to work reasonably well for translationally invariant composite fermion states. We present the calculation of the gaps for the stable states that we found as well as the dispersion relations of the collective modes.

  20. Spontaneous polarization of composite fermions in the n = 1 Landau level of graphene

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Ajit; Tőke, Csaba; Wójs, Arkadiusz; Jain, Jainendra

    Motivated by experiments that reveal expansive fractional quantum Hall states in the n = 1 graphene Landau level and suggest a nontrivial role of the spin degree of freedom [Amet et al., Nat. Commun. 6, 5838 (2014)], we perform accurate quantitative study of the the competition between fractional quantum Hall states with different spin polarizations in the n = 1 graphene Landau level. We find that the fractional quantum Hall effect is well described in terms of composite fermions, but the spin physics is qualitatively different from that in the n = 0 Landau level. In particular, for the states at filling factors ν = s / (2 s +/- 1) , s integer, a combination of exact diagonalization and the composite fermion theory shows that the ground state is fully spin polarized and supports a robust spin wave mode even in the limit of vanishing Zeeman coupling. Thus, even though composite fermions are formed, a mean field description that treats them as weakly interacting particles breaks down, and the exchange interaction between them is strong enough to cause a qualitative change in the behavior by inducing full spin polarization. We also find that the fully spin polarized composite fermion Fermi sea has lower energy than the paired Pfaffian state at the relevant half fillings. Award No. DE-SC0005042 (ACB, JKJ), Hungarian Scientific Research Funds No. K105149 (CT), the Polish NCN Grant 2014/14/A/ST3/00654 and the EU Marie Curie Grant PCIG09-GA-2011-294186 (AW).

  1. From data point timelines to a well curated data set, data mining of experimental data and chemical structure data from scientific articles, problems and possible solutions.

    PubMed

    Ruusmann, Villu; Maran, Uko

    2013-07-01

    The scientific literature is important source of experimental and chemical structure data. Very often this data has been harvested into smaller or bigger data collections leaving the data quality and curation issues on shoulders of users. The current research presents a systematic and reproducible workflow for collecting series of data points from scientific literature and assembling a database that is suitable for the purposes of high quality modelling and decision support. The quality assurance aspect of the workflow is concerned with the curation of both chemical structures and associated toxicity values at (1) single data point level and (2) collection of data points level. The assembly of a database employs a novel "timeline" approach. The workflow is implemented as a software solution and its applicability is demonstrated on the example of the Tetrahymena pyriformis acute aquatic toxicity endpoint. A literature collection of 86 primary publications for T. pyriformis was found to contain 2,072 chemical compounds and 2,498 unique toxicity values, which divide into 2,440 numerical and 58 textual values. Every chemical compound was assigned to a preferred toxicity value. Examples for most common chemical and toxicological data curation scenarios are discussed.

  2. Precision constraints on extra fermion generations.

    PubMed

    Erler, Jens; Langacker, Paul

    2010-07-16

    There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  3. Entanglement of several blocks in fermionic chains

    NASA Astrophysics Data System (ADS)

    Ares, Filiberto; Esteve, José G.; Falceto, Fernando

    2014-12-01

    In this paper we propose an expression for the entanglement entropy of several intervals in a stationary state of a free, translational invariant Hamiltonian in a fermionic chain. We check numerically the accuracy of our proposal and conjecture a formula for the asymptotic behavior of principal submatrices of a Toeplitz matrix.

  4. Fermionic entanglement ambiguity in noninertial frames

    SciTech Connect

    Montero, Miguel; Martin-Martinez, Eduardo

    2011-06-15

    We analyze an ambiguity in previous works on entanglement of fermionic fields in noninertial frames. This ambiguity, related to the anticommutation properties of field operators, leads to nonunique results when computing entanglement measures for the same state. We show that the ambiguity disappears when we introduce detectors, which are in any case necessary as a means to probe the field entanglement.

  5. Observation of Weyl fermions in condensed matter

    NASA Astrophysics Data System (ADS)

    Ding, Hong

    In 1929, a German mathematician and physicist Hermann Weyl proposed that a massless solution of the Dirac equation represents a pair of new type of particles, the so-called Weyl fermions. However, their existence in particle physics remains elusive after more than eight decades, e.g., neutrino has been regarded as a Weyl fermion in the Standard Model until it was found to have mass. Recently, significant advances in topological materials have provided an alternative way to realize Weyl fermions in condensed matter as an emergent phenomenon. Weyl semimetals are predicted as a class of topological materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave exactly as Weyl fermions, which have many exotic properties, such as chiral anomaly, magnetic monopoles in the crystal momentum space, and open Fermi arcs on the surface. In this talk I will report our experimental discovery of a Weyl semimetal in TaAs by observing Fermi arcs with a characteristic spin texture in the surface states and Weyl nodes in the bulk states using angle-resolved photoemission spectroscopy.

  6. Partial dynamical symmetry in a fermion system

    PubMed

    Escher; Leviatan

    2000-02-28

    The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.

  7. Finite volume renormalization scheme for fermionic operators

    SciTech Connect

    Monahan, Christopher; Orginos, Kostas

    2013-11-01

    We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schr\\"odinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.

  8. Odd frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar

    Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.

  9. Fermions Living in a Flat World

    SciTech Connect

    Jesus Anguiano-Galicia, Ma. de; Bashir, A.

    2006-09-25

    In a plane, parity transformation, which changes the sign of only one spatial coordinate, swaps the fermion fields living in two inequivalent representations. A parity invariant Lagrangian thus contains fields corresponding to both the representations. For such a Lagrangian, we show that we can also define a chiral symmetry.

  10. Effect of Fermion Velocity on Phase Structure of QED3

    NASA Astrophysics Data System (ADS)

    Li, Jian-Feng; Feng, Hong-Tao; Zong, Hong-Shi

    2016-11-01

    Dynamical chiral symmetry breaking (DCSB) in thermal QED3 with fermion velocity is studied in the framework of Dyson-Schwinger equations. By adopting instantaneous approximation and neglecting the transverse component of gauge boson propagator at finite temperature, we numerically solve the fermion self-energy equation in the rainbow approximation. It is found that both DCSB and fermion chiral condensate are suppressed by fermion velocity. Moreover, the critical temperature decreases as fermion velocity increases. Supported in part by the National Natural Science Foundation of China under Grant No. 11535005 and the Natural Science Foundation of Jiangsu Province under Grant No. BK20130387

  11. Dirac-fermionic dark matter in U(1)X models

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Berlin, Asher; Profumo, Stefano; Queiroz, Farinaldo S.

    2015-10-01

    We study a number of U(1)X models featuring a Dirac fermion dark matter particle. We perform a comprehensive analysis which includes the study of corrections to the muon magnetic moment, dilepton searches with LHC data, as well as direct and indirect dark matter detection constraints. We consider four different coupling structures, namely U(1) B-L , U(1) d-u , U(1)universal, and U{(1)}_{10+overline{5}} , all motivated by compelling extensions to the standard model. We outline the viable and excluded regions of parameter space using a large set of probes. Our key findings are that (i) the combination of direct detection and collider constraints rule out dark matter particle masses lighter than ˜ 1 TeV, unless rather suppressed Z '-fermion couplings exist, and that (ii) for several of the models under consideration, collider constraints rule out Z ' masses up to ˜ 3 TeV. Lastly, we show that we can accommodate the recent Diboson excess reported by ATLAS collaboration within the U(1) d- u model.

  12. Quantum kinetics of ultracold fermions coupled to an optical resonator

    NASA Astrophysics Data System (ADS)

    Piazza, Francesco; Strack, Philipp

    2014-10-01

    We study the far-from-equilibrium statistical mechanics of periodically driven fermionic atoms in a lossy optical resonator. We show that the interplay of the Fermi surface with cavity losses leads to subnatural cavity linewidth narrowing, squeezed light, and nonthermal quantum statistics of the atoms. Adapting the Keldysh approach, we set up and solve a quantum kinetic Boltzmann equation in a systematic 1/N expansion with N the number of atoms. In the strict thermodynamic limit N ,V→∞,N/V=const. we find that the atoms (fermions or bosons) remain immune against cavity-induced heating or cooling. At next-to-leading order in 1/N, we find a "one-way thermalization" of the atoms determined by cavity decay. In absence of an equilibrium fluctuation-dissipation relation, the long-time limit Δt →∞ does not commute with the thermodynamic limit N →∞, such that for the physically relevant case of large but finite N, the dynamics ultimately becomes strongly coupled, especially close to the superradiance phase transition.

  13. Fermionic-mode entanglement in non-Markovian environment

    SciTech Connect

    Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling

    2015-03-15

    We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman–Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.

  14. Search for Majorana Fermions in S-Wave Fermionic Superfluids

    DTIC Science & Technology

    2016-04-01

    spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous...sets of physical parameters including temperature, tunneling strength, wire length, magnetic field, and induced SC pairing potential in the SM...nanowire. We conclude that in a finite wire the Majorana splitting energy ∆E, which has non-trivial dependence on these physical parameters, remains

  15. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    NASA Astrophysics Data System (ADS)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  16. Equilibration via Gaussification in Fermionic Lattice Systems

    NASA Astrophysics Data System (ADS)

    Gluza, M.; Krumnow, C.; Friesdorf, M.; Gogolin, C.; Eisert, J.

    2016-11-01

    In this Letter, we present a result on the nonequilibrium dynamics causing equilibration and Gaussification of quadratic noninteracting fermionic Hamiltonians. Specifically, based on two basic assumptions—clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing transport—we prove that non-Gaussian initial states become locally indistinguishable from fermionic Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law independent of the system size. Our argument is general enough to allow for pure and mixed initial states, including thermal and ground states of interacting Hamiltonians on large classes of lattices as well as certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a generalized Gibbs ensemble. Our results allow us to develop an intuition of equilibration that is expected to be more generally valid and relates to current experiments of cold atoms in optical lattices.

  17. A closer look at the elementary fermions

    PubMed Central

    Goldhaber, Maurice

    2002-01-01

    Although there have been many experimental and theoretical efforts to measure and interpret small deviations from the standard model of particle physics, the gap that the model leaves in understanding why there are only three generations of the elementary fermions, with hierarchical masses, has not received the attention it deserves. I present here an attempt to fill this gap. Although our findings are mostly only qualitative, they nevertheless may be of heuristic value. Rules concerning the elementary fermions, some previously known and some new, lead to a number of conclusions and questions that seem worth pursuing. Some clarify the standard model, and others suggest possible modifications, the implications of which are discussed. PMID:11773637

  18. Possible Aoki phase for staggered fermions

    SciTech Connect

    Aubin, C.; Wang Qinghai

    2004-12-01

    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste-symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.

  19. Fractional Fermions with Non-Abelian Statistics

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2013-03-01

    We introduce a novel class of low-dimensional topological tight-binding models that allow for bound states that are fractionally charged fermions and exhibit non-Abelian braiding statistics. The proposed model consists of a double (single) ladder of spinless (spinful) fermions in the presence of magnetic fields. We study the system analytically in the continuum limit as well as numerically in the tight-binding representation. We find a topological phase transition with a topological gap that closes and reopens as a function of system parameters and chemical potential. The topological phase is of the type BDI and carries two degenerate midgap bound states that are localized at opposite ends of the ladders. We show numerically that these bound states are robust against a wide class of perturbations.

  20. Simulating fermions on a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R.

    2002-07-01

    The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative questions in connection to the "exact imitation" of such systems using a special device named a "quantum computer". Feynman hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach.

  1. Peltier cooling of fermionic quantum gases.

    PubMed

    Grenier, Ch; Georges, A; Kollath, C

    2014-11-14

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  2. Peltier Cooling of Fermionic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Grenier, Ch.; Georges, A.; Kollath, C.

    2014-11-01

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  3. Superconductivity in the boson-fermion model with short range fermion repulsion

    NASA Astrophysics Data System (ADS)

    Kostyrko, Tomasz

    1998-03-01

    We consider influence of an on-site Coulomb repulsion U between fermions on superconducting properties of a two-component system of the wide band electrons hybridized with heavy boson-like local electron pairs^1,2. Within an RPA treatment valid for U< fermion bandwidth, we show that U almost completely suppresses superconductivity as long as a boson level stays above a Fermi level (BCS limit), reducing both Tc and a range of stability of an s-wave superconducting phase at T=0 K. In a Bose region, where the chemical potential remains pinned to the boson level, superconductivity is always stable at T=0 K and suppression of Tc is relatively small, especially for finite values of a boson mass. Above results are verified with the conclusions based on an effective t-J like hamiltonian derived by means of a canonical perturbation method from the boson-fermion model in a strong U limit. We show that the on-site boson-fermion hybridization is reduced by a factor of 2t/U (t - fermion hopping) and transforms into an intersite coupling supporting an extended s-wave superconducting order in this limit. [1em] 1. J. Ranninger and Robaszkiewicz, Physica B 135, 468 (1985). 2. R. Friedberg and T.D. Lee, Phys. Rev. B 40, 423 (1989).

  4. Fermionic Optical Lattices: A Computational Study

    DTIC Science & Technology

    2014-10-22

    Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 optical lattices, degenerate quantum gases , quantum control, correlation...with a different wavelength. We systematically determine the real - and momentum-space properties of these states. The crossover from 3D to two...fermions in square lattices. The phases are systematically characterized by the symmetry of the order parameter and the real - and momentum-space

  5. Renormalization group for non-relativistic fermions.

    PubMed

    Shankar, R

    2011-07-13

    A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.

  6. Quantum Algorithms for Fermionic Quantum Field Theories

    DTIC Science & Technology

    2014-04-28

    a theory in two spacetime dimensions with quartic interactions. The algorithm introduces new techniques to meet the additional challenges posed by...in fermionic field theories, exemplified by the massive Gross- Neveu model, a theory in two spacetime dimensions with quartic interactions. The...two spacetime dimensions with quartic interactions. Although our analysis is specific to this theory, our algorithm can be adapted to other massive

  7. Fermions in 5D brane world models

    NASA Astrophysics Data System (ADS)

    Smolyakov, Mikhail

    2016-10-01

    In the present manuscript the fermion fields in the background of 5D brane world models with compact extra dimension are examined. It is shown that the only case that allows one to perform the Kaluza-Klein decomposition in a mathematically consistent way without unnatural fine-tunings and possible pathologies, is the one which does not admit localization of the zero mode. The report is based on the results presented in [1].

  8. Strong coupling QED with two fermionic flavors

    SciTech Connect

    Wang, K.C.

    1990-11-01

    We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices 10{sup 4} and 16{sup 4}. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the simulation. In addition to the measurement of the chiral order parameter {l angle}{bar {psi}}{psi}{r angle}, we also measure magnetic monopole susceptibility, {chi}, throughout the region of chiral transition. 6 refs., 6 figs.

  9. Optical Lattice Gases of Interacting Fermions

    DTIC Science & Technology

    2015-12-02

    theoretical research supported by this grant focused on discovering new phases of quantum matter for ultracold fermionic atoms or molecules confined in optical...Communications, including a review paper on the orbital physics of cold atoms in optical lattices [1] and a book chapter on topological insulators of cold... atoms [14]. A few significant results are highlighted below. 1. Novel phases of cold atoms on higher orbital bands. The research team discovered

  10. Dynamics of Interacting Fermions in Spin-Dependent Potentials.

    PubMed

    Koller, Andrew P; Wall, Michael L; Mundinger, Josh; Rey, Ana Maria

    2016-11-04

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  11. Dynamics of Interacting Fermions in Spin-Dependent Potentials

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Wall, Michael L.; Mundinger, Josh; Rey, Ana Maria

    2016-11-01

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  12. Chiral magnetic effect of Weyl fermions and its applications to cubic noncentrosymmetric metals

    NASA Astrophysics Data System (ADS)

    Tewari, Sumanta; Goswami, Pallab

    2014-03-01

    When the right and the left handed Weyl points are separated in energy, they give rise to a non-dissipative charge current along the direction of a uniform applied magnetic field, even in the absence of an external electric field. This effect is known as the chiral magnetic effect and is a hallmark of the underlying chiral anomaly of the Weyl fermions. According to the linearized continuum theory of Weyl fermions, the induced current is proportional to the magnetic field strength and the energy separation with a universal coefficient e2 /h2 . By considering a generic tight binding model for the cubic non-centrosymmetric metals, we show that such a system naturally supports a set of Weyl points, which are separated in energies. We also show the existence of the chiral magnetic effect for generic band parameters, and recover the universal result of the continuum Weyl fermions for a restricted parameter regime. Our work proves that the cubic non-centrosymmetric metals can serve as suitable platforms for realizing Weyl fermions and the exotic chiral elctrodynamic phenomena, which have promising technological applications. Work supported by the NSF Cooperative Agreement No. DMR- 0654118, the State of Florida, the U. S. Department of Energy, NSF (PHY-1104527) and AFOSR (FA9550-13-1-0045).

  13. Explicit Hamiltonians inducing volume law for entanglement entropy in fermionic lattices

    NASA Astrophysics Data System (ADS)

    Gori, Giacomo; Paganelli, Simone; Sharma, Auditya; Sodano, Pasquale; Trombettoni, Andrea

    2015-06-01

    We show how the area law for entanglement entropy may be violated by free fermions on a lattice, and we look for conditions leading to the emergence of a volume law. We give an explicit construction of the states with maximal entanglement entropy based on the fact that, once a bipartition of the lattice in two complementary sets A and A ¯ is given, the states with maximal entanglement entropy (volume law) may be factored into Bell pairs (BPs) formed by two states with support on A and A ¯. We then exhibit, for translational invariant fermionic systems on a lattice, a Hamiltonian whose ground state is such that it yields an exact volume law. As expected, the corresponding Fermi surface has a fractal topology. We also provide some examples of fermionic models for which the ground state may have an entanglement entropy SA between the area and the volume law, building an explicit example of a one-dimensional free fermion model where SA(L ) ∝Lβ , with β being intermediate between β =0 (area law) and β =1 (BP state inducing volume law). For this model, the dispersion relation has a "zigzag" structure leading to a fractal Fermi surface whose counting box dimension equals, for large lattices, β . Our analysis clearly relates the violation of the area law for the entanglement entropy of the ground state to the emergence of a nontrivial topology of the Fermi surface.

  14. Scalar meson spectroscopy with lattice staggered fermions

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa

    2007-11-01

    With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.

  15. Composite gauge-bosons made of fermions

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2016-07-01

    We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter fields of fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a subsidiary condition on the matter fields. It does not involve an extra dimension nor supersymmetry. This Lagrangian can be extended to non-Abelian gauge symmetry only in the case of SU(2) doublet matter fields. We carry out an explicit diagrammatic computation in the leading 1 /N order to show that massless spin-one bound states appear with the correct gauge coupling. Our diagram calculation exposes the dynamical features that cannot be seen in the formal auxiliary vector-field method. For instance, it shows that the s -wave fermion-antifermion interaction in the 3S1 channel (ψ ¯ γμψ ) alone cannot form the bound gauge bosons; the fermion-antifermion pairs must couple to the d -wave state too. One feature common to our class of Lagrangian is that the Noether current does not exist. Therefore it evades possible conflict with the no-go theorem of Weinberg and Witten on the formation of the non-Abelian gauge bosons.

  16. K(E10), supergravity and fermions

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Kleinschmidt, Axel; Nicolai, Hermann

    2006-08-01

    We study the fermionic extension of the E10/K(E10) coset model and its relation to eleven-dimensional supergravity. Finite-dimensional spinor representations of the compact subgroup K(E10) of E10(Bbb R) are studied and the supergravity equations are rewritten using the resulting algebraic variables. The canonical bosonic and fermionic constraints are also analysed in this way, and the compatibility of supersymmetry with local K(E10) is investigated. We find that all structures involving A9 levels ell = 0,1 and 2 nicely agree with expectations, and provide many non-trivial consistency checks of the existence of a supersymmetric extension of the E10/K(E10) coset model, as well as a new derivation of the `bosonic dictionary' between supergravity and coset variables. However, there are also definite discrepancies in some terms involving level ell = 3, which suggest the need for an extension of the model to infinite-dimensional faithful representations of the fermionic degrees of freedom.

  17. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  18. Scientific Misconduct.

    PubMed

    Gross, Charles

    2016-01-01

    Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct.

  19. Semiclassical fermion pair creation in de Sitter spacetime

    SciTech Connect

    Stahl, Clément Eckhard, Strobel

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  20. Mixtures of Bosonic and Fermionic atoms

    NASA Astrophysics Data System (ADS)

    Albus, Alexander

    2003-12-01

    The theory of atomic Boson-Fermion mixtures in the dilute limit beyond mean-field is considered in this thesis. Extending the formalism of quantum field theory we derived expressions for the quasi-particle excitation spectra, the ground state energy, and related quantities for a homogenous system to first order in the dilute gas parameter. In the framework of density functional theory we could carry over the previous results to inhomogeneous systems. We then determined to density distributions for various parameter values and identified three different phase regions: (i) a stable mixed regime, (ii) a phase separated regime, and (iii) a collapsed regime. We found a significant contribution of exchange-correlation effects in the latter case. Next, we determined the shift of the Bose-Einstein condensation temperature caused by Boson-Fermion interactions in a harmonic trap due to redistribution of the density profiles. We then considered Boson-Fermion mixtures in optical lattices. We calculated the criterion for stability against phase separation, identified the Mott-insulating and superfluid regimes both, analytically within a mean-field calculation, and numerically by virtue of a Gutzwiller Ansatz. We also found new frustrated ground states in the limit of very strong lattices. ----Anmerkung: Der Autor ist Träger des durch die Physikalische Gesellschaft zu Berlin vergebenen Carl-Ramsauer-Preises 2004 für die jeweils beste Dissertation der vier Universitäten Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Universität Potsdam. Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Größen wie Quasiteilchenspektren

  1. Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2016-06-01

    We propose a new physical interpretation of the Diophantine equation of σxy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called "subcells", which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σxy, that are consistent with the Diophantine equation: Landau quantization of (i) massless Dirac fermions or (ii) free fermions in Hofstadter's butterfly.

  2. Unpaired composite fermion, topological exciton, and zero mode.

    PubMed

    Sreejith, G J; Wójs, A; Jain, J K

    2011-09-23

    The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral "topological" exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.

  3. Unpaired Composite Fermion, Topological Exciton, and Zero Mode

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Wójs, A.; Jain, J. K.

    2011-09-01

    The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral “topological” exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.

  4. Wilson fermions and axion electrodynamics in optical lattices.

    PubMed

    Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A

    2010-11-05

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  5. Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8

    SciTech Connect

    1998-11-01

    The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U{sub A}(1) symmetry and the {eta}{prime} for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk.

  6. Bosonization of fermions coupled to topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  7. Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Kong, Liang; Wen, Xiao-Gang

    2016-10-01

    We propose a systematic framework to classify (2+1)-dimensional (2+1D) fermionic topological orders without symmetry and 2+1D fermionic/bosonic topological orders with symmetry G . The key is to use the so-called symmetric fusion category E to describe the symmetry. Here, E =sRep (Z2f) describing particles in a fermionic product state without symmetry, or E =sRep (Gf) [E =Rep (G )] describing particles in a fermionic (bosonic) product state with symmetry G . Then, topological orders with symmetry E are classified by nondegenerate unitary braided fusion categories over E , plus their modular extensions and total chiral central charges. This allows us to obtain a list that contains all 2+1D fermionic topological orders without symmetry. For example, we find that, up to p +i p fermionic topological orders, there are only four fermionic topological orders with one nontrivial topological excitation: (1) the K =( -1 0 0 2) fractional quantum Hall state, (2) a Fibonacci bosonic topological order stacking with a fermionic product state, (3) the time-reversal conjugate of the previous one, and (4) a fermionic topological order with chiral central charge c =1/4 , whose only topological excitation has non-Abelian statistics with spin s =1/4 and quantum dimension d =1 +√{2 } .

  8. Accelerating scientific discovery by formulating grand scientific challenges

    NASA Astrophysics Data System (ADS)

    Helbing, D.

    2012-11-01

    One important question for science and society is how to best promote scientific progress. Inspired by the great success of Hilbert's famous set of problems, the FuturICT project tries to stimulate and focus the efforts of many scientists by formulating Grand Challenges, i.e. a set of fundamental, relevant and hardly solvable scientific questions.

  9. Van Hove correlation functions for identical fermions

    NASA Astrophysics Data System (ADS)

    Macke, Wilhelm; Miesenböck, Helga M.; Hingerl, Kurt; Bachlechner, Martina E.

    1989-02-01

    For a quantum system of identical fermions a partition of the density-density correlation function in its ``self'' and ``distinct'' part is presented. These quantities show different properties than their classical counterparts, e.g., they violate the ``detailed balance'' and are not necessarily real. Nevertheless it can be expected that they will provide a good tool for a better description of the self-motion in many-particle systems and are therefore investigated in second-order perturbation theory of the interparticle potential.

  10. Boson formulation of fermion field theories

    SciTech Connect

    Ha, Y.K.

    1984-04-15

    The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two dimensions is developed and its validity verified according to the tenets of quantum field theory. We advocate the point of view that a boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. Many features of the massless theory, such as dynamical mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections with models of apparently different internal symmetries, are readily transparent through such fermion-boson metamorphosis.

  11. Dimensional Hierarchy of Fermionic Interacting Topological Phases

    NASA Astrophysics Data System (ADS)

    Queiroz, Raquel; Khalaf, Eslam; Stern, Ady

    2016-11-01

    We present a dimensional reduction argument to derive the classification reduction of fermionic symmetry protected topological phases in the presence of interactions. The dimensional reduction proceeds by relating the topological character of a d -dimensional system to the number of zero-energy bound states localized at zero-dimensional topological defects present at its surface. This correspondence leads to a general condition for symmetry preserving interactions that render the system topologically trivial, and allows us to explicitly write a quartic interaction to this end. Our reduction shows that all phases with topological invariant smaller than n are topologically distinct, thereby reducing the noninteracting Z classification to Zn.

  12. Discovering correlated fermions using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas K.; Ceperley, David M.

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.

  13. Universal fermionic spectral functions from string theory.

    PubMed

    Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel

    2011-12-09

    We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

  14. Complete Boson-Fermion Model of Superconductivity

    NASA Astrophysics Data System (ADS)

    de Llano, Manuel

    2003-03-01

    The unification of the 1957 BCS theory with that of Bose-Einstein condensation (BEC) that gives roughly good first-principles transition temperature Tc predictions in either 2D or 3D for all of the ``Uemura plot'' ``exotic'' or conventional superconductors without abandoning the much-maligned phonon interaction mechanism has recently been achieved [1]-[3]. The same dynamical mechanism also allows for room-temperature superconductivity. The only condition is that one depart moderately from the perfect electron (e)-/hole (h)-Cooper-pair (CP) symmetry to which BCS (and indeed also the somewhat more general BCS-Bose crossover) theory are restricted by construction. It now becomes feasible to explain, among other things, why largely all superconductors empirically have substantially higher T_c's if their normal-state charge carriers are holes rather than electrons. A complete (in the sense that 2h-CPs are not ignored) boson-fermion model (CBFM) has been developed that reduces in the appropriate special cases to: a) ordinary BCS theory for weak boson-fermion coupling; b) the BCS-Bose ``crossover'' theory dating back to 1967; and, for no 2h-CPs to: c) the 1989 boson-fermion (BF) BEC model by T.D. Lee et al. of superconductors which without 2h-CPs is unrelated to BCS theory; d) an ideal BF binary-gas model [4] predicting nonzero BEC T_c's even in 2D; and finally to e) ordinary BEC (1925). The CBFM is a BF statistical model similar to those developed in the mid-50's by Schafroth, Blatt & Butler but which now includes 2h-CPs on an equal footing with 2e-CPs, and which unlike these models also contains the empirically well-established fermionic energy gap. [1] V.V. Tolmachev, Phys. Lett. A 266, 400 (2000). [2] M. Fortes, M.A. Solis, M. de Llano & V.V. Tolmachev, Physica C 364, 95 (2001). [3] M. de Llano & V.V. Tolmachev, Physica A 317, 546 (2003). [4] M. Casas, N.J. Davidson, M. de Llano, T.A. Mamedov, A. Puente, R.M. Quick, A. Rigo & M.A. Solis, Physica A 295, 146 (2001

  15. Utilizing Traditional Knowledge in a Scientific Setting.

    ERIC Educational Resources Information Center

    Boyne, Grace M.

    2003-01-01

    A nuclear physicist feels that his Navajo upbringing, with its emphasis on the structure of nature and abstract reasoning, prepared him well for the world of physics. Traditional Navajo sandpaintings helped him understand physics concepts. Native American students show strengths in learning visual, perceptual, or spatial information, and they…

  16. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect

    Rehman, Mudassar; Saifullah, K. E-mail: saifullah@qau.edu.pk

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  17. Boson-fermion confusion: the string path to supersymmetry

    NASA Astrophysics Data System (ADS)

    Ramond, P.

    Reminiscences on the String origins of Supersymmetry are followed by a discussion of the importance of confusing bosons with fermions in building superstring theories in 9 + 1 dimensions. In eleven dimensions, the kinship between bosons and fermions is more subtle, and may involve the exceptional group F4.

  18. A streamlined method for chiral fermions on the lattice

    SciTech Connect

    Bodwin, G.T. . High Energy Physics Div.); Kovacs, E.V. )

    1992-11-10

    We discussed the use of renormalization counterterms to restore the chiral gauge symmetry in a lattice theory of Wilson fermions. We show that a large class of counterterms can be implemented automatically by making a simple modification to the fermion determinant.

  19. Fermion tunneling from higher-dimensional black holes

    SciTech Connect

    Lin Kai; Yang Shuzheng

    2009-03-15

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  20. Observing fermionic statistics with photons in arbitrary processes

    PubMed Central

    Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.

    2013-01-01

    Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788

  1. Robust signatures detection of Majorana fermions in superconducting iron chains

    PubMed Central

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-01-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains. PMID:27857149

  2. Superfluid and insulating phases of fermion mixtures in optical lattices.

    PubMed

    Iskin, M; Sá de Melo, C A R

    2007-08-24

    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid -- excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.

  3. Decays of bosonic and fermionic modes on a domain wall

    NASA Astrophysics Data System (ADS)

    Loginov, A. Yu.

    2017-03-01

    The decays of excited bosonic and excited fermionic modes in the external field of the domain wall are studied. The wave functions of the excited fermionic modes are found analytically in the external field approximation. Some properties of the fermionic modes are investigated. The reflection and transmission coefficients are calculated for fermion scattering from the domain wall. Properties of the reflection and transmission coefficients are studied. The decays of the first excited fermionic mode are investigated to the first order in the Yukawa coupling constant. The amplitudes, angular distributions, and widths of these decays are found by analytical and numerical methods. Decays of the excited bosonic mode are also investigated to the first order in the Yukawa and self-interaction coupling constants. The amplitudes, angular distributions, and widths of these decays are obtained analytically and by numerical methods.

  4. Robust signatures detection of Majorana fermions in superconducting iron chains

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-11-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains.

  5. Quantum phases of AB 2 fermionic chains

    NASA Astrophysics Data System (ADS)

    Murcia-Correa, L. S.; Franco, R.; Silva-Valencia, J.

    2016-02-01

    A fermionic chain is a one-dimensional system with fermions that interact locally and can jump between sites in the lattice, in particular an AB n chain type, where A and B are sites that exhibit a difference in energy level of Δ and site B is repeated n-times, such that the unit cell has n +1 sites. A limit case of this model, called the ionic Hubbard model (n = 1), has been widely studied due to its interesting physics and applications. In this paper, we study the ground state of an AB 2 chain, which describes the material R 4[Pt 2(P 2O5H2)4X] · nH 2 O. Specifically, we consider a filling with two electrons per unit cell, and using the density matrix renormalization group method we found that the system exhibits the band insulator and Mott correlated insulator phases, as well as an intermediate phase between them. For couplings of Δ = 2,10 and 20, we estimate the critical points that separate these phases through the structure factor and the energy gap in the sector of charge and spin, finding that the position of the critical point rises as a function of Δ.

  6. Dynamical model for light composite fermions

    NASA Astrophysics Data System (ADS)

    Derman, Emanuel

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (νe,e,u,d), (νμ,μ,c,s), and (ντ,τ,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L∘,L-,U,D) with the same (SU3)c×SU2×U1 quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e-=[L-H], μ-=[L-HH], τ-=[L-HHH]. It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest MH~16 TeV and MF~100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as μ-->eδ). Phenomenological consequences and tests of the model are discussed.

  7. Dynamical model for light composite fermions

    SciTech Connect

    Derman, E.

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (..nu../sub e/,e,u,d), (..nu../sub ..mu../,..mu..,c,s), and (..nu../sub tau/,tau,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L-italic/sup 0/,L/sup -/,U,D) with the same (SU/sub 3/)/sub c/ x SU/sub 2/ x U/sub 1/ quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e/sup -/=L/sup -/H), ..mu../sup -/=L/sup -/HH), tau/sup -/=L/sup -/HHH). It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest M/sub H/approx.16 TeV and M/sub F/approx.100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as ..mu -->..e..gamma..). Phenomenological consequences and tests of the model are discussed.

  8. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  9. Search for Majorana fermions in topological superconductors.

    SciTech Connect

    Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  10. Terahertz Electrodynamics of Dirac Fermions in Graphene

    NASA Astrophysics Data System (ADS)

    Frenzel, Alex James

    Charge carriers in graphene mimic two-dimensional massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range, where the optical conductivity is close to a universal value sigma_0 = pi e. 2/2h. Free-carrier intraband transitions, on the otherhand, cause low-frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density. These properties together suggest a rich variety of possible optoelectronic applications for graphene. In this thesis, we investigate the optoelectronic properties of graphene by measuring transient photoconductivity with optical pump-terahertz probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations are accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Our measurements also reveal the non-monotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

  11. Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Vijay, Sagar; Fu, Liang

    2016-12-01

    We propose a physical realization of a commuting Hamiltonian of interacting Majorana fermions realizing Z 2 topological order, using an array of Josephson-coupled topological superconductor islands. The required multi-body interaction Hamiltonian is naturally generated by a combination of charging energy induced quantum phase-slips on the superconducting islands and electron tunneling between islands. Our setup improves on a recent proposal for implementing a Majorana fermion surface code (Vijay et al 2015 Phys. Rev. X 5 041038), a ‘hybrid’ approach to fault-tolerant quantum computation that combines (1) the engineering of a stabilizer Hamiltonian with a topologically ordered ground state with (2) projective stabilizer measurements to implement error correction and a universal set of logical gates. Our hybrid strategy has advantages over the traditional surface code architecture in error suppression and single-step stabilizer measurements, and is widely applicable to implementing stabilizer codes for quantum computation.

  12. Spectral properties and chiral symmetry violations of (staggered) domain wall fermions in the Schwinger model

    NASA Astrophysics Data System (ADS)

    Hoelbling, Christian; Zielinski, Christian

    2016-07-01

    We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with staggered kernels. We compare different domain wall formulations, namely the standard construction as well as Boriçi's modified and Chiu's optimal construction, utilizing both Wilson and staggered kernels. In the process, we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1 +1 )-dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and overlap Dirac operators in the free-field case, on quenched thermalized gauge configurations and on smooth topological configurations. We compare different formulations using the effective mass, deviations from normality and violations of the Ginsparg-Wilson relation as measures of chirality.

  13. Chiral Spin Liquids in Triangular-Lattice SU (N ) Fermionic Mott Insulators with Artificial Gauge Fields

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Lajkó, Miklós; Wietek, Alexander; Penc, Karlo; Mila, Frédéric; Läuchli, Andreas M.

    2016-10-01

    We show that, in the presence of a π /2 artificial gauge field per plaquette, Mott insulating phases of ultracold fermions with SU (N ) symmetry and one particle per site generically possess an extended chiral phase with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for periodic boundary conditions, and by chiral edge states described by the SU(N ) 1 Wess-Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave functions with flux π /N per triangular plaquette. Experimental implications are briefly discussed.

  14. Scattering and bound states of fermions in a mixed vector–scalar smooth step potential

    SciTech Connect

    Castilho, W.M. Castro, A.S. de

    2014-07-15

    The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space–time. - Highlights: • Scattering and bound states of fermions in a kink-like potential. • No pair production despite the high localization. • No bounded solution under exact spin and pseudospin symmetries.

  15. Extended Fluid-Dynamics and Collective Motion of Two Trapped Fermion Species with Pairing Interactions

    NASA Astrophysics Data System (ADS)

    Hernández, E. S.; Capuzzi, P.; Szybisz, L.

    2011-02-01

    We extend our earlier fluid-dynamical description of fermion superfluids incorporating the particle energy flow together with the equation of motion for the internal kinetic energy of the pairs. The formal scheme combines a set of equations similar to those of classical hydrodynamics with the equations of motion for the anomalous density and for its related momentum density and kinetic energy density. This dynamical frame represents a second order truncation of an infinite hierarchy of equations of motion isomorphic to the full time dependent Hartree-Fock-Bogoliubov equations in coordinate representation. We analyze the equilibrium solutions and fluctuations for a homogeneous, unpolarized fermion system of two species, and show that the collective spectrum presents the well-known Anderson-Bogoliubov low energy mode of homogeneous superfluids and a pairing vibration near the gap energy.

  16. Topological phases of one-dimensional fermions: An entanglement point of view

    NASA Astrophysics Data System (ADS)

    Turner, Ari M.; Pollmann, Frank; Berg, Erez

    2011-02-01

    The effect of interactions on topological insulators and superconductors remains, to a large extent, an open problem. Here, we describe a framework for classifying phases of one-dimensional interacting fermions, focusing on spinless fermions with time-reversal symmetry and particle number parity conservation, using concepts of entanglement. In agreement with an example presented by L. Fidkowski and A. Kitaev [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.134509 81, 134509 (2010)], we find that in the presence of interactions there are only eight distinct phases which obey a Z8 group structure. This is in contrast to the Z classification in the noninteracting case. Each of these eight phases is characterized by a unique set of bulk invariants, related to the transformation laws of its entanglement (Schmidt) eigenstates under symmetry operations, and has a characteristic degeneracy of its entanglement levels. If translational symmetry is present, the number of distinct phases increases to 16.

  17. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    SciTech Connect

    Kabashi, Skender; Bekteshi, Sadik

    2007-04-23

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model.

  18. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  19. Fermion masses in the economical 3-3-1 model

    SciTech Connect

    Dong, P. V.; Huong, Tr. T.; Huong, D. T.; Long, H. N.

    2006-09-01

    We show that, in frameworks of the economical 3-3-1 model, all fermions get masses. At the tree level, one up-quark and two down-quarks are massless, but the one-loop corrections give all quarks the consistent masses. This conclusion is in contradiction to the previous analysis in which the third scalar triplet has been introduced. This result is based on the key properties of the model: First, there are three quite different scales of vacuum expectation values: {omega}{approx}O(1) TeV, v{approx_equal}246 GeV, and u{approx}O(1) GeV. Second, there exist two types of Yukawa couplings with different strengths: the lepton-number conserving couplings h's and the lepton-number violating ones s's satisfying the condition in which the second are much smaller than the first ones: s<set of parameters, numerical evaluation shows that in this model, masses of the exotic quarks also have different scales, namely, the U exotic quark (q{sub U}=2/3) gains mass m{sub U}{approx_equal}700 GeV, while the D{sub {alpha}} exotic quarks (q{sub D{sub {alpha}}}=-1/3) have masses in the TeV scale: m{sub D{sub {alpha}}}(set-membership sign)10-80 TeV.

  20. Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach

    NASA Astrophysics Data System (ADS)

    Brouzos, Ioannis; Schmelcher, Peter

    2013-02-01

    We explore a few-fermion mixture consisting of two components that are repulsively interacting and confined in a one-dimensional harmonic trap. Different scenarios of population imbalance ranging from the completely imbalanced case where the physics of a single impurity in the Fermi sea is discussed to the partially imbalanced and equal population configurations are investigated. For the numerical calculations the multiconfigurational time-dependent Hartree method is employed, extending its application to few-fermion systems. Apart from numerical calculations we generalize our ansatz for a correlated pair wave function proposed recently [I. Brouzos and P. Schmelcher, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.045301 108, 045301 (2012)] for bosons to mixtures of fermions. From weak to strong coupling between the components the energies, the densities and the correlation properties of one-dimensional systems change vastly with an upper limit set by fermionization where for infinite repulsion all fermions can be mapped to identical ones. The numerical and analytical treatments are in good agreement with respect to the description of this crossover. We show that for equal populations each pair of different component atoms splits into two single peaks in the density while for partial imbalance additional peaks and plateaus arise for very strong interaction strengths. The case of a single-impurity atom shows rich behavior of the energy and density as we approach fermionization and is directly connected to recent experiments [G. Zürn , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.075303 108, 075303 (2012)].

  1. (Strongly interacting fermion systems: Emphasis on heavy fermions: Annual performance report)

    SciTech Connect

    Not Available

    1987-01-01

    The research has been concentrated into two areas: heavy fermions and development of new methods for electronic properties (henceforth referred to as the ''electronic structure program''). This first area is going into deep hibernation due to the new interest in the high-T/sub c/ materials; notwithstanding this development, there has been significant progress. On the other hand, in the electronic structure program there has been a period of intense development which is just starting to yield results.

  2. Charged fermions tunneling from regular black holes

    SciTech Connect

    Sharif, M. Javed, W.

    2012-11-15

    We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.

  3. Fermionic Casimir effect with helix boundary condition

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang-hua; Li, Xin-zhou; Feng, Chao-Jun

    2011-05-01

    In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Feng and Li (Phys. Lett. B 691:167, 2010), Zhai et al. (Mod. Phys. Lett. A 26:669, 2011) is something like that between a Möbius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the ( D+1)-dimensional space-time. For both massless and massive cases, there is a Z 2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity.

  4. Correlations between Majorana Fermions Through a Superconductor

    NASA Astrophysics Data System (ADS)

    Zyuzin, A. A.; Rainis, Diego; Klinovaja, Jelena; Loss, Daniel

    2013-08-01

    We consider a model of ballistic quasi-one-dimensional semiconducting wire with intrinsic spin-orbit interaction placed on the surface of a bulk s-wave superconductor (SC), in the presence of an external magnetic field. This setup has been shown to give rise to a topological superconducting state in the wire, characterized by a pair of Majorana-fermion (MF) bound states formed at the two ends of the wire. Here, we demonstrate that besides the well-known direct-overlap-induced energy splitting, the two MF bound states may hybridize via elastic tunneling processes through virtual quasiparticle states in the SC, giving rise to an additional energy splitting between MF states from the same as well as from different wires.

  5. Reasonable fermionic quantum information theories require relativity

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai

    2016-03-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory.

  6. Hamiltonian description of composite fermions: Magnetoexciton dispersions

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    1999-11-01

    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.

  7. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  8. Topological phases of fermions in one dimension

    NASA Astrophysics Data System (ADS)

    Fidkowski, Lukasz; Kitaev, Alexei

    2011-02-01

    In this paper we show how the classification of topological phases in insulators and superconductors is changed by interactions, in the case of one-dimensional systems. We focus on the time-reversal-invariant Majorana chain (BDI symmetry class). While the band classification yields an integer topological index k, it is known that phases characterized by values of k in the same equivalence class modulo 8 can be adiabatically transformed one to another by adding suitable interaction terms. Here we show that the eight equivalence classes are distinct and exhaustive, and provide a physical interpretation for the interacting invariant modulo 8. The different phases realize different Altland-Zirnbauer classes of the reduced density matrix for an entanglement bipartition into two half chains. We generalize these results to the classification of all one-dimensional gapped phases of fermionic systems with possible antiunitary symmetries, utilizing the algebraic framework of central extensions. We use matrix product state methods to prove our results.

  9. Penguin diagrams for improved staggered fermions

    SciTech Connect

    Lee, Weonjong

    2005-01-01

    We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators constructed using various fat links. The main result is that diagonal mixing coefficients with penguin operators are identical between the unimproved operators and the improved operators using such fat links as Fat7, Fat7+Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact that the improvement by various fat links changes only the mixing with higher dimension operators and off-diagonal operators. The results of this paper, combined with those for current-current diagrams, provide complete matching at the one-loop level with all corrections of O(g{sup 2}) included.

  10. Highly Anisotropic Dirac Fermions in Square Graphynes.

    PubMed

    Zhang, L Z; Wang, Z F; Wang, Zhiming M; Du, S X; Gao, H-J; Liu, Feng

    2015-08-06

    We predict a family of 2D carbon (C) allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac fermions, using first-principle calculations within density functional theory. They have a square unit-cell containing two sizes of square C rings. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 × 10(5) to 7.2 × 10(5) m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. S-graphynes may be used to build new 2D electronic devices taking advantages of their highly directional charge transport.

  11. Local entropy of a nonequilibrium fermion system

    NASA Astrophysics Data System (ADS)

    Stafford, Charles A.; Shastry, Abhay

    2017-03-01

    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  12. New scheme for braiding Majorana fermions

    PubMed Central

    Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao

    2014-01-01

    Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov–de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved. PMID:27877725

  13. Standard model fermions and N =8 supergravity

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2015-03-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU (3 )×U (1 ) stationary point of maximal gauged SO(8) supergravity by Warner and one of the present authors, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU (3 )c and a family symmetry SU (3 )f . However, there remained a systematic mismatch in the electric charges by a spurion charge of ±1/6 . We here identify the "missing" U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form.

  14. Effective fermion kinematics from modified quantum gravity

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Leite, J.

    2016-10-01

    We consider a classical fermion and a classical scalar, propagating on two different kinds of four-dimensional diffeomorphism breaking gravity backgrounds, and we derive the one-loop effective dispersion relation for matter, after integrating out gravitons. One gravity model involves quadratic divergences at one-loop, as in Einstein gravity, and the other model is the z = 3 non-projectable Horava-Lifshitz gravity, which involves logarithmic divergences only. Although these two models behave differently in the ultraviolet, the IR phenomenology for matter fields is comparable: (i) for generic values for the parameters, both models identify 1010 GeV as the characteristic scale above which they are not consistent with current upper bounds on Lorentz symmetry violation; (ii) for both models, there is always a fine-tuning of parameters which allows the cancellation of the indicator for Lorentz symmetry violation.

  15. A possible connection between massive fermions and dark energy

    SciTech Connect

    Goldman, Terrance; Stephenson, G J; Alsing, P M; Mckellar, B H J

    2009-01-01

    In a dense cloud of massive fermions interacting by exchange of a light scalar field, the effective mass of the fermion can become negligibly small. As the cloud expands, the effective mass and the total energy density eventually increase with decreasing density. In this regime, the pressure-density relation can approximate that required for dark energy. They apply this phenomenon to the expansion of the Universe with a very light scalar field and infer relations between the parameters available and cosmological observations. Majorana neutrinos at a mass that may have been recently determined, and fermions such as the Lightest Supersymmetric Particle (LSP) may both be consistent with current observations of dark energy.

  16. Einstein-Cartan gravity with Holst term and fermions

    SciTech Connect

    Kazmierczak, Marcin

    2009-03-15

    We investigate the consequences of the ambiguity of the minimal coupling procedure for Einstein-Cartan gravity with the Holst term and fermions. A new insight is provided into the nature and physical relevance of coupling procedures considered hitherto in the context of Ashtekar-Barbero-Immirzi formalism with fermions. The issue of physical effects of the Immirzi parameter in semiclassical theory is reinvestigated. We argue that the conclusive answer to the question of its measurability will not be possible until the more fundamental problem of nonuniqueness of gravity-induced fermion interaction in Einstein-Cartan theory is solved.

  17. Semiclassical approach for nonrelativistic fermions in low dimensions

    SciTech Connect

    Karabali, D.; Sakita, B. )

    1991-11-30

    This paper presents a collective field formalism for nonrelativistic fermions in one spatial dimension. A bosonization technique is used to convert the quantum mechanical fermionic problem to a bosonic one, which is further described as a second quantized Schrodinger field theory. A formulation in terms of current and density variables gives rise to the collective field representation. Applications of our formalism to the D = 1 Hermitian matrix model and the system of one-dimensional fermions in the presence of a weak electromagnetic field are discussed.

  18. Boundary effects and gapped dispersion in rotating fermionic matter

    NASA Astrophysics Data System (ADS)

    Ebihara, Shu; Fukushima, Kenji; Mameda, Kazuya

    2017-01-01

    We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  19. Two-dimensional thermofield bosonization II: Massive fermions

    SciTech Connect

    Amaral, R.L.P.G.

    2008-11-15

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model.

  20. Massless fermions and Kaluza--Klein theory with torsion

    SciTech Connect

    Wu, Y.; Zee, A.

    1984-09-01

    A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail.

  1. Lattice fermions at non-zero temperature and chemical potential

    NASA Astrophysics Data System (ADS)

    Bender, I.; Rothe, H. J.; Stamatescu, I. O.; Wetzel, W.

    1993-06-01

    We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch and by Kogut et al. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities.

  2. Quantum atom optics with fermions from molecular dissociation.

    PubMed

    Kheruntsyan, K V

    2006-03-24

    We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.

  3. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    SciTech Connect

    Bonora, L.; Cvitan, M.; Pallua, S.; Smolic, I.

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawking radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.

  4. BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    NASA Astrophysics Data System (ADS)

    Moshin, Pavel Yu.; Reshetnyak, Alexander A.

    2007-10-01

    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2, 1/2) and (3/2, 3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.

  5. Cosmological baryon and lepton number in the presence of electroweak fermion-number violation

    NASA Technical Reports Server (NTRS)

    Harvey, Jeffrey A.; Turner, Michael S.

    1990-01-01

    In the presence of rapid fermion-number violation due to nonperturbative electroweak effects certain relations between the baryon number of the Universe and the lepton numbers of the Universe are predicted. In some cases the electron-neutrino asymmetry is exactly specified in terms of the baryon asymmetry. Without introducing new particles, beyond the usual quarks and leptons, it is necessary that the Universe possess a nonzero value of B - L prior to the epoch of fermion-number violation if baryon and lepton asymmetries are to survive. Contrary to intuition, even though electroweak processes violate B + L, a nonzero value of B + L persists after the epoch of rapid fermion-number violation. If the standard model is extended to include lepton-number violation, for example through Majorana neutrino masses, then electroweak processes will reduce the baryon number to zero even in the presence of an initial B - L unless 20 M(sub L) approximately greater than the square root of (T(sub B - L) m(sub P1)) where M(sub L) sets the scale of lepton number violation and T(sub B - L) is the temperature at which a B - L asymmetry is produced. In many models this implies that neutrinos must be so light that they cannot contribute appreciably to the mass density of the Universe.

  6. Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.

    2017-02-01

    In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.

  7. Scientific Satellites

    DTIC Science & Technology

    1967-01-01

    1919 paper (ref. 9), in which he suggested a Moon rocket. Rock- etry was on a par with extrasensory perception in those days. 38 SCIENTIFIC SA&TLLITES...this way, images of sky can be taken at different wavelengths. The perceptive reader will note that the two zodiacal-light ex- periments described

  8. Scientific Documentation.

    ERIC Educational Resources Information Center

    Pieper, Gail W.

    1980-01-01

    Describes how scientific documentation is taught in three 50-minute sessions in a technical writing course. Tells how session one distinguishes between in-text notes, footnotes, and reference entries; session two discusses the author-year system of citing references; and session three is concerned with the author-number system of reference…

  9. Odd-frequency pairing of interacting Majorana fermions

    DOE PAGES

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical valuemore » gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.« less

  10. Odd-frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Wölfle, P.; Balatsky, A. V.

    2015-09-01

    Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  11. Odd-frequency pairing of interacting Majorana fermions

    SciTech Connect

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  12. Skyrmion Superfluidity in Two-Dimensional Interacting Fermionic Systems

    PubMed Central

    Palumbo, Giandomenico; Cirio, Mauro

    2015-01-01

    In this article we describe a multi-layered honeycomb lattice model of interacting fermions which supports a new kind of parity-preserving skyrmion superfluidity. We derive the low-energy field theory describing a non-BCS fermionic superfluid phase by means of functional fermionization. Such effective theory is a new kind of non-linear sigma model, which we call double skyrmion model. In the bi-layer case, the quasiparticles of the system (skyrmions) have bosonic statistics and replace the Cooper-pairs role. Moreover, we show that the model is also equivalent to a Maxwell-BF theory, which naturally establishes an effective Meissner effect without requiring a breaking of the gauge symmetry. Finally, we map effective superfluidity effects to identities among fermionic observables for the lattice model. This provides a signature of our theoretical skyrmion superfluidy that can be detected in a possible implementation of the lattice model in a real quantum system. PMID:26083978

  13. Influence of the fermionic exchange symmetry beyond Pauli's exclusion principle

    NASA Astrophysics Data System (ADS)

    Tennie, Felix; Vedral, Vlatko; Schilling, Christian

    2017-02-01

    Pauli's exclusion principle has a strong impact on the properties of most fermionic quantum systems. Remarkably, the fermionic exchange symmetry implies further constraints on the one-particle picture. By exploiting those generalized Pauli constraints, we derive a measure which quantifies the influence of the exchange symmetry beyond Pauli's exclusion principle. It is based on a geometric hierarchy induced by the exclusion principle constraints. We provide a proof of principle by applying our measure to a simple model. In that way, we conclusively confirm the physical relevance of the generalized Pauli constraints and show that the fermionic exchange symmetry can have an influence on the one-particle picture beyond Pauli's exclusion principle. Our findings provide a perspective on fermionic multipartite correlation since our measure allows one to distinguish between static and dynamic correlations.

  14. Strongly-interacting mirror fermions at the LHC

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, George

    2017-03-01

    The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. "mirror mesons", with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  15. High-order correlation of chaotic bosons and fermions

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Chao

    2016-08-01

    We theoretically study the high-order correlation functions of chaotic bosons and fermions. Based on the different parity of the Stirling number, the products of the first-order correlation functions are well classified and employed to represent the high-order correlation function. The correlation of bosons conduces a bunching effect, which will be enhanced as order N increases. Different from bosons, the anticommutation relation of fermions leads to the parity of the Stirling number, which thereby results in a mixture of bunching and antibunching behaviors in high-order correlation. By further investigating third-order ghost diffraction and ghost imaging, the differences between the high-order correlations of bosons and fermions are discussed in detail. A larger N will dramatically improve the ghost image quality for bosons, but a good strategy should be carefully chosen for the fermionic ghost imaging process due to its complex correlation components.

  16. Discovery of a Weyl fermion semimetal and topological Fermi arcs

    NASA Astrophysics Data System (ADS)

    Xu, Su-Yang; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bian, Guang; Zhang, Chenglong; Sankar, Raman; Chang, Guoqing; Yuan, Zhujun; Lee, Chi-Cheng; Huang, Shin-Ming; Zheng, Hao; Ma, Jie; Sanchez, Daniel S.; Wang, BaoKai; Bansil, Arun; Chou, Fangcheng; Shibayev, Pavel P.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid

    2015-08-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles and admits a topological classification that protects Fermi arc surface states on the boundary of a bulk sample. This unusual electronic structure has deep analogies with particle physics and leads to unique topological properties. We report the experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate on the Weyl fermion nodes, consistent with their topological character. Our work opens the field for the experimental study of Weyl fermions in physics and materials science.

  17. Grassmann phase space methods for fermions. II. Field theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2017-02-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker-Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  18. Two-Loop Effective Action for Theories with Fermions

    NASA Astrophysics Data System (ADS)

    Faizullaev, B. A.; Musakhanov, M. M.

    1995-08-01

    On the basis of a new approach for the calculation of the effective action developed in our previous works we calculate the effective action (up to two-loop level) for some models containing fermion fields. This method allows us to calculate the fermionic part of the effective action properly. The two-loop contribution to the effective potential for the Nambu-Jona-Lasinio model is calculated and is shown to vanish.

  19. Bose symmetry and chiral decomposition of 2D fermionic determinants

    NASA Astrophysics Data System (ADS)

    Abreu, E. M. C.; Banerjee, R.; Wotzasek, C.

    1998-01-01

    We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.

  20. Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics

    SciTech Connect

    Roberts, C.D.; Dong, Z.; Munczek, H.J.

    1995-08-01

    The chirally symmetric solution of the massless, quenched, Dyson-Schwinger equation (DSE) for the fermion propagator in three- and four-dimensional quantum electrodynamics was obtained. The DSEs are a valuable nonperturbative tool for studying field theories. In recent years a good deal of progress was made in addressing the limitations of the DSE approach in the study of Abelian gauge theories. Key to this progress is an understanding of the role of the dressed fermion/gauge-boson vertex in ensuring gauge covariance and multiplicative renormalizability of the solution of the fermion DSE. The solutions we obtain are manifestly gauge covariant and a general gauge covariance constraint on the fermion/gauge-boson vertex is presented, which motivates a vertex Ansatz that, for the first time, both satisfies the Ward identity when the fermion self-mass is zero and ensures gauge covariance of the fermion propagator. This research facilitates gauge-invariant, nonperturbative studies of continuum quantum electrodynamics and has already been used by others in studies of the chiral phase transition.

  1. Anyonic behavior of an intermediate-statistics fermion gas model.

    PubMed

    Algin, Abdullah; Irk, Dursun; Topcu, Gozde

    2015-06-01

    We study the high-temperature behavior of an intermediate-statistics fermionic gas model whose quantum statistical properties enable us to effectively deduce the details about both the interaction among deformed (quasi)particles and their anyonic behavior. Starting with a deformed fermionic grand partition function, we calculate, in the thermodynamical limit, several thermostatistical functions of the model such as the internal energy and the entropy by means of a formalism of the fermionic q calculus. For high temperatures, a virial expansion of the equation of state for the system is obtained in two and three dimensions and the first five virial coefficients are derived in terms of the model deformation parameter q. From the results obtained by the effect of fermionic deformation, it is found that the model parameter q interpolates completely between bosonlike and fermionic systems via the behaviors of the third and fifth virial coefficients in both two and three spatial dimensions and in addition it characterizes effectively the interaction among quasifermions. Our results reveal that the present deformed (quasi)fermion model could be very efficient and effective in accounting for the nonlinear behaviors in interacting composite particle systems.

  2. A note on the path integral representation for Majorana fermions

    NASA Astrophysics Data System (ADS)

    Greco, Andrés

    2016-04-01

    Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.

  3. Scientific and Technical Document Database

    National Institute of Standards and Technology Data Gateway

    NIST Scientific and Technical Document Database (PC database for purchase)   The images in NIST Special Database 20 contain a very rich set of graphic elements from scientific and technical documents, such as graphs, tables, equations, two column text, maps, pictures, footnotes, annotations, and arrays of such elements.

  4. Scientific Advisory Panel Report for Glyphosate Available

    EPA Pesticide Factsheets

    The Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (SAP) met December 13-16, 2016, to consider a set of scientific issues being evaluated by the Environmental Protection Agency

  5. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  6. Scientific Misconduct

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2002-12-01

    These cases provide a good basis for discussions of scientific ethics, particularly with respect to the responsibilities of colleagues in collaborative projects. With increasing numbers of students working in cooperative or collaborative groups, there may be opportunities for more than just discussion—similar issues of responsibility apply to the members of such groups. Further, this is an area where, “no clear, widely accepted standards of behavior exist” (1). Thus there is an opportunity to point out to students that scientific ethics, like science itself, is incomplete and needs constant attention to issues that result from new paradigms such as collaborative research. Finally, each of us can resolve to pay more attention to the contributions we and our colleagues make to collaborative projects, applying to our own work no less critical an eye than we would cast on the work of those we don’t know at all.

  7. SAP Minutes No. 2014-03 for FIFRA meeting held July 29-31, 2014. A set of scientific issues being considered by the Environmental Protection Agency regarding new high throughput methods to estimate chemical exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On July 29-31, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “new High Throughput Methods to Estimate Chemical Exposure”. EPA is proposing to use these methods to identify...

  8. SAP Minutes No.2015-03 for FIFRA meeting held 9/15-17/2015. A set of scientific issues being considered by the Environmental Protection Agency regarding development of a spatial aquatic model(SAM)for pesticide risk assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On September 15-17th, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “Development of a Spatial Aquatic Model (SAM) for Pesticide Risk Assessment”. The goal of SAM is to impr...

  9. Composite fermions for fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Shankar, R.

    2012-02-01

    We consider fractionally filled bands with a non-zero Chern index that exhibit the Fractional Quantum Hall Effect in zero external fieldootnotetextR. Roy and S. Sondhi, Physics 4, 46 (2011) and papers reviewed therein. a possibility supported by numerical work.ootnotetextIbid. Analytic treatments are complicated by a non-constant Berry flux and the absence of Composite Fermions (CF), which would not only single out preferred fractions, but also allow us compute numerous response functions at nonzero frequencies, wavelengths and temperature using either Chern-Simons field theory or our Hamiltonian formalism.ootnotetextG. Murthy and R. Shankar, Rev. Mod. Phys., 75, 1101, (2003) We describe a way to introduce CF's by embedding the Chern band in an auxiliary problem involving Landau levels. The embedded band can be designed to approximate a prescribed Chern density in k space which determines the commutation relations of the charge densities and hence preserve all dynamical and algebraic aspects of the original problem. We find some states for which the filling fraction and dimensionless Hall conductance are not equal. The approach extends to two-dimensional time-reversal invariant topological insulators and to composite bosons.

  10. Topological aspects of fermions on hyperdiamond

    SciTech Connect

    Saidi, E. H.; Fassi-Fehri, O.; Bousmina, M.

    2012-07-15

    Motivated by recent results on the index of the Dirac operator D={gamma}{sup {mu}}D{sub {mu}} of QCD on lattice and also by results on topological features of electrons and holes of two-dimensional graphene, we compute in this paper the index of D for fermions living on a family of even-dimensional lattices denoted as L{sub 2N} and describing the 2N-dimensional generalization of the graphene honeycomb. The calculation of this topological index is done by using the direct method based on solving explicitly the gauged Dirac equation and also by using specific properties of the lattices L{sub 2N}, which are shown to be intimately linked with the weight lattices of SU(2N+ 1). The index associated with the two leading N= 1 and N= 2 elements of this family describe precisely the chiral anomalies of graphene and QCD{sub 4}. Comments on the method using the spectral flow approach as well as the computation of the topological charges on 2-cycles of 2N-dimensional compact supercell in L{sub 2N} and applications to QCD{sub 4} are also given.

  11. Majorana fermions in condensed-matter physics

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2016-06-01

    It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.

  12. Fermionic ghosts in Moyal string field theory

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka

    2003-07-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.

  13. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  14. Solving fermion sign problem in quantum Monte Carlo by Majorana representation

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Li, Zi-Xiang; Jiang, Yi-Fan

    2015-03-01

    We discover a new quantum Monte Carlo (QMC) method to solve the fermion sign problem in interacting fermion models by employing Majorana representation of complex fermions. We call it Majorana QMC (MQMC). Especially, MQMC is fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with arbitrary range of (unfrustrated) interactions. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve fermion sign problem in spinless (more generally, odd number of species) fermion models. MQMC simulations can be performed efficiently both at finite and zero temperatures. We believe that MQMC could pave a new avenue to solve fermion sign problem in more generic fermionic models. (Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao, arXiv:1408.2269).

  15. Equation of State of One-Dimensional Fermions in Harmonic Traps

    NASA Astrophysics Data System (ADS)

    Berger, Casey; Anderson, Eric; Drut, Joaquin

    2015-03-01

    We test a novel numerical method for computing the ground state energy of fermions in a harmonic trapping potential. The new technique combines hybrid Monte Carlo and a Gauss-Hermite discretization instead of a uniform lattice. Use of the harmonic oscillator basis and Gauss-Hermite points avoids the problem of edge effects and spurious copies that arise from periodic boundary conditions. This study sets the stage for calculations in higher dimensions, relying on non-uniform Fast Fourier Transform algorithms for acceleration. Based on this method we determine the ground-state energy of unpolarized few-body systems constrained to one-dimensional motion.

  16. Variation of entanglement entropy and mutual information in fermion-fermion scattering

    NASA Astrophysics Data System (ADS)

    Fan, Jinbo; Deng, Yanbin; Huang, Yong-Chang

    2017-03-01

    We study the behavior of entanglement between different degrees of freedom of scattering fermions, based on an exemplary QED scattering process e+e-→μ+μ- . The variation of entanglement entropy between two fermions from an initial state to the final state was computed, with respect to different entanglement between the ingoing particles. This variation of entanglement entropy is found to be proportional to an area quantity, the total cross section. We also study the spin-momentum and helicity-momentum entanglements within one particle in the aforementioned scattering process. The calculations of the relevant variations of mutual information in the same inertial frame reveals that, for a maximally entangled initial state, the scattering between the particles does not affect the degree of both of these entanglements of one particle in the final state. It is also found that the increasing degree of entanglement between two ingoing particles would restrict the generation of entanglement between spin (helicity) and momentum of one outgoing particle. And the entanglement between spin and momentum within one particle in the final state is shown to always be stronger than that for helicity-momentum for a general initial entanglement state, implying significantly distinct properties of entanglement for the helicity and spin perceived by an inertial observer.

  17. Mean-field embedding of the dual-fermion approach for correlated electron systems.

    PubMed

    Yang, S-X; Terletska, H; Meng, Z Y; Moreno, J; Jarrell, M

    2013-12-01

    To reduce the rapidly growing computational cost of the dual-fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual-fermion embedding. Our numerical tests show that the real fermion and dual-fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual-fermion method, for the calculation of both single- and two-particle quantities.

  18. Study of Majorana fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Chua, Chun-Khiang; Wong, Gwo-Guang

    2016-08-01

    We construct a generic model of Majorana fermionic dark matter (DM). Starting with two Weyl spinor multiplets η1 ,2˜(I ,∓Y ) coupled to the Standard Model Higgs, six additional Weyl spinor multiplets with (I ±1 /2 ,±(Y ±1 /2 )) are needed in general. It has 13 parameters in total, five mass parameters and eight Yukawa couplings. The DM sector of the minimal supersymmetric Standard Model is a special case of the model with (I ,Y )=(1 /2 ,1 /2 ). Therefore, this model can be viewed as an extension of the neutralino DM sector. We consider three typical cases: the neutralinolike, the reduced, and the extended cases. For each case, we survey the DM mass mχ in the range of (1,2500) GeV by random sampling from the model parameter space and study the constraints from the observed DM relic density; the direct search of LUX, XENON100, and PICO experiments; and the indirect search of Fermi-LAT data. We investigate the interplay of these constraints and the differences among these cases. It is found that the direct detection of spin-independent DM scattering off nuclei and the indirect detection of DM annihilation to the W+W- channel will be more sensitive to the DM searches in the near future. The allowed mass for finding H ˜-, B ˜-, W ˜-, and non-neutralino-like DM particles and the predictions on ⟨σ (χ χ →Z Z ,Z H ,t t ¯)v ⟩ in the indirect search are given.

  19. Strong correlations in bosons and fermions

    NASA Astrophysics Data System (ADS)

    Tilahun, Dagim

    If there is a general theme to this thesis, it is the effects of strong correlations in both bosons and fermions. The bosonic system considered here consists of ultracold alkali atoms trapped by interfering lasers, so called optical lattices. Strong interactions, realized by increasing the depth of the lattice potential, or through the phenomenon of Feshbach resonances induce strong correlations amongst the atoms, rendering attempts to describe the systems in terms of single particle type physics unsuccessful. Of course strong correlations are not the exclusive domain of bosons, and also are not caused only by strong interactions. Other factors such as reduced dimensionality, in one-dimensional electron gases, or strong magnetic fields, in two-dimensional electron gases are known to induce strong correlations. In this thesis, we explore the manifestations of strong correlations in ultracold atoms in optical lattices and interacting electron gases. Optical lattices provide a near-perfect realization of lattice models, such as the bosonic Hubbard model (BHM) that have been formulated to study solid state systems. This follows from the absence of defects or impurities that usually plague real solid state systems. Another novel feature of optical lattices is the unprecedented control experimenters have in tuning the different lattice parameters, such as the lattice spacing and the intensity of the lasers. This control enables one to study the model Hamiltonians over a wide range of variables, such as the interaction strength between the atoms, thereby opening the door towards the observation of diverse and interesting phenomena. The BHM, and also its variants, predict various quantum phases, such as the strongly correlated Mott insulator (MI) phase that appears as a function of the parameter t/U, the ratio of the nearest neighbor hopping amplitude to the on-site interaction, which one varies experimentally over a wide range of values simply by switching the intensity

  20. Fermion pair production in e+e- collisions at 189 209 GeV and constraints on physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Hill, R. D.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Müller, A.-S.; Quast, G.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2007-01-01

    Cross sections, angular distributions and forward-backward asymmetries are presented, of two-fermion events produced in e+e- collisions at centre-of-mass energies from 189 to 209 GeV at LEP, measured with the ALEPH detector. Results for e+e-, μ+μ-, τ+τ-, qq¯, bb¯ and cc¯ production are in agreement with the standard model predictions. Constraints are set on scenarios of new physics such as four-fermion contact interactions, leptoquarks, Z‧ bosons, TeV-scale quantum gravity and R-parity violating squarks and sneutrinos.

  1. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas

    2011-03-01

    Nicolas Lopez (University of California, Riverside, USA) Chi-Yong Lin (National Dong Hwa University, Taiwan) Shan-Wen Tsai (University of California, Riverside, USA) Cold atom experiments have realized a variety of multicomponent quantum mixtures, including Bose-Fermi atomic mixtures. Mixtures of fermionic atoms and diatomic molecules, which are boson, have also been obtained by tuning of the interactions with external fields. We study many-body correlations in such a system where the molecules are weakly bound and therefore pairs of fermionic atoms easily convert into and dissociate from the bound molecule state and this exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. We employ a functional renomalization-group approach and calculate the renormalized frequency-dependent interaction vertices and fermion self-energies. We find an instability from the disordered quantum liquid phase to a BCS phase and calculate the energy scale for the transition. The unusual frequency-dependence of this mediated interaction leads to strong renormalization of the self-energy, and also affects the couplings in the BCS channel.

  2. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Lopez Valdez, Nicolas; Tsai, Shan-Wen; Lin, Chi-Yong

    2010-03-01

    Cold atom experiments have realized a variety of multicomponent quantum mixtures, including Bose-Fermi atomic mixtures. Mixtures of fermionic atoms and diatomic molecules, which are boson, have also been obtained by tuning of the interactions with external fields [1]. We study many-body correlations in such a system where the molecules are weakly bound and therefore pairs of fermionic atoms easily convert into and dissociate from the bound molecule state. This exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa [2]. We employ a functional renomalization-group approach and calculate the renormalized frequency-dependent interaction vertices and fermion self-energies. We find an instability from the disordered quantum liquid phase to a BCS phase and calculate the energy scale for the transition. The unusual frequency-dependence of this mediated interaction leads to strong renormalization of the self-energy, and also affects the couplings in the BCS channel. [1] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys. Rev. Lett. 94, 110401 (2005) [2] E. Timmermans, K. Furuya, P. W. Milonni, and A. K. Kerman, Phys. Lett. A 285, 228 (2001)

  3. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen; Timmermans, Eddy; Lin, Chi-Yong

    2011-05-01

    Cold atom experiments have realized a variety of multicomponent quantum mixtures, including Bose-Fermi atomic mixtures. Mixtures of fermionic atoms and diatomic molecules, which are boson, have also been obtained by tuning of the interactions with external fields. We study many-body correlations in such a system where the molecules are weakly bound and therefore pairs of fermionic atoms easily convert into and dissociate from the bound molecule state and this exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. We employ a functional renomalization-group approach and calculate the renormalized frequency-dependent interaction vertices and fermion self-energies. We find an instability from the disordered quantum liquid phase to a BCS phase and calculate the energy scale for the transition. The unusual frequency-dependence of this mediated interaction leads to strong renormalization of the self-energy, and also affects the couplings in the BCS channel.

  4. Entanglement entropy of fermionic quadratic band touching model

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Cho, Gil Young; Fradkin, Eduardo

    2014-03-01

    The entanglement entropy has been proven to be a useful tool to diagnose and characterize strongly correlated systems such as topologically ordered phases and some critical points. Motivated by the successes, we study the entanglement entropy (EE) of a fermionic quadratic band touching model in (2 + 1) dimension. This is a fermionic ``spinor'' model with a finite DOS at k=0 and infinitesimal instabilities. The calculation on two-point correlation functions shows that a Dirac fermion model and the quadratic band touching model both have the asymptotically identical behavior in the long distance limit. This implies that EE for the quadratic band touching model also has an area law as the Dirac fermion. This is in contradiction with the expectation that dense fermi systems with a finite DOS should exhibit LlogL violations to the area law of entanglement entropy (L is the length of the boundary of the sub-region) by analogy with the Fermi surface. We performed numerical calculations of entanglement entropies on a torus of the lattice models for the quadratic band touching point and the Dirac fermion to confirm this. The numerical calculation shows that EE for both cases satisfy the area law. We further verify this result by the analytic calculation on the torus geometry. This work was supported in part by the NSF grant DMR-1064319.

  5. Three-dimensional Majorana fermions in chiral superconductors.

    PubMed

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  6. Three-dimensional Majorana fermions in chiral superconductors

    PubMed Central

    Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang

    2016-01-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543

  7. Effective fermion couplings in warped 5D Higgsless theories

    SciTech Connect

    Bechi, J.; Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2006-11-01

    We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the {epsilon}{sub 3} parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the {epsilon}{sub 3} parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.

  8. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  9. Fermionic bound states on a one-dimensional lattice

    SciTech Connect

    Nguenang, Jean-Pierre; Flach, Sergej

    2009-07-15

    We study bound states of two fermions with opposite spins in an extended Hubbard chain. The particles interact when located both on a site or on adjacent sites. We find three different types of bound states. Type U is predominantly formed of basis states with both fermions on the same site, while two states of type V originate from both fermions occupying neighboring sites. Type U and one of the states from type V are symmetric with respect to spin flips. The remaining one from type V is antisymmetric. V states disappear by merging with the two-particle continuum below some critical wave number. All bound states become compact for wave numbers at the edge of the Brillouin zone.

  10. Landau Levels of Majorana Fermions in a Spin Liquid.

    PubMed

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  11. Probing the fermionic Higgs portal at lepton colliders

    DOE PAGES

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    2016-04-26

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H†Hχ¯χ. Measurements of precision electroweak S and T parameters and the e+e– → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables. We also providemore » full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less

  12. Fermion masses without symmetry breaking in two spacetime dimensions

    NASA Astrophysics Data System (ADS)

    BenTov, Yoni

    2015-07-01

    I study the prospect of generating mass for symmetry-protected fermions without breaking the symmetry that forbids quadratic mass terms in the Lagrangian. I focus on 1+1 spacetime dimensions in the hope that this can provide guidance for interacting fermions in 3+1 dimensions. I first review the SO(8) Gross-Neveu model and emphasize a subtlety in the triality transformation. Then I focus on the " m = 0" manifold of the SO(7) Kitaev-Fidkowski model. I argue that this theory exhibits a phenomenon similar to "parity doubling" in hadronic physics, and this leads to the conclusion that the fermion propagator vanishes when p μ = 0. I also briefly explore a connection between this model and the two-channel, single-impurity Kondo effect. This paper may serve as an introduction to topological superconductors for high energy theorists, and perhaps as a taste of elementary particle physics for condensed matter theorists.

  13. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion

    NASA Astrophysics Data System (ADS)

    Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu

    2017-03-01

    We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.

  14. Slave fermion formalism for the tetrahedral spin chain

    NASA Astrophysics Data System (ADS)

    Mohan, Priyanka; Rao, Sumathi

    2016-09-01

    We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.

  15. Dirac Fermions in a Nanopatterned Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Hwan

    2013-03-01

    If a lateral periodic potential with triangular (or honeycomb) lattice symmetry is applied to a conventional two-dimensional electron gas (2DEG), the charge carriers behave like massless Dirac ferions. A very interesting and useful point of these newly-generated massless Dirac fermions is that, unlike the case of graphene, their properties can be tuned through the external periodic potential. In this presentation, I will review the electronic properties of those newly-generated massless Dirac fermions in an artificial 2DEG superlattice system and will discuss how the elecctronic structure of those massless Dirac fermions changes depending on the external periodic potential. This work was partly supported by Research Settlement Fund for the new faculty of SNU.

  16. Mixing of fermions and spectral representation of propagator

    NASA Astrophysics Data System (ADS)

    Kaloshin, A. E.; Lomov, V. P.

    2016-03-01

    We develop the spectral representation of propagator for n mixing fermion fields in the case of P-parity violation. The approach based on the eigenvalue problem for inverse matrix propagator makes possible to build the system of orthogonal projectors and to represent the matrix propagator as a sum of poles with positive and negative energies. The procedure of multiplicative renormalization in terms of spectral representation is investigated and the renormalization matrices are obtained in a closed form without the use of perturbation theory. Since in theory with P-parity violation the standard spin projectors do not commute with the dressed propagator, they should be modified. The developed approach allows us to build the modified (dressed) spin projectors for a single fermion and for a system of fermions.

  17. Dynamics of Brans-Dicke cosmology with varying mass fermions

    SciTech Connect

    Liu Daojun

    2010-09-15

    In this paper, the cosmological dynamics of Brans-Dicke (BD) theory in which there are fermions with a coupling to BD scalar field as well as a self-interaction potential is investigated. The conditions that there exists a solution which is stable and represents a late-time accelerated expansion of the Universe are found. The variable mass of fermions cannot vanish exactly during the evolution of the Universe once it exists initially. It is shown that the late-time acceleration depends completely on the self-interaction of the fermion field if our investigation is restricted to the theory with positive BD parameter {omega}. Provided a negative {omega} is allowed, there will be another two classes of stable solutions describing the late-time accelerated expansion of the Universe.

  18. Interplay of Dirac fermions and heavy quasiparticles in solids.

    PubMed

    Höppner, M; Seiro, S; Chikina, A; Fedorov, A; Güttler, M; Danzenbächer, S; Generalov, A; Kummer, K; Patil, S; Molodtsov, S L; Kucherenko, Y; Geibel, C; Strocov, V N; Shi, M; Radovic, M; Schmitt, T; Laubschat, C; Vyalikh, D V

    2013-01-01

    Many-body interactions in crystalline solids can be conveniently described in terms of quasiparticles with strongly renormalized masses as compared with those of non-interacting particles. Examples of extreme mass renormalization are on the one hand graphene, where the charge carriers obey the linear dispersion relation of massless Dirac fermions, and on the other hand heavy-fermion materials where the effective electron mass approaches the mass of a proton. Here we show that both extremes, Dirac fermions, like they are found in graphene and extremely heavy quasiparticles characteristic for Kondo materials, may not only coexist in a solid but can also undergo strong mutual interactions. Using the example of EuRh₂Si₂, we explicitly demonstrate that these interactions can take place at the surface and in the bulk. The presence of the linear dispersion is imposed solely by the crystal symmetry, whereas the existence of heavy quasiparticles is caused by the localized nature of the 4f states.

  19. Fermion Mass Renormalization Using Time-dependent Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kutnink, Timothy; Santrach, Amelia; Hocket, Sarah; Barcus, Scott; Petridis, Athanasios

    2015-10-01

    The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with refcecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass, as the self-interacting spinors are no longer mass-eigenfunctions. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Statistical regularization is proposed to remove the grid-size dependence.

  20. Ferromagnetism and Borromean binding in three-fermion clusters.

    PubMed

    Kornilovitch, Pavel

    2014-02-21

    A three-particle spin-12 fermion problem with on-site repulsion and nearest-neighbor attraction is solved on the two-dimensional square lattice by discretizing a Schrödinger equation in momentum space. Energies of bound complexes (trions) and their binding conditions are obtained. For total spin S=1/2, a wide region of trion instability toward decaying into a stable singlet pair plus a free fermion is identified. The instability is attributed to the formation of a wave function node upon addition of the third fermion. In the S=3/2 sector, trions are found to form in the absence of bound pairs indicating Borromean binding. In the strong coupling limit the system transitions from an S=1/2 ground state to a ferromagnetic S=3/2 ground state in agreement with the Nagaoka theorem for a four-site plaquette.

  1. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  2. Millikelvin cooling by heavy-fermion-based tunnel junctions

    SciTech Connect

    Prest, Martin; Min, Gao; Whall, Terry

    2015-12-28

    This paper addresses a high-performance electron-tunneling cooler based on a novel heavy-fermion/insulator/superconductor junction for millikelvin cooling applications. We show that the cooling performance of an electronic tunneling refrigerator could be significantly improved using a heavy-fermion metal to replace the normal metal in a conventional normal metal/insulator/superconductor junction. The calculation, based on typical parameters, indicates that, for a bath temperature of 300 mK, the minimum cooling temperature of an electron tunneling refrigerator is reduced from around 170 mK to below 50 mK if a heavy-fermion metal is employed in place of the normal metal. The improved cooling is attributed to an enhancement in electron tunneling due to the existence of a resonant density of states at the Fermi level.

  3. Probing the fermionic Higgs portal at lepton colliders

    SciTech Connect

    Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao

    2016-04-26

    Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator HHχ¯χ. Measurements of precision electroweak S and T parameters and the e+e → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables. We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.

  4. Quantum gravity and Standard-Model-like fermions

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Lippoldt, Stefan

    2017-04-01

    We discover that chiral symmetry does not act as an infrared attractor of the renormalization group flow under the impact of quantum gravity fluctuations. Thus, observationally viable quantum gravity models must respect chiral symmetry. In our truncation, asymptotically safe gravity does, as a chiral fixed point exists. A second non-chiral fixed point with massive fermions provides a template for models with dark matter. This fixed point disappears for more than 10 fermions, suggesting that an asymptotically safe ultraviolet completion for the standard model plus gravity enforces chiral symmetry.

  5. Fermion Monte Carlo Calculations on Liquid-3He

    SciTech Connect

    Kalos, M H; Colletti, L; Pederiva, F

    2004-03-16

    Methods and results for calculations of the ground state energy of the bulk system of {sup 3}He atoms are discussed. Results are encouraging: they believe that they demonstrate that their methods offer a solution of the ''fermion sign problem'' and the possibility of direct computation of many-fermion systems with no uncontrolled approximations. Nevertheless, the method is still rather inefficient compared with variational or fixed-node approximate methods. There appears to be a significant populations size effect. The situation is improved by the inclusion of ''Second Stage Importance Sampling'' and of ''Acceptance/Rejection'' adapted to their needs.

  6. Metastable superfluidity of repulsive fermionic atoms in optical lattices.

    PubMed

    Rosch, Achim; Rasch, David; Binz, Benedikt; Vojta, Matthias

    2008-12-31

    In the fermionic Hubbard model, doubly occupied states have an exponentially large lifetime for strong repulsive interactions U. We show that this property can be used to prepare a metastable s-wave superfluid state for fermionic atoms in optical lattices described by a large-U Hubbard model. When an initial band-insulating state is expanded, the doubly occupied sites Bose condense. A mapping to the ferromagnetic Heisenberg model in an external field allows for a reliable solution of the problem. Nearest-neighbor repulsion and pair hopping are important in stabilizing superfluidity.

  7. Dual-fermion approach to the Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Haase, P.; Yang, S.-X.; Pruschke, T.; Moreno, J.; Jarrell, M.

    2017-01-01

    We apply the recently developed dual-fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the quality of the approximation in comparison with an established cluster method. We continue with a three-dimensional (3D) system and look at the antiferromagnetic, Mott, and Anderson localization transitions. The dual-fermion approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results, and it allows one to calculate the hysteresis in the double occupancy in 3D, taking into account nonlocal correlations.

  8. Impurities in the heavy-Fermion superconductor UBe13

    NASA Astrophysics Data System (ADS)

    Smith, J. L.; Fisk, Z.; Willis, J. O.; Batlogg, B.; Ott, H. R.

    Small amounts of Sc, Lu, Gd, Np, Ce, Th, La, and Ba were substituted for uranium in UBe13 to observe their effects. The thorium, which was the most complete study, resulted in an extremely unusual nonmonotonic depression of the transition temperature for a nonmagnetic impurity. This comes from an interplay that exists between the lowest temperature resistivity peak and the transition temperature, as the peak is depressed. These results suggest that heavy Fermion behavior is only a necessary condition for heavy Fermion superconductivity. All of the impurities tested resulted in a transition temperature depression.

  9. Ultracold Fermions in a Cavity-Induced Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kollath, Corinna; Sheikhan, Ameneh; Wolff, Stefan; Brennecke, Ferdinand

    2016-02-01

    We propose how a fermionic quantum gas confined to an optical lattice and coupled to an optical cavity can self-organize into a state where the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying chiral currents. The feedback mechanism via the dynamical cavity field enables robust and fast switching in time of the chiral phases, and the cavity output can be employed for a direct nondestructive measurement of the chiral current.

  10. W∞-ALGEBRA for Fermions in the Lowest Landau Level

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    We derive the W∞-algebra directly from the cocycle (translational) transformation of fermions in the lowest Landau level. This happens whenever the translational symmetry is unbroken in the ground state. Under the cocycle transformations, the lowest Landau level condition and fermion number are preserved. In the droplet approximation, the algebra of this system is reduced to the classical w∞-algebra (area-preserving deformations) and is related to condensed matter physics. This describes the edge modes of the fractional quantum Hall effect.

  11. Ultracold Superstrings in Atomic Boson-Fermion Mixtures

    SciTech Connect

    Snoek, Michiel; Haque, Masudul; Vandoren, S.; Stoof, H.T.C.

    2005-12-16

    We propose a setup with ultracold atomic gases that can be used to make a nonrelativistic superstring in four spacetime dimensions. In particular, we consider for the creation of the superstring a fermionic atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the required tuning of experimental parameters to achieve supersymmetry between the fermionic atoms and the bosonic modes describing the oscillations in the vortex position. Furthermore, we discuss the experimental consequences of supersymmetry.

  12. Scaling analysis of fat-link irrelevant clover fermion actions

    SciTech Connect

    Kamleh, Waseem; Lasscock, Ben; Leinweber, Derek B.; Williams, Anthony G.

    2008-01-01

    The fat-link irrelevant clover fermion action is a variant of the O(a)-improved Wilson action where the irrelevant operators are constructed using smeared links. While the use of such smearing allows for the use of highly improved definitions of the field strength tensor F{sub {mu}}{sub {nu}}, we show that the standard 1-loop clover term with a mean field improved coefficient c{sub sw} is sufficient to remove the O(a) errors, avoiding the need for nonperturbative tuning. This result enables efficient dynamical simulations in QCD with the fat-link irrelevant clover fermion action.

  13. Digital quantum simulation of fermionic models with a superconducting circuit

    PubMed Central

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A; Jeffrey, E; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  14. Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras

    NASA Astrophysics Data System (ADS)

    Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.

    2016-10-01

    We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.

  15. Digital quantum simulation of fermionic models with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-07-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.

  16. Fermion localization and resonances on two-field thick branes

    SciTech Connect

    Almeida, C. A. S.; Casana, R.; Ferreira, M. M. Jr.; Gomes, A. R.

    2009-06-15

    We consider (4, 1)-dimensional branes constructed with two scalar fields {phi} and {chi} coupled to a Dirac spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the chiral decomposition of the spinor in curved spacetime leads to a Schroedinger-like equation whose solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling {psi}{phi}{chi}{psi} is considered for the Bloch brane model and fermion localization is studied. We found resonances for both chiralities and related their appearance to branes with internal structure.

  17. 2. QUANTUM HALL EFFECT: Magnetooptics of composite fermions

    NASA Astrophysics Data System (ADS)

    Kukushkin, I. V.; Smet, J. H.; von Klitzing, K.; Eberl, K.

    2001-10-01

    The Fermi energy and the Zeeman splitting of composite fermions are measured from the temperature dependence of the electron spin polarization at v = 1/2. We demonstrate that the Zeeman splitting of composite fermions is enhanced by a factor of 2.5 due to the interaction between CFs. The latter is very sensitive on the finite width of the 2D channel. The spin polarization at v = 1/3 and v = 2/3 displays an activated behavior and the derived spin-wave gaps are compared with simultaneously measured transport values.

  18. Is risk analysis scientific?

    PubMed

    Hansson, Sven Ove; Aven, Terje

    2014-07-01

    This article discusses to what extent risk analysis is scientific in view of a set of commonly used definitions and criteria. We consider scientific knowledge to be characterized by its subject matter, its success in developing the best available knowledge in its fields of study, and the epistemic norms and values that guide scientific investigations. We proceed to assess the field of risk analysis according to these criteria. For this purpose, we use a model for risk analysis in which science is used as a base for decision making on risks, which covers the five elements evidence, knowledge base, broad risk evaluation, managerial review and judgment, and the decision; and that relates these elements to the domains experts and decisionmakers, and to the domains fact-based or value-based. We conclude that risk analysis is a scientific field of study, when understood as consisting primarily of (i) knowledge about risk-related phenomena, processes, events, etc., and (ii) concepts, theories, frameworks, approaches, principles, methods and models to understand, assess, characterize, communicate, and manage risk, in general and for specific applications (the instrumental part).

  19. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Pennington, M. R.

    2016-12-01

    We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. As an illustration, we show how the gauge technique dimensionally regularized in four dimensions does not satisfy the covariance requirement.

  20. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex

    SciTech Connect

    Jia, Shaoyang; Pennington, M. R.

    2016-12-12

    In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularized in four dimensions does not satisfy the covariance requirement.

  1. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2016-12-12

    In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less

  2. Intermode-coupling modulation in the fermion-boson model: heating effects in the Bardeen-Cooper-Schrieffer regime

    NASA Astrophysics Data System (ADS)

    Plata, J.

    2015-07-01

    Heating induced by an oscillating modulation of the interaction strength in an atomic Fermion pair condensate is analyzed. The coupled fermion-boson model, generalized by incorporating a time-dependent intermode coupling through a magnetic Feshbach resonance, is applied. The dynamics are analytically characterized in a perturbative scheme. The results account for experimental findings which have uncovered a damped and delayed response of the condensate to the modulation. The delay is due to the variation of the quasiparticle energies and the subsequent relaxation of the condensate. The detected damping results from the excitations induced by a nonadiabatic modulation: for driving frequencies larger than twice the pairing gap, quasiparticles are generated and, consequently, heating sets in.

  3. Composite fermions and the first-Landau-level fine structure of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.; Haxton, Daniel J.

    2016-04-01

    A set of scalar operators, originally introduced in connection with an analytic first-Landau-level (FLL) construction of fractional quantum Hall (FQHE) wave functions for the sphere, are employed in a somewhat different way to generate explicit representations of both hierarchy states (e.g., the series of fillings ν =1 /3 , 2/5, 3/7,⋯) and their conjugates (ν =1 , 2/3, 3/5,⋯) as noninteracting quasielectrons filling fine-structure subshells within the FLL. This yields, for planar and spherical geometries, a quasielectron representation of the incompressible FLL state of filling p /(2 p +1 ) in a magnetic field of strength B that is algebraically identical to the IQHE state of filling ν =p in a magnetic field of strength B /(2 p +1 ) . The construction provides a precise definition of the quasielectron/composite fermion that differs in some respects from common descriptions: they are eigenstates of L ,Lz ; they and the FLL subshells they occupy carry a third index I that is associated with breaking of scalar pairs; they absorb in their internal wave functions one, not two, units of magnetic flux; and they share a common, simple structure as vector products of a spinor creating an electron and one creating magnetic flux. We argue that these properties are a consequence of the breaking of the degeneracy of noninteracting electrons within the FLL by the scale-invariant Coulomb potential. We discuss the sense in which the wave function construction supports basic ideas of both composite fermion and hierarchical descriptions of the FQHE. We describe symmetries of the quasielectrons in the ν =1 /2 limit, where a deep Fermi sea of quasielectrons forms, and the quasielectrons take on Majorana and pseudo-Dirac characters. Finally, we show that the wave functions can be viewed as fermionic excitations of the bosonic half-filled shell, producing at ν =1 /2 an operator that differs from but plays the same role as the Pfaffian.

  4. Perturbative quantum field theory in the framework of the fermionic projector

    SciTech Connect

    Finster, Felix

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  5. Multiconfigurational time-dependent Hartree method for fermions: Implementation, exactness, and few-fermion tunneling to open space

    NASA Astrophysics Data System (ADS)

    Fasshauer, Elke; Lode, Axel U. J.

    2016-03-01

    We report on an implementation of the multiconfigurational time-dependent Hartree method (MCTDH) for spin-polarized fermions (MCTDHF). Our approach is based on a mapping for operators in Fock space that allows a compact and efficient application of the Hamiltonian and solution of the MCTDHF equations of motion. Our implementation extends, builds on, and exploits the recursive implementation of MCTDH for bosons (r-mctdhb) package. Together with r-mctdhb, the present implementation of MCTDHF forms the mctdh-x package. We benchmark the accuracy of the algorithm with the harmonic interaction model and a time-dependent generalization thereof. These models consider parabolically trapped particles that interact through a harmonic interaction potential. We demonstrate that MCTDHF is capable of solving the time-dependent many-fermion Schrödinger equation to an arbitrary degree of precision and can hence yield numerically exact results even in the case of Hamiltonians with time-dependent one-body and two-body potentials. We study the problem of two initially parabolically confined and charged fermions tunneling through a barrier to open space. We demonstrate the validity of a model proposed previously for the many-body tunneling to open space of bosonic particles with contact interactions [Proc. Natl. Acad. Sci. USA 109, 13521 (2012), 10.1073/pnas.1201345109]. The many-fermion tunneling can be built up from sequentially happening single-fermion tunneling processes. The characteristic momenta of these processes are determined by the chemical potentials of trapped subsystems of smaller particle numbers: The escaped fermions convert the different chemical potentials into kinetic energy. Using the two-body correlation function, we present a detailed picture of the sequentiality of the process and are able to tell tunneling from over-the-barrier escape.

  6. Scientific Toy

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Tensegritoy, inspired by the tensegrity concepts of R. Buckminster Fuller, is an erector set like toy designed to give students an understanding of structural stability. It is used by children, architects, engineers, and teachers. The manufacturer, Tensegrity Systems Corporation, also offers a collapsible point of purchase display which incorporates technology developed for space station trusses described in "NASA Tech Briefs." The tech brief described deployable trusses that can be collapsed into small packages for space shuttle transport, then unfolded in space. As a result, the display occupies a minimum amount of floor space, freight cost savings are substantial and assembly can be completed quickly.

  7. Learning To Use Scientific Knowledge in Education and Practice Settings: An Evaluation of the Contribution of the Biological Behavioural and Social Sciences to Pre-Registration Nursing and Midwifery Programmes. Researching Professional Education. Research Reports Series Number 3.

    ERIC Educational Resources Information Center

    Eraut, Michael; And Others

    A research project evaluated the contribution of biological, behavioral, and social sciences to nursing and midwifery education programs in Britain. The study of scientific knowledge relevant to recently qualified nurses and midwives was confined to six topics: fluids, electrolytes, and renal systems; nutrition; acute pain; shock; stress; and…

  8. Damping of Ultrasoft Fermions in Finite Temperature QED

    SciTech Connect

    Bouakaz, K.; Abada, A.

    2008-04-21

    We calculate the fermion damping rates to second order in powers of the external momentum in the context of QED at finite temperature using the hard-thermal-loop summation scheme. We find the coefficients of zeroth and first orders finite whereas that of second order logarithmically infrared sensitive. The calculation is done in covariant gauge and the result is independent of gauge fixing.

  9. Effective field theories for QCD with rooted staggered fermions

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal

    2008-04-01

    Even highly improved variants of lattice QCD with staggered fermions show significant violations of taste symmetry at currently accessible lattice spacings. In addition, the 'rooting trick' is used in order to simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even though there is good reason to believe that the continuum limit is in the correct universality class. In order to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective theory to include rooted staggered fermions. We show how this can be done, starting from a generalization of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to 'rooted' staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered fermions. We thus establish a direct link between the renormalization-group based arguments for the correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory. Other technical, but standard, assumptions are also required.

  10. Taste symmetry breaking with hypercubic-smeared staggered fermions

    SciTech Connect

    Bae, Taegil; Adams, David H.; Kim, Hyung-Jin; Kim, Jongjeong; Kim, Kwangwoo; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.

    2008-05-01

    We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable to the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<

  11. New Spin Physics in the Hamiltonian Theory of Composite Fermions

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2001-03-01

    The Hamiltonian theory of Composite Fermions, developed by R. Shankar and myself three years ago, has been successful in calculating a variety of physical properties in the gapped and gapless fractional quantum Hall states. In this talk, results will be presented on finite temperature magnetization, focusing on the ferromagnetic 1/3 state. A combination of Hartree-Fock (in terms of Composite Fermion variables) and a mapping to the Continuum Quantum Ferromagnet (solved in the large-N approximation) leads to theoretical predictions in very good agreement with experiments. Theoretical results will also be presented on a novel partialy polarized charge/spin density wave state at 2/5 which only occurs near the transition between the singlet and fully polarized states. The possible relevance of this state to recent experiments will be discussed. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997): "Towards a Field Theory of Fractional Quantum Hall States" G. Murthy, to appear in Jour. Phys. Cond. Mat, cond-mat/0008259; "Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond" G. Murthy, Phys. Rev. Lett. 84, 350 (2000): "Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the 2/5 Fractional Quantum Hall Effect"

  12. Fermions in a Kerr-Newman space-time

    SciTech Connect

    Dariescu, M.A.; Dariescu, C.; Gottlieb, I.

    1995-10-01

    The aim of this paper is to put the U(I)-gauge theory of fermions in the space-time described by a Kerr-Newman metric. The field equations have rather complicated expressions essentially different from the Minkowskian spacetime.

  13. Toward the classification of the realistic free fermionic models

    SciTech Connect

    Faraggi, A.E.

    1997-08-01

    The realistic free fermionic models have had remarkable success in providing plausible explanations for various properties of the Standard Model which include the natural appearance of three generations, the explanation of the heavy top quark mass and the qualitative structure of the fermion mass spectrum in general, the stability of the proton and more. These intriguing achievements makes evident the need to understand the general space of these models. While the number of possibilities is large, general patterns can be extracted. In this paper the author presents a detailed discussion on the construction of the realistic free fermionic models with the aim of providing some insight into the basic structures and building blocks that enter the construction. The role of free phases in the determination of the phenomenology of the models is discussed in detail. The author discusses the connection between the free phases and mirror symmetry in (2,2) models and the corresponding symmetries in the case of (2,0) models. The importance of the free phases in determining the effective low energy phenomenology is illustrated in several examples. The classification of the models in terms of boundary condition selection rules, real world-sheet fermion pairings, exotic matter states and the hidden sector is discussed.

  14. The many guises of a neutral fermion singlet

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2017-03-01

    The addition of a neutral fermion singlet to the Standard Model (SM) of particle interactions leads to many diverse possibilities. It is not necessarily a right-handed neutrino. I discuss many of the simplest and most interesting scenarios of possible new physics with this approach. In particular, I propose the possible spontaneous breaking of baryon number, resulting in the massless “sakharon”.

  15. Photoelectron spectroscopy in heavy fermions: Inconsistencies with the Kondo model

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Blyth, R.R.; Canfield, P.C.; Thompson, J.D.; Bartlett, R.J.; Fisk, Z.; Lawrence, J.; Tang, J.; Riseborough, P.

    1992-09-01

    We have investigated a number of Ce and Yb heavy fermion compounds via photoelectron spectroscopy and compared the results to the predictions of the Imurity Anderson Hamiltonian within the Gunnarson-Schonhammer approach. For the low T{sub K} materials investigated we find little or no correlation with T{sub K}, the only parameter that can be determined independent of photoemission.

  16. Review of the fermionic dark matter model applied to galactic structures

    SciTech Connect

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  17. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide.

    PubMed

    Luo, Yongkang; Pourovskii, Leonid; Rowley, S E; Li, Yuke; Feng, Chunmu; Georges, Antoine; Dai, Jianhui; Cao, Guanghan; Xu, Zhu'an; Si, Qimiao; Ong, N P

    2014-08-01

    A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.

  18. Canonical form of three-fermion pure-states with six single particle states

    SciTech Connect

    Chen, Lin; Ž Ðoković, Dragomir; Grassl, Markus; Zeng, Bei

    2014-08-01

    We construct a canonical form for pure states in Λ³(C⁶), the three-fermion system with six single particle states, under local unitary (LU) transformations, i.e., the unitary group U(6). We also construct a minimal set of generators of the algebra of polynomial U(6)-invariants on Λ³(C⁶). It turns out that this algebra is isomorphic to the algebra of polynomial LU-invariants of three-qubits which are additionally invariant under qubit permutations. As a consequence of this surprising fact, we deduce that there is a one-to-one correspondence between the U(6)-orbits of pure three-fermion states in Λ³(C⁶) and the LU orbits of pure three-qubit states when qubit permutations are allowed. As an important byproduct, we obtain a new canonical form for pure three-qubit states under LU transformations U(2) × U(2) × U(2) (no qubit permutations allowed)

  19. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Pourovskii, Leonid; Rowley, S. E.; Li, Yuke; Feng, Chunmu; Georges, Antoine; Dai, Jianhui; Cao, Guanghan; Xu, Zhu'An; Si, Qimiao; Ong, N. P.

    2014-08-01

    A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.

  20. Non-Abelian statistics of vortices with non-Abelian Dirac fermions.

    PubMed

    Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto

    2013-05-01

    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.

  1. Influence of the quantum interference on the bosonic and fermionic ion-ion collisions

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-03-01

    The quantum interference effects on the bosonic-bosonic (He-4)-(He-4), fermionic-fermionic (He-3)-(He-3), and bosonic-fermionic (He-4)-(He-3) ion-ion collisions are investigated by using the isotope of the He nucleus in dense semiclassical Coulomb systems with the Faxen-Holtzmark method. It is found that the scattering cross section for the fermionic-fermionic ion-ion collision is greater than the bosonic-bosonic and bosonic-fermionic ion collision cross sections. It is also found that the collisional induced quantum interference effect enhances the ion-ion collision cross section in semiclassical Coulomb systems. The variation of the quantum-mechanical effect on the bosonic and fermionic ion-ion collisions is also discussed. This paper is dedicated to the late Prof. P. K. Shukla in memory of exciting and stimulating collaborations on physical processes in semiclassical Coulomb systems.

  2. Fairness in scientific publishing

    PubMed Central

    Matthews, Philippa C.

    2017-01-01

    Major changes are afoot in the world of academic publishing, exemplified by innovations in publishing platforms, new approaches to metrics, improvements in our approach to peer review, and a focus on developing and encouraging open access to scientific literature and data. The FAIR acronym recommends that authors and publishers should aim to make their output Findable, Accessible, Interoperable and Reusable. In this opinion article, I explore the parallel view that we should take a collective stance on making the dissemination of scientific data fair in the conventional sense, by being mindful of equity and justice for patients, clinicians, academics, publishers, funders and academic institutions. The views I represent are founded on oral and written dialogue with clinicians, academics and the publishing industry. Further progress is needed to improve collaboration and dialogue between these groups, to reduce misinterpretation of metrics, to minimise inequity that arises as a consequence of geographic setting, to improve economic sustainability, and to broaden the spectrum, scope, and diversity of scientific publication. PMID:28163900

  3. The eigSUMR inverter for overlap fermions

    NASA Astrophysics Data System (ADS)

    Cundy, Nigel; Lee, Weonjong

    2016-06-01

    We discuss the usage and applicability of deflation methods for the overlap lattice Dirac operator, focusing on calculating the eigenvalues using a method similar to the eigCG algorithm used for other Dirac operators. The overlap operator, which contains several theoretical advantages over other formulations of lattice Quantum Chromodynamics, is more computationally expensive because it requires the computation of the matrix sign function. The principal change made compared to deflation methods for other formulations of lattice QCD is that it is necessary for best performance to tune the accuracy of the matrix sign function as the computation proceeds. We present two possible relaxation strategies, one which provides a rigorous bound for the eigenvalues but seems to be too conservative in practice, and a second which is less conservative but, while its stability is not guaranteed, seems to work well in practice. We adapt the original eigCG algorithm for two of the preferred inversion algorithms for overlap fermions, GMRESR(relCG) and GMRESR(relSUMR). Before deflation, the rate of convergence of these routines in terms of iterations is similar, but, since the Shifted Unitary Minimal Residual (SUMR) algorithm only requires one call to the matrix sign function compared to the two calls required for Conjugate Gradient (CG), SUMR is usually preferred for single inversions of the Dirac operator. We construct bounds for the required accuracy of the matrix sign function during the eigenvalue calculation. For the SUMR algorithm, we use a variant of the Galerkin projection to perform the deflation; while for the CG algorithm, we are able to use a considerably superior spectral pre-conditioner. The superior performance of the spectral pre-conditioner, and its need for less accurate eigenvalues, almost erodes SUMR's advantage over CG as an inversion algorithm. We see factor of three gains for the inversion algorithm from the deflation on our small test lattices; we expect

  4. Cyclotron resonance of composite fermions with two and four flux quanta

    NASA Astrophysics Data System (ADS)

    Kukushkin, I. V.; Smet, J. H.; von Klitzing, K.; Wegscheider, W.

    2003-12-01

    The application of quantum field theoretical methods to strongly interacting many-body problems has reaped rich rewards. Foremost, it has nurtured the quasi-particle notion. The introduction of suitable fictitious entities permits to cast otherwise notoriously difficult many-body systems in a single-particle form. We can then take the customary physical approach, using concepts and representations which formerly could only be applied to systems with weak interactions, and still capture the essential physics. A most notable recent example occurs in the conduction properties of a two-dimensional electron system, when exposed to a strong perpendicular magnetic field B. They are governed by electron-electron interactions, that bring about the Nobel prize winning fractional quantum Hall effect (FQHE) (Perspectives on Quantum Hall effects, Wiley, New York, 1996). Composite fermions (CFs), that do not experience the external magnetic field but a drastically reduced effective magnetic field B ∗, were identified as opposite quasi-particles that simplify enormously the understanding of the FQHE (Phys. Today (2000) 39; Phys. Rev. Lett. 63 (1989) 199). They behave as legitimate particles with well-defined charge, spin and statistics (Phys. Rev. B 47 (1993) 7312; Composite Fermions, World Scientific, Singapore, 1998; Phys. Rev. Lett. 70 (1993) 2944; 75 (1995) 3926; 71 (1993) 3846; 72 (1994) 2065; 77 (1996) 2272). They precess, like electrons, along circular orbits, with a diameter determined by B ∗ rather than B, and with a frequency that is hard to predict, since the effective mass remains enigmatic. Ever since their prediction, the demonstration of enhanced absorption of a microwave field that resonates with the frequency of their circular motion was considered the ultimate experiment to unravel this issue. Here, we report the observation of this cyclotron resonance of CFs with two and four flux quanta and extract their effective mass.

  5. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report

    SciTech Connect

    Vekhter, Ilya

    2013-08-11

    This is the final report on the award designed to foster a partnership between Louisiana State University and Los Alamos National Laboratory (LANL) in conducting fundamental research in support of energy needs. The general focus of the research effort was on developing a better understanding of materials with new functionalities. We investigated two distinct and very promising classes of new materials, which serve as a testing ground for many of the novel phenomena in condensed matter physics: the heavy fermion 115 series, where the interplay of strong interactions between the electrons leads to a rich variety of competing phases and anomalous properties, and newly discovered pnictide superconductors. The former focus was planned; the latter emerged during the collaborative effort with LANL. Our objective was to determine the origin, and to establish a functional effective theory description of the phases in these systems, and transitions between them. We report on the main accomplishments under the award that serves to clarify the nature of superconductivity in both families of materials. In particular, we collaborated with experimentalists to predict and analyze the magnetic field and temperature dependence of the bulk thermodynamic and transport properties and to determine the gap shape in CeCoIn₅ and in Ba(Fe1-xCox)₂As₂, investigated the Kondo temperature in the presence of spin-orbit coupling in the conduction band, and provided theoretical guidance for local probes such as scanning tunneling spectroscopy of vortex cores and impurity resonances, and magnetic force microscopy of the superconducting states.

  6. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Anguelova, Iana I.

    2013-12-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras.

  7. Fermionic dark matter in a simple t-channel model

    SciTech Connect

    Goyal, Ashok; Kumar, Mukesh

    2016-11-02

    We consider a fermionic dark matter (DM) particle in renormalizable Standard Model (SM) gauge interactions in a simple t-channel model. The DM particle interactions with SM fermions is through the exchange of scalar and vector mediators which carry colour or lepton number. In the case of coloured mediators considered in this study, we find that if the DM is thermally produced and accounts for the observed relic density almost the entire parameter space is ruled out by the direct detection observations. The bounds from the monojet plus missing energy searches at the Large Hadron Collider are less stringent in this case. In contrast for the case of Majorana DM, we obtain strong bounds from the monojet searches which rule out DM particles of mass less than about a few hundred GeV for both the scalar and vector mediators.

  8. Strong coupling theory of heavy fermion criticality II

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Schmalian, Jörg; Abrahams, Elihu

    2017-04-01

    We present a theory of the scaling behavior of the thermodynamic, transport and dynamical properties of a three-dimensional metal governed by d-dimensional fluctuations at a quantum critical point, where the electron quasiparticle effective mass diverges. We determine how the critical bosonic order parameter fluctuations are affected by the effective mass divergence. The coupled system of fermions and bosons is found to be governed by two stable fixed points: the conventional weak-coupling fixed point and a new strong-coupling fixed point, provided the boson–boson interaction is irrelevant. The latter fixed point supports hyperscaling, characterized by fractional exponents. The theory is applied to the antiferromagnetic critical point in certain heavy fermion compounds, in which the strong-coupling regime is reached.

  9. On Some Troubles with the Metaphysics of Fermionic Compositions

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    2016-09-01

    In this paper I discuss some metaphysical consequences of an unorthodox approach to the problem of the identity and individuality of "indistinguishable" quantum particles. This approach is based on the assumption that the only admissible way of individuating separate components of a given system is with the help of the permutation-invariant qualitative properties of the total system. Such a method of individuation, when applied to fermionic compositions occupying so-called GMW-nonentangled states, yields highly implausible consequences regarding the number of distinct components of a given composite system. I specify the problem (which I call the problem of fermionic inflation) in detail, and I consider several strategies of solving it. The preferred solution of the problem is based on the premise that spatial location should play a privileged role in identifying and making reference to quantum-mechanical systems.

  10. Moebius Algorithm for Domain Wall and GapDW Fermions

    SciTech Connect

    Ron Babich, Richard Brower, Kostas Orginos, Claudio Rebbi, David Schaich, Pavlos Vranas

    2009-06-01

    The M\\"obius domain wall action \\cite{Brower:2004xi} is a generalization of Shamir's action, which gives exactly the same overlap fermion lattice action as the separation ($L_s$) between the domain walls is taken to infinity. The performance advantages of the algorithm are presented for a small ensemble of quenched, full QCD domain wall and Gap domain wall lattices \\cite{Vranas:2006zk}. In particular, it is shown that at the larger lattice spacings relevant to current dynamical simulations M\\"obius fermions work well together with GapDWF reducing $L_s$ by more than a factor of two. It is noted that there is precise map between the domain wall and effective overlap action at finite quark mass including finite $L_s$ chiral violations so that the Ward-Takahashi identities for the axial and vector currents are exactly equivalent in both formulations.

  11. Fermionic effective operators and Higgs production at a linear collider

    SciTech Connect

    Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-09-01

    We study the possible contributions of dimension six operators containing fermion fields to Higgs production at a 500 GeV or 1 TeV e{sup +}e{sup -} linear collider. We show that--depending on the production mechanism--the effects of such operators can be kinematically enhanced relative to standard model (SM) contributions. We determine constraints on the operator coefficients implied by existing precision electroweak measurements and the scale of neutrino mass. We find that even in the presence of such constraints, substantial deviations from SM Higgs production cross sections are possible. We compare the effects of fermionic operators with those associated with purely bosonic operators that have been previously discussed in the literature.

  12. P T -Symmetric Real Dirac Fermions and Semimetals

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Lu, Y.

    2017-02-01

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the P T symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the P T symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about P T symmetric Dirac nodal line semimetals.

  13. PT-Symmetric Real Dirac Fermions and Semimetals.

    PubMed

    Zhao, Y X; Lu, Y

    2017-02-03

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the PT symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the PT symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about PT symmetric Dirac nodal line semimetals.

  14. Localized modes in arrays of boson-fermion mixtures

    SciTech Connect

    Bludov, Yu. V.; Konotop, V. V.

    2006-10-15

    It is shown that the mean-field description of a boson-fermion mixture with a dominating fermionic component, loaded in a one-dimensional optical lattice, is reduced to the nonlinear Schroedinger equation with a periodic potential and periodic nonlinearity. In such a system there exist localized modes having peculiar properties. In particular, for some regions of parameters there exists a lower bound for a number of bosons necessary for creation of a mode, while for other domains small amplitude gap solitons are not available in the vicinity of either of the gap edges. We found that the lowest branch of the symmetric solution either does not exist or exists only for a restricted range of energies in a gap, unlike in pure bosonic condensates. The simplest bifurcations of the modes are shown and stability of the modes is verified numerically.

  15. Electrically tunable topological superconductivity and Majorana fermions in two dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2016-12-01

    The external controllability of topological superconductors and Majorana fermions would be important both for fundamental and practical interests. Here we predict the electric-field control of Majorana fermions in two-dimensional topological superconductors utilizing a topological insulator thin-film proximity coupled to a conventional s -wave superconductor. With ferromagnetic ordering, the tunable structure inversion asymmetry by vertical electric field could induce topological quantum phase transition and realize a chiral topological superconductor state. A zero-energy Majorana bound state appears at the boundary of an applied electric-field spot, which can be observed by scanning tunneling microscopy. Furthermore, the structure inversion asymmetry could also enlarge the helical topological superconductor state in the phase diagram, making the realization of such an exotic state more feasible. The electrical control of topological phases could further apply to van der Waals materials such as two-dimensional transition-metal dichalcogenides.

  16. Triplet superfluidity on a triangular ladder with dipolar fermions

    NASA Astrophysics Data System (ADS)

    Pandey, Bradraj; Pati, Swapan K.

    2017-02-01

    Motivated by recent experimental progress in the field of dipolar-Fermi gases, we investigate the quantum phases of dipolar fermions on a triangular ladder at half filling. Using density matrix renormalization group method, in the presence of onsite repulsion and intersite attractive interaction, we find an exotic spin-triplet superfluid phase in addition to the usual spin-density and charge-density waves. We examine the stability of the spin-triplet superfluid phase by varying hopping along the rungs of the triangle. The possibility of fermionic supersolidity has also been discussed, by considering three-body interaction in the Hamiltonian. We also study the effect of spin-dependent hopping on the stability of the spin-triplet superfluid phase.

  17. Critical number of fermions in three-dimensional QED

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Pyatkovskiy, P. K.

    2016-12-01

    Previous analytical studies of quantum electrodynamics in 2 +1 dimensions (QED3) have shown the existence of a critical number of fermions for onset of chiral symmetry breaking, the most known being the value Nc≈3.28 obtained by Nash to 1 /N2 order in the 1 /N expansion [D. Nash, Phys. Rev. Lett. 62, 3024 (1989)]. This analysis is reconsidered by solving the Dyson-Schwinger equations for the fermion propagator and the vertex to show that the more accurate gauge-independent value is Nc≈2.85 , which means that the chiral symmetry is dynamically broken for integer values N ≤2 , while for N ≥3 the system is in a chirally symmetric phase. An estimate for the value of chiral condensate ⟨ψ ¯ ψ ⟩ is given for N =2 . Knowing precise Nc would be important for comparison between continuum studies and lattice simulations of QED3.

  18. Classification of interacting fermionic phases by dimensional reduction

    NASA Astrophysics Data System (ADS)

    Queiroz, Raquel; Khalaf, Eslam; Stern, Ady

    Topological phases of noninteracting fermions are classified in each spatial dimension according to their symmetry class, in a periodic way. When including interactions, however, this classification can be modified. It was first shown that in one-dimensional chains, the Z classification of the BDI symmetry class is reduced to Z8. That is, every group of 8 Majorana states at the edge of a BDI chain can be gapped out through a suitable interaction, despite preserving its fundamental symmetries. In this work, we present a dimensional reduction argument to derive the role of interactions in the classification of fermionic symmetry protected topological phases. For symmetry classes classified by a Z invariant in odd dimensions, we propose a general n-particle quartic interaction that renders the system topologically trivial. We argue that all phases characterized by a topological invariant smaller than n in the noninteracting limit remain topologically distinct once interactions are included, thereby reducing the noninteracting Z classification to Zn.

  19. Role of fermion exchanges in statistical signatures of composite bosons

    SciTech Connect

    Combescot, M.; Dubin, F.; Dupertuis, M. A.

    2009-07-15

    We study statistical signatures of composite bosons made of two fermions by extending number states to these quantum particles. Two-particle correlations as well as the dispersion of the probability distribution are analyzed. We show that the particle composite nature reduces the antibunching effect predicted for elementary bosons. Furthermore, the probability distribution exhibits a dispersion that is greater for composite bosons than for elementary bosons. This dispersion corresponds to the one of sub-Poissonian processes, as for a quantum state but, unlike its elementary boson counterpart, it is not minimum. In general, our work shows that it is necessary to take into account the Pauli exclusion principle, which acts between fermionic components of composite bosons - along the line used here - to possibly extract statistical properties in a precise way.

  20. Bold diagrammatic Monte Carlo method applied to fermionized frustrated spins.

    PubMed

    Kulagin, S A; Prokof'ev, N; Starykh, O A; Svistunov, B; Varney, C N

    2013-02-15

    We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing--cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

  1. High-pressure studies on heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Ye, Chen; Zongfa, Weng; Smidman, Michael; Xin, Lu; Huiqiu, Yuan

    2016-07-01

    In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to construct their pressure phase diagrams and to study the close relationship between superconductivity (SC) and other electronic instabilities, such as antiferromagnetism (AFM), ferromagnetism (FM), and valence transitions. Field-angle dependent heat capacity and point-contact spectroscopic measurements under pressure are taken as examples to illustrate their ability to investigate novel physical properties of the emergent electronic states. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00103), the National Natural Science Foundation of China (Grant Nos. 11174245 and 11374257), the Science Challenge Program of China, and the Fundamental Research Funds for the Central Universities of China.

  2. The boson fermion resonance model in one dimension

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2006-05-01

    We discuss the phase transitions of fermions in one dimension with a narrow Feshbach resonance described by the boson-fermion resonance model. By means of the bosonization technique, we derive a low-energy Hamiltonian of the system and show that a strongly correlated state exists, where the order parameters of the Bose condensation and superfluidity decay with the same critical exponent. We also show that density fluctuations near the Fermi wavevector are strongly suppressed as a consequence of a spin gap and a gap against the formation of phase slips. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions, providing closed form expressions of the density-density correlations and the spectral functions. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.

  3. Anatomy of fermionic entanglement and criticality in Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Cirio, M.; Pachos, J. K.; Lahtinen, V.

    2016-09-01

    We analyze in detail the effect of nontrivial band topology on the area-law behavior of the entanglement entropy in Kitaev's honeycomb model. By mapping the translationally invariant 2D spin model onto 1D fermionic subsystems, we identify those subsystems responsible for universal entanglement contributions in the gapped phases and those responsible for critical entanglement scaling in the gapless phases. For the gapped phases, we analytically show how the topological edge states contribute to the entanglement entropy and provide a universal lower bound for it. For the gapless semimetallic phases and topological phase transitions, the identification of the critical subsystems shows that they fall always into the Ising or the XY universality classes. As our study concerns the fermionic degrees of freedom in the honeycomb model, qualitatively similar results are expected to apply also to generic topological insulators and superconductors.

  4. Topologically induced fermion parity flips in superconductor vortices

    NASA Astrophysics Data System (ADS)

    Teo, Jeffrey C. Y.; Khan, Mayukh Nilay; Vishveshwara, Smitha

    2016-06-01

    A highlighting feature of Majorana bound states in two-dimensional topological superconductors is that they gain a phase factor of π upon being orbited by a vortex. This work focuses on the vortex degree of freedom itself and demonstrates that the change in the Majorana state is accompanied by a fermion parity change within the vortex. Such a parity flip is interpreted as a higher dimensional analog of the fermion parity pump mechanism in superconducting wires as well as through general topological arguments. It is demonstrated in terms of level crossings in three different situations: in (i) spin-triplet paired superconductors and in proximity-induced superconducting systems involving (ii) quantum spin Hall-ferromagnet hybrids and (iii) Chern insulators.

  5. Strong coupling theory of heavy fermion criticality II.

    PubMed

    Wölfle, Peter; Schmalian, Jörg; Abrahams, Elihu

    2017-04-01

    We present a theory of the scaling behavior of the thermodynamic, transport and dynamical properties of a three-dimensional metal governed by d-dimensional fluctuations at a quantum critical point, where the electron quasiparticle effective mass diverges. We determine how the critical bosonic order parameter fluctuations are affected by the effective mass divergence. The coupled system of fermions and bosons is found to be governed by two stable fixed points: the conventional weak-coupling fixed point and a new strong-coupling fixed point, provided the boson-boson interaction is irrelevant. The latter fixed point supports hyperscaling, characterized by fractional exponents. The theory is applied to the antiferromagnetic critical point in certain heavy fermion compounds, in which the strong-coupling regime is reached.

  6. Observation of nonconventional spin waves in composite-fermion ferromagnets.

    PubMed

    Wurstbauer, U; Majumder, D; Mandal, S S; Dujovne, I; Rhone, T D; Dennis, B S; Rigosi, A F; Jain, J K; Pinczuk, A; West, K W; Pfeiffer, L N

    2011-08-05

    We find unexpected low energy excitations of fully spin-polarized composite-fermion ferromagnets in the fractional quantum Hall liquid, resulting from a complex interplay between a topological order manifesting through new energy levels and a magnetic order due to spin polarization. The lowest energy modes, which involve spin reversal, are remarkable in displaying unconventional negative dispersion at small momenta followed by a deep roton minimum at larger momenta. This behavior results from a nontrivial mixing of spin-wave and spin-flip modes creating a spin-flip excitonic state of composite-fermion particle-hole pairs. The striking properties of spin-flip excitons imply highly tunable mode couplings that enable fine control of topological states of itinerant two-dimensional ferromagnets.

  7. Evolution of fermion pairing from three to two dimensions.

    PubMed

    Sommer, Ariel T; Cheuk, Lawrence W; Ku, Mark J H; Bakr, Waseem S; Zwierlein, Martin W

    2012-01-27

    We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-dimensional as a strongly interacting Fermi gas of ^{6}Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.

  8. New heavy-fermion antiferromagnet UPd2Cd20.

    PubMed

    Hirose, Yusuke; Doto, Hiroshi; Honda, Fuminori; Li, Dexin; Aoki, Dai; Haga, Yoshinori; Settai, Rikio

    2016-10-26

    We succeeded in growing a new high quality single crystal of a ternary uranium compound UPd2Cd20. From the electrical resistivity, magnetization, magnetic susceptibility, and specific heat experiments, UPd2Cd20 is found to be an antiferromagnetic heavy-fermion compound with the Néel temperature [Formula: see text]  =  5 K and exhibits the large electronic specific heat coefficient γ exceeding 500 mJ (K(2)· mol)(-1). This compound is the first one that exhibits the magnetic ordering with the magnetic moments of the U atom in a series of UT2X20 (T: transition metal, X  =  Al, Zn, Cd). UPd2Cd20 shows typical characteristic features in heavy-fermion systems such as a broad maximum in the magnetic susceptibility at [Formula: see text] and a large coefficient A of T (2) term in the resistivity.

  9. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic

  10. Mixtures of bosonic and fermionic atoms in optical lattices

    SciTech Connect

    Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens

    2003-08-01

    We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.

  11. Clock Spectroscopy of Interacting Fermions in a Harmonic Trap

    NASA Astrophysics Data System (ADS)

    Koller, Andrew; Rey, Ana

    2013-05-01

    We investigate the dynamics during Ramsey interrogation of interacting fermions in a harmonic trap. We consider the effect of both s-wave and p-wave collisions during the dynamics, including processes that change the spatial modes of particles. Prior theoretical treatments utilize the so-called spin model,, which includes processes that change the internal states of atoms, but leave the vibrational modes unchanged. We discuss how the inclusion of these mode-changing processes modifies the predicted density-dependent frequency shifts and contrast of Ramsey fringes, both of which are relevant for the precision of optical lattice clocks using fermionic alkaline-earth atoms. We also discuss how the frequency shifts and contrast depend on the pulse areas, interaction strength, and temperature - and how these dependences are affected by the inclusion of mode-changing collisions in the calculations. Supported by AFOSR, DARPA-OLE, NSF, and NDSEG.

  12. Scientific Reasoning: No Child's Play

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    The students, from the Academy of the Americas, a public school a few miles from downtown, are being asked to do the painstaking work of science, in an unlikely setting. It's part of a curriculum and professional-development program called BioKIDS, which seeks to build students' skill in complex scientific reasoning. The approach goes well beyond…

  13. Quantum walks of interacting fermions on a cycle graph

    PubMed Central

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2016-01-01

    Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057

  14. Novel p-wave superfluids of fermionic polar molecules

    PubMed Central

    Fedorov, A. K.; Matveenko, S. I.; Yudson, V. I.; Shlyapnikov, G. V.

    2016-01-01

    Recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological p-wave superfluid of microwave-dressed polar molecules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer p-wave superfluid of polar molecules in a bilayer geometry. PMID:27278711

  15. FCNC decays of standard model fermions into a dark photon

    NASA Astrophysics Data System (ADS)

    Gabrielli, Emidio; Mele, Barbara; Raidal, Martti; Venturini, Elena

    2016-12-01

    We analyze a new class of FCNC processes, the f →f'γ ¯ decays of a fermion f into a lighter (same-charge) fermion f' plus a massless neutral vector boson, a dark photon γ ¯. A massless dark photon does not interact at tree level with observable fields, and the f →f'γ ¯ decay presents a characteristic signature where the final fermion f' is balanced by a massless invisible system. Models recently proposed to explain the exponential spread in the standard-model Yukawa couplings can indeed foresee an extra unbroken dark U (1 ) gauge group, and the possibility to couple on-shell dark photons to standard-model fermions via one-loop magnetic-dipole kind of FCNC interactions. The latter are suppressed by the characteristic scale related to the mass of heavy messengers, connecting the standard model particles to the dark sector. We compute the corresponding decay rates for the top, bottom, and charm decays (t →c γ ¯ , u γ ¯ , b →s γ ¯ , d γ ¯ , and c →u γ ¯), and for the charged-lepton decays (τ →μ γ ¯ , e γ ¯ , and μ →e γ ¯) in terms of model parameters. We find that large branching ratios for both quark and lepton decays are allowed in case the messenger masses are in the discovery range of the LHC. Implications of these new decay channels at present and future collider experiments are briefly discussed.

  16. Fermionic Particle Production by Varying Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  17. Dirac fermions on an anti-de Sitter background

    SciTech Connect

    Ambruş, Victor E. Winstanley, Elizabeth

    2014-11-24

    Using an exact expression for the bi-spinor of parallel transport, we construct the Feynman propagator for Dirac fermions in the vacuum state on anti-de Sitter space-time. We compute the vacuum expectation value of the stress-energy tensor by removing coincidence-limit divergences using the Hadamard method. We then use the vacuum Feynman propagator to compute thermal expectation values at finite temperature. We end with a discussion of rigidly rotating thermal states.

  18. Fermion self-energy in magnetized chirally asymmetric QED matter

    NASA Astrophysics Data System (ADS)

    Rybalka, D. O.

    2016-12-01

    The fermion self-energy is calculated for a cold QED plasma with chiral chemical potential in a magnetic field. It is found that a momentum shift parameter dynamically generated in such a plasma leads to a modification of the chiral magnetic effect current. It is argued that the momentum shift parameter can be relevant for the evolution of magnetic field in the chirally asymmetric primordial plasma in the early Universe.

  19. Exact solutions for Weyl fermions with gravity

    NASA Astrophysics Data System (ADS)

    Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano

    2015-10-01

    We consider the single-handed spinor field in interaction with its own gravitational field described by the set of field equations given by the Weyl field equations written in terms of derivatives that are covariant with respect to the gravitational connection plus Einstein field equations soured with the energy tensor of the spinor: for the Weyl spinor and the ensuing spacetime of Weyl-Lewis-Papapetrou structure, we find all exact solutions. The obtained solution for the metric tensor is that of a PP-wave spacetime, while the spinor field is a flag-dipole.

  20. Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions

    NASA Astrophysics Data System (ADS)

    Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.

    In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.

  1. Mutual information area laws for thermal free fermions

    NASA Astrophysics Data System (ADS)

    Bernigau, H.; Kastoryano, M. J.; Eisert, J.

    2015-02-01

    We provide a rigorous and asymptotically exact expression of the mutual information of translationally invariant free fermionic lattice systems in a Gibbs state. In order to arrive at this result, we introduce a novel framework for computing determinants of Töplitz operators with smooth symbols, and for treating Töplitz matrices with system size dependent entries. The asymptotically exact mutual information for a partition of the 1D lattice satisfies an area law, with a prefactor which we compute explicitly. As examples, we discuss the fermionic XX model in one dimension and free fermionic models on the torus in higher dimensions in detail. Special emphasis is put on the discussion of the temperature dependence of the mutual information, scaling like the logarithm of the inverse temperature, hence confirming an expression suggested by conformal field theory. We also comment on the applicability of the formalism to treat open systems driven by quantum noise. In the appendix, we derive useful bounds to the mutual information in terms of purities. Finally, we provide a detailed error analysis for finite system sizes. This analysis is valuable in its own right for the abstract theory of Töplitz determinants.

  2. High-performance functional Renormalization Group calculations for interacting fermions

    NASA Astrophysics Data System (ADS)

    Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.

    2017-04-01

    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.

  3. Fermions in five-dimensional brane world models

    NASA Astrophysics Data System (ADS)

    Smolyakov, Mikhail N.

    2016-06-01

    In the present paper the fermion fields, living in the background of five-dimensional warped brane world models with compact extra dimension, are thoroughly examined. The Kaluza-Klein decomposition and isolation of the physical degrees of freedom is performed for those five-dimensional fermion field Lagrangians, which admit such a decomposition to be performed in a mathematically consistent way and provide a physically reasonable four-dimensional effective theory. It is also shown that for the majority of five-dimensional fermion field Lagrangians there are no (at least rather obvious) ways to perform the Kaluza-Klein decomposition consistently. Moreover, in these cases one may expect the appearance of various pathologies in the four-dimensional effective theory. Among the cases, for which the Kaluza-Klein decomposition can be performed in a mathematically consistent way, the case, which reproduces the Standard Model by the zero Kaluza-Klein modes most closely regardless of the size of the extra dimension, is examined in detail in the background of the Randall-Sundrum model.

  4. Majorana Fermions in Disordered Quasi-One-Dimensional Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Potter, Andrew; Lee, Patrick

    2012-02-01

    Majorana fermions have long been predicted to emerge in certain quantum Hall states and other naturally occurring p-wave superconductors. However, these materials are quite delicate and consequently the experimental realization of Majorana fermions remains elusive. The possibility of engineering 1D networks of topological superconducting wires from conventional materials offers a promising alternative route to realize Majorana fermions and probe their predicted non-Abelian statistics. In practice, it is impossible to fabricate perfectly clean and strictly one-dimensional structures; how do these non-idealities affect the proposed Majorana states? This talk will show that Majorana end states are robust away from the strict 1D limit, so long as the sample width is not much larger than the superconducting coherence length. The effects of disorder are potentially more severe, as impurity scattering is generally pair-breaking and tends to suppress the gap protecting the Majorana modes. Finally, we propose new candidate materials and geometries that greatly simplify the experimental setup and mitigate the harmful effects of disorder.

  5. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  6. Exponentially more precise quantum simulation of fermions in second quantization

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Berry, Dominic W.; Kivlichan, Ian D.; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán

    2016-03-01

    We introduce novel algorithms for the quantum simulation of fermionic systems which are dramatically more efficient than those based on the Lie-Trotter-Suzuki decomposition. We present the first application of a general technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The key difficulty in applying algorithms for general sparse Hamiltonian simulation to fermionic simulation is that a query, corresponding to computation of an entry of the Hamiltonian, is costly to compute. This means that the gate complexity would be much higher than quantified by the query complexity. We solve this problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially faster than classical sampling. While the approaches presented here are readily applicable to a wide class of fermionic models, we focus on quantum chemistry simulation in second quantization, perhaps the most studied application of Hamiltonian simulation. Our central result is an algorithm for simulating an N spin-orbital system that requires \\tilde{{ O }}({N}5t) gates. This approach is exponentially faster in the inverse precision and at least cubically faster in N than all previous approaches to chemistry simulation in the literature.

  7. Phase diagram of interacting spinless fermions on the honeycomb lattice.

    PubMed

    Capponi, Sylvain

    2017-02-01

    Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.

  8. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Vergniory, M. G.; Kushwaha, S.; Hirschberger, Max; Chulkov, E. V.; Ernst, A.; Ong, N. P.; Cava, Robert J.; Bernevig, B. Andrei

    2016-12-01

    Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials X Co2Z (X =IVB or VB; Z =IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1 , guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level—the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2 π ) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.

  9. Phase diagram of interacting spinless fermions on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Capponi, Sylvain

    2017-02-01

    Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.

  10. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  11. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    NASA Astrophysics Data System (ADS)

    Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  12. Spacetime as a topological insulator: mechanism for the origin of the fermion generations.

    PubMed

    Kaplan, David B; Sun, Sichun

    2012-05-04

    We suggest a mechanism whereby the three generations of quarks and leptons correspond to surface modes in a five-dimensional theory. These modes arise from a nonlinear fermion dispersion relation in the extra dimension, much in the same manner as fermion surface modes in a topological insulator or lattice implementation of domain wall fermions. We also show that the topological properties can persist in a deconstructed version of the model in four dimensions.

  13. Continuous-time quantum walk of two interacting fermions on a cycle graph

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2016-12-01

    We study a continuous-time quantum walk of interacting fermions on a cycle graph. By finding analytical solutions and simulating the dynamics of two fermions we observe a diverse structure of entangled states of indistinguishable fermions. The relation between entanglement of distinguishable qutrits and indistinguishable electrons is observed. Restrictions imposed by the symmetry of a cycle graph are derived. Possible realization of a quantum walk in an array of semiconductor quantum dots is discussed.

  14. Non-perturbative scale evolution of four-fermion operators in two-flavour QCD

    NASA Astrophysics Data System (ADS)

    Herdoiza, Gregorio

    2006-12-01

    We apply finite-size recursion techniques based on the Schrödinger functional formalism to de- termine the renormalization group running of four-fermion operators which appear in the S = 2 effective weak Hamiltonian of the Standard Model. Our calculations are done using O(a) im- proved Wilson fermions with Nf = 2 dynamical flavours. Preliminary results are presented for the four-fermion operator which determines the BK -parameter in tmQCD.

  15. Lattice gauge theory on the Intel parallel scientific computer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven

    1990-08-01

    Intel Scientific Computers (ISC) has just started producing its third general of parallel computer, the iPSC/860. Based on the i860 chip that has a peak performance of 80 Mflops and with a current maximum of 128 nodes, this computer should achieve speeds in excess of those obtainable on conventional vector supercomputers. The hardware, software and computing techniques appropriate for lattice gauge theory calculations are described. The differences between a staggered fermion conjugate gradient program written under CANOPY and for the iPSC are detailed.

  16. General thermostatistical properties of a q-deformed fermion gas in two dimensions

    NASA Astrophysics Data System (ADS)

    Algin, Abdullah; Senay, Mustafa

    2016-10-01

    Starting with a deformed fermionic grand partition function, we study the high and low temperature thermostatistical properties of a special q-deformed fermion gas in two spatial dimensions. Many of the deformed thermostatistical functions such as the specific heat and the entropy are derived in terms of the real deformation parameter q for the range q < 1. For high temperatures, we specifically focus on the behavior of both the entropy function and the deformed virial coefficients in the equation of state for the q-fermion gas in two dimensions. Possible physical applications of the present q-fermion gas are briefly discussed.

  17. A four-dimensional model with the fermionic determinant exactly evaluated

    NASA Astrophysics Data System (ADS)

    Mignaco, J. A.; Rego Monteiro, M. A.

    1986-07-01

    A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.

  18. Massless Dirac fermions in graphene under an external periodic magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Nurbawono, Argo; Guo, Na; Zhang, Chun

    2013-10-01

    By solving the two-component spinor equation for massless Dirac fermions, we show that graphene under a periodic external magnetic field exhibits a unique energy spectrum. At low energies, Dirac fermions are localized inside the magnetic region with discrete Landau energy levels, while at higher energies, Dirac fermions are mainly found in non-magnetic regions with continuous energy bands originating from wavefunctions analogous to particle-in-box states of electrons. These findings offer a new methodology for the control and tuning of massless Dirac fermions in graphene.

  19. Doubly periodic structure for the study of inhomogeneous bulk fermion matter with spatial localizations

    SciTech Connect

    Vantournhout, Klaas; Jachowicz, Natalie; Ryckebusch, Jan

    2011-09-15

    We present a method that offers perspectives to perform fully antisymmetrized simulations for inhomogeneous bulk fermion matter. The technique bears resemblance to classical periodic boundary conditions, using localized single-particle states. Such localized states are an ideal tool to discuss phenomena where spatial localization plays an important role. The antisymmetrization is obtained introducing a doubly periodic structure in the many-body fermion wave functions. This results in circulant matrices for the evaluation of expectation values, leading to a computationally tractable formalism to study fully antisymmetrized bulk fermion matter. We show that the proposed technique is able to reproduce essential fermion features in an elegant and computationally advantageous manner.

  20. Effective Mass and g Factor of Four-Flux-Quanta Composite Fermions

    SciTech Connect

    Yeh, A.S.; Tsui, D.C.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Stormer, H.L.; Tsui, D.C.

    1999-01-01

    We investigate the properties of composite fermions with four attached flux quanta through tilted-field experiments near Landau level filling factor {nu}=3/4 . The observed collapse of fractional quantum Hall gaps in the vicinity of this quarter-filling state can be comprehensively understood in terms of composite fermions with mass and spin. Remarkably, the effective mass and g factor of these four-flux-quanta composite fermions around {nu}=3/4 are very similar to those of two-flux-quanta composite fermions around {nu}=3/2 . {copyright} {ital 1999} {ital The American Physical Society }

  1. Equating Research Production in Different Scientific Fields.

    ERIC Educational Resources Information Center

    Alvarez, Pedro; Pulgarin, Antonio

    1998-01-01

    Diffusion in a scientific field is regarded as the dissemination of knowledge, channeled through citations distributed over different periods of time and propagated via scientific journals. Here it is considered to be a latent variable defined by a set of citations used in different fields; the Quantum Measurement technique is used to measure that…

  2. Scientific Advisory Panel to Meet on Cancer Potential of Glyphosate

    EPA Pesticide Factsheets

    The Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (SAP) will meet October 18-21, 2016, to consider and review a set of scientific issues being evaluated by the regarding EPA's evaluation

  3. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  4. La vitesse critique de Landau d'une particule dans un superfluide de fermions

    NASA Astrophysics Data System (ADS)

    Castin, Yvan; Ferrier-Barbut, Igor; Salomon, Christophe

    2015-03-01

    We determine à la Landau the critical velocity vcL of a moving impurity in a Fermi superfluid, that is by restricting it to the minimal excitation processes of the superfluid. vcL is then the minimal velocity at which these processes are energetically allowed. The Fermi superfluid actually exhibits two excitation branches: one is the fermionic pair-breaking excitation, as predicted by BCS theory; the other one is bosonic and sets pairs into motion, as predicted by Anderson's RPA. vcL is the smallest of the two corresponding critical velocities vc,fL and vc,bL. In the parameter space (superfluid interaction strength, fermion-to-impurity mass ratio), we identify two transition lines, corresponding to a discontinuity of the first-order and second-order derivatives of vcL. These two lines meet in a triple point and split the plane in three domains. We briefly extend this analysis to the very recently realized case at ENS, where the moving object in the Fermi superfluid is a weakly interacting Bose superfluid of impurities, rather than a single impurity. For a Bose chemical potential much smaller than the Fermi energy, the topology of the transition lines is unaffected; a key result is that the domain vcL = c, where c is the sound velocity in the Fermi superfluid, is turned into a domain vcL = c +cB, where cB is the sound velocity in the Bose superfluid, with slightly shifted boundaries.

  5. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    NASA Astrophysics Data System (ADS)

    Xue, She-Sheng

    2016-11-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν R f . Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν R f and their left-handed conjugated fields ν R fc . Light masses of gauged Majorana neutrinos in the normal hierarchy (10-5 - 10-2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of toverline{t} -production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  6. Fermion pseudogap from fluctuations of an order parameter

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg Vladimirovich

    Pseudogap behavior, observed in cuprate superconductors and Peierls chains, is studied using various phenomenological approaches. (1) A work of M. V. Sadovskii on Peierls chains with Gaussian fluctuations of the order parameter is revisited. A more transparent diagrammatic method is given and a serious error is pointed out. The method is applied to a recent work of J. Schmalian, B. Stojkovic and D. Pines on "hot spots". It is shown that, while their model is not affected by Sadovskii's mistake, it predicts no pseudogap in the local density of states. (2) A simple analytical treatment based on the self-consistent t-matrix approach is suggested to describe Cooper pair fluctuations deeply in the pseudogap regime. It is argued that a pronounced depletion of the fermion density of states by the pseudogap suppresses the decay of pairing fluctuations, giving them a propagating, rather than diffusing, nature. In view of an approximate particle-hole symmetry at the Fermi surface, both electron pairs and hole pairs should exist in the pseudogap regime, in addition to gapped fermions. Near 2 dimensions, the condensation temperature of these pairs is linearly proportional to the fermion density (the Uemura scaling). (3) A work of J. R. Schrieffer and A. R. Kampf on the crossover between an antiferromagnetic (AFM) insulator and a Fermi liquid is complemented by an exactly solvable toy model with all essential features intact. Based on that solution, the three bands of Schrieffer and Kampf are reinterpreted as just two AFM bands with a gap slowly varying in time or across the sample.

  7. Automatic sets and Delone sets

    NASA Astrophysics Data System (ADS)

    Barbé, A.; von Haeseler, F.

    2004-04-01

    Automatic sets D\\subset{\\bb Z}^m are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D\\subset{\\bb Z}^m to be a Delone set in {\\bb R}^m . The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples.

  8. Designer Dirac fermions and topological phases in molecular graphene.

    PubMed

    Gomes, Kenjiro K; Mar, Warren; Ko, Wonhee; Guinea, Francisco; Manoharan, Hari C

    2012-03-14

    The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the

  9. Quantum correlations through event horizons: Fermionic versus bosonic entanglement

    SciTech Connect

    Martin-Martinez, Eduardo; Leon, Juan

    2010-03-15

    We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.

  10. Texture of fermion mass matrices in partially unified theories

    SciTech Connect

    Dutta, B. |; Nandi, S. |

    1996-12-31

    We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2){sub L} {times} SU(2){sub R} {times} SU(4){sub c}) at a scale of {approximately} 10{sup 12} GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs.

  11. Observations on staggered fermions at nonzero lattice spacing

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal

    2006-06-01

    We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a nonlocal theory at nonzero lattice spacing, but argue that the nonlocal behavior is likely to go away in the continuum limit. We give examples of this nonlocal behavior in the free theory, and for the case of a fixed topologically nontrivial background gauge field. In both special cases, the nonlocal behavior indeed disappears in the continuum limit. Our results invalidate a recent claim that at nonzero lattice spacing an additive mass renormalization is needed because of taste-symmetry breaking.

  12. Scaling laws for nonlinear electromagnetic responses of Dirac fermion

    NASA Astrophysics Data System (ADS)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-03-01

    We theoretically propose that the Dirac fermion in two dimensions shows the giant nonlinear responses to electromagnetic fields in the terahertz region. A scaling form is obtained for the current and magnetization as functions of the normalized electromagnetic fields E /Eω and B /Bω , where the characteristic electric (magnetic) field Eω(Bω) depends on the frequency ω as ℏ ω2/e vF(ℏ ω2/e vF2) , and is typically of the order of 80 V/cm (8 mT) in the terahertz region. Applications of the present theory to graphene and surface state of a topological insulator are discussed.

  13. Orbital order of spinless fermions near an optical Feshbach resonance

    SciTech Connect

    Hauke, Philipp; Zhao, Erhai; Goyal, Krittika; Deutsch, Ivan H.; Liu, W. Vincent; Lewenstein, Maciej

    2011-11-15

    We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice. Using this, we compute the phase diagram in a Gutzwiller ansatz. We find phases with ''axial orbital order'' in which p{sub z} and p{sub x}+ip{sub y} (or p{sub x}-ip{sub y}) orbitals alternate.

  14. Fermion particle production in semiclassical Boltzmann-Vlasov transport theory

    SciTech Connect

    Dawson, John F.; Mihaila, Bogdan; Cooper, Fred

    2009-07-01

    We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3)

  15. Flux-carrying fermions and the second virial coefficient

    SciTech Connect

    Blum, T.; Hagen, C.R.; Ramaswamy, S. )

    1990-02-12

    The second virial coefficient {ital B}{sub 2} for a system of spin-one-half flux-carrying fermions is computed. It is found that there arise significant differences from known results for the corresponding spinless system. Apart from the existence of cusps and a restricted periodicity of {ital B}{sub 2} when viewed as a function of the flux parameter {alpha}, one obtains here the remarkable result that there exist discontinuities in {ital B}{sub 2} at all even, nonzero values of {alpha}.

  16. Anomalies in fermionic UV completions of little Higgs models

    NASA Astrophysics Data System (ADS)

    Krohn, David; Yavin, Itay

    2008-06-01

    We consider fermionic UV completions of little Higgs models and their associated T-parity-violating anomalous vertices. In particular, we investigate strategies to avoid such parity-violating anomalies. We show that it is unlikely a QCD-like UV completion could be used to implement a model with anomaly-free global symmetry groups. This is because the vacuum state is unlikely to achieve the necessary alignment. However, we will see that certain multi-link moose models, although anomalous, possess a modified form of T-parity that leads to a stable particle. Finally, we briefly discuss a discriminant for detecting anomalous decays at colliders.

  17. Is YbAs a heavy Fermion system

    SciTech Connect

    Monnier, R.; Degiorgi, L.; Delley, B.; Koelling, D.D. . Lab. fuer Festkoerperphysik; Paul Scherrer Inst. , Villigen; Argonne National Lab., IL )

    1989-08-01

    Using parameters extracted from a tight binding fit to an ab initio band structure, the specific heat anomaly observed in YbAs around 5 K is computed within the infinite U limit of the degenerate Anderson impurity model. Applying the renormalization procedure derived in variational treatments of the periodic Anderson model, a quasiparticle Fermi surface with strong nesting features and small mass enhancements is obtained. The results suggest that YbAs is not a classical'' heavy Fermion system. 28 refs., 3 figs., 1 tab.

  18. Fermions in Optical Lattices Swept across Feshbach Resonances

    SciTech Connect

    Diener, Roberto B.; Ho, T.-L.

    2006-01-13

    We point out that the recent experiments at ETH on fermions in optical lattices, where a band insulator evolves continuously into states occupying many bands as the system is swept adiabatically across Feshbach resonance, have implications on a wide range of fundamental issues in condensed matter. We derive the effective Hamiltonian of these systems, obtain expressions for their energies and band populations, and point out the increasing quantum entanglement of the ground state during the adiabatic sweep. Our results also explain why only specific regions in k space can be populated after the sweep as found at ETH.

  19. Density fluctuation spectrum of two-dimensional correlated fermion systems

    NASA Astrophysics Data System (ADS)

    Kotani, Akihiro; Hirashima, Dai

    2012-12-01

    Density fluctuation spectrum of two-dimensional fermions that interact with short-range repulsive interaction is calculated with the self-consistent perturbation theory. The spectrum extends beyond the particle-hole continuum band in the noninteracting case because of the multiparticle excitations. At a large wave vector, a peak develops in the spectrum near the lower threshold of the particle-hole continuum. These results are compared with the recent inelastic neutron scattering experiment on two-dimensional 3He adsorbed on graphite.

  20. New Dirac fermions in periodically modulated bilayer graphene.

    PubMed

    Tan, Liang Z; Park, Cheol-Hwan; Louie, Steven G

    2011-07-13

    We investigate the effect of periodic potentials on the electronic structure of bilayer graphene and show that there is a critical value of the external potential below which new Dirac fermions are generated in the low-energy band structure, and above which a band gap is opened in the system. Our results, obtained from a self-consistent tight-binding calculation, can be simply explained by a two-band continuum model as a consequence of the pseudospin physics in graphene. The findings are robust against changes in the form of the potential, as well as bias voltages between the layers.

  1. One-loop chiral perturbation theory with two fermion representations

    DOE PAGES

    DeGrand, Thomas; Golterman, Maarten; Neil, Ethan T.; ...

    2016-07-11

    In this study, we develop chiral perturbation theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a nonanomalous singlet U(1)A symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.

  2. One-loop chiral perturbation theory with two fermion representations

    SciTech Connect

    DeGrand, Thomas; Golterman, Maarten; Neil, Ethan T.; Shamir, Yigal

    2016-07-11

    In this study, we develop chiral perturbation theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a nonanomalous singlet U(1)A symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.

  3. Mean Field Evolution of Fermions with Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Porta, Marcello; Rademacher, Simone; Saffirio, Chiara; Schlein, Benjamin

    2017-03-01

    We study the many body Schrödinger evolution of weakly coupled fermions interacting through a Coulomb potential. We are interested in a joint mean field and semiclassical scaling, that emerges naturally for initially confined particles. For initial data describing approximate Slater determinants, we prove convergence of the many-body evolution towards Hartree-Fock dynamics. Our result holds under a condition on the solution of the Hartree-Fock equation, that we can only show in a very special situation (translation invariant data, whose Hartree-Fock evolution is trivial), but that we expect to hold more generally.

  4. Nuclear Magnetic Resonance Studies in Heavy Fermion Materials

    NASA Astrophysics Data System (ADS)

    Shirer, Kent Robert

    29Si, 31P, and 115In nuclear magnetic resonance studies of heavy fermion materials URu2Si 2, CeRhIn5, and URu2Si2- xPx were conducted as a function of temperature, pressure, and, in the case of URu2Si2- xPx, doping. Knight shift measurements in these systems probe the hybridization between conduction and local f-electrons which is described by the heavy fermion coherence temperature, T*, and can be captured by a two fluid model. This model takes the dual nature of the local moments and the heavy electron fluid into account. In URu2Si2 in a pressure range from 0-9.1 kbar, spin-lattice-relaxation data were taken and suggest a partial suppression of the density of states below 30 K. The data are analyzed in terms of a two component spin-fermion model. The spin-lattice-relaxation behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order. Nuclear magnetic resonance data in CeRhIn5 for both the In(1) and In(2) sites are also taken under hydrostatic pressure. The Knight shift data reveal a suppression of the hyperfine coupling to the In(1) site as a function of pressure, and the electric field gradient at the In(2) site exhibits a change of slope. These changes to these coupling constants reflect alterations to the electronic structure at the quantum critical point. Finally, we report 31P nuclear magnetic resonance measurements in single crystals of URu2Si2-xP x with x = 0.09, 0.33. In the case of the x = 0.09 doping, we find no evidence for a phase transition, though the material still exhibits heavy fermion coherence. In the x = 0.33 doping, we find that it undergoes an antiferromagnetic (AFM) phase transition. When we include the pure compound in our analysis, we find that the hyperfine couplings and coherence temperatures evolve with doping. We compare this evolution with the trends seen in other compounds.

  5. Phase of the fermion determinant at nonzero chemical potential.

    PubMed

    Splittorff, K; Verbaarschot, J J M

    2007-01-19

    We show that in the microscopic domain of QCD (also known as the domain) at nonzero chemical potential the average phase factor of the fermion determinant is nonzero for micro

  6. Effective field theory for dilute fermions with pairing

    SciTech Connect

    Furnstahl, R.J. Hammer, H.-W. Puglia, S.J.

    2007-11-15

    Effective field theory (EFT) methods for a uniform system of fermions with short-range, natural interactions are extended to include pairing correlations, as part of a program to develop a systematic Kohn-Sham density functional theory (DFT) for medium and heavy nuclei. An effective action formalism for local composite operators leads to a free-energy functional that includes pairing by applying an inversion method order by order in the EFT expansion. A consistent renormalization scheme is demonstrated for the uniform system through next-to-leading order, which includes induced-interaction corrections to pairing.

  7. Emergent heavy fermion behavior at the Wigner-Mott transition.

    PubMed

    Merino, Jaime; Ralko, Arnaud; Fratini, Simone

    2013-09-20

    We study charge ordering driven by Coulomb interactions on triangular lattices relevant to the Wigner-Mott transition in two dimensions. Dynamical mean-field theory reveals the pinball liquid phase, a charge ordered metallic phase containing quasilocalized (pins) coexisting with itinerant (balls) electrons. Based on an effective periodic Anderson model for this phase, we find an antiferromagnetic Kondo coupling between pins and balls and strong quasiparticle renormalization. Non-Fermi liquid behavior can occur in such charge ordered systems due to the spin-flip scattering of itinerant electrons off the pins in analogy with heavy fermion compounds.

  8. Gauge theory generalization of the fermion doubling theorem.

    PubMed

    Kravec, S M; McGreevy, John

    2013-10-18

    It is possible to characterize certain states of matter by properties of their edge states. This implies a notion of "surface-only models": models which can only be regularized at the edge of a higher-dimensional system. After incorporating the fermion-doubling results of Nielsen and Ninomiya into this framework, we employ this idea to identify new obstructions to symmetry-preserving regulators of quantum field theory. We focus on an example which forbids regulated models of Maxwell theory with manifest electromagnetic duality symmetry.

  9. Massless Fermions in multilayer graphitic systems with misoriented layers.

    SciTech Connect

    Latil, Sylvain; Meunier, Vincent; Henrard, Luc

    2007-01-01

    We examine how the misorientation of a few stacked graphene layers affects the electronic structure of carbon nanosystems. We present ab initio calculations on bilayer and trilayer systems to demonstrate that the massless fermion behavior typical of single-layered graphene is also found in incommensurate multilayered graphitic systems. We also investigate the consequences of this property on experimental fingerprints, such as Raman spectroscopy and scanning tunneling microscopy (STM). Our simulations reveal that STM images of turbostratic few-layer graphite are sensitive to the layer arrangement. We also predict that the resonant Raman signals of graphitic samples are more sensitive to the orientation of the layers than to their number.

  10. Strongly correlated quasi-two-dimensional dipolar fermions

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Skinner, Brian; Fogler, Michael; Demler, Eugene

    2013-03-01

    We study the collective oscillations of strongly correlated quasi-two-dimensional dipolar fermions at zero temperature. The correlation energy of the quasi-two-dimensional gas is obtained using a novel variational method based on the fixed-node diffusion Monte-Carlo analysis of strictly two-dimensional dipolar Fermi gas. As an application, we predict the dependence of the Wigner crystal transition point on the thickness of the layer, as well as the shift of the monopole oscillation frequency in harmonic traps.

  11. Localization in Interacting Fermionic Chains with Quasi-Random Disorder

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri

    2017-04-01

    We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in Mastropietro (Commun Math Phys 342(1):217-250, 2016) to chemical potentials outside spectral gaps. The proof is based on Renormalization Group and it is inspired by techniques developed to deal with KAM Lindstedt series.

  12. Scientific integrity in Brazil.

    PubMed

    Lins, Liliane; Carvalho, Fernando Martins

    2014-09-01

    This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.

  13. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1995-01-01

    The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.

  14. Text Sets.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of approximately 30 titles grouped in text sets. Defines a text set as five to ten books on a particular topic or theme. Discusses books on the following topics: living creatures; pirates; physical appearance; natural disasters; and the Irish potato famine. (SG)

  15. Symmetries and unitary interactions of mass dimension one fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Yang

    2016-12-01

    The fermionic fields constructed from Elko have several unexpected properties. They satisfy the Klein-Gordon but not the Dirac equation and are of mass dimension one instead of three-half. Starting with the Klein-Gordon Lagrangian, we initiate a careful study of the symmetries and interactions of these fermions and their higher-spin generalizations. We find, although the fermions are of mass dimension one, the four-point fermionic self-interaction violates unitarity at high-energy so it cannot be a fundamental interaction of the theory. Using the optical theorem, we derive an explicit bound on energy for the fermion-scalar interaction. It follows that for the spin-half fermions, the demand of renormalizability and unitarity forbids four-point interactions and only allows for the Yukawa interaction. For fermions with spin j > 1 2, they have no renormalizable or unitary interactions. Since the theory is described by a Klein-Gordon Lagrangian, the interaction generated by the local U(1) gauge symmetry which contains a four-point interaction, is excluded by the demand of renormalizability. In the context of the Standard Model, these properties make the spin-half fermions natural dark matter candidates. Finally, we discuss the recent developments on the introduction of new adjoint and spinor duals which may allow us to circumvent the unitarity constraints on the interactions.

  16. TASI 2011 Lectures Notes:. Two-Component Fermion Notation and Supersymmetry

    NASA Astrophysics Data System (ADS)

    Martin, Stephen P.

    2013-12-01

    These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.

  17. Collapse in boson-fermion mixtures with all-repulsive interactions

    SciTech Connect

    Prytula, Vladyslav I.; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2007-10-15

    We describe the collapse of the bosonic component in a boson-fermion mixture due to the pressure exerted on it by a large fermionic component, leading to collapse in a system with all-repulsive interactions. We describe the phenomena of early collapse and superslow collapse of the mixture.

  18. Peltier effect in normal metal-insulator-heavy fermion metal junctions

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Rowe, D. M.; Kuznetsov, V. L.; Kuznetsova, L. A.; Min, Gao

    2003-04-01

    A theoretical study has been undertaken of the Peltier effect in normal metal-insulator-heavy fermion metal junctions. The results indicate that, at temperatures below the Kondo temperature, such junctions can be used as electronic microrefrigerators to cool the normal metal electrode and are several times more efficient in cooling than the normal metal-heavy fermion metal junctions.

  19. Museology and Scientific Culture.

    ERIC Educational Resources Information Center

    Saunier, Diane

    1988-01-01

    Discusses the period of transition and self examination of the museology of science. Defines the main issues and limits of the museum as a means of transmitting a scientific culture and scientific ways. (Author/RT)

  20. FIFRA Scientific Advisory Panel

    EPA Pesticide Factsheets

    Experts on the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel provide independent scientific advice to the EPA on a wide range of health and safety issues related to pesticides.

  1. Polygon sign rules of Majorana fermions in two-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Cheng, Qiu-Bo; He, Jing; Yu, Jing; Zhao, Xiao-Ming; Kou, Su-Peng

    2016-09-01

    Recently, Majorana fermions (MFs) have attracted intensive attention due to their exotic statistics and possible applications in topological quantum computation. They are proposed to exist in various two-dimensional (2D) topological systems, such as px + ipy topological superconductor (SC) and nanowire-superconducting hybridization system. In this paper, we point out that Majorana fermions in different topological systems obey different types of polygon sign rules. A numerical approach is described to identify the type of polygon sign rule of the Majorana fermions. Applying the approach to study two 2D topological systems, we find that vortex-induced Majorana fermions obey topological polygon sign rule and line-defect-induced Majorana fermions obey normal polygon sign rule.

  2. Heavy Dirac fermions in a graphene/topological insulator hetero-junction

    NASA Astrophysics Data System (ADS)

    Cao, Wendong; Zhang, Rui-Xing; Tang, Peizhe; Yang, Gang; Sofo, Jorge; Duan, Wenhui; Liu, Chao-Xing

    2016-09-01

    The low energy physics of both graphene and surface states of three-dimensional topological insulators (TIs) is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a ‘heavy’ Dirac fermion in a graphene/TI hetero-junction, where the linear term almost vanishes and the corresponding energy dispersion becomes highly nonlinear. By combining ab initio calculations and an effective low-energy model, we show explicitly how strong hybridization between Dirac fermions in graphene and the surface states of TIs can reduce the Fermi velocity of Dirac fermions. Due to the negligible linear term, interaction effects will be greatly enhanced and can drive ‘heavy’ Dirac fermion states into the half quantum Hall state with non-zero Hall conductance.

  3. Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system

    PubMed Central

    2014-01-01

    The pursuit for detecting the existence of Majorana fermions is a challenging task in condensed matter physics at present. In this work, we theoretically propose a novel nonlinear optical method for probing Majorana fermions in the hybrid semiconductor/superconductor heterostructure. Our proposal is based on a hybrid system constituted by a quantum dot embedded in a nanomechanical resonator. With this method, the nonlinear optical Kerr effect presents a distinct signature for the existence of Majorana fermions. Further, the vibration of the nanomechanical resonator will enhance the nonlinear optical effect, which makes the Majorana fermions more sensitive to be detected. This proposed method may provide a potential supplement for the detection of Majorana fermions. PMID:24708555

  4. Fermion resonances on a thick brane with a piecewise warp factor

    SciTech Connect

    Li Haitao; Liu Yuxiao; Zhao Zhenhua; Guo Heng

    2011-02-15

    In this paper, we mainly investigate the problems of resonances of massive Kaluza-Klein (KK) fermions on a single scalar constructed thick brane with a piecewise warp factor matching smoothly. The distance between two boundaries and the other parameters are determined by one free parameter through three junction conditions. For the generalized Yukawa coupling {eta}{Psi}{phi}{sup k{Psi}} with odd k=1,3,5,..., the mass eigenvalue m, width {Gamma}, lifetime {tau}, and maximal probability P{sub max} of fermion resonances are obtained. Our numerical calculations show that the brane without internal structure also favors the appearance of resonant states for both left- and right-handed fermions. The scalar-fermion coupling and the thickness of the brane influence the resonant behaviors of the massive KK fermions.

  5. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.

    PubMed

    Wei, Z C; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T

    2016-06-24

    The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms.

  6. Composite-Particles (Boson, Fermion) Theory of Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Fujita, Shigeji; Suzuki, Akira; Ho, Hung-Cheuk

    2017-02-01

    A theory is developed for fractional quantum Hall effect in terms of composite (c)-bosons (fermions) without useing Laughlin's results about the fractional charge. Here the c-particle (fermion, boson) is defined as a bound composite fermion (boson) containing a conduction electron and an even (odd) number of fluxons (elementary magnetic fluxes). The Bose-condensed c-bosons, each containing an electron and an odd number m of fluxons at the filling factor ν=1/ m is shown to generate the Hall conductivity plateau value m e 2/ h, where the density of c-particles, n_{φ }^{(m)}, either bosonic or fermionic, with m fluxons is given by n_{φ }^{(m)}=ne/m, n e = electron density. The only assumption is that any c-fermion carries a charge magnitude equal to the electron charge e. The quantum Hall state is shown to be more stable at ν=1/3 than at ν=1.

  7. Nonperturbative emergence of the Dirac fermion in a strongly correlated composite Fermi liquid

    NASA Astrophysics Data System (ADS)

    Yang, Yibin; Luo, Xi; Yu, Yue

    2017-01-01

    The classic composite fermion field theory [B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993)], 10.1103/PhysRevB.47.7312 builds up an excellent framework to uniformly study important physical objects and globally explain anomalous experimental phenomena in fractional quantum Hall physics while there are also inherent weaknesses. We present a nonperturbative emergent Dirac fermion theory from this strongly correlated composite fermion field theory, which overcomes these serious long-standing shortcomings. The particle-hole symmetry of the Dirac equation resolves this particle-hole symmetry enigma in the composite fermion field theory. With the help of presented numerical data, we show that for main Jain's sequences of fractional quantum Hall effects, this emergent Dirac fermion theory in mean field approximation is most likely stable.

  8. Entangled cloning of stabilizer codes and free fermions

    NASA Astrophysics Data System (ADS)

    Hsieh, Timothy H.

    2016-10-01

    Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982), 10.1038/299802a0] prohibits exact replication of arbitrary quantum states, there are many instances in quantum information processing and entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for generating an "entangled clone" for a particular but rather expansive and rich class of states. Given a stabilizer code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily small but finite, or large, and the relation between the original and the copy can also be modified to some extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes and particle-hole transformed ground states of free fermion systems, although untransformed clones can also be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic systems.

  9. Fermionic matrix product states and one-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Bultinck, Nick; Williamson, Dominic J.; Haegeman, Jutho; Verstraete, Frank

    2017-02-01

    We develop the formalism of fermionic matrix product states (fMPS) and show how irreducible fMPS fall in two different classes, related to the different types of simple Z2 graded algebras, which are physically distinguished by the absence or presence of Majorana edge modes. The local structure of fMPS with Majorana edge modes also implies that there is always a twofold degeneracy in the entanglement spectrum. Using the fMPS formalism, we make explicit the correspondence between the Z8 classification of time-reversal-invariant spinless superconductors and the modulo 8 periodicity in the representation theory of real Clifford algebras. Studying fMPS with general onsite unitary and antiunitary symmetries allows us to define invariants that label symmetry-protected phases of interacting fermions. The behavior of these invariants under stacking of fMPS is derived, which reveals the group structure of such interacting phases. We also consider spatial symmetries and show how the invariant phase factor in the partition function of reflection-symmetric phases on an unorientable manifold appears in the fMPS framework.

  10. The coupled cluster method and entanglement in three fermion systems

    NASA Astrophysics Data System (ADS)

    Lévay, Péter; Nagy, Szilvia; Pipek, János; Sárosi, Gábor

    2017-01-01

    The Coupled Cluster (CC) and full CI expansions are studied for three fermions with six and seven modes. Surprisingly the CC expansion is tailor made to characterize the usual stochastic local operations and classical communication (SLOCC) entanglement classes. It means that the notion of a SLOCC transformation shows up quite naturally as a one relating the CC and CI expansions, and going from the CI expansion to the CC one is equivalent to obtaining a form for the state where the structure of the entanglement classes is transparent. In this picture, entanglement is characterized by the parameters of the cluster operators describing transitions from occupied states to singles, doubles, and triples of non-occupied ones. Using the CC parametrization of states in the seven-mode case, we give a simple formula for the unique SLOCC invariant J . Then we consider a perturbation problem featuring a state from the unique SLOCC class characterized by J ≠ 0 . For this state with entanglement generated by doubles, we investigate the phenomenon of changing the entanglement type due to the perturbing effect of triples. We show that there are states with real amplitudes such that their entanglement encoded into configurations of clusters of doubles is protected from errors generated by triples. Finally we put forward a proposal to use the parameters of the cluster operator describing transitions to doubles for entanglement characterization. Compared to the usual SLOCC classes, this provides a coarse grained approach to fermionic entanglement.

  11. Spin–orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2016-12-01

    Engineered spin–orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin–orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin–orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin–orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin–momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  12. Unconventional fermionic pairing states in a monochromatically tilted optical lattice

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Polkovnikov, A.; Feiguin, A. E.

    2017-02-01

    We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with the time-dependent density matrix renormalization group method. We show that the system can be driven into an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding to suppression of the tunneling and the Coulomb interaction strength to zero, we are able to "freeze" the condensate. We finally study the effects of different initial conditions and compare our numerical results to those obtained from a time-independent Floquet theory in the large frequency regime. Our work offers the possibility of engineering and controlling unconventional pairing states in fermionic condensates.

  13. Unconventional fermionic pairing states in a monochromatically tilted optical lattice

    DOE PAGES

    Nocera, Alberto; Polkovnikov, Anatoli; Feiguin, Adrian E.

    2017-02-01

    We study the one-dimensional attractive fermionic Hubbard model under the influence of periodic driving with the time-dependent density matrix renormalization group method. We show that the system can be driven into an unconventional pairing state characterized by a condensate made of Cooper pairs with a finite center-of-mass momentum similar to a Fulde-Ferrell state. We obtain results both in the laboratory and the rotating reference frames demonstrating that the momentum of the condensate can be finely tuned by changing the ratio between the amplitude and the frequency of the driving. In particular, by quenching this ratio to the value corresponding tomore » suppression of the tunneling and the Coulomb interaction strength to zero, we are able to “freeze” the condensate. We finally study the effects of different initial conditions and compare our numerical results to those obtained from a time-independent Floquet theory in the large frequency regime. Lastly, our work offers the possibility of engineering and controlling unconventional pairing states in fermionic condensates.« less

  14. Heavy-fermion instability in double-degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2012-07-15

    In this work, we study the propagations of normal frequency modes for quantum hydrodynamic waves in the linear limit and introduce a new kind of instability in a double-degenerate plasma. Three different regimes, namely, low, intermediate, and high magnetic field strengths are considered which span the applicability of the work to a wide variety of environments. Distinct behavior is observed for different regimes, for instance, in the laboratory-scale field regime no frequency-mode instability occurs unlike those of intermediate and high magnetic-field strength regimes. It is also found that the instability of this kind is due to the heavy-fermions which appear below a critical effective-mass parameter ({mu}{sub cr}={radical}(3)) and that the responses of the two (lower and upper frequency) modes to fractional effective-mass change in different effective-mass parameter ranges (below and above the critical value) are quite opposite to each other. It is shown that the heavy-fermion instability due to extremely high magnetic field such as that encountered for a neutron-star crust can lead to confinement of stable propagations in both lower and upper frequency modes to the magnetic poles. Current study can have important implications for linear wave dynamics in both laboratory and astrophysical environments possessing high magnetic fields.

  15. Composite Fermion Theory for the High Field Wigner Crystal State

    NASA Astrophysics Data System (ADS)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2001-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the hamiltonian composite fermion theory developed by Shankar and Murthy(R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437 (1997). We address the experiment by Jiang et. al.(H. W. Jiang et. al., Phys. Rev. B 44), 8107 (1991) where the insulating phase surrounding the ν=1/5 quantum liquid was observed and its activation energies (gaps) measured. Previous studies either found gaps that were off by few orders of magnitude (Hartree-Fock calculations of the electronic Wigner crystal(D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979)) or were unable to calculate them because of the computational complexity (Monte-Carlo studies of the correlated crystal(H. Yi and H. A. Fertig, Phys. Rev. B 58), 4019 (1998)). We use the Hartree-Fock approximation for the periodic density state of composite fermions and find gaps that have a correct order of magnitude and reproduce the experimental dependence on the filling factor. We also report the results of the shear modulus calculation relevant for the collective pinning of the crystal.

  16. Wick rotation and fermion doubling in noncommutative geometry

    NASA Astrophysics Data System (ADS)

    D'Andrea, Francesco; Kurkov, Maxim A.; Lizzi, Fedele

    2016-07-01

    In this paper, we discuss two features of the noncommutative geometry and spectral action approach to the Standard Model: the fact that the model is inherently Euclidean, and that it requires a quadrupling of the fermionic degrees of freedom. We show how the two issues are intimately related. We give a precise prescription for the Wick rotation from the Euclidean theory to the Lorentzian one, eliminating the extra degrees of freedom. This requires not only projecting out mirror fermions, as has been done so far, and which leads to the correct Pfaffian, but also the elimination of the remaining extra degrees of freedom. The remaining doubling has to be removed in order to recover the correct Fock space of the physical (Lorentzian) theory. In order to get a spin(1, 3)-invariant Lorentzian theory from a spin(4)-invariant Euclidean theory, such an elimination must be performed after the Wick rotation. Differences between the Euclidean and Lorentzian case are described in detail, in a pedagogical way.

  17. Infinite variance in fermion quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  18. Bosonization of nonrelativistic fermions on a circle: Tomonaga's problem revisited

    NASA Astrophysics Data System (ADS)

    Dhar, Avinash; Mandal, Gautam

    2006-11-01

    We use the recently developed tools for an exact bosonization of a finite number N of nonrelativistic fermions to discuss the classic Tomonaga problem. In the case of noninteracting fermions, the bosonized Hamiltonian naturally splits into an O(N) piece and an O(1) piece. We show that in the large-N and low-energy limit, the O(N) piece in the Hamiltonian describes a massless relativistic boson, while the O(1) piece gives rise to cubic self-interactions of the boson. At finite N and high energies, the low-energy effective description breaks down and the exact bosonized Hamiltonian must be used. We also comment on the connection between the Tomonaga problem and pure Yang-Mills theory on a cylinder. In the dual context of baby universes and multiple black holes in string theory, we point out that the O(N) piece in our bosonized Hamiltonian provides a simple understanding of the origin of two different kinds of nonperturbative O(e-N) corrections to the black hole partition function.

  19. Exploring heavy fermions from macroscopic to microscopic length scales

    NASA Astrophysics Data System (ADS)

    Wirth, Steffen; Steglich, Frank

    2016-10-01

    Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals — intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) — are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen-Cooper-Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding — and tailoring — of other correlated systems.

  20. Phase diagram of the composite fermion Wigner crystals

    NASA Astrophysics Data System (ADS)

    Archer, Alex; Park, Kwon; Jain, Jainendra

    2013-03-01

    The energies of the Wigner crystal (WC) phase and the fractional quantum Hall (FQH) liquid have been compared in the past at some special filling factors. We deduce in this work the phase diagram of the WC phase as a function of the general filling factor by considering: (i) the WC of electrons; (ii) WCs of composite fermions (CFs) carrying 2 p vortices; and (iii) FQH states supporting WC of CF quasiparticles or CF quasiholes. In particular, we find that the re-entrant insulating phase between 1/5 and 2/9 is a WC of composite fermions carrying two vortices. To distinguish the CF Wigner crystal from the electron WC, we compute a number of properties, including shear modulus, magnetophonon and magnetoplasmon dispersions, and melting temperatures. The width dependence of the phase diagram is also studied. A technical innovation that makes these comparisons feasible is to model the WC as the thermodynamic limit of the Thomson crystal on the surface of a sphere, which minimizes the Coulomb energy of classical charged particles.

  1. Critical configurations for a system of semidegenerate fermions

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos R.; Ruffini, Remo; Fraga, Bernardo M. O.

    2014-09-01

    We study an isothermal system of semidegenerate self-gravitating fermions in general relativity. Such systems present mass density solutions with a central degenerate core, a plateau and a tail, this last following a power law behavior r -2. The different solutions are governed by the free parameters of the model: the degeneracy and the temperature parameters at the center and the particle mass m. We then analyze in detail the free parameter space for a fixed m in the keV region, by studying the one-parameter sequences of equilibrium configurations up to the critical point, which is represented by the maximum in a central density ( ρ 0) vs. core mass ( M c ) diagram. We show that for fully degenerate cores, the known expression for the critical core mass M {/c cr } ∝ m {/pl 3}/ m 2 is obtained, while for low degenerate cores, the critical core mass increases, showing temperature effects in a nonlinear way. The main result of this work is that when applying this theory to model the distribution of dark matter in galaxies from the very center to the outer halos, we do not find any critical corehalo configuration of self-gravitating fermions that would be able to explain the super-massive dark object in their centers and the outer halo simultaneously.

  2. Conductance fingerprint of Majorana fermions in the topological Kondo effect

    NASA Astrophysics Data System (ADS)

    Galpin, Martin R.; Mitchell, Andrew K.; Temaismithi, Jesada; Logan, David E.; Béri, Benjamin; Cooper, Nigel R.

    2014-01-01

    We consider an interacting nanowire/superconductor heterostructure attached to metallic leads. The device is described by an unusual low-energy model involving spin-1 conduction electrons coupled to a nonlocal spin-1/2 Kondo impurity built from Majorana fermions. The topological origin of the resulting Kondo effect is manifest in distinctive non-Fermi-liquid (NFL) behavior, and the existence of Majorana fermions in the device is demonstrated unambiguously by distinctive conductance line shapes. We study the physics of the model in detail, using the numerical renormalization group, perturbative scaling, and Abelian bosonization. In particular, we calculate the full scaling curves for the differential conductance in ac and dc fields, onto which experimental data should collapse. Scattering t matrices and thermodynamic quantities are also calculated, recovering asymptotes from conformal field theory. We show that the NFL physics is robust to asymmetric Majorana-lead couplings, and here we uncover a duality between strong and weak coupling. The NFL behavior is understood physically in terms of competing Kondo effects. The resulting frustration is relieved by inter-Majorana coupling which generates a second crossover to a regular Fermi liquid.

  3. Wall-Crossing, Free Fermions and Crystal Melting

    NASA Astrophysics Data System (ADS)

    Sułkowski, Piotr

    2011-01-01

    We describe wall-crossing for local, toric Calabi-Yau manifolds without compact four-cycles, in terms of free fermions, vertex operators, and crystal melting. Firstly, to each such manifold we associate two states in the free fermion Hilbert space. The overlap of these states reproduces the BPS partition function corresponding to the non-commutative Donaldson-Thomas invariants, given by the modulus square of the topological string partition function. Secondly, we introduce the wall-crossing operators which represent crossing the walls of marginal stability associated to changes of the B-field through each two-cycle in the manifold. BPS partition functions in non-trivial chambers are given by the expectation values of these operators. Thirdly, we discuss crystal interpretation of such correlators for this whole class of manifolds. We describe evolution of these crystals upon a change of the moduli, and find crystal interpretation of the flop transition and the DT/PT transition. The crystals which we find generalize and unify various other Calabi-Yau crystal models which appeared in literature in recent years.

  4. Infinite variance in fermion quantum Monte Carlo calculations.

    PubMed

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  5. Dwarf spheroidal galaxies as degenerate gas of free fermions

    SciTech Connect

    Domcke, Valerie; Urbano, Alfredo E-mail: alfredo.urbano@sissa.it

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  6. Inhomogeneous quenches in a free fermionic chain: Exact results

    NASA Astrophysics Data System (ADS)

    Viti, Jacopo; Stéphan, Jean-Marie; Dubail, Jérôme; Haque, Masudul

    2016-08-01

    We consider the non-equilibrium physics induced by joining together two tight-binding fermionic chains to form a single chain. Before being joined, each chain is in a many-fermion ground state. The fillings (densities) in the two chains might be different. We present a number of exact results, focusing on two-point correlators and the Loschmidt echo (return probability). For the non-interacting case, we identify through an exact derivation the regime in which a semiclassical ansatz is valid. We present a number of analytical results beyond semiclassics, such as the approach to the non-equilibrium steady state and the appearance of Tracy-Widom distributions at the front of the light cone. The light cone behavior is quantified through a series expansion in time, and this description is shown to be valid for interacting systems as well. Results on the Loschmidt echo, presented for finite and zero interactions, illustrate that the physics is different from both local and global quenches.

  7. Quantum dynamics in strong fields with Fermion Coupled Coherent States

    NASA Astrophysics Data System (ADS)

    Kirrander, Adam; Shalashilin, Dmitrii V.

    2012-06-01

    We present a new version of the Coupled Coherent State method, specifically adapted for solving the time-dependent Schr"odinger equation for multi-electron dynamics in atoms and molecules. This new theory takes explicit account of the exchange symmetry of fermion particles, and uses fermion molecular dynamics to propagate trajectories. As a demonstration, calculations in the He atom are performed using the full Hamiltonian and accurate experimental parameters. Single and double ionization yields by 160 fs and 780 nm laser pulses are calculated as a function of field intensity in the range 10^14 - 10^16 W/cm^2 and good agreement with experiments by Walker et al. is obtained. Since this method is trajectory based, mechanistic analysis of the dynamics is straightforward. We also calculate semiclassical momentum distributions for double ionization following 25 fs and 795 nm pulses at 1.5 10^15 W/cm^2, in order to compare to the detailed experiments by Rudenko et al. For this more challenging task, full convergence is not achieved, but however major effects such as the finger-like structures in the momentum distribution are reproduced.

  8. Extensional scientific realism vs. intensional scientific realism.

    PubMed

    Park, Seungbae

    2016-10-01

    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories.

  9. WWW: The Scientific Method

    ERIC Educational Resources Information Center

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  10. [Eleven thesis on the archive of scientific research, for a new patrimonial and scientific policy].

    PubMed

    Müller, Bertrand

    2015-12-01

    Abstracting the main content of a recent report on the bad state of the archives of scientific research, this paper puts forward eleven thesis likely to feed, in this time of numeric transition to a new documentary regime and to a new patrimonial policy. The recent numeric conditions impose to set new archival pratices, more proactive, anticipative and prospective. Archives of scientific research must be thought in a double memorial and scientific dimension, and not only as a patrimonial or historical one.

  11. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    NASA Astrophysics Data System (ADS)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  12. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  13. Strong lensing by fermionic dark matter in galaxies

    NASA Astrophysics Data System (ADS)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used

  14. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Zhou, Shuyun; Duan, Wenhui

    2016-09-01

    Recently, a new "type-II" Weyl fermion, which exhibits exotic phenomena, such as an angle-dependent chiral anomaly, was discovered in a new phase of matter where electron and hole pockets contact at isolated Weyl points [Nature (London) 527, 495 (2015), 10.1038/nature15768]. This raises an interesting question about whether its counterpart, i.e., a type-II Dirac fermion, exists in real materials. Here, we predict the existence of symmetry-protected type-II Dirac fermions in a class of transition metal dichalcogenide materials. Our first-principles calculations on PtSe2 reveal its bulk type-II Dirac fermions which are characterized by strongly tilted Dirac cones, novel surface states, and exotic doping-driven Lifshitz transition. Our results show that the existence of type-II Dirac fermions in PtSe2-type materials is closely related to its structural P 3 ¯m 1 symmetry, which provides useful guidance for the experimental realization of type-II Dirac fermions and intriguing physical properties distinct from those of the standard Dirac fermions known before.

  15. Fermionic condensate in a conical space with a circular boundary and magnetic flux

    SciTech Connect

    Bellucci, S.; Bezerra de Mello, E. R.; Saharian, A. A.

    2011-04-15

    The fermionic condensate is investigated in a (2+1)-dimensional conical spacetime in the presence of a circular boundary and a magnetic flux. It is assumed that on the boundary the fermionic field obeys the MIT bag boundary condition. For irregular modes, we consider a special case of boundary conditions at the cone apex, when the MIT bag boundary condition is imposed at a finite radius, which is then taken to zero. The fermionic condensate is a periodic function of the magnetic flux with the period equal to the flux quantum. For both exterior and interior regions, the fermionic condensate is decomposed into boundary-free and boundary-induced parts. Two integral representations are given for the boundary-free part for arbitrary values of the opening angle of the cone and magnetic flux. At distances from the boundary larger than the Compton wavelength of the fermion particle, the condensate decays exponentially, with the decay rate depending on the opening angle of the cone. If the ratio of the magnetic flux to the flux quantum is not a half-integer number for a massless field the boundary-free part in the fermionic condensate vanishes, whereas the boundary-induced part is negative. For half-integer values of the ratio of the magnetic flux to the flux quantum, the irregular mode gives a nonzero contribution to the fermionic condensate in the boundary-free conical space.

  16. Phase transitions in the boson-fermion resonance model in one dimension

    NASA Astrophysics Data System (ADS)

    Orignac, E.; Citro, R.

    2006-06-01

    We study one-dimensional fermions with photoassociation or with a narrow Fano-Feshbach resonance described by the boson-fermion resonance model. Using the bosonization technique, we derive a low-energy Hamiltonian of the system. We show that at low energy, the order parameters for the Bose condensation and fermion superfluidity become identical, while a spin gap and a gap against the formation of phase slips are formed. As a result of these gaps, charge density wave correlations decay exponentially in contrast with the phases where only bosons or only fermions are present. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions. This allows us to provide closed form expressions of the density-density correlations and the spectral functions. The spectral functions of the fermions are gapped, whereas the spectral functions of the bosons remain gapless. The application of a magnetic field results in a loss of coherence between the bosons and the fermion and the disappearance of the gap. Changing the detuning has no effect on the gap until either the fermion or the boson density is reduced to zero. Finally, we discuss the formation of a Mott insulating state in a periodic potential. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.

  17. Tunneling conductance for Majorana fermions in spin-orbit coupled semiconductor-superconductor heterostructures using superconducting leads

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Tewari, Sumanta

    2016-05-01

    It has been recently pointed out that the use of a superconducting (SC) lead instead of a normal metal lead can suppress the thermal broadening effects in tunneling conductance from Majorana fermions, helping reveal the quantized conductance of 2 e2/h . In this paper we discuss the specific case of tunneling conductance with SC leads of spin-orbit coupled semiconductor-superconductor (SM-SC) heterostructures in the presence of a Zeeman field, a system which has been extensively studied both theoretically and experimentally using a metallic lead. We examine the d I /d V spectra using a SC lead for different sets of physical parameters including temperature, tunneling strength, wire length, magnetic field, and induced SC pairing potential in the SM nanowire. We conclude that in a finite wire the Majorana splitting energy Δ E , which has nontrivial dependence on these physical parameters, remains responsible for the d I /d V peak broadening, even when the temperature broadening is suppressed by the SC gap in the lead. In a finite wire the signatures of Majorana fermions with a SC lead are oscillations of quasi-Majorana peaks about bias V =±Δlead , in contrast to the case of metallic leads where such oscillations are about zero bias. Our results will be useful for analysis of future experiments on SM-SC heterostructures using SC leads.

  18. Scientific Work Experience Programs: University and Corporate Collaboratives.

    ERIC Educational Resources Information Center

    Gottfried, Sandra S.; And Others

    Scientific work experience programs are those in which teachers work in business, industry, or academic settings and perform scientifically-related work. The presenters in this panel presentation describe the scientific work experience programs they are working with. One purpose of the presentations was describing the practical aspects of the…

  19. Angle-resolved heat capacity of heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Toshiro; Kittaka, Shunichiro; Machida, Kazushige

    2016-09-01

    Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T  =  Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures.

  20. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.