Science.gov

Sample records for fernald soils annual

  1. Analytical electron microscopy characterization of Fernald soils. Annual report, October 1993--September 1994

    SciTech Connect

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1995-03-01

    A combination of backscattered electron imaging and analytical electron microscopy (AEM) with electron diffraction have been used to determine the physical and chemical properties of uranium contamination in soils from the Fernald Environmental Management Project in Ohio. The information gained from these studies has been used in the development and testing of remediation technologies. Most chemical washing techniques have been reasonably effective with uranyl [U(VI)] phases, but U(IV) phases have proven difficult to remove from the soils. Carbonate leaching in an oxygen environment (heap leaching) has removed some of the U(IV) phases, and it appears to be the most effective technique developed in the program. The uranium metaphosphate, which was found exclusively at an incinerator site, has not been removed by any of the chemical methods. We suggest that a physical extraction procedure (either a magnetic separation or aqueous biphasic process) be used to remove this phase. Analytical electron microscopy has also been used to determine the effect of the chemical agents on the uranium phases. It has also been used to examine soils from the Portsmouth site in Ohio. The contamination there took the form of uranium oxide and uranium calcium oxide phases. Technology transfer efforts over FY 1994 have led to industry-sponsored projects involving soil characterization.

  2. 1995 annual epidemiologic surveillance report for Fernald Environmental Management Project

    SciTech Connect

    1995-12-31

    The US Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. During the past several years, a number of DOE sites have participated in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Fernald Environmental Management Project (FEMP) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at FEMP and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  3. 2003 Fernald Environmental Management Project Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for the Fernald Environmental Management Project. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  4. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  5. Soils and groundwater cleanup at Fernald: A status update on Operable Unit No. 5

    SciTech Connect

    Yerace, P.J.; Bomberger, A.K.; Brettschneider, D.J.

    1993-11-01

    This report discusses a status update on the cleanup operations at FERNALD. Discussed is the regulatory framework for FERNALD cleanup; overview of the FERNALD site; description of operable unit 5;remedial investigation; pattern of contamination; feasibility studies; and tangible progress to date.

  6. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    SciTech Connect

    Hunt, A.; Jones, G.; Janke, R.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete.

  7. Characterization of uranium contaminated soils from DOE Fernald Environmental Management Project Site: Results of Phase 1 characterization

    SciTech Connect

    Lee, S.Y.; Marsh, J.D. Jr.

    1992-01-01

    The Integrated Demonstration (ID) for remediation of uranium- contaminated soils has been established by the DOE Office of Technology Development. The Fernald (Feed Materials Production Center) site was selected as the DOE facility for the field demonstration. The principle objective of this ID is to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems for the removal of uranium from contaminated soils. Several leaching solutions were employed to determine their effectiveness in extracting uranium from the soil. The extractants and their means of preparation were: 0.1 N nitric acid [HNO{sub 3}]: 6.25 mL of concentrated nitric acid was diluted to 1 L with distilled water; 2% ammonium carbonate [(NH{sub 4}){sub 2}CO{sub 3}]: 20 g of (NH{sub 4}){sub 2}CO{sub 3} was dissolved in distilled water and diluted to 1 L; 5% sodium hypochlorite (NaOCl): 50 mL of NaOCl reagent (Cl < 6%) was diluted to 1 L with distilled water; 0.1 M ethylenediaminetetraacetric acid, disodium salt (EDTA): 37.224 g EDTA was dissolved in distilled water and diluted to 1 L; 2% citric acid monohydrate solution (H{sub 3}C{sub 6}H{sub 5}O{sub 7}{center_dot}H{sub 2}O): 20 g of critic acid was diluted to 1 L with distilled water; 0.1 M hydroxylamine-hydrochloride (NH{sub 2}OH{center_dot}HCl) in 0.01 N nitric acid: 6.95 g (NH{sub 2}OH{center_dot}HCl) was dissolved and diluted to 1 L with 0.01 N HNO{sub 3}. The 0.01 N nitric acid was prepared by diluting 3 mL concentrated nitric acid to 5 L with distilled water; and the sodium citrate-bicarbonate-dithionite (CBD) method: 0.3 M sodium citrate (88 g tribasic sodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}{center_dot}2H{sub 2}O, per liter); 1 M sodium bicarbonate (84 g NaHCO{sub 3} per liter); and 5 g sodium dithionite, Na{sub 2}S{sub 2}O{sub 4}.

  8. Characterization of uranium contaminated soils from DOE Fernald Environmental Management Project Site: Results of Phase 1 characterization

    SciTech Connect

    Lee, S.Y.; Marsh, J.D. Jr.

    1992-01-01

    The Integrated Demonstration (ID) for remediation of uranium- contaminated soils has been established by the DOE Office of Technology Development. The Fernald (Feed Materials Production Center) site was selected as the DOE facility for the field demonstration. The principle objective of this ID is to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems for the removal of uranium from contaminated soils. Several leaching solutions were employed to determine their effectiveness in extracting uranium from the soil. The extractants and their means of preparation were: 0.1 N nitric acid (HNO{sub 3}): 6.25 mL of concentrated nitric acid was diluted to 1 L with distilled water; 2% ammonium carbonate ((NH{sub 4}){sub 2}CO{sub 3}): 20 g of (NH{sub 4}){sub 2}CO{sub 3} was dissolved in distilled water and diluted to 1 L; 5% sodium hypochlorite (NaOCl): 50 mL of NaOCl reagent (Cl < 6%) was diluted to 1 L with distilled water; 0.1 M ethylenediaminetetraacetric acid, disodium salt (EDTA): 37.224 g EDTA was dissolved in distilled water and diluted to 1 L; 2% citric acid monohydrate solution (H{sub 3}C{sub 6}H{sub 5}O{sub 7}{center dot}H{sub 2}O): 20 g of critic acid was diluted to 1 L with distilled water; 0.1 M hydroxylamine-hydrochloride (NH{sub 2}OH{center dot}HCl) in 0.01 N nitric acid: 6.95 g (NH{sub 2}OH{center dot}HCl) was dissolved and diluted to 1 L with 0.01 N HNO{sub 3}. The 0.01 N nitric acid was prepared by diluting 3 mL concentrated nitric acid to 5 L with distilled water; and the sodium citrate-bicarbonate-dithionite (CBD) method: 0.3 M sodium citrate (88 g tribasic sodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}{center dot}2H{sub 2}O, per liter); 1 M sodium bicarbonate (84 g NaHCO{sub 3} per liter); and 5 g sodium dithionite, Na{sub 2}S{sub 2}O{sub 4}.

  9. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  10. TRANSITION & CLOSEOUT OF THE FERNALD CLOSURE PROJECT

    SciTech Connect

    BILSON, H.E.

    2007-02-01

    The US Department of Energy (DOE) and Fluor Fernald have completed the majority of the cleanup of the Fernald Site. The over 1000 acre complex for processing uranium has been demolished and soil contamination has been remediated. With acres of wetlands and prairies replacing the buildings and waste pits. At the end of the project the focus shifted to developing demonstrating the completion of the project and the contract, as well as ensuring a smooth transition of the facility from the DOE's Environmental Management (EM) Program to the DOE's Legacy Management (LM) Program.

  11. The effects of physical separtation treatment on the removal of uranium from contaminated soils at Fernald: A bench-scale study

    SciTech Connect

    Sadler, K.G.; Krstich, M.A.

    1994-12-31

    A bench-scale treatability study incorporating the use of physical separation techniques and chemical dispersants/extractants was conducted on uranium contaminated soils at the Fernald Environmental Management Project (FEMP) site. The soils contained approximately 497 and 450 milligrams per kilogram (mg/kg) of total uranium, respectively. Geotechnical characterization indicated that 77.4 and 74.6 percent of the soil was in the less that 50 micrometer ({mu}m) size fraction for the ID-A and ID-B soils, respectively. An initial characterization effort indicated that uranium was distributed among all particle size fractions. After each soil was dispersed in water, it was noted that the uranium concentrated in the sand and clay fractions for the ID-A soil (1028 and 1475 mg kg{sup -1}, respectively) and the clay fraction for ID-B soil (2710 mg kg{sup -1}). Four 1 millimolar (mM) sodium reagent solutions (sodium hydroxide, sodium carbonate, sodium bicarbonate, and a sodium citrate-bicarbonate-dithionite mixture) and potable water were evaluated for effectiveness in dispersing each soil into single grain separates and extracting total uranium from each of the resulting particle size fractions. Dilute sodium solutions were more effective than water in dispersing the soil. The use of dispersants, as compared to water, on the less than 2 mm size fraction causes a shift in the distribution of uranium out of the sand fraction and into the silt and clay fractions for ID-A soil and into the clay fraction for the ID-B soil. Attrition scrubbing tests were conducted on the less than 2 mm size fraction for the ID-A and ID-B soils using water and three alkaline extraction solutions, sodium pyrophosphate, sodium carbonate/bicarbonate, and ammonium carbonate/bicarbonate. There was little difference among the chemical extractants on their effectiveness in removing uranium from the greater than 53 {mu}m (sand) or less than 53 {mu}m (silt and clay) soil fraction.

  12. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    SciTech Connect

    Powell, Jane; Bien, Stephanie; Decker, Ashlee; Homer, John; Wulker, Brian

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  13. Fernald restoration: ecologists and engineers integrate restoration and cleanup

    SciTech Connect

    Woods, Eric; Homer, John

    2002-07-15

    As cleanup workers excavate pits and tear down buildings at the Fernald site in southwest Ohio, site ecologists are working side-by-side to create thriving wetlands and develop the early stages of forest, prairie, and savanna ecosystems to restore natural resources that were impacted by years of site operations. In 1998, the U.S. Department of Energy-Fernald Office (DOE-FN) and its cleanup contractor, Fluor Fernald, Inc., initiated several ecological restoration projects in perimeter areas of the site (e.g., areas not used for or impacted by uranium processing or waste management). The projects are part of Fernald's final land use plan to restore natural resources over 904 acres of the 1,050-acre site. Pete Yerace, the DOE-FN Natural Resource Trustee representative is working with the Fernald Natural Resource Trustees in an oversight role to resolve the state of Ohio's 1986 claim against DOE for injuries to natural resources. Fluor Fernald, Inc., and DOE-FN developed the ''Natural Resource Restoration Plan'', which outlines 15 major restoration projects for the site and will restore injured natural resources at the site. In general, Fernald's plan includes grading to maximize the formation of wetlands or expanded floodplain, amending soil where topsoil has been removed during excavation, and establishing native vegetation throughout the site. Today, with cleanup over 35 percent complete and site closure targeted for 2006, Fernald is entering a new phase of restoration that involves heavily remediated areas. By working closely with engineers and cleanup crews, site ecologists can take advantage of remediation fieldwork (e.g., convert an excavated depression into a wetland) and avoid unnecessary costs and duplication. This collaboration has also created opportunities for relatively simple and inexpensive restoration of areas that were discovered during ongoing remediation. To ensure the survival of the plant material in heavily disturbed soils, Fernald will use

  14. Office of Inspector General audit report on Fluor Daniel Fernald`s use of temporary services subcontractors

    SciTech Connect

    1998-04-01

    The Department of Energy (Department) and Fluor Daniel Fernald (Fluor Daniel) implemented two work force restructurings at the Fernald Environmental Management Project between Fiscal Years (FY) 1994 and 1996. During the restructurings, the Department`s cost for temporary service subcontracts increased from $2.8 million to $9.8 million annually. The objective of this audit was to determine whether Fluor Daniel utilized temporary service agreements in an economical and efficient manner and in accordance with the policy and goals of the Department`s Work Force Restructuring Program.

  15. An aerial radiological survey of the Fernald Environmental Management Project and surrounding area, Fernald, Ohio

    SciTech Connect

    Phoenix, K.A.

    1997-04-01

    An aerial radiological survey was conducted from May 17--22, 1994, over a 36 square mile (93 square kilometer) area centered on the Fernald Environmental Management Project located in Fernald, Ohio. The purpose of the survey was to detect anomalous gamma radiation in the environment surrounding the plant. The survey was conducted at a nominal altitude of 150 feet (46 meters) with a line spacing of 250 feet (76 meters). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter (3.3 feet) above ground was prepared and overlaid on an aerial photograph of the area. Analysis of the data for man made sources showed five sites within the boundaries of the Fernald Environmental Management Project having elevated readings. The exposure rates outside the plant boundary were typical of naturally occurring background radiation. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to supplement the aerial data. It was concluded that although the radionuclides identified in the high-exposure-rate areas are naturally occurring, the levels encountered are greatly enhanced due to industrial activities at the plant.

  16. Fluor Fernald - Project Controls Process

    SciTech Connect

    Reed, C.W.

    2006-07-01

    This paper will look at the project controls process Fluor has developed to ensure cleanup can be declared and verified by the contract in the shortest time possible. In November 2000 the Department of Energy and Fluor Fernald entered into a closure contract that incentivized Fluor Fernald to reduce the cost and schedule of the cleanup. Original schedule estimates to complete the job went well beyond 2010. In 2002 the Department of Energy (DOE) renegotiated the contract with emphasis on completing the cleanup by December 2006. This model for site closure was developed and has worked effectively to move the project through the cleanup phase, to change a culture and set in motion the steps necessary to declare closure and ultimately leave the project in a timely manner. It is Fluor's goal to complete the project safely, ahead of schedule and cost estimates thereby maximizing profit for company shareholders. This paper will demonstrate the successful implementation for an integrated project management system that has been proven and used on the Fluor Fernald project. The objective is to summarize the approach used at Fernald in setting forth those management processes to accelerate schedule and reduce cost while managing the project safely. (authors)

  17. Transition and closeout of the Fernald Closure Project

    SciTech Connect

    Bilson, H.E.; Terry, T.; Reising, J.; Powell, J.; Miller, M.

    2007-07-01

    The U.S. Department of Energy (DOE) and Fluor Fernald have completed the majority of the cleanup of the Fernald Site. The over 1,000 acre complex for processing uranium has been demolished and soil contamination has been remediated. With acres of wetlands and prairies replacing the buildings and waste pits. At the end of the project the focus shifted to developing demonstrating the completion of the project and the contract, as well as ensuring a smooth transition of the facility from the DOE's Environmental Management (EM) Program to the DOE's Legacy Management (LM) Program. Working with the DOE, each portion of the closure contract was examined for specific closure definition. From this negotiation effort the Comprehensive Exit and Transition Plan (CE/T Plan) was written. The CE/T Plan is intended to assist DOE in the analysis that the site is ready for transfer into long-term stewardship (LTS) (also referred to as legacy management) and that Fluor Fernald, Inc. has satisfactorily completed the closure contract statement of work elements. Following the Lessons Learned from the closure of the Rocky Flats Site, the DOE's Legacy Management Program created a matrix of Transition Elements required to ensure adequate information was in place to allow the new prime contractor to perform the Legacy Management scope of work. The transition plan included over 1,000 elements broken down into functional areas and relied on specific Fernald Responsibility Transition Packages (RTPs) for detailed transition actions. The template for Closure and Transition Planning used at the Fernald Site was developed using the best Lessons Learned from across the DOE Complex. The template could be used for other sites, and lessons learned from this closure and transition will be appropriate for all closure projects. (authors)

  18. 1994 Fernald field characterization demonstration program data report

    SciTech Connect

    Rautman, C.A.; Cromer, M.V.; Newman, G.C.; Beiso, D.A.

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  19. Measurements of radon, thoron, isotopic uranium and thorium to determine occupational and environmental exposure and risk at Fernald Feed Materials Production Center. 1998 annual progress report

    SciTech Connect

    Harley, N.H.

    1998-06-01

    'The research objectives of this report are: (1) To develop an accurate personal radon/thoron monitor to quantitate exposure during remediation. This personal monitor is a miniaturization and modification of the area {sup 222}Rn monitor that has proven accuracy and precision. (2) To develop a personal aerosol particle size sampler, based on the principles of the novel sampler the author has developed. The sampler measures not only {sup 222}Rn decay product aerosol size but long lived nuclides. There are, as yet, no size distribution data on the aerosol particle size distribution of these nuclides during remediation, yet the aerosol particle size is the major determinant of lung dose. (3) To develop the sequential radiochemistry necessary to measure any environmental sample for {sup 228,230,232}Th, {sup 226,228}Ra, {sup 234,235,238}U and {sup 210}Pb. To utilize the radiochemistry to accurately trace and delineate these nuclides in the environment. To obtain historic and present radiochemical data to understand the need for supplemental soil/water etc. measurements.'

  20. 1992 Fernald Site Environmental Report

    SciTech Connect

    Not Available

    1993-06-01

    The Fernald site is a Department of Energy (DOE) owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the Fernald site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This report covers the reporting period from January 1, 1992, through December 31, 1992, with the exception of Chapter Three, which provides information from the first quarter of 1993 as well as calendar year 1992 information. This 1992 report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Use included in this report are summary data of the sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. Finally, this report provides general information on the major waste management and environmental restoration activities during 1992.

  1. Annual temperature and radiobrightness signatures for bare soils

    SciTech Connect

    Liou, Y.A.; England, A.W.

    1996-07-01

    The authors have developed physically based, diurnal, and annual models for freezing/thawing moist soils subject to annual isolation, radiant heating, and cooling, and sensible and latent heat exchanges with the atmosphere. Both models have the same weather forcing, numerical scheme, and soil constitutive properties. They find that surface temperature differences over a diurnal cycle between the annual and diurnal models are as much as {minus}5 K in March, {minus}7 K in June, {minus}4 K in September, and 5 K in December for 38% (by volume fraction) moist soil. This difference occurs because the annual model includes the history of energy fluxes at the surface of the soil. The annual model is linked to microwave emission models for predictions of temporal radiobrightness signatures. The model predicts a relatively weak decrease in diurnal differences in soil temperature with increased moisture content, but a significant decrease in diurnal differences in radiobrightness. It also exhibits notable perturbations in radiobrightness when soils freeze and thaw. The moisture dependent, day-to-night radiobrightness difference is enhanced by as much as {minus}42 K at 19.35 GHz horizontal polarization for frozen soil if daytime thawing occurs.

  2. The SWAMI inspection robot: Fernald site requirements

    SciTech Connect

    Hazen, F.B.

    1993-09-28

    The purpose of this document is to introduce and describe the Stored Waste Autonomous Mobile Inspector (SWAMI) robot project and to identify issues that will need to be addressed prior to its field demonstration at Fernald in mid-1995. SWAMI is a mobile robotic vehicle that will perform mandated weekly inspections of waste containers. Fernald has a large inventory of these containers and a need to protect workers from radiation hazards while enhancing the efficiency and effectiveness of the inspections. Fernald`s role in this project is to supply the demonstration site and make all necessary preparations. This includes identification of the test areas and plans, and identification and compliance to Federal, State, DOE, and Site regulations on system safety and quality. In addition, Fernald will link SWAMI output images to off-line mass data storage, and also to an on-line ORACLE database. The authors shall initiate a dialog with State and Federal regulators towards the near term goal of acceptance of the SWAMI test plan and a longer term goal of acceptance of SWAMI as a supplement and improvement to present mandated RCRA inspections.

  3. Fernald scrap metal recycling and beneficial reuse

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the {open_quotes}beneficial reuse{close_quotes} concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned.

  4. Characterization of Fernald Silo 3 Waste

    SciTech Connect

    Langton, C.A.

    2001-04-04

    This report summarizes characterization results for uranium residues from the Fernald Environmental Management Project (FEMP) Operable Unit (OU-4). These residues are currently stored in a one-million-gallon concrete silo, Silo 3, at the DOE Fernald Site, Ohio. Characterization of the Silo 3 waste is the first part of a three part study requested by Rocky Mountain Remedial Services (RMRS) through a Work for others Agreement, WFO-00-007, between the Westinghouse Savannah River Company (WSRC) and RMRS. Parts 2 and 3 of this effort include bench- and pilot-scale testing.

  5. Progressively safer, cheaper demolition of Fernald

    SciTech Connect

    Robert Nichols; Norman Pennington

    2000-09-29

    Fluor Fernald, Inc. has been progressively improving Decontamination and Dismantlement (D&D) at the Department of Energy's Fernald Environmental Management Project by applying new technologies and better methodologies to the work. Demolition issues existed in the past that necessitated new or improved solutions to maintain worker safety, protect the environment and accomplish the work in a cost effective manner. Lessons learned from D&D of 80 structures has led to a systematic approach, which can be implemented in various D&D arenas. When facility production was halted, hold-up material and process residues remained in the process piping and components. Over 500,000 pounds of material was removed by workers who completed the tasks two years ahead of schedule, $7 million under budget and with an excellent safety record. This success was the result of detailed planning and irdision of lessons learned as work progressed from facility to facility. Work sequences were developed that reduced airborne contamination. Demolition of structures has been performed at Fernald by carefully selected and qualified subcontractors. Asbestos and lead abatement, equipment, piping and conduit removal, and structural demolition have been completed to progressively higher performance specifications developed by Fluor Fernald based on lessons learned during execution. Safety continues to be the primary consideration in performing potentially hazardous work. Technologies such as hydraulic shears have been developed and used to keep workers away from danger. A new technology, ''Cool Suits,'' has been demonstrated to help prevent heat stress when anti-contamination clothing is required in elevated temperature working conditions. For tall structures, implosion technologies have been employed with progressively improved results, Several other new technologies have been evaluated by Fluor Fernald and applied by subcontractors. The improved technologies included the oxy-gas torch, which uses

  6. Re-injection accelerates groundwater clean up at Fernald, Fluor Fernald, Inc.

    SciTech Connect

    Dave Brettschneider; William Hertel; Ken Broberg

    2000-09-29

    A successful one year long, field scale demonstration of the use of groundwater re-infection at Fernald was recently completed bringing DOE one step closer to achieving an accelerated site remediation (DOE 2000). The demonstration marks the end of a several year effort to evaluate whether: re-injection could be conducted efficiently at Fernald, and if the approved aquifer remedy at Fernald would benefit by incorporating re-infection. Evaluation of re-injection technology involved not only technical considerations, but also participation and cooperation of regulators and stakeholders. The demonstration was considered to be unique in that it was integrated into the design of the current approved aquifer remedy and utilized the existing remediation infrastructure. Information collected during the demonstration indicated that re-injection wells could be operated efficiently at Fernald and that the current approved groundwater remedy should be modified to include the use of re-injection.

  7. The highly successful safe remediation of the Fernald waste pits undertaken under the privatization model

    SciTech Connect

    Cherry, Mark; Lojek, Dave; Murphy, Con

    2003-02-23

    Remediation of eight waste pits at the Department of Energy (DOE) Fernald site, located northwest of Cincinnati, Ohio, involves excavating approximately one million tonnes in-situ of low-level waste which were placed in pits during Fernald's production era. This unique project, one of the largest in the history of CERCLA/Superfund, includes uranium and thorium contaminated waste, soils and sludges. These wet soils and sludges are thermally dried in a processing facility to meet Department of Transportation (DOT) transportation and disposal facility waste acceptance criteria, loaded into railcars and shipped to the Envirocare waste disposal facility at Clive, Utah. This project is now approximately 60% complete with more than 415,000 tonnes (460,000 tons) of waste material safely shipped in 74 unit trains to Envirocare. Work is scheduled to be completed in early 2005. Success to date demonstrates that a major DOE site remediation project can be safely and successfully executed in partnership with private industry, utilizing proven commercial best practices, existing site labor resources and support of local stakeholders. In 1997 under the DOE's privatization initiative, Fluor Fernald, Inc. (Fluor Fernald) solicited the services of the remediation industry to design, engineer, procure, construct, own and operate a facility that would undertake the remediation of the waste pits. The resulting procurement was awarded to IT Corporation, currently Shaw Environmental and Infrastructure, Inc. (Shaw). The contractor was required to finance the procurement and construction of its facilities and infrastructure. The contract was performance-based and payment would be made on the successful loadout of the waste from the facility on a per-ton basis meeting the Envirocare waste acceptance criteria. This paper details the performance to date, the challenges encountered, and the seamless partnering between DOE, the Environmental Protection Agency (EPA), Fluor Fernald, Shaw, labor

  8. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes

    PubMed Central

    Bahn, M.; Reichstein, M.; Davidson, E. A.; Grünzweig, J.; Jung, M.; Carbone, M. S.; Epron, D.; Misson, L.; Nouvellon, Y.; Roupsard, O.; Savage, K.; Trumbore, S. E.; Gimeno, C.; Yuste, J. Curiel; Tang, J.; Vargas, R.; Janssens, I. A.

    2011-01-01

    Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle. PMID:23293656

  9. Gap filling strategies and error in estimating annual soil respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  10. Surface and subsurface characterization of uranium contamination at the Fernald environmental management site

    SciTech Connect

    Schilk, A.J.; Perkins, R.W.; Abel, K.H.; Brodzinski, R.L.

    1993-04-01

    The past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils, and the three-dimensional distribution of the uranium at these sites must be thoroughly characterized before any effective remedial protocols can be established. To this end, Pacific Northwest Laboratory (PNL) has been tasked by the DOE`s Office of Technology Development with adapting, developing, and demonstrating technologies for the measurement of uranium in surface and subsurface soils at the Fernald Uranium in Soils Integrated Demonstration site. These studies are detailed in this report.

  11. Fernald - Developing and Executing an Accelerated Closure Plan

    SciTech Connect

    Nixon, D.A.

    2006-07-01

    In November 2000 the Department of Energy (DOE) and Fluor Fernald entered into a closure contract that incited Fluor Fernald to reduce the cost and schedule of the Fernald site cleanup. The contract established a target schedule and target cost and how Fluor Fernald performs against these targets determines the amount of fee the company earns. In response to these new challenges, Fluor Fernald developed a 13-part strategy to safely accelerate work and more efficiently utilize the available funding. Implementation of this strategy required a dramatic culture change at Fernald - from a 'government job mind set' to an entrepreneurial/commercial model. Fluor Fernald's strategy and culture change has proved to be successful as the company is on track to close the site ahead of the target schedule at a total project cost less than the target cost. The elements of Fluor Fernald's strategy and the lessons learned during implementation provide valuable information that could be utilized by other DOE sites that will be undergoing closure over the next decade. (authors)

  12. Development and testing of the Minimum Additive Waste Stabilization (MAWS) system for Fernald wastes. Phase 1, Final report

    SciTech Connect

    Fu, S.S.; Matlack, K.S.; Mohr, R.K.; Brandys, M. Hojaji, H.; Bennett, S.; Ruller, J.; Pegg, I.L.

    1994-12-01

    This report presents results of a treatability study for the evaluation of the MAWS process for wastes stored at the Fernald Environmental Management Project (FEMP) site. Wastes included in the study were FEMP Pit 5 sludges, soil-wash fractions, and ion exchange media from a water treatment system supporting a soil washing system. MAWS offers potential for treating a variety of waste streams to produce a more leach resistant waste form at a lower cost than, say, cement stabilization.

  13. Effects of three species of Chihuahuan Desert ants on annual plants and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that ant species, which occupy the same nest for a decade or longer, would modify nest soils by increasing soil nutrients and microorganisms resulting in increased biomass, density, cover and species richness of annual plants. We measured soil properties and annual plants on...

  14. Characterization of reproduction and growth of American robins at the Fernald Environmental Management Project, 1991

    SciTech Connect

    Osborne, D.R.; Ambrose, D.M.; Simpson, J.C.

    1992-11-01

    As part of a Biological and Ecological Site Characterization of the Fernald Environmental Management Project (FEMP), suppressed growth in onsite American robin nestlings was discovered in 1987 and in 1990. However, the causal factors relating to suppressed growth were not investigated. This study was initiated to determine if growth suppression still existed, and if so, the possible relationship of FEMP land management practices and soil contaminants through food chains to growth and reproductive fitness. This study was expanded to include five offsite sampling sites, as well as analyses of soils and earthworms for uranium, pesticides/herbicides, and heavy metals.

  15. Rail transportation of Fernald remediation waste

    SciTech Connect

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-24

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994.

  16. Vitrification pilot plant experiences at Fernald, Ohio

    SciTech Connect

    Akgunduz, N.; Gimpel, R.F.; Paine, D.; Pierce, V.H.

    1997-07-18

    A one metric ton/day Vitrification Pilot Plant (VITPP) at Fernald, Ohio, simulated the vitrification of radium and radon bearing silo residues using representative non-radioactive surrogates containing high concentrations of lead, sulfates, and phosphates. The vitrification process was carried out at temperatures of 1,150 to 1,350 C. The VITPP processed glass for seven months, until a breach of the melter containment vessel suspended operations. More than 70,000 pounds of surrogate glass were produced by the VITPP. Experiences, lessons learned, and path forward will be presented.

  17. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    SciTech Connect

    Kumthekar, U.A.; Chiou, J.D.

    2006-07-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  18. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    PubMed

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  19. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    PubMed

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices. PMID:25822494

  20. Estimating Annual Soil Carbon Loss in Agricultural Peatland Soils Using a Nitrogen Budget Approach

    PubMed Central

    Kirk, Emilie R.; van Kessel, Chris; Horwath, William R.; Linquist, Bruce A.

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 – 4 % combined). Shallow groundwater contributed 24 – 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 – 81 % of plant N uptake (129 – 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 – 70 %, estimated net C loss ranged from 1149 – 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices. PMID:25822494

  1. The Use of Ecological Restoration Principles To Achieve Remedy Protection At the Fernald Preserve and Weldon Spring Sites

    SciTech Connect

    Powell, J.; Johnston, F.; Homer, J.; Deyo, Y.

    2008-07-01

    At both the Fernald Preserve and the Weldon Spring Site, the development of ecological restoration goals and objectives was used to complement and even enhance achievement of selected remedies. Warm-season native grasses and forbs were used for revegetation of remediated areas. The hardiness and ability to establish in low-nutrient conditions make native grasses ideal candidates for reestablishment of vegetation in excavated areas. At the Fernald Preserve, native grasses were used for vegetative cover on an on-site disposal facility as well. Also at the Fernald Preserve, excavation footprints were optimized to increase the quantity and quality of created wetlands. Drainage features in a couple instances provide passive groundwater recharge, potentially accelerating groundwater remediation efforts. In addition, a number of clean materials and structures were beneficially reused as part of ecological restoration designs, including wood-chip mulch and woody debris, clean concrete, and a rail trestle. At the Weldon Spring Site, several methods were used to control erosion for three years after the initial seeding of native species. A field evaluation of soil conditions and general species diversity was performed in 2007 and it was determined that erosion at the site was typical and repairing naturally. These approaches resulted in 'win-win' strategies needed to successfully remediate and restore complex projects such as the Fernald Preserve and Weldon Spring. (authors)

  2. Fernald Silo Remote Retrieval Tool Development

    SciTech Connect

    Varma, V.K.

    2004-05-18

    A long-reach tool was developed to remove discrete objects from the silos at the Fernald Environmental Management Project in Ohio. If they are not removed, these objects can potentially cause problems during the retrieval and transfer of waste from the silos. Most of the objects are on top of the Bentogrout cap inside the silos at or near the primary opening into the tank and will therefore require only vertical lifting. The objects are located about 20 ft from the top of the silo. Although most of the objects can be retrieved from 20 ft, the long-reach tool was designed to for a reach up to 40 ft in case objects roll towards the walls of the tank or need to be removed during heel retrieval operations. This report provides a detailed description of the tool that was developed, tested, and demonstrated at the Tanks Technology Cold Test Facility at Oak Ridge National Laboratory. Scaffolding was erected over two experimental cells to simulate the 40-ft maximum working depth anticipated in the silos at Fernald. Plastic bottles and plastic sheeting simulated the debris that could be encountered during waste retrieval operations.

  3. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystemproperties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems. Methods: In Long Term...

  4. The Fernald Closure Project: Lessons Learned

    SciTech Connect

    Murphy, Cornelius M.; Carr, Dennis

    2008-01-15

    For nearly 37 years, the U.S. Department of Energy site at Fernald - near Cincinnati, Ohio - produced 230,000 metric tons (250,000 short tons) of high-purity, low-enriched uranium for the U.S. Defense Program, generating more than 5.4 million metric tons (6 million short tons) of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion mega environmental-remediation project that was completed in October 2006. Project evolved through four phases: - Conducting remedial-investigation studies to determine the extent of damage to the environment and groundwater at, and adjacent to, the production facilities; - Selecting cleanup criteria - final end states that had to be met that protect human health and the environment; - Selecting and implementing the remedial actions to meet the cleanup goals; - Executing the work in a safe, compliant and cost-effective manner. In the early stages of the project, there were strained relationships - in fact total distrust - between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholders groups in the decision-making process, the DOE and Fluor developed a public-participation strategy to open the channels of communication with the various parties: site leadership, technical staff and regulators. This approach proved invaluable to the success of the project, which has become a model for future environmental remediation projects. This paper will summarize the history and shares lessons learned: the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies achieved. Lessons learned fall into ten categories: - Regulatory approach with end

  5. Criticality accident alarm system at the Fernald Environmental Management Project

    SciTech Connect

    Marble, R.C.; Brown, T.D.; Wooldridge, J.C.

    1994-12-31

    This paper describes the staus of the Fernald Environmental Management Project (FEMP) criticality alarm system. A new radiation detection alarm system was installed in 1990. The anunciation system, calibration and maintenance, and detector placement is described.

  6. Natural Resource Damages Settlement Projects at the Fernald Preserve - 12316

    SciTech Connect

    Powell, Jane; Schneider, Tom; Hertel, Bill; Homer, John

    2012-07-01

    This paper describes the development and implementation of two ecological restoration projects at the Fernald Preserve that are funded through a CERCLA natural resource damage settlement. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  7. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China.

    PubMed

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m(-2) in coniferous forest to 570 g C m(-2) in mixed forest and to 692 g C m(-2) in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  8. Fernald Environmental Management Project 1995 site environmental report summary

    SciTech Connect

    1996-06-01

    This report summarizes the 1995 Site Environmental Report for the Fernald site. It describes the Fernald site mission, exposure pathways, and environmental standards and guidelines. An overview is presented of the impact these activities have on the local environment and public health. Environmental monitoring activities measure and estimate the amount of radioactive and nonradioactive materials that may leave the site and enter the surrounding environment.

  9. Authorized limits for Fernald copper ingots

    SciTech Connect

    Frink, N.; Kamboj, S.; Hensley, J.; Chen, S. Y.

    1997-09-01

    This development document contains data and analysis to support the approval of authorized limits for the unrestricted release of 59 t of copper ingots containing residual radioactive material from the U.S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP). The analysis presented in this document comply with the requirements of DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} as well as the requirements of the proposed promulgation of this order as 10 CFR Part 834. The document was developed following the step-by-step process described in the Draft Handbook for Controlling Release for Reuse or Recycle Property Containing Residual Radioactive Material.

  10. Phytoremediation of high phosphorus soil by annual ryegrass and common bermudagrass harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This four-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic...

  11. Results of vitrifying Fernald OU-4 wastes

    SciTech Connect

    Merrill, R.A. ); Janke, D.S. )

    1993-02-01

    Three silos in Operable Unit 4 (OU-4) at the Feed Materials Production Center in Fernald, Ohio, contain residues from the processing of pitchblende ores. Silos 1 and 2, designated as K-65, contain the depleted ore with a BentoGrout cap over the material to reduce radon emanation, while Silo 3 contains calcined residue from processing solutions. The residues in the three silos contain radium, uranium, uranium daughters, and heavy metals (primarily lead). Vitrification tests were carried out on various mixtures of the above materials and the resulting glasses were analyzed. The vitrified residues all tested non-hazardous'' by the Toxicity Characteristic Leachate Procedure (TCLP) and demonstrated a high degree of durability by the Product Consistency Test (PCT). The specific gravity and radon emanation of both the vitrified and non-vitrified residue were measured. Volume reductions ranging from 50 to 68 percent were obtained while the radon emanation rate was reduced by a factor of about 500,000. Radon emanation from the vitrified residue is of the same order of magnitude as emanation from natural building materials such as brick or concrete.

  12. Results of vitrifying Fernald OU-4 wastes

    SciTech Connect

    Merrill, R.A.; Janke, D.S.

    1993-02-01

    Three silos in Operable Unit 4 (OU-4) at the Feed Materials Production Center in Fernald, Ohio, contain residues from the processing of pitchblende ores. Silos 1 and 2, designated as K-65, contain the depleted ore with a BentoGrout cap over the material to reduce radon emanation, while Silo 3 contains calcined residue from processing solutions. The residues in the three silos contain radium, uranium, uranium daughters, and heavy metals (primarily lead). Vitrification tests were carried out on various mixtures of the above materials and the resulting glasses were analyzed. The vitrified residues all tested ``non-hazardous`` by the Toxicity Characteristic Leachate Procedure (TCLP) and demonstrated a high degree of durability by the Product Consistency Test (PCT). The specific gravity and radon emanation of both the vitrified and non-vitrified residue were measured. Volume reductions ranging from 50 to 68 percent were obtained while the radon emanation rate was reduced by a factor of about 500,000. Radon emanation from the vitrified residue is of the same order of magnitude as emanation from natural building materials such as brick or concrete.

  13. Vitrification development and experiences at Fernald, Ohio

    SciTech Connect

    Gimpel, R.F.; Paine, D.; Roberts, J.L.; Akgunduz, N.

    1998-09-01

    Vitrification of radioactive wastes products have proven to produce an extremely stable waste form. Vitrification involves the melting of wastes with a mixture of glass-forming additives at high temperatures; when cooled, the wastes are incorporated into a glass that is analogous to obsidian. Obsidian is a volcanic glass-like rock, commonly found in nature. A one-metric ton/day Vitrification Pilot Plant (VITPP) at Fernald, Ohio, simulated the vitrification of radium and radon bearing silo residues using representative non-radioactive surrogates. These non-radioactive surrogates contained high concentrations of lead, sulfates, and phosphates. The vitrification process was carried out at temperatures of 1150 to 1350 C. Laboratory and bench-scale treatability studies were conducted before initiation of the VITPP. Development of the glass formulas, containing up to 90% waste, will be discussed in the paper. The VITPP processed glass for seven months, until a breach of the melter containment vessel suspended operations. More than 70,000 pounds of good surrogate glass were produced by the VITPP. Experiences, lessons learned, and the planned path forward will be presented.

  14. Organizing for public involvement in Fernald decision-making

    SciTech Connect

    Morgan, K.L.; Hoopes, J.

    1993-10-24

    Fernald is returning to the basics of interpersonal communication as a cornerstone of its public involvement program. The guiding premise behind this concept is the belief that face-to-face interaction between people is more likely to build trust and confidence than public meetings, news releases and other traditional public information techniques. A network of project spokespersons, called ``envoys,`` is being organized to develop person-to-person relationships with people interested in the future of Fernald. To support this approach, public affairs personnel are adopting roles as management consultants and communications coaches in addition to serving in their traditional role as public information specialists. Early observations seem to show signs of improvement in the level of public trust in Fernald decision-makers.

  15. An annual model of SSM/I radiobrightness for dry soil

    NASA Technical Reports Server (NTRS)

    Liou, Yuei-An; England, A. W.

    1992-01-01

    An annual model is presented of the temperature structure within a homogeneous, dry soil halfspace that is subject to both diurnal and annual insolation, radiant heating from the atmosphere, sensible heat exchange with the atmosphere, and radiant cooling. The thermal constitutive properties of the soil are assumed to be constant so that the heat flow equation can be solved analytically. For computational economy, a variable time interval Laplace transform method is developed to predict the temperature.

  16. Fernald`s dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    SciTech Connect

    Yuracko, K.L.; Hadley, S.W.; Perlack, R.D.

    1996-06-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder supported manner. The potential health and safety risks to both workers and the public have been addressed. The question remains; can products be fabricated from RSM in a cost efficient and market competitive manner? This paper presents a methodology for use within DOE to evaluate the costs and benefits of recycling and reusing some RSM, rather than disposing of this RSM in an approved burial site. This life cycle decision methodology, developed by both the Oak Ridge National Laboratory (ORNL) and DOE Fernald is the focus of the following analysis.

  17. Lessons learned during the D & D of Fernald Plant 7

    SciTech Connect

    Motl, G.P.; Borgman, T.D.

    1994-01-14

    This document contains information about lessons learned from the decontamination and decommissioning of the Feed Materials Production Center in Fernald Ohio. The information relates to Plant 7 which was constructed to house processes for the reduction of uranium hexafluoride to uranium tetrafluoride. Topics discussed include: washdown, lockdown, asbestos removal, and bidding for dismantlement projects.

  18. The green manure value of seven clover species grown as annual crops on low and high fertility temperate soils.

    SciTech Connect

    Ross, Shirley M.; King, Jane R.; Izaurralde, Roberto C.; O'Donovan, John T.

    2009-05-01

    Annual and perennial clover species may differ in green manure value. Seven clover (Trifolium) species were grown as annual crops on low fertility (Breton) and high fertility 15 (Edmonton) soils in Alberta

  19. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  20. Generation and mobility of radon in soil. Annual report

    SciTech Connect

    Not Available

    1992-07-01

    Objectives of this research include: (1) To determine the processes that cause large seasonal and short-term changes in the radon (Rn) content of soil gases, and to develop methods of predicting and modeling these variations; (2) to evaluate the relation of Rn emanation coefficients to form of radium (Ra) and other U-series decay products, particularly the role of Ra in organic matter and Fe-oxides; (3) to evaluate the conditions in which convection of gas in soil and bedrock may affect soil gas radon availability in houses; and, (4) to collaborate with other DOE researchers on evaluation of Rn flux into houses, using our well characterized soil sites.

  1. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment-scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer-dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment-scale soil moisture capacity. Calibrations of this parameter indicated that infiltration-excess runoff might be an important process, especially for the summer-dominant rainfall catchments; most similar studies have shown that modeling of infiltration-excess runoff is not required at the mean annual timescale. Copyright 2005 by the American Geophysical Union.

  2. Groundwater re-injection at Fernald: Its role in accelerating the aquifer remedy

    SciTech Connect

    Kenneth A. Broberg; Robert Janke

    2000-09-29

    A successful field-scale demonstration of the use of groundwater re-injection at the Fernald Environmental Management Project (FEMP) was recently completed, bringing the U.S. Department of Energy one step closer to achieving an accelerated site remediation. The demonstration marks the end of a several-year effort to evaluate (a) whether re-injection could be conducted efficiently at Fernald and (b) whether the approved aquifer remedy at Fernald would benefit from incorporating re-injection.

  3. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  4. CLOSING IN ON CLOSURE PERSPECTIVES FROM HANFORD & FERNALD AN UPDATE

    SciTech Connect

    CONNELL, J.D.

    2004-12-22

    In World War II, the arms dramatically changed from machine guns and incendiary bombs to nuclear weapons. Hanford and Fernald, two government-run sites, were part of the infrastructure established for producing the fissile material for making these weapons, as well as building a nuclear arsenal to deter future aggression by other nations. This paper compares and contrasts, from a communications point of view, these two Department of Energy (DOE) closure sites, each with Fluor as a prime contractor. The major differences between the two sites--Hanford in Washington state and Fernald in Ohio--includes the following: size of the site and the workforce, timing of closure, definition of end state, DOE oversight, proximity to population centers, readiness of local population for closure, and dependence of the local economy on the site's budget. All of these elements affect how the sites' communication professionals provide information even though the objectives are the same: build public acceptance and support for DOE's mission to accelerate cleanup, interface with stakeholders to help ensure that issues are addressed and goals are met, help workers literally work themselves out of jobs--faster, and prepare the ''host'' communities to deal with the void left when the sites are closed and the government contractors are gone. The 12-months between January 04 and January 05 have seen dramatic transformations at both sites, as Fernald is now just about a year away from closure and FLuor's work at Hanford has made the transition from operations to deactivation and demolition. While Fernald continues to clean out silos of waste and ship it off site, Hanford is dealing with recent state legislation that has the potential to significantly impact the progress of cleanup. These changes have even further accentuated the differences in the content, distribution, and impact of communications.

  5. Physiological variation among native and exotic winter annuals associated with microphytic soil crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, Lesley; Detling, James K.; Tracy, C. Richard; Warren, Steven D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g−1 dry mass). However, total shoot N (mg N m−2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass×concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only

  6. Environmental Management Assessment of the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Not Available

    1993-04-01

    This report documents the results of the Environmental Management Assessment performed at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. During this assessment, the activities conducted by the assessment team included review of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and FEMP contractor personnel; and inspection and observation of selected facilities and operations. The onsite portion of the assessment was conducted from March 15 through April 1, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). EH-24 carries out independent assessments of DOE facilities and activities as part of the EH-1 Environment, Safety, and Health (ES&H) Oversight Audit Program. The EH-24 program is designed to evaluate the status of DOE facilities and activities with respect to compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, Guidance and Directives; conformance with accepted industry practices and standards of performance; and the status and adequacy of management systems developed to address environmental requirements. The Environmental Management Assessment of FEMP focused on the adequacy of environmental management systems. Further, in response to requests by the Office of Environmental Restoration and Waste Management (EM) and Fernald Field Office (FN), Quality Assurance and Environmental Radiation activities at FEMP were evaluated from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section in this report.

  7. The Future of Fernald: Community-Based Stewardship Planning

    SciTech Connect

    Bidwell, D.; Sarno, D. J.

    2003-02-27

    For more than a decade, the U.S. Department of Energy (DOE) has managed an environmental remediation project at its former uranium processing facility near Fernald, Ohio. To address public concerns about what will happen at the site once remediation is completed, the Site- Specific Advisory Board for the site, the Fernald Citizens Advisory Board (FCAB), designed and implemented the Future of Fernald. process to involve the public in planning for the site's future. The FCAB recently coordinated a feasibility study of post-remediation public access to site information. Information is a key component of Community-Based Stewardship, a system in which the public plays an integral role in long-term stewardship of a site. This study found that has just begun to address community needs for information during long-term stewardship. Through a public workshop, conducted as part of the study, the public was able to identify the kinds of information that are needed and how that information should be presented.

  8. Suppression of annual Bromus tectorum by perennial Agropyron cristatum: roles of soil nitrogen availability and biological soil space

    PubMed Central

    Blank, Robert R.; Morgan, Tye; Allen, Fay

    2015-01-01

    Worldwide, exotic invasive grasses have caused numerous ecosystem perturbations. Rangelands of the western USA have experienced increases in the size and frequency of wildfires largely due to invasion by the annual grass Bromus tectorum. Rehabilitation of invaded rangelands is difficult; but long-term success is predicated on establishing healthy and dense perennial grass communities, which suppress B. tectorum. This paper reports on two experiments to increase our understanding of soil factors involved in suppression. Water was not limiting in this study. Growth of B. tectorum in soil conditioned by and competing with the exotic perennial Agropyron cristatum was far less relative to its growth without competition. When competing with A. cristatum, replacing a portion of conditioned soil with fresh soil before sowing of B. tectorum did not significantly increase its growth. The ability of conditioned soil to suppress B. tectorum was lost when it was separated from growing A. cristatum. Soil that suppressed B. tectorum growth was characterized by low mineral nitrogen (N) availability and a high molar ratio of NO2− in the solution-phase pool of NO2−+NO3−. Moreover, resin availability of NO2−+NO3− explained 66 % of the variability in B. tectorum above-ground mass, attesting to the importance of A. cristatum growth in reducing N availability to B. tectorum. Trials in which B. tectorum was suppressed the most were characterized by very high shoot/root mass ratios and roots that have less root hair growth relative to non-suppressed counterparts, suggesting co-opting of biological soil space by the perennial grass as another suppressive mechanism. Greater understanding of the role of biological soil space could be used to breed and select plant materials with traits that are more suppressive to invasive annual grasses. PMID:25603967

  9. Suppression of annual Bromus tectorum by perennial Agropyron cristatum: roles of soil nitrogen availability and biological soil space.

    PubMed

    Blank, Robert R; Morgan, Tye; Allen, Fay

    2015-01-01

    Worldwide, exotic invasive grasses have caused numerous ecosystem perturbations. Rangelands of the western USA have experienced increases in the size and frequency of wildfires largely due to invasion by the annual grass Bromus tectorum. Rehabilitation of invaded rangelands is difficult; but long-term success is predicated on establishing healthy and dense perennial grass communities, which suppress B. tectorum. This paper reports on two experiments to increase our understanding of soil factors involved in suppression. Water was not limiting in this study. Growth of B. tectorum in soil conditioned by and competing with the exotic perennial Agropyron cristatum was far less relative to its growth without competition. When competing with A. cristatum, replacing a portion of conditioned soil with fresh soil before sowing of B. tectorum did not significantly increase its growth. The ability of conditioned soil to suppress B. tectorum was lost when it was separated from growing A. cristatum. Soil that suppressed B. tectorum growth was characterized by low mineral nitrogen (N) availability and a high molar ratio of [Formula: see text] in the solution-phase pool of [Formula: see text] Moreover, resin availability of [Formula: see text] explained 66 % of the variability in B. tectorum above-ground mass, attesting to the importance of A. cristatum growth in reducing N availability to B. tectorum. Trials in which B. tectorum was suppressed the most were characterized by very high shoot/root mass ratios and roots that have less root hair growth relative to non-suppressed counterparts, suggesting co-opting of biological soil space by the perennial grass as another suppressive mechanism. Greater understanding of the role of biological soil space could be used to breed and select plant materials with traits that are more suppressive to invasive annual grasses. PMID:25603967

  10. Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of Ebinur Lake Area

    NASA Astrophysics Data System (ADS)

    Qin, L.; Lv, G. H.; He, X. M.; Yang, J. J.; Wang, H. L.; Zhang, X. N.; Ma, H. Y.

    2015-08-01

    Arid and semiarid areas account for about one-third of the total land surface, and which play an important role in the global carbon cycle and climate system. However, up to now, compare with plenty knowledge information on winter soil efflux of forest ecosystems in mid-latitude ecosystems, winter soil efflux of arid areas at mid-latitude ecosystems is scare, Ebinur Lake Area, which is the study area of the present study, is located in arid regions of Northern China, with a vulnerable ecological environment suffering from extreme weather and climate. The objectives of this study were: (1) measure the winter soil respiration rate in our study area and determine its major environmental factors; (2) determine the winter soil CO2 efflux and its contribution to annual soil CO2 efflux in different ecosystems; and (3) discuss the estimated method of soil respiration that is most suitable to arid areas. We measured winter soil CO2 efflux and the associated environment factors in a farmland ecosystem (50a and 9a cotton fields), an abandoned land ecosystem (7a and 3a abandoned lands) and desert ecosystem ( Populus euphratica, Phragmites australis communities and sandy desert) in Ebinur Lake Area, China. The average winter soil respiration rate in the arid areas in the mid-latitude was 0.063 μmol m-2 s-1 to 0.730 μmol m-2 s-1. Specifically, the average winter soil respiration rate in the farmland ecosystems, abandoned land ecosystems and desert ecosystems were 0.686 μmol m-2 s-1, 0.443 μmol m-2 s-1 and 0.276 μmol m-2 s-1, respectively. Range of annual Q 10 (known as the increase in soil respiration rate per 10°C increase in temperature) in the three ecosystems were 0.989 to 4.962, 1.971 to 2.096 and 0.947 to 5.173, respectively. The relatively higher Q 10 values in the different ecosystems were all obtained in winter. We found that water (in the form of soil moisture or atmospheric humidity) was the primary factor that affected the change of soil respiration rate in the

  11. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGESBeta

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  12. Use of passive alpha detectors to screen for uranium contamination in a field at Fernald, Ohio

    SciTech Connect

    Dudney, C.S.; Meyer, K.E.; Gammage, R.B.; Wheeler, R.V.; Salasky, M.; Kotrappa, P.

    1995-06-01

    This paper reports the results from a field test of newly developed techniques for inexpensive, in situ screening of soil for alpha contamination. Passive alpha detectors that are commercially available for the detection indoor airborne alpha activity (i.e., {sup 222}Rn) have been modified so they can be applied to the detection of alpha contamination on surfaces or in soils. Results reported here are from an intercomparison involving several different techniques with all measurements being made at the same sites in a field near the formerly used uranium processing facility at Fernald, Ohio, during the summer of 1994. The results for two types of passive alpha detector show that the quality of calibration is improved if soils samples are milled to increase homogeneity within the soil matrices. The correlation between laboratory based radiochemical analyses and quick, field-based screening measurements is acceptable and can be improved if the passive devices are left for longer exposure times in the field. The total cost per measurement for either type of passive alpha detector is probably less than $25 and should provide a cost-effective means for site managers to develop the information needed to find areas with remaining alpha contamination so resources can be allocated efficiently.

  13. The Fernald Envoy Program: How face-to-face public involvement is working

    SciTech Connect

    Hoopes, J.; Hundertmark, C.A.; Jordan, J.

    1995-12-31

    In March 1994, the Fernald Environmental Management Project (FEMP), initiated the Fernald Envoy Program as a tool for strengthening public involvement in the restoration of the Fernald site, a former US Department of Energy uranium processing facility which ceased operation in 1989 and became an environmental restoration site. Based on the concept that opinion leaders play a key role in the flow of information, the Envoy Program was developed to link Fernald with opinion leaders in community groups. In February and March 1995, the University of Cincinnati Center for Environmental Communication Studies, under contract with the Fernald Environmental Restoration Management Corporation, conducted an evaluation to determine how the Envoy Program was functioning in relation to the original Envoy Plan. A quasi-experimental design was applied using telephone surveys of opinion leaders in groups with envoy representation and in groups without representation. Findings validated the effectiveness of the program and also identified areas for program improvement.

  14. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    PubMed

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  15. Climate, interseasonal storage of soil water, and the annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.

  16. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    USGS Publications Warehouse

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  17. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect

    1996-06-01

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  18. A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence

    USGS Publications Warehouse

    Baisden, W.T.; Amundson, Ronald; Brenner, D.L.; Cook, A.C.; Kendall, C.; Harden, J.W.

    2002-01-01

    We examine soil organic matter (SOM) turnover and transport using C and N isotopes in soil profiles sampled circa 1949, 1978, and 1998 (a period spanning pulse thermonuclear 14C enrichment of the atmosphere) along a 3-million-year annual grassland soil chronosequence. Temporal differences in soil ??14C profiles indicate that inputs of recently living organic matter (OM) occur primarily in the upper 20-30 cm but suggest that OM inputs can occur below the primary rooting zone. A three-pool SOM model with downward transport captures most observed variation in ??14C, percentages of C and N, ??13C, and ??15N, supporting the commonly accepted concept of three distinct SOM pools. The model suggests that the importance of the decadal SOM pool in N dynamics is greatest in young and old soils. Altered hydrology and possibly low pH and/or P dynamics in highly developed old soils cause changes in soil C and N turnover and transport of importance for soil biogeochemistry models.

  19. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, Matthew L.

    2003-01-01

    1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems.2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America.3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3·2 g N m−2 year−1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium.4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens.5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among

  20. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2003-01-01

    1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems. 2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America. 3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3.2 g N m-2 year-1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium. 4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens. 5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among individual

  1. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management

    PubMed Central

    Esmaeili Taheri, Ahmad; Bainard, Luke D.; Yang, Chao; Navarro-Borrell, Adriana; Hamel, Chantal

    2014-01-01

    Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils. PMID:25247177

  2. Soils and climate: redness and weathering as indicators of mean annual precipitation

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  3. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    SciTech Connect

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  4. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    SciTech Connect

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ``standard sites`` located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements.

  5. Soil aggregates and their associated carbon and nitrogen content in winter annual pastures using different tillage management options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, winter annual pastures are established on grazing areas that are steeply sloping and not regarded as suitable for row-crop production. Using conventional (CT) tillage methods to prepare these fragile lands for winter annual pastures leads to increased erosion and rapid soil degradatio...

  6. The impact of roots on soil organic carbon dynamics in annual and perennial agricultural systems

    NASA Astrophysics Data System (ADS)

    Beniston, J.; Dupont, T.; Glover, J.; Lal, R.

    2012-12-01

    Identifying and developing agricultural systems capable of transferring large quantities of carbon (C) to the soil and sustaining ecosystem processes and services is a priority for ecological researchers and land managers. Temperate grasslands have extensive root systems and transfer large quantities of C to the soil organic C (SOC) pool, which has lead to widespread interest in utilizing perennial grasses as both bioenergy crops and as a model for perennial grains. This study examined five sites in north central Kansas (U.S.A.) that contain the unique land use pairing of tall grass prairie meadows (PM) that have been harvested annually for hay for the past 75 years and annual grain (wheat) production fields (AG) that have been cultivated for a similar length of time, all on deep alluvial soils. Specific research objectives included: 1) To quantify below-ground biomass pools and root C contributions in the two systems; 2) To analyze and compare SOC pools and SOC concentration in primary particle size fractions in the two systems; 3) To utilize natural abundance δ13C signatures to determine the source and turnover of SOC in the soils of the AG sites; and 4) To elucidate the relationship of roots to both SOC pools and nematode food webs. Soil core samples were collected to a depth of 1 m in May and June 2008. Soil samples were analyzed for SOC, microbial biomass C (MBC), nematodes, and a particle size fractionation of SOC in coarse (>250 μm), particulate organic matter (POM) (53-250 μm), silt (2-53 μm), and clay (<2 μm) sized fractions. Root biomass, root length and root C were also analyzed to a depth of 1 m. Natural abundance δ13C values were obtained for all C parameters. Soils under PM had 4 times as much root C as AG soils to 1 m depth in mid May (PM 2.8 Mg ha-1 and AG 0.7 Mg ha-1) and 7 times as much root C to 1 m depth in late June (PM 3.5 Mg ha-1 and AG 0.5 Mg ha-1). The MBC pools were significantly larger in grassland soils to a depth of 60 cm in May

  7. Soil N and 15N variation with time in a California annual grassland ecosystem

    USGS Publications Warehouse

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  8. Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching.

    PubMed

    Lavigne, M B; Foster, R J; Goodine, G

    2004-04-01

    Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn. PMID:14757581

  9. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    USGS Publications Warehouse

    Belnap, Jayne; Stark, John Thomas; Rau, Benjamin; Allen, Edith B.; Phillips, Sue

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromusoccurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan), little or noBromus is found, likely due to timing or amount of soil moisture relative to Bromus phenology. In hot, winter-rainfall-dominated deserts (parts of the Mojave Desert), Bromus rubens is widespread and correlated with high phosphorus availability. It also responds positively to additions of nitrogen alone or with phosphorus. On the Colorado Plateau, with higher soil moisture availability, factors limiting Bromus tectorum populations vary with life stage: phosphorus and water limit germination, potassium and the potassium/magnesium ratio affect winter performance, and water and potassium/magnesium affect spring performance. Controlling nutrients also change with elevation. In cooler deserts with winter precipitation (Great Basin, Columbia Plateau) and thus even greater soil moisture availability, B. tectorum populations are controlled by nitrogen, phosphorus, or potassium. Experimental nitrogen additions stimulate Bromus performance. The reason for different nutrients limiting in dissimilar climatic regions is not known, but it is likely that site conditions such as soil texture (as it affects water and nutrient availability), organic matter, and/or chemistry interact in a manner that regulates nutrient availability and limitations. Under future drier, hotter conditions,Bromus distribution is likely to change due to changes in the interaction between moisture and nutrient availability.

  10. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  11. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  12. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-01

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration

  13. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    SciTech Connect

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low-level RCRA

  14. Carbonate and citric acid leaching of uranium from uranium-contaminated soils: Pilot-scale studies (Phase II)

    SciTech Connect

    Wilson, J.H.; Chernikoff, R.; DeMarco, W.D.

    1995-10-01

    The purpose of this document is to describe the results of the soil decontamination demonstration conducted at the Fernald Environmental Management Project (FEMP) site by the Fernald Environmental Restoration and Management Corporation (FERMCO) and the Oak Ridge National Laboratory (ORNL). This demonstration, which began in November 1993 and ended in October 1994, involved the removal of uranium from contaminated soil sampled from two FEMP sites. The demonstration was conducted so as to meet the requirements of the Fernald Site Integrated Demonstration program, as well as all environmental, safety, and health requirements of the site.

  15. Role of organic matter on trace metal availability in contaminated soils: case of high biomass perennial crops vs annual crops

    NASA Astrophysics Data System (ADS)

    Lamy, I.; Beaumelle, L.; Iqbal, M.; Chenu, C.

    2012-04-01

    Soils of contaminated agrosystems are still potential arable surfaces for the production of non-alimentary crops provided that such cropping systems do not increase risks for the environment in order to integrate them in a sustainable agriculture development. Effects of changing land management from annual to perennial on soil properties have been widely studied over the last decades, but the case of contaminated agricultural soils remains little documented in particular concerning the effects on the dynamic of soil trace elements. Among the non-alimentary crops, the use of energy crops like miscanthus, a C4 perennial plant, must be studied in particular to evaluate their environmental impacts as they are known to modify the soil organic matter pools. In this work we aimed at assessing changes in soil trace metal availability when annual crops are replaced by a perennial cropping system in a metal contaminated soil, with the hypothesis that exogenous organic carbon originating from the plant induced changes in the soil metal speciation. For this, we used the soil surface horizons of a smelter impacted parcel in the North of France, whose one part was cultivated in miscanthus three years ago and the other part was left with the previous land use i.e. cropping rotations. We quantified the carbon fluxes originating from miscanthus in the various granulo-densimetric fractions of the soil under miscanthus by C13 measurements, and compared the chemical extraction and the physical localisation of both organic carbon and of two trace metal, Cu and Zn in the various soil size fractions of both soils under miscanthus and under annual crops. Results showed an incorporation of organic carbon from miscanthus in the coarse organic fractions which was related to an increase in the metal localisation in the coarse grain fractions observed for Cu but not for Zn. Comparison of metal availabilities between the two cropping systems showed no difference for Zn availability while copper

  16. Soil moisture and fungi affect seed survival in California grassland annual plants.

    PubMed

    Mordecai, Erin A

    2012-01-01

    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.

  17. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    PubMed

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations. PMID:25602653

  18. Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants

    PubMed Central

    Mordecai, Erin A.

    2012-01-01

    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival. PMID:22720037

  19. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland.

    PubMed

    Hovenden, Mark J; Newton, Paul C D; Wills, Karen E; Janes, Jasmine K; Williams, Amity L; Vander Schoor, Jacqueline K; Nolan, Michaela J

    2008-01-01

    In a water-limited system, the following hypotheses are proposed: warming will increase seedling mortality; elevated atmospheric CO2 will reduce seedling mortality by reducing transpiration, thereby increasing soil water availability; and longevity (i.e. whether a species is annual or perennial) will affect the response of a species to global changes. Here, these three hypotheses are tested by assessing the impact of elevated CO2 (550 micromol mol(-1) and warming (+2 degrees C) on seedling emergence, survivorship and establishment in an Australian temperate grassland from autumn 2004 to autumn 2007. Warming impacts on seedling survivorship were dependent upon species longevity. Warming reduced seedling survivorship of perennials through its effects on soil water potential but the seedling survivorship of annuals was reduced to a greater extent than could be accounted for by treatment effects on soil water potential. Elevated CO2 did not significantly affect seedling survivorship in annuals or perennials. These results show that warming will alter recruitment of perennial species by changing soil water potential but will reduce recruitment of annual species independent of any effects on soil moisture. The results also show that exposure to elevated CO2 does not make seedlings more resistant to dry soils.

  20. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    SciTech Connect

    Crossley, D.A. Jr.

    1983-09-30

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported.

  1. Elevated atmospheric CO{sub 2} and soil nutrients alter competitive performance of California annual grassland species

    SciTech Connect

    Reynolds, H.L.; Chapin, F.S. III; Field, C.B.

    1995-06-01

    Atmospheric CO{sub 2} and soil nutrients altered interspecific competitive performance of three grassland annuals, all exhibiting the C{sub 3} metabolic pathway. Plantago erecta, an herbaceous dicot dominant in low-fertility serpentine grassland, was the superior interspecific competitor at low soil nutrients. Bromus hordeaceus, an introduced grass dominant in higher fertility sandstone grassland, was the superior interspecific competitor at high soil nutrients. Interspecific competitive ability of Plantago was slightly enhanced under elevated CO{sub 2}, but only at high soil nutrients, whereas interspecific competitive ability of Bromus was stimulated under elevated CO{sub 2} at both low and high soil nutrients. Interspecific competitive ability of Lasthenia californica, another herbaceous dicot common in serpentine grassland, was low in all treatments, and tended to decrease with elevated CO{sub 2} at low soil nutrients. Our results suggest that elevated CO{sub 2} may shift plant species abundance of serpentine grassland in favor of Bromus hordeaceus.

  2. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  3. Grouting of the residual uranium waste in Fernald Silos

    SciTech Connect

    Carter, E.E.; Pettit, P.J.

    2007-07-01

    At the Fernald site in Cincinnati, Ohio, huge concrete silos containing K-65 spent uranium ore were to be decommissioned and demolished as part of the decommissioning and restoration of the site. The K-65 waste in the silos was to be removed by sluicing with a low pressure water jet and placed in a new tank for the solidification processing. However the process was expected to leave at least a few inches of hard residual heel of waste on the floor and perhaps the walls of each silo. The contaminated concrete of the silos along with this waste heel represented a huge volume of material that would pose a hazard to workers, air quality, and groundwater during demolition. The heel material contained significant lead and radium as well as depleted uranium. The waste emitted a large amount of radon gas that was normally captured by a silo off-gas treatment system. Project plans called for the heel material to be mixed in place with a large volume of cement/flyash grout. This would chemically bind up the contaminants reducing the leaching potential of the material. The hardened grout would reduce the release of radon and dilute the concentration of radioactive contaminants allowing the grout to be disposed along with the contaminated concrete. The challenge was to develop an efficient method to mix the waste heel material with the grout without sending workers into the silo. (authors)

  4. Remediation activities at the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Walsh, T.J.; Danner, R.

    1996-07-01

    The Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) facility located in southwestern Ohio. The facility began manufacturing uranium products in the early 1950`s and continued processing uranium ore concentrates until 1989. The facility used a variety of chemical and metallurgical processes to produce uranium metals for use at other DOE sites across the country. Since the facility manufactured uranium metals for over thirty years, various amounts of radiological contamination exists at the site. Because of the chemical and metallurgical processes employed at the site, some hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA) were also generated at the site. In 1989. the FEMP was placed on the National Priorities List (NPL) requiring cleanup of the facility`s radioactive and chemical contamination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This paper discusses the proposed remediation activities at the five Operable Units (OUs) designated at the FEMP. In addition, the paper also examines the ongoing CERCLA response actions and RCRA closure activities at the facility.

  5. Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater

    SciTech Connect

    Forsythe, Howard S.

    2010-04-10

    This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

  6. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  7. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

  8. Annual variations in the surface radiation budget and soil water and heat content in the Upper Yellow River area

    NASA Astrophysics Data System (ADS)

    Li, Suosuo; Lü, Shihua; Ao, Yinhuan; Shang, Lunyu

    2009-03-01

    Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m-1°C-1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m-1°C-1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m-1°C-1, respectively.

  9. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    NASA Astrophysics Data System (ADS)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  10. Modeling the annual soil erosion rate in the mouth of river Pineios' sub-basin in Thessaly County, Greece.

    NASA Astrophysics Data System (ADS)

    Ilia, Ioanna; Loupasakis, Constantinos; Tsangaratos, Paraskevas

    2015-04-01

    Erosion is a natural - geomorphological phenomenon, active through geological time that is considered as one of the main agents that forms the earth surface. Soil erosion models estimate the rates of soil erosion and provide useful information and guidance for the development of appropriate intervention and soil conservation practices and strategies. A significant number of soil erosion models can be found in literature; however, the most extensively applied model is the Revised Universal Soil Loss Equation (RUSLE) established in 1997 by Renard KG, Foster GR, Weesies GA, McCool DK and Yoder DC. RUSLE is an empirically based model that enables the estimation of the average annual rate of soil erosion for an area of interest providing several alternative scenarios involving cropping systems, management methods and erosion control strategies. According to RUSLE model's specifications five major factors (rainfall pattern, soil type, topography, crop system, and management practices) are utilized for estimating the average annual erosion through the following equation: A=RxKxLxSxCxP, PIC where A is the computed spatial average soil loss and temporal average soil loss per unit area (tons ha-1 year-1), R the rainfall-runoff erosivity factor (MJ mm ha-1h-1 year-1), K the soil erodibility factor (tons h MJ-1 mm-1), L the slope - length factor, S the slope steepness factor, C the cover management factor and P the conservation support practice factor. L, S, C and P factors are all dimensionless. The present study aims to utilize a GIS-based RUSLE model in order to estimate the average annual soil loss rate in the sub-basin extending at the mouth of Pineios river in Thessaly County, Greece. The area covers approximate 775.9 km2 with a mean slope angle of 7.8o. The rainfall data of 39 gauge station from 1980 to 2000 where used in order to predict the rainfall-runoff erosivity factor (R). The K-factor was estimated using soil maps available from the European Soil Portal with a

  11. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  12. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    SciTech Connect

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  13. The Effects of Nitrogen Enrichment and a Simulated Rainfall Event on Soil Carbon Dioxide Efflux in an Annual California Grassland

    NASA Astrophysics Data System (ADS)

    Johnson, T. P.; Strong, A. L.; Chiariello, N.; Field, C. B.

    2013-12-01

    Soils contain the largest pool of carbon in terrestrial ecosystems and play a critical role in the global carbon cycle. Previous studies have shown that enhanced precipitation (projected by climate models) and human activities (such as increased fertilizer use) may alter this cycle by enhancing soil microbial activity, although effects are often variable. Soils in semi-arid grasslands play a vital role in the global carbon cycle and may be responsive to environmental perturbations. Previous studies have demonstrated that wet-up treatments positively influence soil carbon dioxide efflux rates, which are otherwise low during dry summers. A preliminary study performed in a semi-arid annual grassland has shown that long-term nitrogen enrichment (equivalent to 70kg N per hectare) positively influences soil carbon dioxide efflux during peak biomass in the wet season. However, the combined effect and seasonal dynamics of these environmental changes is poorly understood. In order to assess this interaction, we explore the short-term response of soil carbon dioxide efflux rates in a semi-arid grassland to a combination of long-term nitrogen enrichment and a simulated 20-mm rainfall event in the Jasper Ridge Global Change Experiment (JRCGE), a long-term, multi-factorial experiment in a semi-arid annual grassland located in the foothills of the Santa Cruz mountains in central California. We measured soil carbon dioxide efflux rates from pre-installed soil respiration collars for forty-eight hours after a simulated rainfall event (20mm) during the dry season in late July 2013. Both the enhanced and non-enhanced nitrogen treatments had an immediate pronounced response to the wet-up stimulation in which efflux rates increased by an average of more than six-fold. In contrast with previous studies of soil carbon dioxide efflux at JRGCE during the wet season in which N enrichment elevated efflux rates relative to controls, however, the soil carbon dioxide efflux rates in response

  14. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States

    SciTech Connect

    Bowden, R.D.; Steudler, P.A.; Melillo, J.M. ); Aber, J. )

    1990-08-20

    Nitrous oxide (N{sub 2}O) fluxes were measured from soils in a red pine plantation and a mixed hardwood stand in the northeastern US. On an annual basis, the pine stand had an efflux of 0.010 {plus minus} 0.015 kg N/ha/yr and the hardwood stand had an efflux of 0.017 {plus minus} 0.017 kg N/ha/yr. Low net nitrification rates in both stands are suggested as the reason for the low rates of N{sub 2}O emissions. Slight seasonal trends were noted in both stands, with highest efflux rates in early summer and late fall. Both stands showed small but extended periods of uptake during summer and early fall. Diel patterns were not observed in either stand. This study suggests that on a global basis, a lower limit for N{sub 2}O emissions from temperate forests is 0.012 Tg N/yr, contributing less than 1% of the estimated total emissions from terrestrial sources.

  15. Effects of annual tillage on organic carbon in a fine-textured udalf: The importance of root dynamics to soil carbon storage

    SciTech Connect

    Richter, D.D. ); Babbar, L.I.; Jaeger, M. ); Huston, M.A. )

    1990-02-01

    Seven years of annual tillage of a fine-textured Hapludalf, cleared of forest about 160 yr ago and more recently cropped for hay, caused grasses to be replaced by annual herbs. Tillage decreased carbon (C) stored in the surface meter of soil, mainly by altering plant species composition. Carbon storage in the surface 15 cm of soil was reduced by 24%, i.e., by 679 g C/m{sup 2}, 76% of which was due to a reduction in root biomass. Relatively small changes were found in mineral soil organic C from annual tillage, i.e., about 1 mg C/g soil. Results illustrate a dual-component cycle of soil organic C that appears especially pronounced in these fine-textured soils: (1) a rapidly cycling, plant-dominated C pool, and (2) a much more slowly cycling resistant C pool at least partly bound to clay-mineral surfaces. The dynamics of root C can be a dominant factor to the C balance of tilled and cropped soils. In the present study, root C in untilled plots totaled only about one-quarter of the total C in the 0- to 15-cm depth of soil, yet reductions in root C accounted for three-quarters of the total loss of C below ground. To determine effects of land use on soil C, soil samplings must distinguish clearly between effects on plant roots from those on mineral-soil organic matter.

  16. Effects of simulated acid rain on nutrient uptake in annual rye grass grown in surface mine soil

    SciTech Connect

    Martin, A.; Aharrah, E.C.

    1984-12-01

    This study was performed to determine the effects of simulated acid rain on the growth, along with the Fe, Mn, and Al concentrations found in a common revegetation species, annual rye grass, Lolium multiflorum Lam. Annual rye grass seeds were planted in two sets of pots. One set was filled with potting soil and the other with surface mine soil. Both sets were divided into three groups, each receiving applications of simulated acid rain of either pH 5.7, 4.0, or 3.0. After five weeks of growth, grasses from each pot were harvested. Dry weight, root length, leaf blade length, plant number, and concentrations of Al, Mn, and Fe were determined for each sample. There was an observable decrease in plant growth and number as the pH decreased. Seed germination ranged from six to ten days longer in pots receiving waterings of pH 3.0 compared to those with a pH of 5.7. The concentrations of Al and Fe increased in the plants between treatments 4.0 and 3.0. Mn concentrations were unaffected by pH. Plants grown in mine soil produced less biomass and showed an increase in Al, Mn, and Fe content as compared to those plants grown in potting soil.

  17. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    PubMed

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health.

  18. Annual grass invasion in sagebrush-steppe: The relative importance of climate, soil properties and biotic interactions

    USGS Publications Warehouse

    Bansal, Sheel; Sheley, Roger L.

    2016-01-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km2 area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  19. Invasion of a semi-arid shrubland by annual grasses increases autotrophic and heterotrophic soil respiration rates due to altered soil moisture and temperature patterns

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Hale, I.; Lipson, D.

    2010-12-01

    Shrub <-> grassland conversions are a globally occurring phenomenon altering habitat structure, quality and nutrient cycling. Grasses and shrubs differ in their above and belowground biomass allocation, root architecture, phenology, litter quality and quantity. Conversion affects soil microbial communities, soil moisture and temperature and carbon (C) allocation patterns. However, the effect of conversion on C storage is regionally variable and there is no consistent direction of change. In Southern California invasion by annual grasses is a major threat to native shrub communities and it has been proposed that grass invasion increases NPP and ecosystem C storage (Wolkovich et al, 2009). In order to better understand how this shrub <-> grassland conversion changes ecosystem C storage it is important to understand the partitioning of soil respiration into autotrophic and heterotrophic components. Respiration was measured in plots under shrubs and grasses from February when it was cold and wet to July when it was hot and dry, capturing seasonal transitions in temperature and water availability. Roots were excluded under shrubs and grasses with root exclusion cores to quantify heterotrophic respiration. Using total soil respiration (Rt) = autotrophic respiration (root) (Ra)+ heterotrophic respiration (microbial) (Rh) the components contributing to total soil respiration can be evaluated. Respiration, soil moisture and temperature were measured daily at four hour intervals using Licor 8100 automated chamber measurements. Throughout the measurement period, Rt under grasses exceeded Rt under shrubs. Higher Rt levels under grasses were mainly due to higher Ra in grasses rather than changes in Rh. On average grass Ra was almost double shrub Ra. Higher grass respiration levels are partially explained by differences in soil moisture and temperature between shrubs and grasses. Respiration rates responded similarly to seasonal transitions regardless of treatment although Ra

  20. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    SciTech Connect

    Jantzen, C.M.

    1999-03-15

    Vitrification is the technology that has been chosen to solidify approximately 18,000 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty.

  1. Status of decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1996-12-31

    The Fernald Environmental Management Project (FEMP) was formally closed and the mission of the facility was officially redirected toward environmental restoration in August 1991. Many of the production facilities and equipment still contained quantities of raw, intermediate, and finished production-related materials. The safe Shutdown program was initiated to remove and properly disposition all nuclear product and in process residue materials, supplies, chemicals, and associated process equipment that was abandoned in place when FEMP stopped production in 1989. As part of the remedial design of the interim remedial action, a schedule for building dismantlement was submitted in June 1995. A 31-year schedule was developed, based on anticipation of reduced funding levels. However, recent cleanup successes at Fernald led to DOE endorsement of greater funding for the final cleanup, accelerating the schedule for Operable Unit 3 dismantlement, reducing the schedule to ten years. Under the accelerated schedule, several plants will be dismantled, starting in 1996.

  2. Radiological release criteria at the Fernald Environmental Management Project theory and practice

    SciTech Connect

    Lehrter, R.W.

    1995-01-17

    As environmental restoration activities progress at the DOE`s Fernald site, and across the country, large volumes of radioactive scrap metal (RSM) are being generated. Despite the existence of ``free-release`` guidelines from DOE. The strategy of onsite decontamination and release of RSM for unrestricted use has been generally overlooked in recent years. A pilot project was completed at Fernald in which 120 tons of RSM were decontaminated onsite and released for unrestricted use. This paper compares that strategy to more traditional DOE RSM management practices. Many options exist for managing RSM. DOE orders dictate that contractors demonstrate flexibility in utilizing a combination of techniques to optimize the benefits of waste management activates. The FERMCO Recycling Department led an effort to provide their customer with an economical alternative to the traditional approach of burying contaminated metal as LLW, based on established DOE free-release guidelines.

  3. Processing of uranyl nitrate hexahydrate (UNH) at DOE`s Fernald Site: Success and pitfalls

    SciTech Connect

    Luken, D.W.; Brettschneider, D.J.; Heck, R.P. III; White, C.A.

    1996-02-01

    After 36 years of operation, uranium production at the Department of Energy Fernald Environmental Management Project (FEMP) was halted in 1989. Uranyl Nitrate Hexahydrate (UNH) had been produced during the uranium refining. In June 1991, DOE determined the UNH to be a mixed hazardous waste under the Resource Conservation and Recovery Act. A UNH Neutralization Project began processing UNH stored in stainless steel tanks located in various areas within the Fernald Plant 2/3 Complex. It was discovered that the valves, flanges, and other fittings of the UNH storage tanks were leaking. This made processing the UNH a high priority and Comprehensive, Environmental, Response, Compensation, and Liability Act Removal Action No. 20, Stabilization of UNH Inventories, was initiated. This report presents the successes and pitfalls of the cleanup of UNH.

  4. Aerial and soil seed banks enable populations of an annual species to cope with an unpredictable dune ecosystem

    PubMed Central

    Gao, Ruiru; Yang, Xuejun; Yang, Fan; Wei, Lingling; Huang, Zhenying; Walck, Jeffrey L.

    2014-01-01

    Background and Aims Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. Methods Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. Key Results The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. Conclusions The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment. PMID:24918206

  5. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska.

    PubMed

    Pérez-Hernández, Oscar; Giesler, Loren J

    2014-06-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm(3) of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160

  6. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska.

    PubMed

    Pérez-Hernández, Oscar; Giesler, Loren J

    2014-06-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm(3) of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group.

  7. Automated container transportation using self-guided vehicles: Fernald site requirements

    SciTech Connect

    Hazen, F.B.

    1993-09-01

    A new opportunity to improve the safety and efficiency of environmental restoration operations, using robotics has emerged from advances in industry, academia, and government labs. Self-Guided Vehicles (SGV`s) have recently been developed in industry and early systems have already demonstrated much, though not all, of the functionality necessary to support driverless transportation of waste within and between processing facilities. Improved materials databases are being developed by at least two DOE remediation sites, the Fernald Environmental Management Project (FEME) in the State of Ohio and the Hanford Complex in the State of Washington. SGV`s can be developed that take advantage of the information in these databases and yield improved dispatch, waste tracking, report and shipment documentation. In addition, they will reduce the radiation hazard to workers and the risk of damaging containers through accidental collision. In this document, features of remediation sites that dictate the design of both the individual SGV`s and the collective system of SGV`s are presented, through the example of the site requirements at Fernald. Some concepts borrowed from the world of manufacturing are explained and then used to develop an integrated, holistic view of the remediation site as a pseudo-factory. Transportation methods at Fernald and anticipated growth in transport demand are analyzed. The new site-wide database under development at Fernald is presented so that advantageous and synergistic links between SGV`s and information systems can be analyzed. Details of the SGV development proposed are submitted, and some results of a recently completed state of the art survey for SGV use in this application are also presented.

  8. The strategy for assessing risks associated with remediation of the former production area at Fernald

    SciTech Connect

    Davis, M.; Avci, H.; Picel, K.; Janke, R.J.

    1993-10-01

    The strategy for assessing the risks associated with the remediation of the former Production Area at the Fernald Environmental Management Project is discussed. The general approach to risk assessment is strongly influenced by a number of factors related to the nature of the site and to management proposals that have been made concerning the site. How these factors affect the approach to assessing baseline risks, to assessing risks associated with remedial activity, and to establishing cleanup criteria are examined.

  9. Suppression of annual Bromus tectorum by perennial Agropyon cristatum: roles of soil N availability and biological soil space

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide, exotic invasive grasses have caused numerous ecosystem perturbations. Rangelands of the western United States have experienced increases in the size and frequency of wildfires largely due to invasion by the annual grass Bromus tectorum. Rehabilitation of invaded rangelands is difficult; b...

  10. Linking microbial comunity composition and soil processes in acalifornia annual grassland and mixed-conifer forest

    SciTech Connect

    Balser, T.C.; Firestone, M.K.

    2003-07-21

    To investigate the potential role of microbial community composition in soil carbon and nitrogen cycling, we transplanted soil cores between a grassland and a conifer ecosystem in the Sierra Nevada California and measured soil process rates (N-mineralization, nitrous oxide and carbon dioxide flux, nitrification potential), soil water and temperature, and microbial community parameters (PLFA and substrate utilization profiles) over a 2 year period. Our goal was to assess whether microbial community composition could be related to soil process rates independent of soil temperature and water content. We performed multiple regression analyses using microbial community parameters and soil water and temperature as X-variables and soil process rates and inorganic N concentrations as Y-variables. We found that field soil temperature had the strongest relationship with CO2 production and soil NH4+ concentration, while microbial community characteristics correlated with N2O production, nitrification potential, gross N-mineralization, and soil NO3 concentration, independent of environmental controllers. We observed a relationship between specific components of the microbial community (as determined by PLFA) and soil processes, particularly processes tightly linked to microbial phylogeny (e.g. nitrification). The most apparent change in microbial community composition in response to the 2 year transplant was a change in relative abundance of fungi (there was only one significant change in PLFA biomarkers for bacteria during 2years). The relationship between microbial community composition and soil processes suggests that prediction of ecosystem response to environmental change may be improved by recognizing and accounting for changes in microbial community composition and physiological ecology.

  11. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.

  12. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: Implications for soil acidification

    NASA Astrophysics Data System (ADS)

    McGee, Kenneth A.; Gerlach, Terrence M.

    1998-05-01

    Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995 1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65% 100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of <4.2, acid loading of up to 7 keqH+ · ha-1 · yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.

  13. Uranium removal from soils: An overview from the Uranium in Soils Integrated Demonstration program

    SciTech Connect

    Francis, C.W.; Brainard, J.R.; York, D.A.; Chaiko, D.J.; Matthern, G.

    1994-09-01

    An integrated approach to remove uranium from uranium-contaminated soils is being conducted by four of the US Department of Energy national laboratories. In this approach, managed through the Uranium in Soils Integrated Demonstration program at the Fernald Environmental Management Project, Fernald, Ohio, these laboratories are developing processes that selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste that is difficult to manage or dispose of. These processes include traditional uranium extractions that use carbonate as well as some nontraditional extraction techniques that use citric acid and complex organic chelating agents such as naturally occurring microbial siderophores. A bench-scale engineering design for heap leaching; a process that uses carbonate leaching media shows that >90% of the uranium can be removed from the Fernald soils. Other work involves amending soils with cultures of sulfur and ferrous oxidizing microbes or cultures of fungi whose role is to generate mycorrhiza that excrete strong complexers for uranium. Aqueous biphasic extraction, a physical separation technology, is also being evaluated because of its ability to segregate fine particulate, a fundamental requirement for soils containing high levels of silt and clay. Interactions among participating scientists have produced some significant progress not only in evaluating the feasibility of uranium removal but also in understanding some important technical aspects of the task.

  14. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halgeton glomeratus

    USGS Publications Warehouse

    Duda, Jeffrey J.; Freeman, D. Carl; Emlen, John M.; Belnap, Jayne; Kitchen, Stanley G.; Zak, John C.; Sobek, Edward; Tracy, Mary; Montante, James

    2003-01-01

    Various biotic and abiotic components of soil ecology differed significantly across an area whereHalogeton glomeratus is invading a native winterfat, [ Krascheninnikovia (= Ceratoides) lanata] community. Nutrient levels were significantly different among the native, ecotone, and exotic-derived soils. NO3, P, K, and Na all increased as the cover of halogeton increased. Only Ca was highest in the winterfat area. A principal components analysis, conducted separately for water-soluble and exchangeable cations, revealed clear separation between halogeton- and winterfat-derived soils. The diversity of soil bacteria was highest in the exotic, intermediate in the ecotone, and lowest in the native community. Although further studies are necessary, our results offer evidence that invasion by halogeton alters soil chemistry and soil ecology, possibly creating conditions that favor halogeton over native plants.

  15. Community Surveys: Low Dose Radiation. Fernald, Ohio and Rocky Flats, Colorado

    SciTech Connect

    C. K. Mertz; James Flynn; Donald G. MacGregor; Theresa Satterfield; Stephen M. Johnson; Seth Tuler; Thomas Webler

    2002-10-16

    This report is intended to present a basic description of the data from the two community surveys and to document the text of the questions; the methods used for the survey data collection; and a brief overview of the results. Completed surveys were conducted at local communities near the Rocky Flats, Colorado and the Fernald, Ohio sites; no survey was conducted for the Brookhaven, New York site. Fernald. The Fernald sample was randomly selected from 98% of all potential residential telephones in the townships of Ross, Morgan, and Crosby. The only telephone exchanges not used for the Fernald study had 4%, or fewer, of the holders of the telephone numbers actually living in either of the three target townships. Surveying started on July 24, 2001 and finished on August 30, 2001. A total of 399 completed interviews were obtained resulting in a CASRO response rate of 41.8%. The average length of an interview was 16.5 minutes. Rocky Flats. The sample was randomly selected from all potential residential telephones in Arvada and from 99% of the potential telephones in Westminster. Surveying started on August 10, 2001 and finished on September 25, 2001. A total of 401 completed interviews were obtained with a CASRO response rate of 32.5%. The average length of an interview was 15.7 minutes. Overall, respondents hold favorable views of science. They indicate an interest in developments in science and technology, feel that the world is better off because of science, and that science makes our lives healthier, easier, and more comfortable. However, respondents are divided on whether science should decide what is safe or not safe for themselves and their families. The majority of the respondents think that standards for exposure to radiation should be based on what science knows about health effects of radiation and on what is possible with today's technology. Although few respondents had visited the sites, most had heard or read something about Fernald or Rocky Flat s in the

  16. Annual carbon dioxide cycle in a montane soil: observations, modeling, and implications for weathering

    SciTech Connect

    Solomon, D.K.; Cerling, T.E.

    1987-12-01

    Profiles of CO/sub 2/ concentrations in soil and snow, soil respiration, soil and snow temperatures, and shallow ground water chemistry were monitored from March 1984 to July 1985 in a montane region neat Brighton, Utah. Significant seasonal variations in the concentrations of CO/sub 2/ in soil and snow occurred, and two principal rise-decline cycles were observed. During the first cycle the concentration of soil CO/sub 2/ at 35 cm rose from 4200 ppmv in July to a maximum of 12,400 ppmv in August and then declined to 4300 ppmv by October. This cycle is attributed to the changing production rate of soil CO/sub 2/ during the growing season. During the second cycle the concentration of CO/sub 2/ at 35 cm began to rise in November, reached a maximum of 7200 ppmv in early spring, and quickly declined to 3200 ppmv by late spring shortly after the snow cover had melted. This cycle is attributed to deterioration in the exchange of CO/sub 2/ between the soil and atmosphere due to a deep snowpack. A model based on Fick's second law of diffusion was developed to account for the temporal and spatial distribution of soil CO/sub 2/. The model predicts that soil CO/sub 2/ at 35 cm is increased by as much as 15 times due to the deep snowpack. The elevated concentration of soil CO/sub 2/, abundance of water, and above-freezing soil temperatures imply that significant soil weathering occurs during the winter in montane regions.

  17. Effect of Potassium on Uptake of 137Cs in Food Crops Grown on Coral Soils: Annual Crops at Bikini Atoll

    SciTech Connect

    Stone, E R; Robinson, W

    2002-02-01

    In 1954 a radioactive plume from the thermonuclear device code named BRAVO contaminated the principal residential islands, Eneu and Bikini, of Bikini Atoll (11{sup o} 36 minutes N; 165{sup o} 22 minutes E), now part of the Republic of the Marshall Islands. The resulting soil radioactivity diminished greatly over the three decades before the studies discussed below began. By that time the shorter-lived isotopes had all but disappeared, but strontium-90 ({sup 90}Sr), and cesium-137, ({sup 137}Cs) were reduced by only one half-life. Minute amounts of the long-lived isotopes, plutonium-239+240 ({sup 239+240}Pu) and americium-241 ({sup 241}Am), were present in soil, but were found to be inconsequential in the food chain of humans and land animals. Rather, extensive studies demonstrated that the major concern for human health was {sup 137}Cs in the terrestrial food chain (Robison et al., 1983; Robison et al., 1997). The following papers document results from several studies between 1986 and 1997 aimed at minimizing the {sup 137}Cs content of annual food crops. The existing literature on radiocesium in soils and plant uptake is largely a consequence of two events: the worldwide fallout of 1952-58, and the fallout from Chernobyl. The resulting studies have, for the most part, dealt either with soils containing some amount of silicate clays and often with appreciable K, or with the short-term development of plants in nutrient cultures.

  18. The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales

    NASA Astrophysics Data System (ADS)

    Draper, C.; Reichle, R.

    2015-12-01

    A 9 year record of Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10-3 m3 m-3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.

  19. The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual time scales

    NASA Astrophysics Data System (ADS)

    Draper, C.; Reichle, R.

    2015-08-01

    Nine years of Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased Mean Square Error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas) and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10-3 m3 m-3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of one year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only one year of data is available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, but locally and in extreme years there is a risk of increased errors.

  20. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    SciTech Connect

    Powell, Jane; Schneider, Tom; Hertel, Bill; Homer, John

    2013-07-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  1. Crop rotations with annual and perennial forages under no-till soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] stover dry weig...

  2. Altered Seasonality and Magnitude of Rainfall Affects Soil Respiration and Nitrous Oxide Fluxes in California Annual Grassland

    NASA Astrophysics Data System (ADS)

    Chou, W. W.; Silver, W. L.; Jackson, R. D.; Allen-Diaz, B.

    2004-12-01

    Currently, climate models do not agree on how rising concentrations of CO2 and other greenhouse gases will affect rainfall in California. Changes in moisture regime will likely alter rates of carbon (C) loss via soil respiration, as well as fluxes of N2O. Moisture availability can also affect plant productivity in highly seasonal environments. We examined the consequences of wetter conditions in an annual grassland in the Sierra foothills of northern California by extending the duration of the wet season by about 5 weeks and augmenting total annual rainfall by approximately 50 %. Discrete wet-up events took place prior to the onset of natural rains (early October 2003) and early in the drought period (May 2004). Soil respiration, N2O and CH4 effluxes, N mineralization, and above- and belowground plant production were measured in treatment and control plots over a one-year period. Soil CO2 fluxes for the first treatment year, though large, were not statistically different between wet and control plots (1078 \\pm148 g C m-2 and 1006 \\pm138 g C m-2, respectively). The combined wet-up events comprised 17 % of the soil respiration over the 12-month period in treated plots, about twice as much C released by control plots during the same time interval. Aboveground biomass was similar between wetted and control plots (415 \\pm45 g m-2 y-1 and 374 \\pm36 g m-2 y-1, respectively), while root biomass increased significantly with wetting during the first year of treatment (179 \\pm23 g m-2 y-1 and 111 \\pm13 g m-2 y-1 for treatment and control plots, respectively). The additional biomass C gained in treatment plots (53 g C m-2) partly offset the greater losses from respired C observed in treatment plots (72 g C m-2). Nitrous oxide emissions were low to negligible during the year with the exception of the time directly following wet-up, when N2O emissions averaged over 78\\pm13 ng N cm-2 h-1. Our first year of water manipulation in annual grasslands suggests that increased

  3. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  4. Fernald closure project - Lessons learned in the execution of this successful project, completed October 2006

    SciTech Connect

    Murphy, Cornelius; Reising, Johnny

    2007-07-01

    Available in abstract form only. Full text of publication follows: This paper explores the history and lessons learned on the United States' Department of Energy's (DoE's) Fernald Closure Project - from the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies that were achieved. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion dollar mega environmental-remediation project that was completed in October 2006. During a period of nearly 37 years, Fernald produced 250,000 tons of high-purity, low-enriched uranium for the U.S. defense program, generating more than six million tons of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. The project comprised four phases: 1. Determining the extent of damage to the environment and groundwater at, and adjacent to, the production facilities 2. Selecting cleanup criteria - final end states that had to be met to protect human health and the environment 3. Selecting and implementing the remedial actions that would meet the cleanup goals 4. Doing the work safely, compliantly and cost-effectively. In the project's early stages, there were strained relationships and total distrust between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. (authors)

  5. Identifying environmental safety and health requirements for the Fernald Environmental Restoration Management Corporation

    SciTech Connect

    Beckman, W.H.; Cossel, S.C.; Alhadeff, N.; Porco, D.J.; Lindamood, S.B.; Beers, J.A.

    1994-01-14

    This presentation will describe the Fernald Environmental Restoration Management Corporation`s (FERMCO) Standards/Requirements Identification Documents (S/RlDs) Program, the unique process used to implement it, and the status of the program. We will also discuss the lessons learned as the program was implemented. The Department of Energy (DOE) established the Fernald site to produce uranium metals for the nation`s defense programs in 1953. In 1989, DOE suspended production and, in 1991, the mission of the site was formally changed to one of environmental cleanup and restoration. The site was renamed the Fernald Environmental Management Project (FEMP). FERMCO`s mission is to provide safe, early, and least-cost final clean-up of the site in compliance with all regulations and commitments. DOE has managed nuclear facilities primarily through its oversight of Management and Operating contractors. Comprehensive nuclear industry standards were absent when most DOE sites were first established, Management and Operating contractors had to apply existing non-nuclear industry standards and, in many cases, formulate new technical standards. Because it was satisfied with the operation of its facilities, DOE did not incorporate modern practices and standards as they became available. In March 1990, the Defense Nuclear Facilities Safety Board issued Recommendation 90-2, which called for DOE to identify relevant standards and requirements, conduct adequacy assessments of requirements in protecting environmental, public, and worker health and safety, and determine the extent to which the requirements are being implemented. The Environmental Restoration and Waste Management Office of DOE embraced the recommendation for facilities under its control. Strict accountability requirements made it essential that FERMCO and DOE clearly identify applicable requirements necessary, determine the requirements` adequacy, and assess FERMCO`s level of compliance.

  6. Annual variation of (7)Be soil inventory in a semiarid region of central Argentina.

    PubMed

    Lohaiza, F; Velasco, H; Juri Ayub, J; Rizzotto, M; Di Gregorio, D E; Huck, H; Valladares, D L

    2014-04-01

    Reliable information on environmental radionuclides atmospheric entrance, and their distribution along the soil profile, is a necessary condition for using these soil and sediment tracers to investigate key environmental processes. To address this need, (7)Be content in rainwater and the wet deposition in a semiarid region at San Luis Province, Argentina, were studied. Following these researches, in the same region, we have assessed the (7)Be content along a soil profile, during 2.5 years from September 2009 to January 2012. As expected, the specific activity values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). During the investigated period (2009 - beginning 2012) and for all sampled points, the maximum value of the (7)Be specific activity (Bq kg(-1)) was measured at the surface level. A typical decreasing exponential function of (7)Be areal activity (Bq m(-2)) with soil mass depth (kg m(-2)) was found and the key distribution parameters were determined for each month. The minimum value of areal activity was 51 Bq m(-2) in August, and the maximum was 438 Bq m(-2) in February. The relaxation mass depth ranges from 2.9 kg m(-2) in March to 1.3 kg m(-2) in August. (7)Be wet deposition can explain in a very significant proportion the (7)Be inventory in soil. During the period of winds in the region (September and October), the (7)Be content in soil was greater than the expected contribution from wet deposition, situation that is compatible with a higher relative contribution of dry deposition at this period of the year. PMID:24487256

  7. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    PubMed Central

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.

    2016-01-01

    ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789

  8. Annual variation of (7)Be soil inventory in a semiarid region of central Argentina.

    PubMed

    Lohaiza, F; Velasco, H; Juri Ayub, J; Rizzotto, M; Di Gregorio, D E; Huck, H; Valladares, D L

    2014-04-01

    Reliable information on environmental radionuclides atmospheric entrance, and their distribution along the soil profile, is a necessary condition for using these soil and sediment tracers to investigate key environmental processes. To address this need, (7)Be content in rainwater and the wet deposition in a semiarid region at San Luis Province, Argentina, were studied. Following these researches, in the same region, we have assessed the (7)Be content along a soil profile, during 2.5 years from September 2009 to January 2012. As expected, the specific activity values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). During the investigated period (2009 - beginning 2012) and for all sampled points, the maximum value of the (7)Be specific activity (Bq kg(-1)) was measured at the surface level. A typical decreasing exponential function of (7)Be areal activity (Bq m(-2)) with soil mass depth (kg m(-2)) was found and the key distribution parameters were determined for each month. The minimum value of areal activity was 51 Bq m(-2) in August, and the maximum was 438 Bq m(-2) in February. The relaxation mass depth ranges from 2.9 kg m(-2) in March to 1.3 kg m(-2) in August. (7)Be wet deposition can explain in a very significant proportion the (7)Be inventory in soil. During the period of winds in the region (September and October), the (7)Be content in soil was greater than the expected contribution from wet deposition, situation that is compatible with a higher relative contribution of dry deposition at this period of the year.

  9. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil

    PubMed Central

    Richardson, Alan E.; Wade, Len J.; Conyers, Mark; Kirkegaard, John A.

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur–C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0–10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  10. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil.

    PubMed

    Kirkby, Clive A; Richardson, Alan E; Wade, Len J; Conyers, Mark; Kirkegaard, John A

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur-C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0-10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  11. Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils.

    PubMed

    Lal, Khajanchi; Minhas, P S; Shipra; Chaturvedi, R K; Yadav, R K

    2008-03-01

    To evaluate the production potential and Cd removal by three flower crops, viz.: marigold (Tagetes erecta), chrysanthemum (Chrysanthemum indicum) and gladiolus (Gladiolus grandiflorus), an experiment was conducted on differentially contaminated soils (DTPA-Cd 0.6-68.4 mg kg(-1)). Biotoxicity of Cd lead to reductions in growth and flower yield of marigold at DTPA-Cd >or= 7.9 mg kg(-1) soil, while the productivity of chrysanthemum and gladiolus was sustained up to 21.2 mg kg(-1). DTPA-Cd for 50% yield reduction (C(50)) was 85, 106 and 215 mg kg(-1) soil for marigold, chrysanthemum and gladiolus, respectively, that indicates a better Cd-tolerance in gladiolus. The uptake of Cd increased with contents in soils and the maximum accumulation occurred in leaves. Among the economic parts, gladiolus spikes accumulated the highest Cd (7.2) followed by flowers of marigold (6.5) and chrysanthemum (4.0 mg kg(-1)). But, because of higher biomass, the total Cd removal was the maximum with chrysanthemum (8.3) followed by gladiolus (6.0) and the minimum (2.6 mg m(-2)) with marigold. Gladiolus with highest tolerance and Cd-content in saleable part holds potential to clean up the moderately contaminated soils. PMID:17452101

  12. Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils.

    PubMed

    Lal, Khajanchi; Minhas, P S; Shipra; Chaturvedi, R K; Yadav, R K

    2008-03-01

    To evaluate the production potential and Cd removal by three flower crops, viz.: marigold (Tagetes erecta), chrysanthemum (Chrysanthemum indicum) and gladiolus (Gladiolus grandiflorus), an experiment was conducted on differentially contaminated soils (DTPA-Cd 0.6-68.4 mg kg(-1)). Biotoxicity of Cd lead to reductions in growth and flower yield of marigold at DTPA-Cd >or= 7.9 mg kg(-1) soil, while the productivity of chrysanthemum and gladiolus was sustained up to 21.2 mg kg(-1). DTPA-Cd for 50% yield reduction (C(50)) was 85, 106 and 215 mg kg(-1) soil for marigold, chrysanthemum and gladiolus, respectively, that indicates a better Cd-tolerance in gladiolus. The uptake of Cd increased with contents in soils and the maximum accumulation occurred in leaves. Among the economic parts, gladiolus spikes accumulated the highest Cd (7.2) followed by flowers of marigold (6.5) and chrysanthemum (4.0 mg kg(-1)). But, because of higher biomass, the total Cd removal was the maximum with chrysanthemum (8.3) followed by gladiolus (6.0) and the minimum (2.6 mg m(-2)) with marigold. Gladiolus with highest tolerance and Cd-content in saleable part holds potential to clean up the moderately contaminated soils.

  13. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation.

    PubMed

    Suddick, Emma C; Six, Johan

    2013-11-01

    Agricultural soils are responsible for emitting large quantities of nitrous oxide (N2O). The controlled incomplete thermal decomposition of agricultural wastes to produce biochar, once amended to soils, have been hypothesized to increase crop yield, improve soil quality and reduce N2O emissions. To estimate crop yields, soil quality parameters and N2O emissions following the incorporation of a high temperature (900 °C) walnut shell (HTWS) biochar into soil, a one year field campaign with four treatments (control (CONT), biochar (B), compost (COM), and biochar+compost (B+C)) was conducted in a small scale vegetable rotation system in Northern California. Crop yields from five crops (lettuce, winter cover crop, lettuce, bell pepper and Swiss chard) were determined; there were no significant differences in yield between treatments. Biochar amended soils had significant increases in % total carbon (C) and the retention of potassium (K) and calcium (Ca). Annual cumulative N2O fluxes were not significantly different between the four treatments with emissions ranging from 0.91 to 1.12 kg N2O-N ha(-1) yr(-1). Distinct peaks of N2O occurred upon the application of N fertilizers and the greatest mean emissions, ranging from 67.04 to 151.41 g N2O-N ha(-1) day(-1), were observed following the incorporation of the winter cover crop. In conclusion, HTWS biochar application to soils had a pronounced effect on the retention of exchangeable cations such as K and Ca compared to un-amended soils and composted soils, which in turn could reduce leaching of these plant available cations and could thus improve soils with poor nutrient retention. However, HTWS biochar additions to soil had neither a positive or negative effect on crop yield nor cumulative annual emissions of N2O.

  14. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation.

    PubMed

    Suddick, Emma C; Six, Johan

    2013-11-01

    Agricultural soils are responsible for emitting large quantities of nitrous oxide (N2O). The controlled incomplete thermal decomposition of agricultural wastes to produce biochar, once amended to soils, have been hypothesized to increase crop yield, improve soil quality and reduce N2O emissions. To estimate crop yields, soil quality parameters and N2O emissions following the incorporation of a high temperature (900 °C) walnut shell (HTWS) biochar into soil, a one year field campaign with four treatments (control (CONT), biochar (B), compost (COM), and biochar+compost (B+C)) was conducted in a small scale vegetable rotation system in Northern California. Crop yields from five crops (lettuce, winter cover crop, lettuce, bell pepper and Swiss chard) were determined; there were no significant differences in yield between treatments. Biochar amended soils had significant increases in % total carbon (C) and the retention of potassium (K) and calcium (Ca). Annual cumulative N2O fluxes were not significantly different between the four treatments with emissions ranging from 0.91 to 1.12 kg N2O-N ha(-1) yr(-1). Distinct peaks of N2O occurred upon the application of N fertilizers and the greatest mean emissions, ranging from 67.04 to 151.41 g N2O-N ha(-1) day(-1), were observed following the incorporation of the winter cover crop. In conclusion, HTWS biochar application to soils had a pronounced effect on the retention of exchangeable cations such as K and Ca compared to un-amended soils and composted soils, which in turn could reduce leaching of these plant available cations and could thus improve soils with poor nutrient retention. However, HTWS biochar additions to soil had neither a positive or negative effect on crop yield nor cumulative annual emissions of N2O. PMID:23490323

  15. Pilot study risk assessment for selected problems at the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Hamilton, L.D.; Meinhold, A.F.; Baxter, S.L.; Holtzman, S.; Morris, S.C.; Pardi, R.; Rowe, M.D.; Sun, C.; Anspaugh, L.; Layton, D.

    1993-03-01

    Two important environmental problems at the USDOE Fernald Environmental Management Project (FEMP) facility in Fernald, Ohio were studied in this human health risk assessment. The problems studied were radon emissions from the K-65 waste silos, and offsite contamination of ground water with uranium. Waste from the processing of pitchblende ore is stored in the K-65 silos at the FEMP. Radium-226 in the waste decays to radon gas which escapes to the outside atmosphere. The concern is for an increase in lung cancer risk for nearby residents associated with radon exposure. Monitoring data and a gaussian plume transport model were used to develop a source term and predict exposure and risk to fenceline residents, residents within 1 and 5 miles of the silos, and residents of Hamilton and Cincinnati, Ohio. Two release scenarios were studied: the routine release of radon from the silos and an accidental loss of one silo dome integrity. Exposure parameters and risk factors were described as distributions. Risks associated with natural background radon concentrations were also estimated.

  16. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  17. Occurrence of Schoenoplectus mucronatus at the U.S. Department of Energy Fernald Preserve

    SciTech Connect

    Homer, John; Decker, Ashlee; Bien, Stephanie

    2010-01-01

    Bog bulrush (Schoenoplectus mucronatus) is a perennial wetland species native to Africa, Asia, and Europe. Its documented occurrence in the United States includes California, Hawaii, Iowa, Kentucky, Missouri, New Jersey, New York, Pennsylvania, Washington, and Tennessee. This species spreads through seed, rhizomes, and stolons, and has shown resistance to certain herbicides. Online plant databases do not show the distribution of the species reaching into Ohio or Indiana; however, local experts have indicated that specimens are in both states. Various reports indicate that S. mucronatus is locally abundant but not yet widespread regionally. In recent years, S. mucronatus has become increasingly abundant at the Fernald Preserve, a U.S. Department of Energy site in northwest Hamilton County, Ohio. The 425- hectare (1,050-acre) site has undergone extensive remediation and subsequent ecological restoration, and various wetlands have been constructed across the site. S. mucronatus was first observed at the Fernald Preserve in 2008, in one constructed basin. During monitoring in 2009, S. mucronatus was seen in 8 of 23 basins surveyed. This increase has raised concern that the species may become a regional problem. This poster aims to alert botanists and ecological restoration personnel of the species’ regional occurrence, and prompt discussion of its potential impacts and how it can be controlled.

  18. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project.

    SciTech Connect

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John, Jr.; Mann, Michael J. A.; Holt, Robert M.; Kriel, Kelly

    2007-08-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods.

  19. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.

    1998-07-07

    Vitrification is the technology that has been chosen to solidify approximately 18,000 tons of geologic mill tailings, designated as K-65 wastes, at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The glass formula developed in this study for the FEMP wastes is a lithia substituted soda-lime-lithia-silica (SLLS) composition which melts at 1050 degrees Celsius. Low melting formulations minimize volatilization of hazardous species such as arsenic, selenium, chromium, and lead during vitrification. Formulation in the SLLS system avoids problematic phase separation known to occur in the MO-B2O3-SiO2 glass forming system (where MO = CaO, MgO, BaO, and PbO which are all constituents of the FEMP wastes). The SLLS glass passed the Environmental Protection Agency (EPA) Toxic Characteristic Leach Procedure (TCLP) for all the hazardous constituents of concern under the current regulations. The SLLS glass is as durable as the high melting soda-lime-silica glasses and is more durable than the borosilicate glasses previously developed for the K-65 wastes. Optimization of glass formulations in the SLLS glass forming system should provide glasses which will pass the newly promulgated Universal Treatment Standards which take effect of August 28, 1998.

  20. Transitioning from operations to environmental restoration: Startup of the Fernald Environmental Restoration Management Contract

    SciTech Connect

    Little, C.C.; Kozlowski, D.R.

    1993-10-01

    This paper will present a description of the program undertaken by the Fernald Environmental Restoration Management Contractor (ERMC) to effect a transition from operation of the Fernald site by the past M&O contractor, WEMCO, to DOE`s new mission and contractual approach focussed on site remediation. This transition, on a first of its kind contract, represented a significant, proactive approach on the part of DOE to pursue the clean up of its weapon`s production facilities in a faster, more cost-effective manner. The paper will discuss the formal transition readiness review process and the lessons teamed by DOE and the contractor during transition. The oral presentation will be shared by both authors with one half of the time allocated to the transition readiness demonstration process and one half to the lessons learned. The objective of having a Department of Energy (DOE) Headquarters representative participate in the transition to the first ERMC was to develop a handbook to assist other sites proceeding with the ERMC concept, such as the Richland Operations Office, and to develop a lessons learned document. Because a lessons learned report is available separately, only those more significant lessons learned are highlighted in this paper.

  1. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    SciTech Connect

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C. ); Selleck, C.B. ); Jacoboski, D.L. )

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness.

  2. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    SciTech Connect

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics & Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness.

  3. Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320

    SciTech Connect

    Powel, J.; Hertel, B.; Glassmeyer, C.; Broberg, K.

    2012-07-01

    Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

  4. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability.

    PubMed

    Soong, Jennifer L; Cotrufo, M Francesca

    2015-06-01

    Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py-OM). Py-OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py-OM inputs to the soil. We compared the fate of these two forms of plant material by incubating (13) C- and (15) N-labeled Andropogon gerardii litter and py-OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py-OM C and N into uncomplexed and organo-mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py-OM added to SOM largely untransformed by soil microbes. Additionally, at the N-limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py-OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py-OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py-OM on SOM formation and ecosystem C and N cycling. PMID:25487951

  5. Diurnal, Seasonal and Inter-annual Variations of N2O Fluxes from Perennial Vineyard Soils in California, USA.

    NASA Astrophysics Data System (ADS)

    Suddick, E. C.; Carlisle, E. A.; Spencer, R. G.; Smart, D. R.

    2007-12-01

    The USA emits 1562 million metric tons of carbon equivalents a year, whereby this value is projected to rise by an estimated 14 % in 2012. California is the 12th major global emitter of greenhouse gases, emitting approximately 500 million metric tons of carbon equivalents a year. 84 % of greenhouse gas emissions are from CO2, 7 % and 6 % from N2O and CH4 respectively and approximately 8 % of these emissions are derived from agricultural activities. The concentration of nitrous oxide (N2O) within the atmosphere has been increasing at a rate of approximately 0.27 % per year and has mainly been attributed to agricultural practices such as land-use changes, biomass burning, nitrogen fertilization, livestock and manure management. Agriculture related activities generate from 6 to 35 Tg N2O-N per year, or about 60 to 70 % of global production. The primary biogenic sources of N2O are from terrestrial soils, which are thought to be a major source of N2O to the atmosphere and mainly involve the microbial nitrogen transformations brought about by nitrification and denitrification. The aim of this study was to quantify the seasonal and inter-annual variability of N2O emissions and nitrogen cycling from a conventionally tilled wine grape vineyard in Napa, California during a two year closed static chamber study and to also investigate the diurnal N2O flux pattern and effects of fertilization management practices on emissions within a table grape vineyard in Delano, California. Preliminary data shows that the annual N2O fluxes were influenced by soil properties, management practices and weather such as precipitation events where increases in N2O emissions were observed after irrigation or fertilization practices and immediately following rainfall. Vineyard floor and vine management will be discussed in terms of the significance management practices have upon the release of N2O emissions from vineyard soils where the high water and nitrogen fertilizer usage within these

  6. De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method.

    PubMed

    Li, Chen; Pan, Zengxin; Mao, Feiyue; Gong, Wei; Chen, Shihua; Min, Qilong

    2015-10-01

    The signal-to-noise ratio (SNR) of an atmospheric lidar decreases rapidly as range increases, so that maintaining high accuracy when retrieving lidar data at the far end is difficult. To avoid this problem, many de-noising algorithms have been developed; in particular, an effective de-noising algorithm has been proposed to simultaneously retrieve lidar data and obtain a de-noised signal by combining the ensemble Kalman filter (EnKF) and the Fernald method. This algorithm enhances the retrieval accuracy and effective measure range of a lidar based on the Fernald method, but sometimes leads to a shift (bias) in the near range as a result of the over-smoothing caused by the EnKF. This study proposes a new scheme that avoids this phenomenon using a particle filter (PF) instead of the EnKF in the de-noising algorithm. Synthetic experiments show that the PF performs better than the EnKF and Fernald methods. The root mean square error of PF are 52.55% and 38.14% of that of the Fernald and EnKF methods, and PF increases the SNR by 44.36% and 11.57% of that of the Fernald and EnKF methods, respectively. For experiments with real signals, the relative bias of the EnKF is 5.72%, which is reduced to 2.15% by the PF in the near range. Furthermore, the suppression impact on the random noise in the far range is also made significant via the PF. An extensive application of the PF method can be useful in determining the local and global properties of aerosols.

  7. Temperature exerts no influence on organic matter δ13C of surface soil along the 400 mm isopleth of mean annual precipitation in China

    NASA Astrophysics Data System (ADS)

    Jia, Yufu; Wang, Guoan; Tan, Qiqi; Chen, Zixun

    2016-09-01

    Soil organic carbon is the largest pool of carbon in the terrestrial ecosystem, and its isotopic composition is affected by a number of factors. However, the influence of environmental factors, especially temperature, on soil organic carbon isotope values (δ13CSOM) is poorly constrained. This impedes the application of the variability of organic carbon isotopes to reconstructions of paleoclimate, paleoecology, and global carbon cycling. Given the considerable temperature gradient along the 400 mm isohyet (isopleth of mean annual precipitation - MAP) in China, this isohyet provides ideal experimental sites for studying the influence of temperature on soil organic carbon isotopes. In this study, the effect of temperature on surface soil δ13C was assessed by a comprehensive investigation of 27 sites across a temperature gradient along the isohyet. Results demonstrate that temperature does not play a role in soil δ13C. This suggests that organic carbon isotopes in sediments cannot be used for paleotemperature reconstruction and that the effect of temperature on organic carbon isotopes can be neglected in the reconstruction of paleoclimate and paleovegetation. Multiple regressions with MAT (mean annual temperature), MAP, altitude, latitude, and longitude as independent variables and δ13CSOM as the dependent variable show that these five environmental factors together account for only 9 % of soil δ13C variance. However, one-way ANOVA analyses suggest that soil type and vegetation type are significant factors influencing soil δ13C. Multiple regressions, in which the five aforementioned environmental factors were taken as quantitative variables, and vegetation type, soil type based on the Chinese Soil Taxonomy, and World Reference Base (WRB) soil type were separately used as dummy variables, show that 36.2, 37.4, and 29.7 %, respectively, of the variability in soil δ13C are explained. Compared to the multiple regressions in which only quantitative environmental

  8. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    PubMed

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had

  9. Measurement of Radon, Thoron, Isotopic Uranium and Thorium to Determine Occupational and Environmental Exposure and Risk at Fernald Feed Material Production Center

    SciTech Connect

    Naomi H. Harley, Ph.D.

    2004-07-01

    To develop a new and novel area and personal radon/thoron detector for both radon isotopes to better measure the exposure to low airborne concentrations of these gases at Fernald. These measurements are to be used to determine atmospheric dispersion and exposure to radon and thoron prior to and during retrieval and removal of the 4000 Ci of radium in the two silos at Fernald.

  10. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  11. The art of implosions has impacted the success of three decontamination and decommissioning projects at Fernald

    SciTech Connect

    Borgman, T.D.

    1997-12-01

    The Department of Energy (DOE) at the Fernald Environmental Management Project (FEMP), near Cincinnati, Ohio, has successfully impacted the safety, cost and schedule goals of the Decontamination and Dismantling (D&D) Program by using the art of implosions. An implosion is the act of bringing a structure down in a well planned and directed manner using explosive materials. Three major structures in three separate projects were imploded using this well known commercial technology. Safety is, and will always be, the major consideration with each of the projects. As each project succeeded another, the work process used new and improved methods to lower the risk to the environment, provide a safer workplace by reducing the exposure of high risk work and reducing the spread of lead, asbestos and radioactive materials. The time frame for dismantlement of the steel structures was greatly improved, thus reducing the total project cost. The lessons learned were incorporated from one project to another, to continually improve the work process. A number of alternatives were considered for the removal of the structures, seven, four and three stories in height. The subcontractor and its demolition sub-tier contractor worked in a fixed price lump sum contract environment. While skeptical at first, the subcontractor realized the benefits of the technology, a win-win situation for all participants. The overall planning of each of the events was tied to the needs of the client (DOE), the stakeholders and the community surrounding the site, and the continuing progress at the Fernald site. The recording and application of several key lessons learned in the sequence of implosions, will be the key issues of interest in this paper. Each project offered interesting opportunities for contingency planning, coordination, safety culture adjustments, and high regard for the protection of surrounding structures.

  12. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    SciTech Connect

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO`s proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO`s cleanup mission. FERMCO`s goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo.

  13. Effects of dairy manure management in annual and perennial cropping systems on soil microbial communities associated with in situ N2O fluxes

    NASA Astrophysics Data System (ADS)

    Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia

    2016-04-01

    Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil

  14. Responses of two summer annuals to interactions of atmospheric carbon dioxide and soil nitrogen

    SciTech Connect

    Thomas, R.B.

    1987-01-01

    The competitive relationship between Chenopodium album L. (C{sub 3}) and Amaranthus hybridus L. (C{sub 4}) was investigated in two atmospheric CO{sub 2} levels and tow soil nitrogen levels. Biomass and leaf surface area of Amaranthus plants did not respond to CO{sub 2} enrichment. Only in high nitrogen did Chenopodium plants respond to increased CO{sub 2} with greater biomass and leaf surface area. Nitrogen use efficiency (NUE) was higher in Amaranthus than in Chenopodium in all treatments except for the high-nitrogen high-CO{sub 2} treatment. Under conditions of high nitrogen and low CO{sub 2}, Chenopodium was a poor competitor, but competition favored Chenopodium in high nitrogen and high CO{sub 2}. In low nitrogen and high CO{sub 2}, competition favored Chenopodium on a dry weight basis, but favored Amaranthus on a seed weight basis, reflecting early senescence of Chenopodium. In low nitrogen and high CO{sub 2}, competition favored Amaranthus on a dry weight basis, but favored Chenopodium on a seed weight basis. Physiological aspects of the growth of Chenopodium and Amaranthus were studied. Acclimation to elevated CO{sub 2} occurred at the enzyme level in Chenopodium. Under conditions of high nitrogen and no competition, individual Chenopodium plants responded to elevated CO{sub 2} with greater biomass, leaf surface area, and maximum net photosynthetic rates. In high nitrogen, leaf nitrogen, soluble protein, and RuBP carboxylase activity of Chenopodium decreased and NUE increased when grown in elevated CO{sub 2}. In low nitrogen without competition, Chenopodium showed no significant response to CO{sub 2} enrichment. Amarantus grown in high and low nitrogen without competition showed no significant changes in leaf nitrogen, soluble protein, carboxylase activity, chlorophyll, or NUE of in response to CO{sub 2} enrichment.

  15. Selective leaching of uranium from uranium-contaminated soils

    SciTech Connect

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Lee, S.Y.; Elless, M.P. |

    1993-06-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminate or remove uranium to acceptable regulatory levels. The objective was to selectively extract uranium using a soil washing/extraction process without seriously degrading the soil`s physicochemical characteristics or generating a secondary waste form that would be difficult to manage and/or dispose of. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. One of the soils is from near the Plant 1 storage pad and the other soil was taken from near a waste incinerator used to burn low-level contaminated trash. The third soil was a surface soil from an area formally used as a landfarm for the treatment of spent oils at the Oak Ridge Y-12 Plant. The sediment sample was material sampled from a storm sewer sediment trap at the Oak Ridge Y-12 Plant. Uranium concentrations in the Fernald soils ranged from 450 to 550 {mu}g U/g of soil while the samples from the Y-12 Plant ranged from 150 to 200 {mu}g U/g of soil.

  16. A Top-down soil moisture and sap flux sampling design to capture the effect of inter-annual climate variability on ecohydrology in mountain catchments

    NASA Astrophysics Data System (ADS)

    Son, K.; Tague, C.

    2010-12-01

    Soil moisture in mountain catchments is highly spatial heterogeneous due to steep topographic gradients, complex soil and vegetation patterns and seasonally varying energy and precipitation inputs. In an idealized setting, a randomized soil moisture sampling design with high spatial frequency can be used to resolve the spatial heterogeneity of soil moisture at catchment scales. However, this bottom-up approach is constrained by the feasibility of high frequency measurements particularly in mountain environments with limited accessibility. Thus, in these mountain environments, an alternative, top-down approach is often needed. In this study, we propose the top-down approach sampling design of soil moisture and sapflux measurement based on an ecohydrologic model and clustering analysis. The sampling strategy is explicitly designed to capture the effect of inter-annual climate variability on ecohydrolgy response of mountain catchments located in King River Experiment Watersheds, Sierra National Forest. The ecohydrolgic model (RHESSys model) is calibrated with existing collected data sets including snow depth, soil moisture, sapflux, evapotranspiration from a flux tower and streamflow. The model is used to generate spatial-temporal patterns of snow accumulation and melt, soil moisture and transpiration and compute inter-annual mean and coefficient of variation of five hydrologic similarity indices. Similarity indices are chosen to reflect seasonal trajectories of snowmelt, root-zone soil moisture storage and evapotranspiration. Clustering analysis, using Partitioning Around Medoid (PAM), is used to partition the watershed based on these similarity indices. For the Kings River Experimental Watersheds, clustering distinguished six clusters and a representative plot per cluster. These results were used to identify additional strategic sampling points within the watershed. For each of these points, we installed soil moisture sensors (5TE) at the two depths (30m and 90m

  17. Response of total belowground carbon flux and soil organic carbon storage to increasing mean annual temperature in Hawaiian tropical montane wet forest.

    NASA Astrophysics Data System (ADS)

    Giardina, C. P.; Litton, C. M.; Crow, S. E.

    2011-12-01

    Controls on the allocation of carbon belowground by plants and the retention of this carbon as new soil organic carbon are poorly quantified, yet exert a large influence on the carbon balance of the terrestrial biosphere. While many studies have now quantified total belowground carbon flux (TBCF), and general global patterns have been identified, rigorous field tests of the effects of climate variables on TBCF do not yet exist, and the conversion of TBCF into soil organic carbon - particularly long-lived soil organic carbon - has received little attention. These represent critical gaps in our understanding of terrestrial carbon cycling, and currently severely constrain efforts to model climate change impacts on belowground carbon processes and storage. We have established a model mean annual temperature gradient spanning 5.2°C in Hawaiian tropical montane wet forests where soil type and age, soil moisture balance, vegetation composition, and disturbance history do not co-vary with temperature. We found that TBCF increases by a factor of two over the 5.2°C MAT gradient in response to increasing ecosystem productivity, while total soil carbon storage is constant. These findings suggest that as temperatures warm, there will be a significant increase in TBCF and belowground carbon process leading to increased flux of CO2 from soils as soil respiration, but that soil organic carbon storage will be relatively insensitive to warming - at least where moisture availability is not affected by rising temperatures. While short-term responses to warming may differ, this study represents long-term insight into the impacts of rising temperatures on belowground carbon cycling and assumes that ecosystem characteristics will change with warming as quantified across this MAT gradient.

  18. Bayesian Geostatistical Model-Based Estimates of Soil-Transmitted Helminth Infection in Nigeria, Including Annual Deworming Requirements

    PubMed Central

    Oluwole, Akinola S.; Ekpo, Uwem F.; Karagiannis-Voules, Dimitrios-Alexios; Abe, Eniola M.; Olamiju, Francisca O.; Isiyaku, Sunday; Okoronkwo, Chukwu; Saka, Yisa; Nebe, Obiageli J.; Braide, Eka I.; Mafiana, Chiedu F.; Utzinger, Jürg; Vounatsou, Penelope

    2015-01-01

    Background The acceleration of the control of soil-transmitted helminth (STH) infections in Nigeria, emphasizing preventive chemotherapy, has become imperative in light of the global fight against neglected tropical diseases. Predictive risk maps are an important tool to guide and support control activities. Methodology STH infection prevalence data were obtained from surveys carried out in 2011 using standard protocols. Data were geo-referenced and collated in a nationwide, geographic information system database. Bayesian geostatistical models with remotely sensed environmental covariates and variable selection procedures were utilized to predict the spatial distribution of STH infections in Nigeria. Principal Findings We found that hookworm, Ascaris lumbricoides, and Trichuris trichiura infections are endemic in 482 (86.8%), 305 (55.0%), and 55 (9.9%) locations, respectively. Hookworm and A. lumbricoides infection co-exist in 16 states, while the three species are co-endemic in 12 states. Overall, STHs are endemic in 20 of the 36 states of Nigeria, including the Federal Capital Territory of Abuja. The observed prevalence at endemic locations ranged from 1.7% to 51.7% for hookworm, from 1.6% to 77.8% for A. lumbricoides, and from 1.0% to 25.5% for T. trichiura. Model-based predictions ranged from 0.7% to 51.0% for hookworm, from 0.1% to 82.6% for A. lumbricoides, and from 0.0% to 18.5% for T. trichiura. Our models suggest that day land surface temperature and dense vegetation are important predictors of the spatial distribution of STH infection in Nigeria. In 2011, a total of 5.7 million (13.8%) school-aged children were predicted to be infected with STHs in Nigeria. Mass treatment at the local government area level for annual or bi-annual treatment of the school-aged population in Nigeria in 2011, based on World Health Organization prevalence thresholds, were estimated at 10.2 million tablets. Conclusions/Significance The predictive risk maps and estimated

  19. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, S. O.; Hoffmann, C. C.; Schäfer, C.-M.; Blicher-Mathiesen, G.; Elsgaard, L.; Kristensen, K.; Larsen, S. E.; Torp, S. B.; Greve, M. H.

    2012-01-01

    The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH4 and N2O, and ecosystem respiration (Reco), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories were covered (arable crops, AR, grass in rotation, RG, and permanent grass, PG). The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative as compared to 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4 to 5. At six sites annual emissions of N2O were in the range 3 to 24 kg N2O-N ha-1, but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N2O-N ha-1 were recorded. The two high-emitting sites were characterized by fluctuating groundwater, low soil pH and elevated groundwater SO42- concentrations. Annual fluxes of CH4 were generally small, as expected, ranging from 2 to 4 kg CH4 ha-1. However, two permanent grasslands had tussocks of Juncus effusus L. (soft rush) in sampling points that were consistent sources of CH4 throughout the year. Emission factors for organic soils in rotation and with permanent grass, respectively, were estimated to be 0.011 and 0.47 g m-2

  20. A compendium of results from long-range alpha detector soil surface monitoring: June 1992--May 1994

    SciTech Connect

    Garner, S.E.; Bounds, J.A.; Allander, K.S.; Johnson, J.D.; MacArthur, D.W.; Caress, R.W.

    1994-11-01

    Soil surface monitors based on long-range alpha detector (LRAD) technology are being used to monitor alpha contamination at various sites in the Department of Energy complex. These monitors, the large soil-surface monitor (LSSM) and the small soil-surface monitor (SSSM), were used to help characterize sites at Fernald, Ohio, and active or inactive firing sites at Sandia National Laboratories and Los Alamos National Laboratory. Monitoring results are presented herein in chronological order.

  1. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    PubMed

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (<10 cm) caused soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season.

  2. An integrated approach to the characterization and decontamination of uranium contaminated soils

    SciTech Connect

    Tidwell, V.; Francis, C.; Armstrong, A.; Dyer, R.

    1994-02-01

    An Integrated Demonstration (ID) Program, hosted by the Fernald Environmental Restoration Management Company, has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Chemical and physical characterization of Fernald soils and the uranium wastes contained therein is being accomplished by means of standard analytical techniques as well as a suite of non-standard microscopy and spectroscopy techniques. Likewise, a suite of physical and chemical extraction technologies are being designed and tested for accomplishing soil decontamination. However, the main theme of this paper is not the technologies being tested but the approach taken to integrate characterization, decontamination, and risk assessment efforts. It is the authors intent to outline the critical components of an integrated approach for characterizing and remediating uranium contaminated soils as well as provide a real-world example based on the lessons learned in the ID program.

  3. How Plant Functional-Type, Weather, Seasonal Drought, and Soil Physical Properties Alter Water and Energy Fluxes of an Oak-Grass Savanna and an Annual Grassland

    NASA Astrophysics Data System (ADS)

    Baldocchi, D.; Xu, L.

    2003-12-01

    Savannas and open grasslands often co-exist in semi-arid regions. How these contrasting landscapes affect the exchanges of energy remain to be quantified. Here we examine how a number of abiotic, biotic and edaphic factors modulate water and energy flux densities over an oak/grass savanna and an annual grassland that coexist in the same climate but on soils with different hydraulic properties. The net radiation balance was greater over the oak woodland than the grassland despite the fact that both canopies received similar sums of incoming short and long wave radiation. The lower albedo and lower surface temperature of the transpiring woodland caused it to intercept and retain more long and shortwave energy during the dry period. The observed differences in net energy exchange had profound impacts on canopy evaporation and sensible heat exchange. The woodland evaporated about 380 mm per year and the grassland evaporated about 300 mm per year. Differences in the water holding characteristics of the soils at the two sites account for this difference in evaporation, and provide a partial explanation why the vegetation differs at the two sites. The response of evaporation to diminishing soil moisture was quantified using information on volumetric water content, soil water potential of the root zone and predawn water potential. When soil moisture was ample, after recharging winter rains, values of latent heat flux density, normalized by the equilibrium evaporation rate, were greater for the grassland than for the oak savanna. The grassland died and quit evaporating when the water content of the soil dropped below the permanent wilting point (-1.5 MPa). The oak trees, on the other hand, were able to transpire, at low rates, under very dry soil conditions (soil water potentials down to -4.0 MPa). The trees were able to endure such low water potentials and maintain basal levels of metabolism because a few exploratory roots tapped deep water sources during the dry season

  4. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, S. O.; Hoffmann, C. C.; Schäfer, C.-M.; Blicher-Mathiesen, G.; Elsgaard, L.; Kristensen, K.; Larsen, S. E.; Torp, S. B.; Greve, M. H.

    2011-10-01

    The use of organic soils by agriculture involves drainage and tillage, and the resulting increase in C and N turnover can significantly affect their greenhouse gas balance. This study estimated annual fluxes of CH4 and N2O, and ecosystem respiration (Reco), from eight organic soils managed by agriculture. The sites were located in three regions representing different landscape types and climatic conditions, and three land use categories (arable crops, AR, grass in rotation, RG, and permanent grass, PG) were covered. The normal management at each site was followed, except that no N inputs occurred during the monitoring period from August 2008 to October 2009. The stratified sampling strategy further included six sampling points in three blocks at each site. Environmental variables (precipitation, PAR, air and soil temperature, soil moisture, groundwater level) were monitored continuously and during sampling campaigns, where also groundwater samples were taken for analysis. Gaseous fluxes were monitored on a three-weekly basis, giving 51, 49 and 38 field campaigns for land use categories AR, PG and RG, respectively. Climatic conditions in each region during monitoring were representative based on 20-yr averages. Peat layers were shallow, typically 0.5 to 1 m, and with a pH of 4-5. At six sites annual emissions of N2O were in the range 3 to 24 kg N2O-N ha-1, but at two arable sites (spring barley, potato) net emissions of 38 and 61 kg N2O-N ha-1 were recorded. Both were characterized by fluctuating groundwater with elevated SO42- concentrations. Annual fluxes of CH4 were generally small, as expected, ranging from -2 to 4 kg CH4 ha-1. However, two permanent grasslands had tussocks of Juncus effusus (soft rush) in sampling points that were consistent sources of CH4 throughout the year. Emission factors for organic soils in rotation and permanent grass, respectively, were estimated to be 0.011 and 0.47 g m-2 for CH4, and 2.5 and 0.5 g m-2 for N2O. This first

  5. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  6. Developing public affairs counseling skills to support a public participation focus at Fernald

    SciTech Connect

    Hoopes, J.

    1994-03-01

    To provide closer coordination between the Public Affairs Division and environmental restoration management and technical staff, the Fernald Environmental Restoration Management Corporation (FERMCO) matrixed Public Affairs staffers as counselors to project teams within FERMCO. Close coordination between technical staff and public affairs staff is essential for effective public communication in a public participation, environmental risk communication environment. Two-way symmetrical communication (public participation) represents a paradigm shift for public affairs staff who have developed skills primarily in a public information (asymmetrical communication) environment. While there has been much focus in the literature and workshops on management changes needed to support a public participation environment, less attention has been paid to identifying and developing the skills needed by public affairs professionals to support public participation. To support the new counseling role of public affairs staffers, FERMCO used a public affairs training consultant to design and deliver a workshop to initiate development of the skills needed for the public affairs counseling role. This paper describes FERMCO`s matrixed counseling program and the training to develop public affairs counseling skills for the public participation environment.

  7. Natural phenomena hazards evaluation of concrete silos 1, 2, 3 and 4 at Fernald, Ohio

    SciTech Connect

    Char, C.V.; Shiner, T.J.

    1995-08-01

    Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) site located near Cincinnati, Ohio. FEMP was formerly established as the Feed Materials Production Center (FMPC) in 1951 under the Atomic Energy Commission. FEMP is currently undergoing site wide environmental remediation. This paper addresses four concrete silos built during the 1950s and located in Operable Unit 4 (OU-4). Silos 1 and 2 known as K-65 Silos contain residues from Uranium Ore processing. Silo 3 contains metal oxides in powder form. Silo 4 is empty. The Silos are categorized as low hazard facilities and the Natural Phenomena Hazards (NPH) performance category is PC-2, based on a recently completed safety analysis report. This paper describes the structural evaluation of concrete Silos 1, 2, 3 and 4 for NPH. Non Destructive Tests (NDT) were conducted to establish the current conditions of the silos. Analytical and computer methods were used to evaluate the stresses and displacements for different silo configurations and different loading combinations. Finite element models were developed to uniquely represent each silo, and analyzed using SAP90 computer program. The SAPLOT post processor was used for rapid determination of critical areas of concern for critical loading combinations and for varying silo configurations.

  8. Mixed waste management plans at the Fernald Environmental Management Project (FEMP)

    SciTech Connect

    Walsh, T.J.; Sattler, J.M.

    1996-07-01

    The Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) facility located in southwestern Ohio. The facility began production of uranium metal products in the early 1950`s and continued processing of uranium ore concentrates until 1989. The facility used a variety of chemical and metallurgical processes to manufacture uranium metals for use at other DOE sites across the country. Because of the chemical and metallurgical processes employed at the site, some hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA) were generated during the manufacture of the uranium metal products. Because of uranium metal`s radioactive properties, the hazardous wastes generated at the facility typically contain some radioactivity. Wastes which contain both a hazardous component subject to RCRA regulation and a radioactive component subject to the Atomic Energy Act of 1954 are described as mixed waste. In 1989, the FEMP was placed on the National Priorities List (NPL) requiring cleanup of the facility`s radioactive and chemical contamination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This paper examines the regulatory requirements associated with development of the plan used to manage mixed wastes at the FEMP. In addition, the paper discusses the strategies used to integrate the requirements of the Federal Facility Compliance Act (FFCAct) with CERCLA response actions.

  9. Annual variation in the levels of metals and PCDD/PCDFs in soil and herbage samples collected near a cement plant.

    PubMed

    Schuhmacher, M; Agramunt, M C; Bocio, A; Domingo, J L; de Kok, H A M

    2003-07-01

    In May 2000, the levels of a number of metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn) and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in soil and herbage samples collected near a cement plant from Sta. Margarida i els Monjos (Catalonia, Spain). To determine the temporal variation in the concentrations of metals and PCDD/PCDFs, in May 2001 soil and herbage samples were again collected at the same sampling points and analyzed for the levels of metals and PCDD/PCDFs. In general terms, metal concentrations in soils did not change between May 2000 and May 2001, while significant decreases in the levels of Cr, Ni and V were found in herbage. On the other hand, no significant differences in the mean I-TEQ values of PCDD/PCDFs were found in soil and herbage samples. The results of this survey show that according to the annual variation in the levels of metals and PCDD/PCDFs the environmental impact of the cement plant on the area under its direct influence is not relevant.

  10. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  11. Uranium soils integrated demonstration, 1993 status

    SciTech Connect

    Nuhfer, K.

    1994-08-01

    The Fernald Environmental Management Project (FEMP), operated by the Fernald Environmental Restoration Management Corporation (FERMCO) for the DOE, was selected as the host site for the Uranium Soils Integrated Demonstration. The Uranium Soils ID was established to develop and demonstrate innovative remediation methods which address the cradle to grave elements involved in the remediation of soils contaminated with radionuclides, principally uranium. The participants in the ID are from FERMCO as well as over 15 other organizations from DOE, private industry and universities. Some of the organizations are technology providers while others are members of the technical support groups which were formed to provide technical reviews, recommendations and labor. The following six Technical Support Groups (TSGs) were formed to focus on the objective of the ID: Characterization, Excavation, Decontamination, Waste Treatment/Disposal, Regulatory, and Performance Assessment. This paper will discuss the technical achievements made to date in the program as well as the future program plans. The focus will be on the realtime analysis devices being developed and demonstrated, the approach used to characterize the physical/chemical properties of the uranium waste form in the soil and lab scale studies on methods to remove the uranium from the soil.

  12. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.

    1998-01-14

    Vitrification is the technology that has been chosen to solidify approximately 15,500 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty. The K-65 residues contain radium, uranium, uranium daughter products, and heavy metals such as lead and barium.The K-65 waste leaches lead at greater than 100 times the allowable Environmental Protection Agency (EPA) Resource, Conservation, and Recovery Act (RCRA) concentration limits when tested by the Toxic Characteristic Leaching Procedure (TCLP). Vitrification was chosen by FEMP as the preferred technology for the Silos 1, 2, 3 wastes because the final waste form met the following criteria: controls radon emanation, eliminates the potential for hazardous or radioactive constituents to migrate to the aquifer below FEMP, controls the spread of radioactive particulates, reduces leachability of metals and radiological constituents, reduces volume of final wasteform for disposal, silo waste composition is favorable to vitrification, will meet current and proposed RCRA TCLP leaching criteria Glasses that melt at 1350 degrees C were developed by Pacific Northwest National Laboratory (PNNL) and glasses that melt between 1150-1350 degrees C were developed by the Vitreous State Laboratory (VSL) for the K-65 silo wastes. Both crucible studies and pilot scale vitrification studies were conducted by PNNL and VSL. Subsequently, a Vitrification Pilot Plant (VPP) was constructed at FEMP capable of operating at temperatures up to 1450

  13. Overview of the Fernald Dosimetry Reconstruction Project and source term estimates for 1951-1988.

    PubMed

    Meyer, K R; Voillequé, P G; Schmidt, D W; Rope, S K; Killough, G G; Shleien, B; Moore, R E; Case, M J; Till, J E

    1996-10-01

    The Feed Materials Production Center, northwest of Cincinnati, processed uranium concentrates and uranium compounds recycled from other stages of nuclear weapons production, as well as some uranium ore and thorium. Particulate releases were primarily uranium (natural, depleted, and slightly enriched. In addition, two large silos containing radium-bearing residues were emission sources of radon and its decay products. The Fernald Dosimetry Reconstruction Project was undertaken to help the Centers for Disease Control and Prevention to evaluate the impact of the Feed Materials Production Center on the public from radionuclides released to the environment from 1951 through 1988. At this point in the study, the project has estimated the quantities of radioactive materials released to air, surface water, and in groundwater; developed the methodology to describe the environmental transport of the materials; developed mathematical models to calculate the resulting radiation doses; and evaluated environmental monitoring data to verify that the estimates of releases and transport are reasonable. Thorough review of historical records and extensive interaction with former and current employees and residents have been the foundation for reconstructing routine operations, documenting accidents, and evaluating unmonitored emission sources. The largest releases of uranium to air and water occurred in the 1950's and 1960's. Radon releases from the silos remained elevated through most of the 1970's. The quantity of uranium released to surface water was much less than that released to air. Best estimates of releases are reported as median values, with associated uncertainties calculated as an integral part of the estimates. Screening calculations showed that atmospheric pathways dominate the total dose from Feed Materials Production Center releases. Accordingly, the local meteorology, effluent particle size and chemical form, and wet and dry deposition, were particularly important in

  14. Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method.

    PubMed

    Mao, Feiyue; Gong, Wei; Li, Chen

    2013-04-01

    The lidar signal-to-noise ratio decreases rapidly with an increase in range, which severely affects the retrieval accuracy and the effective measure range of a lidar based on the Fernald method. To avoid this issue, an alternative approach is proposed to simultaneously retrieve lidar data accurately and obtain a de-noised signal as a by-product by combining the ensemble Kalman filter and the Fernald method. The dynamical model of the new algorithm is generated according to the lidar equation to forecast backscatter coefficients. In this paper, we use the ensemble sizes as 60 and the factor δ(1/2) as 1.2 after being weighed against the accuracy and the time cost based on the performance function we define. The retrieval and de-noising results of both simulated and real signals demonstrate that our method is practical and effective. An extensive application of our method can be useful for the long-term determining of the aerosol optical properties.

  15. Cost avoidance techniques through the Fernald controlled area trash segregation program and the RIMIA solid waste reduction program

    SciTech Connect

    Menche, C.E.

    1997-05-14

    The Fernald Environmental Management Project is a Department of Energy owned facility that produced high quality uranium metals for military defense. The Fernald mission has changed from one of production to remediation. Remediation is intended to clean up legacy (primary) waste from past practices. Little opportunity is available to reduce the amount of primary waste. However, there is an opportunity to reduce secondary waste generation, primarily through segregation. Two programs which accomplish this are the Controlled Area Trash Segregation Program and the RIMIA Solid Waste Reduction Program. With these two programs now in place at the FEMP, it has been estimated that a 60% reduction has been achieved in unnecessary clean waste being disposed as Low Level Waste at the Nevada Test Site. The cost savings associated with these programs (currently 79,000 cubic feet, $428,000) could easily run into the millions of dollars based on the upcoming restoration activities to be undertaken. The segregation of non-radiological waste in the radiologically Controlled Area not only establishes a firm commitment to send only low-level radioactive waste to the Nevada Test Site, but also results in substantial cost avoidance.

  16. The effects of precipitation and soil type on three invasive annual grasses in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush-steppe ecosystems in the Great Basin are highly susceptible to annual grass invasion. Large regions are covered by Bromus tectorum (cheatgrass), but there has been a recent upsurge in the abundance and distribution of Taeniatherum caput-medusae (medusahead) and Ventenata dubia (ventenata)....

  17. Electrofishing survey of the Great Miami River. Annual report, September 7, 1995--September 8, 1995

    SciTech Connect

    Evans, R.L.; Miller, M.C.; Moller, B.J.; Marsh, S.L.

    1996-03-01

    Fish were collected, using electroshocking techniques, from three sites in the Great Miami River (GMR) (September 7 and 8, 1995) as part of an annual survey for Fernald Environmental Restoration Management Corporation (FERMCO). The objective was to collect fish fillets for uranium analysis and examine the health of the fish community in comparison to data collected during the past eleven years. Samples were taken from upstream (river mile = RM; RM 38) and downstream (RM 19) of the Fernald site as well as from near the Fernald effluent line (RM 24). RM 38 is isolated from upstream fish migration by two dams located near Hamilton, Ohio and fish collected from this site should not be influenced by processes at the downstream sites. Samples of 549 fish from 29 species belonging to nine families provided seventy-two samples for uranium analysis by an independent laboratory. Chemical analysis of water samples collected at each site was used to determine the effect of chemical parameters on the fish community. This study focused on comparison of the density, biomass and diversity of the fish community between sites and between years.

  18. Direct effects of soil amendments on field emergence and growth of the invasive annual grass Bromus tectorum L. and the native perennial grass Hilaria jamesii (Torr.) Benth

    USGS Publications Warehouse

    Newingham, B.A.; Belnap, J.

    2006-01-01

    Bromus tectorum L. is a non-native, annual grass that has invaded western North America. In SE Utah, B. tectorum generally occurs in grasslands dominated by the native perennial grass, Hilaria jamesii (Torr.) Benth. and rarely where the natives Stipa hymenoides Roem. and Schult. and S. comata Trin. & Rupr. are dominant. This patchy invasion is likely due to differences in soil chemistry. Previous laboratory experiments investigated using soil amendments that would allow B. tectorum to germinate but would reduce B. tectorum emergence without affecting H. jamesii. For this study we selected the most successful treatments (CaCl2, MgCl2, NaCl and zeolite) from a previous laboratory study and applied them in the field in two different years at B. tectorum-dominated field sites. All amendments except the lowest level of CaCl2 and zeolite negatively affected B. tectorum emergence and/or biomass. No amendments negatively affected the biomass of H. jamesii but NaCl reduced emergence. Amendment effectiveness depended on year of application and the length of time since application. The medium concentration of zeolite had the strongest negative effect on B. tectorum with little effect on H. jamesii. We conducted a laboratory experiment to determine why zeolite was effective and found it released large amounts of Na+, adsorbed Ca2+, and increased Zn2+, Fe2+, Mn2+, Cu2+, exchangeable Mg2+, exchangeable K, and NH 4+ in the soil. Our results suggest several possible amendments to control B. tectorum. However, variability in effectiveness due to abiotic factors such as precipitation and soil type must be accounted for when establishing management plans. ?? Springer 2006.

  19. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    USGS Publications Warehouse

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  20. Electrochemical processes for in-situ treatment of contaminated soils. Annual progress report, September 1996--May 1997

    SciTech Connect

    Huang, C.P.; Cha, D.; Chang, J.H.; Qiang, Z.; Sung, M.; Cheng, L.

    1997-01-01

    'Soil samples from three industrial sites at two depths ranges (2--4 feet and 8--14 feet) were received and pertinent physico-chemical properties, such as pH, specific surface area, moisture content, organic matter content, hydraulic conductivity, cation exchange capacity (CEC), pH at zero point of charge (pH{sub zpc}), particle size distribution, organic contaminants and heavy metals fractionation were analyzed. Results show that clay and silt are the major components in the soil samples, which exhibits a relatively low hydraulic conductivity of about 10{sup -7} {approximately} 10{sup -8} cm/sec. The pH value of soil samples is in the neutral range (from pH 6.1 to 7.6) and its variation with depth is insignificant. Organic matter content is another important factor which affects soil properties such as specific surface area, chemical adsorption capacity and cation exchange capacity. Results indicate that the organic matter content ranges between 0.79% and 1.81%. The effective cation exchange capacity is from 13.8 to 21.2 meq/100 g. The values of moisture content, specific surface area and pH{sub zpc} range from 10.2--16.9%, 0.4--0.9 (m{sup 2}/g) and 2.18--2.60, respectively.'

  1. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. PMID:25979478

  2. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.

  3. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    PubMed

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  4. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    PubMed

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling. PMID:27501148

  5. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China

    PubMed Central

    Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F.

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling. PMID:27501148

  6. Uranium in soils integrated demonstration: 1992 update

    SciTech Connect

    Nuhfer, K.R.

    1992-04-01

    The Uranium in Soils Integrated Demonstration (ID) was initiated in 1991. The Fernald Environmental Management Project (FEMP), previously known as the Feed Materials Production Center (FMPC), was selected as the host site for the Uranium in Soils ID. The principle focus in 1991 was to establish the management structure and objectives for the ID. In 1992 the technical activities in support of the ID goals were initiated. The emphasis this year has been on the development and demonstration of improved field screening technologies, obtaining chemical and physical data on the uranium waste forms in the host site soils, and initiating the development of uranium/soil separation technologies. This document will discuss the established TSG charters, accomplishments to date, current activities and future activities in support of the 1992 emphasis and the long term goals of the ID.

  7. Characterization of uranium- and plutonium-contaminated soils by electron microscopy

    SciTech Connect

    Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.; Brown, N.R.

    1995-03-01

    Electron beam techniques have been used to characterize uranium-contaminated soils from the Fernald Site in Ohio, and also plutonium-bearing `hot particles, from Johnston Island in the Pacific Ocean. By examining Fernald samples that had undergone chemical leaching it was possible to observe the effect the treatment had on specific uranium-bearing phases. The technique of Heap leaching, using carbonate solution, was found to be the most successful in removing uranium from Fernald soils, the Heap process allows aeration, which facilitates the oxidation of uraninite. However, another refractory uranium(IV) phase, uranium metaphosphate, was not removed or affected by any soil-washing process. Examination of ``hot particles`` from Johnston Island revealed that plutonium and uranium were present in 50--200 nm particles, both amorphous and crystalline, within a partially amorphous aluminum oxide matrix. The aluminum oxide is believed to have undergone a crystalline-to-amorphous transition caused by alpha-particle bombardment during the decay of the plutonium.

  8. Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report.

    SciTech Connect

    Stein, Joshua S.; Webb, Stephen Walter

    2005-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

  9. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  10. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  11. Seasonal and Inter-annual Changes in Photosynthetic and Soil Respiratory Processes in a Cool-temperate Deciduous Forest on a Mountainous Landscape in Japan.

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Noh, N. J.; Saitoh, T. M.; Nagao, A.; Noda, H. M.; Kuribayashi, M.; Nagai, S.

    2015-12-01

    Carbon budget of terrestrial ecosystems is one of the most crucial themes in ecosystem sciences under current and future climate changes as it would affect our Earth system. Remote sensing and modeling analysis studies from continental to global scales have been indicating that the recent climate change is influential to photosynthetic processes in terrestrial vegetation such as forests and grasslands, by altering phenology (seasonal change) and foliage biomass. In addition, increasing temperature and possibly changing photosynthetic activities of plants are influential to soil carbon dynamics. Our deeper and broader understandings on such photosynthetic and respiratory processes governing carbon cycle and hence budget of terrestrial ecosystems are critical to detect the changes of ecosystem processes and the functions in changing environments, as they would influence the biodiversity, ecosystem services and Earth system.In order to reveal the nature of temporal changes in photosynthetic and respiratory processes in forest ecosystems, we have been conducting multi-disciplinary observations of ecophysiological and optical properties for canopy photosynthesis in a cool-temperate deciduous forest since 2003 ("Takayama site", contributing to AsiaFlux and JaLTER). In addition, open-field warming experiments have been conducted since 2011 to examine the possible influence of near-future warming condition on forest canopy photosynthesis and soil respiration. (1) Our long-term measurements of leaf and canopy photosynthesis revealed that their phenology is influenced by inter-annual variation of micrometeorological conditions. (2) Combined analysis of leaf-canopy photosynthesis and optical properties enabled us to estimate the forest photosynthetic productivity at regional scale by satellite data. (3) Open-field warming experiments suggested that tree foliage and soil processes would acclimate to near-future warming conditions.

  12. Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system.

    PubMed

    Zhou, Ziqiang; Xu, Xin; Bi, Zhichao; Li, Lu; Li, Bo; Xiong, Zhengqin

    2016-04-01

    Field experiments were carried out to determine biochar effects on nitrous oxide (N2O) concentration profiles, diffusion, and emissions in paddy soil under rice-wheat annual rotation in southeastern China. An in situ soil gas device was adapted to measure N2O concentrations at depths of 7, 15, 30, and 50 cm. Five treatments were installed as N0B0, N0B1, N1B0, N1B1, and N1B2 (B0, B1, and B2 designated as biochar at 0, 20, and 40 t ha(-1), respectively, while N0 and N1 as nitrogen at 0 and 250 kg N ha(-1) crop(-1), respectively). The results showed that N2O concentrations were higher in the 15 and 30 cm depths than other depths. With positive diffusive fluxes, the 7 cm in the rice season and 15 cm in the wheat season were main production sites. The surface N2O emissions and topsoil diffusive fluxes showed good agreement. N application strongly increased soil N2O profiles and surface emissions. Relative to N1B0, N1B1 decreased N2O concentration, surface emissions, and diffusive fluxes by 25.2, 31.8, and 26.5 %, respectively, while N1B2 decreased them averagely by 40.7, 43.2, and 44.2 %, correspondingly. Therefore, the gas gradient method is effective for estimating N2O emissions, and biochar can decrease N2O production when N was applied. PMID:26769480

  13. Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system.

    PubMed

    Zhou, Ziqiang; Xu, Xin; Bi, Zhichao; Li, Lu; Li, Bo; Xiong, Zhengqin

    2016-04-01

    Field experiments were carried out to determine biochar effects on nitrous oxide (N2O) concentration profiles, diffusion, and emissions in paddy soil under rice-wheat annual rotation in southeastern China. An in situ soil gas device was adapted to measure N2O concentrations at depths of 7, 15, 30, and 50 cm. Five treatments were installed as N0B0, N0B1, N1B0, N1B1, and N1B2 (B0, B1, and B2 designated as biochar at 0, 20, and 40 t ha(-1), respectively, while N0 and N1 as nitrogen at 0 and 250 kg N ha(-1) crop(-1), respectively). The results showed that N2O concentrations were higher in the 15 and 30 cm depths than other depths. With positive diffusive fluxes, the 7 cm in the rice season and 15 cm in the wheat season were main production sites. The surface N2O emissions and topsoil diffusive fluxes showed good agreement. N application strongly increased soil N2O profiles and surface emissions. Relative to N1B0, N1B1 decreased N2O concentration, surface emissions, and diffusive fluxes by 25.2, 31.8, and 26.5 %, respectively, while N1B2 decreased them averagely by 40.7, 43.2, and 44.2 %, correspondingly. Therefore, the gas gradient method is effective for estimating N2O emissions, and biochar can decrease N2O production when N was applied.

  14. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition

    PubMed Central

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m−2 yr−1; medium-N, 10 g N m−2 yr−1; and high-N, 15 g N m−2 yr−1) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013–2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget. PMID:26732991

  15. Recommended seismic hazard levels for the Oak Ridge, Tennessee; Paducah, Kentucky; Fernald, Ohio; and Portsmouth, Ohio, Department of Energy reservations

    SciTech Connect

    Beavers, J.E.; Manrod, W.E.; Stoddart, W.C.

    1982-12-01

    This document presents recommendations for the seismic hazard levels at the Oak Ridge Operations-Department of Energy (ORO-DOE) reservations in Oak Ridge, Tennessee; Paducah, Kentucky; Fernald, Ohio; and Portsmouth, Ohio. These recommendations are based on seismic hazard studies that have occurred over the past 10 y concerning these reservations. The authors have conducted in-depth reviews of the seismic hazard studies that have been completed for the reservations, have had various meetings with the authors of these studies, have had meetings and conducted studies among themselves and their consultants, and feel that the recommendations made in this report represent the state-of-the-art for assessing the seismic hazard at a site.

  16. Radon suppression in storage silos at the United States Department of Energy Feed Material Production Center, Fernald, Ohio

    SciTech Connect

    Land, R.R. ); Biancheria, A. ); Craig, J.R. )

    1991-01-01

    Two silos at the Department of Energy Feed Material Production Facility in Fernald, Ohio, contain an estimated 8800 metric tons of high-grade pitchblende ore residue solids, which contain approximately 3,300 curies (Ci) of radium and 1810 Ci of thorium. These silos are the subject of an on-going CERCLA RI/F Program. Fugitive radon emissions from the silos exceed EPA limits. In addition, structural analyses have revealed that the silos have little credible remaining design life. While pursuing final remediation, a removal action is being taken to address the current situation. The removal action entails the emplacement of a covering layer of bentonite slurry inside the silos. The bentonite will reduce the fugitive emissions to EPA limits and mitigate the effects of dome structural failure, while presenting minimum impact on potential final remedial action alternatives for the silos. 4 refs., 4 figs., 2 tabs.

  17. Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.

    SciTech Connect

    Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

    2004-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

  18. Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

    SciTech Connect

    PHELAN, JAMES M.; WEBB, STEPHEN W.; ROMERO, JOSEPH V.; BARNETT, JAMES L.; GRIFFIN, FAWN A.

    2003-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

  19. The annual invasive plant, Impatiens glandulifera (Himalayan Balsam) as a trigger for high-magnitude soil erosion in temperate river systems

    NASA Astrophysics Data System (ADS)

    Greenwood, Philip; Kuhn, Nikolaus

    2015-04-01

    The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in most temperate European countries, as well as across large parts of North America and on some Australasian islands. As a ruderal species, it favours damp, fertile soils that experience frequent disturbance. Riverbanks and the riparian zone thus represent prime habitat. Its ability to out-compete most perennial vegetation yet tendency to suddenly die during seasonally cold weather has led to claims that it may promote soil erosion, particularly along inland watercourses. Despite the strong implication, this was only recently proven during an investigation conducted over one dieback and regrowth cycle in 2012/13 along a watercourse in northwest Switzerland. Here we reinterpret those initial findings and also present additional data from the same watercourse which now covers three die-off and regrowth cycles, as well as data over two die-off and regrowth cycles from a river system in southwest UK. Results from all monitoring campaigns strongly support the original conclusion that I. glandulifera promotes significant soil erosion along contaminated sections of riverbank and riparian zone. More specifically, however, approximately one third of the total number of contaminated locations monitored (n=41) recorded net ground surface retreat that exceeded, by at least one order of magnitude, equivalent annual erosion rates documented on cultivated hillslopes in temperate regions. Not only does I. glandulifera induce repeat cycles of colonization and die-off, therefore, but collectively, the results generated so far strongly infer that under certain circumstances, this cycle of events can commonly trigger severe or even extreme erosion. Seasonally induced soil loss of this magnitude, particularly along short sections of watercourses, is unsustainable in the long-term and may lead to key fluvial features undergoing profound morphological and structural changes. Such an effect

  20. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  1. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    SciTech Connect

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-04-01

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  2. Characterization and solubility measurements of uranium-contaminated soils to support risk assessment.

    PubMed

    Elless, M P; Armstrong, A Q; Lee, S Y

    1997-05-01

    Remediation of uranium-contaminated soils is considered a high priority by the U.S. Department of Energy because these soils, if left untreated, represent a hazard to the environment and human health. Because the risk to human health is a function of the solubility of uranium in the soils, the objectives of this work are to measure the uranium solubility of two contaminated soils, before and after remedial treatment, and determine the health risk associated with these soils. Two carbonate-rich, uranium-contaminated soils from the U.S. Department of Energy Fernald Environmental Management Project facility near Cincinnati, Ohio, as well as two nearby background soils were characterized and their uranium solubility measured in a 75-d solubility experiment using acid rain, groundwater, lung serum, and stomach acid simulants. Results show that the soluble uranium levels of each soil by each simulant are greatly influenced by their contamination source term. Risk calculations and biokinetic modeling based on the solubility data show that the risks from the soil ingestion and groundwater ingestion pathways are the predominant contributors to the total carcinogenic risk, whereas the risk from the soil inhalation pathway is the smallest contributor to this risk. However, kidney toxicity was the greater health concern of the Fernald Environmental Management Project soils, primarily from undiluted ingestion of the groundwater solution following contact with the contaminated soils. Sensitivity analyses indicate that uranium solubility is a key parameter in defining kidney toxicity; therefore, without proper consideration of the solubility of radionuclides/metals in untreated and treated soils, important factors may be overlooked which may result in soil cleanup goals or limits which are not protective of human health and the environment. We recommend that characterization and measurement of target radionuclides/metals solubilities should also be required by the regulatory

  3. Transition of the U.S. Department of Energy Fernald Closure Project (FCP) from Cleanup to Legacy Management

    SciTech Connect

    Powell, J.; Craig, J.R.; Jacobson, C.

    2006-07-01

    The Fernald Closure Project encompasses a 1,050-acre tract of land northwest of Cincinnati, Ohio. Dedicated to the production of uranium feed materials from 1952 until 1989, the site was subsequently included on the U.S. Environmental Protection Agency's National Priorities List and slated for cleanup. Except for contaminated ground water, cleanup of the site will be completed in 2006; remediation of the aquifer will continue for 20 years. Transition of the project from the U.S. Department of Energy Office of Environmental Management to the Office of Legacy Management will be effected when site cleanup is completed, surface restoration is complete, and aquifer remediation is on-going. Office of Legacy Management activities will focus on the monitoring and maintenance of the on-site disposal facility, enforcement of restrictions on site access and use, and the protection of natural and cultural resources. The Site Transition Plan, developed in accordance with Site Transition Framework guidance, identifies organizational and financial responsibilities for attaining closeout. A Transition Matrix details more than 1,000 activities necessary for site transition and allows each task to be tracked. Responsibility Transition Plans address major areas of scope to be transferred, such as records and information management, infrastructure, and environmental monitoring. Much effort has been placed on the retention of staff to perform the identified Office of Legacy Management scope. (authors)

  4. Characterization and solubility measurements of uranium-contaminated soils to support risk assessment

    SciTech Connect

    Elless, M.P.; Armstrong, A.Q.; Lee, S.Y.

    1997-05-01

    Remediation of uranium-contaminated soils is considered a high priority by the US Department of Energy because these soils, if left untreated, represent a hazard to the environment and human health. Because the risk to human health is a function of the solubility of uranium in the soils, the objectives of this work are to measure the uranium solubility of two contaminated soils, before and after remedial treatment, and determine the health risk associated with these soils. Two carbonate-rich, uranium-contaminated soils from the US Department of Energy Fernald Environmental Management Project facility near Cincinnati, Ohio, as well as two nearby background soils were characterized and their uranium solubility measured in a 75-d solubility experiment using acid rain, groundwater, lung serum, and stomach acid simulants. Results show that the soluble uranium levels of each soil by each simulant are greatly influenced by their contamination source term. Risk calculations and biokinetic modeling based on the solubility data show that the risks from the soil ingestion and groundwater ingestion pathways are the predominant contributors to the total carcinogenic risk, whereas the risk from the soil inhalation pathway is the smallest contributor to this risk. However, kidney toxicity was the greater health concern of the Fernald Environmental Management Project soils, primarily from undiluted ingestion of the groundwater solution following contact with the contaminated soils. Sensitivity analyses indicate that uranium solubility is a key parameter in defining kidney toxicity; therefore, without proper consideration of the solubility of radionuclides/metals in untreated and treated soils, important factors may be overlooked which may result in soil cleanup goals or limits which are not protective of human health and the environment.

  5. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    SciTech Connect

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.; Krause, T.R.; Deepak; Vojta, Y.; Thuillet, E.; Mertz, C.J.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.

  6. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  7. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect

    JEWETT MA

    2011-01-14

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  8. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    PubMed

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers.

  9. The impact of changing land use, nitrate deposition and CO{sub 2} fertilization on soil carbon storage. Annual progress report

    SciTech Connect

    Harrison, K.; Broecker, W.

    1992-05-21

    This research strives to assess the impact of changing land use, nitrate deposition and CO{sub 2} fertilization on soil carbon storage. Our motivation is that this reservoir is the most likely candidate for the so-called missing carbon sink. We are working on several aspects of this problem by measuring carbon content, nitrogen content and radiocarbon ratios in paired soil samples from neighboring sites, to determine the impact of land use on soil carbon inventories and turnover times. We are also gathering information on how the C/N ratios in soils vary with climate and changing land use, in an effort to estimate how much carbon has been sequestered as a result of atmospheric fallout of NH{sub 4}OH and HNO{sub 3}. Finally, we are developing a soil greening model that uses CO{sub 2} growth-enhancement results and bomb radiocarbon-based estimates of soil carbon inventory response times.

  10. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    SciTech Connect

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years.

  11. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils. Annual report No. 1, 1 September 1991-30 August 1992

    SciTech Connect

    Nepstad, D.; Stone, T.; Davidson, E.; Trumbore, S.E.

    1992-10-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  12. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-10-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  13. Annual report on the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee: Results of Phase 1 investigation

    SciTech Connect

    Watkins, D.R.; Goddard, P.L.; Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.; Kimbrough, C.W.; Lee, S.Y.; Lietzke, D.A.; McGin, C.W.; Nourse, B.D.; Schmoyer, R.L.; Shaw, R.A.; Stinnette, S.E.; Switek, J.; Wright, J.C.; Ammons, J.T.; Branson, J.L.; Burgoa, B.B.; Lietzke, D.A.

    1993-05-01

    Many constituents of potential concern for human health occur naturally at low concentrations in undisturbed soils. The Background soil Characterization Project (BSCP) was undertaken to provide background concentration data on potential contaminants in natural soils on the Oak Ridge Reservation (ORR). The objectives of the BSCP are to provide baseline data for contaminated site assessment and estimates of potential human health risk associated with background concentrations of hazardous and other constituents in native soils. This report presents, evaluates, and documents data and results obtained in Phase I of the project. It is intended to be a stand-alone document for application and use in structuring and conducting remedial investigation and remedial action projects in the Environmental Restoration (ER) Program.

  14. Comparison of the bioavailability of elemental waste laden soils using in vivo and in vitro analytical methodology and refinement of exposure/dose model. 1997 annual progress report

    SciTech Connect

    Gailo, M.; Georgopoulos, P.; Lioy, P.J.; Roy, A.

    1997-01-01

    'The bioavailability study has made significant progress in developing in vitro methodology, and the authors have completed the time course in vivo studies. The in vitro studies have been conducted to establish the major digestive variables of concern and the values to be used in application of both the saliva/gastric juice and intestinal fluid components of a synthetic digestive extraction. In vitro and in vivo experiments have been conducted on the 575 urn particle fraction of a soil sample collected in a Jersey City State Park. Five Jersey City soil samples were first characterized for physical and chemical characteristics. Based upon the composition of the five soils, one was selected for use in the first series of experiments. The second set of in vivo studies are to be conducted on a standard NIST Montana soil. It has already been examined for bioaccessibility and availability with the in vitro methodology. A sample has been collected in Bayonne to obtain an urban background soil. Surficial soil samples have been acquired from the Savannah River Site of the DOE. These are not radioactive but are contaminated with heavy metals, e.g. arsenic, and are being analyzed by both the in vivo and in vitro methodology. During this past summer a second set of soil samples were collected at Savannah River Site. These contain levels of both heavy metals and radionuclides. Recently, a special extraction laboratory has been constructed at EOHSI, with resources made available from the organization. It will handle the extraction and measurement of the radio activity of the soil, and extracts obtained by the in vivo techniques. It is anticipated that the SRS samples collected this summer will be available for analysis in both the in vivo and in vitro systems this fall. The initial characterization will be for soil, physical and chemical content, and microbial characteristics. The samples will be analyzed for the 5 75 urn particle size fraction, and the total mass 5 250 urn in

  15. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    SciTech Connect

    1995-08-01

    As a result of the U.S. Department of Energy`s environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved.

  16. The efficacy of oxidative coupling for promoting in-situ immobilization of hydroxylated aromatics in contaminated soil and sediment systems. 1998 annual progress report

    SciTech Connect

    Weber, W.J.; Bhandari, A.

    1998-06-01

    'Hydroxylated aromatic compounds (HAC''s) and their precursors are common contaminants of surface and subsurface systems at DOE facilities. The environmental fate and transport of such compounds, particularly in subsurface systems, is generally dominated by their sorption and desorption by soils and sediments. Certain secondary chemical reactions, most specifically abiotic and/or enzymatic oxidative coupling, may be significant in controlling the sorption and subsequent desorption of such hydroxylated aromatics by soils and sediments. The principal objectives of this study are to investigate: (1) the role of abiotic/enzymatic coupling reactions on the immobilization of HAC''s; (2) the effects of environmental factors on such immobilization; and (3) preliminary engineering approaches utilizing enhanced abiotic/enzymatic coupling reactions to immobilize hydroxylated aromatics in-situ. Information gathered from the study will be useful in quantifying the behavior of this class of organic compounds in various subsurface contamination scenarios relevant to DOE facilities, and in specifying strategies for the selection and design of remediation technologies. Over the first two years of this three-year project, the authors have developed a significantly improved understanding of the mechanisms of hydroxylated aromatic compound sorption and immobilization by natural soils and sediments. Immobilization in this context is attributed to oxidative coupling of the hydroxylated aromatics subsequent to their sorption to a soil or sediment, and is quantified in terms of the amount of a sorbed target compound retained by a sorbent after a series of sequential water and solvent extractions. The presence of oxygen, metal oxides, and organic matter, all of which can potentially catalyze/facilitate the abiotic oxidative coupling of HAC''s, were investigated during these first two years. Three different HAC''s: phenol, trichlorophenol and o-cresol were included in the experimental

  17. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  18. Bioavailability of organic solvents in soils: Input into biologically based dose-response models for human risk assessments. 1998 annual progress report

    SciTech Connect

    Wester, R.C.; Maibach, H.I.

    1998-06-01

    'The purpose of this study is to determine the bioavailability of organic solvents following dermal exposures to contaminated soil and water. Breath analysis is being used to obtain real-time measurements of volatile organics in expired air following exposure in rats and humans. Rhesus monkeys will be used as surrogates for humans in benzene exposures. The exhaled breath data is being analyzed using physiologically based pharmacokinetic (PBPK) models to determine the dermal bioavailability of organic solvents under realistic exposure conditions. The end product of this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to organics from either contaminated soil or water. This report summarizes work 7 months into a 3-year project. Method development has produced systems for solvent exposure from soil and water which mimic actual exposure, and for which animals and human volunteers can be safely tested. Soil exposure is generally open to the air (working the soil) while water exposure is generally immersion. For 6--8 hour test exposure, a patch has been developed where soil is contained against the skin by a non-occlusive membrane, while simultaneously allowing volatilization of test solvent to the environment (activated charcoal). The water counterpart is an occlusive glass culture dish, sealed to skin with silicone adhesive. Shorter term exposure is done by one hand immersion in a bucket containing circulating water or soil, the volunteer instructed to move fingers through the water or soil. Human volunteers and animals breathe fresh air via a new breath-inlet system that allows for continuous real-time analysis of undiluted exhaled air. The air supply system is self-contained and separated from the exposure solvent-laden environment. The system uses a Teledyne 3DQ Discovery ion trap mass

  19. Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993

    SciTech Connect

    Not Available

    1993-08-01

    Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

  20. Comparison of the bioavailability of elemental waste laden soils using in vivo and in vitro analytical methodology and refinement of exposure/dose models. 1998 annual progress report

    SciTech Connect

    Lioy, P.J.; Gallo, M.; Georgopoulos, P.; Tate, R.; Buckley, B.

    1998-06-01

    'The authors hypotheses are: (1) the more closely the synthetic, in vitro, extractant mimics the extraction properties of the human digestive bio-fluids, the more accurate will be the estimate of an internal dose; (2) performance can be evaluated by in vivo studies with a rat model and quantitative examination of a mass balance, calculation and dose estimates from model simulations for the in vitro and in vivo system; and (3) the concentration of the elements Pb, Cd, Cr and selected Radionuclides present in the bioavailable fraction obtained with a synthetic extraction system will be a better indicator of contaminant ingestion from a contaminated soil because it represents the portion of the mass which can yield exposure, uptake and then the internal dose to an individual. As of April 15, 1998, they have made significant progress in the development of a unified approach to the examination of bioavailability and bioaccessibility of elemental contamination of soils for the ingestion route of exposure. This includes the initial characterization of the soil, in vitro measurements of bioaccessibility, and in vivo measurements of bioavailability. They have identified the basic chemical and microbiological characteristics of waste laden soils. These have been used to prioritize the soils for potential mobility of the trace elements present in the soil. Subsequently they have employed a mass balance technique, which for the first time tracked the movement and distribution of elements through an in vitro or in vivo experimental protocol to define the bioaccessible and the bioavailable fractions of digested soil. The basic mass balance equation for the in vitro system is: MT = MSGJ + MIJ + MR. where MT is the total mass extractable by a specific method, MSGJ, is the mass extracted by the saliva and the gastric juices, MIJ is the mass extracted by the intestinal fluid, and MR is the unextractable portion of the initial mass. The above is based upon the use of a synthetic

  1. Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997

    SciTech Connect

    Hawthorne, S.B.

    1997-12-31

    This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

  2. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    SciTech Connect

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil.

  3. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    SciTech Connect

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-06-01

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

  4. Field demonstration of technologies for characterization of uranium contamination in surface soils

    SciTech Connect

    Cunnane, J.C.; Lee, S.Y.; Perry, D.L.; Tidwell, V.C.; Schwing, J.; Nuhfer, K.R.; Weigand, G.

    1993-03-01

    One means of improving the efficiency of studies associated with CERCLA and RCRA investigations of. sites contaminated with uranium is to introduce new field screening technologies capable of quickly delineating the contamination distribution in surface soils. To this end, the performance of four technologies suitable for field measurement of uranium concentrations in soils was evaluated at the Fernald Environmental Management Project. The four technologies tested were high-resolution gamma spectroscopy, wide-area beta scintillation counting, laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES), and long-range alpha detection (LRAD). The performance of each technique was assessed by comparing of the results obtained in the field and by comparing the field measurements to data obtained from laboratory analysis of soil samples.

  5. Field demonstration of technologies for characterization of uranium contamination in surface soils

    SciTech Connect

    Cunnane, J.C. ); Lee, S.Y. ); Perry, D.L. ); Tidwell, V.C. ); Schwing, J.; Nuhfer, K.R. . Fernald Environmental Management P

    1993-01-01

    One means of improving the efficiency of studies associated with CERCLA and RCRA investigations of. sites contaminated with uranium is to introduce new field screening technologies capable of quickly delineating the contamination distribution in surface soils. To this end, the performance of four technologies suitable for field measurement of uranium concentrations in soils was evaluated at the Fernald Environmental Management Project. The four technologies tested were high-resolution gamma spectroscopy, wide-area beta scintillation counting, laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES), and long-range alpha detection (LRAD). The performance of each technique was assessed by comparing of the results obtained in the field and by comparing the field measurements to data obtained from laboratory analysis of soil samples.

  6. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    SciTech Connect

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L. |

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

  7. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  8. Office of Inspector General audit report on credit card usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects

    SciTech Connect

    1999-03-01

    In 1994 the Department of Energy (Department) obtained the services of Rocky Mountain BankCard System, through the use of a General Services Administration contract, as a means for the Department and its contractors to make small purchases. The use of credit cards was expected to simplify small purchase procedures and improve cash management. The Ohio Field Office (Field Office) uses the credit card system and oversees usage by its area offices. Contractors under the Field Office also use the credit card system to make small purchases. The Office of Inspector General (OIG) has issued one audit report concerning the use of credit cards. In April 1996, the OIG issued Report WR-B-96-06, Audit of Bonneville Power Administration`s Management of Information Resources. The audit concluded that improvements could be made in implementing credit card and property procedures in Bonneville`s management of computer-related equipment. Specifically, many credit card purchases were made by employees whose authority to buy was not properly documented, and the purchasing files often lacked invoices that would show what was purchased. Additionally, some cardholders split purchases to avoid credit card limits. The objective of this audit was to determine whether the Field Office, Fernald and Miamisburg Environmental Management Projects, Fluor Daniel, and B and W were using credit cards for the appropriate purposes and within the limitations established by Federal and Departmental regulations.

  9. Rangeland runoff and soil erosion database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimated annual costs of damage caused by soil erosion and excessive sediment in surface waters within the U.S. is approximately $6 billion to $16 billion annually. Historically, information on the types, patterns, causes, spatial location, severity, and extent of land degradation through soil ...

  10. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  11. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  12. Solubility measurement of uranium in uranium-contaminated soils

    SciTech Connect

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

  13. 238U and 232Th Dose Calculations and Size Distribution Measurements of Atmospheric Aerosols at Fernald, Ohio

    SciTech Connect

    Leifer, R. Z.; Jacob, E. M.; Marschke, S. F.; Pranitis, D. M.; Jaw, H-R. Kristina

    2000-03-01

    A rotating drum impactor was co-located with a high volume air sampler for ~ 1 y at the fence line of the U. S. Department of Energy’s Fernald Environmental Management Project site. Data on the size distribution of uranium bearing atmospheric aerosols from 0.065 mm to 100 mm in diameter were obtained and used to compute dose using several different models. During most of the year, the mass of 238U above 15 mm exceeded 70% of the total uranium mass from all particulates. Above 4.3 µm, the 238U mass exceeded 80% of the total uranium mass from all particulates. During any sampling period the size distribution was bimodal. In the winter/spring period, the modes appeared at 0.29 µm and 3.2 µm. During the summer period, the lower mode shifted up to ~ 0.45 mm. In the fall/winter, the upper mode shifted to ~ 1.7 µm, while the lower mode stayed at 0.45 mm. These differences reflect the changes in site activities. Thorium concentrations were comparable to the uranium concentrations during the late spring and summer period and decreased to ~25% of the 238U concentration in the late summer. The thorium size distribution trend also differed from the uranium trend. The current calculational method used to demonstrate compliance with regulations assumes that the airborne particulates are characterized by an activity median diameter of 1 µm. This assumption results in an overestimate of the dose to offsite receptors by as much as a factor of seven relative to values derived using the latest ICRP 66 lung model with more appropriate particle sizes. Further evaluation of the size distribution for each radionuclide would substantially improve the dose estimates.

  14. Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994

    SciTech Connect

    Edwards, N.T.

    1994-08-01

    Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

  15. National Wildlife's Eleventh Annual Environmental Quality Index 1980.

    ERIC Educational Resources Information Center

    National Wildlife, 1980

    1980-01-01

    Presented is the Eleventh Annual Environmental Quality Index, a subjective analysis of the state of the nation's natural resources. Resource trends are detailed for wildlife, minerals, air, water, soil living space, and forests. (BT)

  16. Heap leach studies on the removal of uranium from soil. Report of laboratory-scale test results

    SciTech Connect

    Turney, W.R.J.R.; York, D.A.; Mason, C.F.V.; Chisholm-Brause, C.J.; Dander, D.C.; Longmire, P.A.; Morris, D.E.; Strait, R.K.; Brewer, J.S.

    1994-05-01

    This report details the initial results of laboratory-scale testing of heap leach that is being developed as a method for removing uranium from uranium-contaminated soil. The soil used was obtained from the site of the Feed Materials Production Center (FMPC) near the village of Fernald in Ohio. The testing is being conducted on a laboratory scale, but it is intended that this methodology will eventually be enlarged to field scale where, millions of cubic meters of uranium-contaminated soil can be remediated. The laboratory scale experiments show that, using carbonate/bicarbonate solutions, uranium can be effectively removed from the soil from initial values of around 600 ppM down to 100 ppM or less. The goal of this research is to selectively remove uranium from the contaminated soil, without causing serious changes in the characteristics of the soil. It is also hoped that the new technologies developed for soil remediation at FEMP will be transferred to other sites that also have uranium-contaminated soil.

  17. Soil C sequestration and agronomic yield of diverse crop rotations under no-till soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotations, which reduce risk associated with adoption of no-till soil management, may influence soil C sequestration and soil quality. This study measured effects of corn-soybean (C-S), corn-soybean-oat/pea hay (C-S-H), or corn-soybean-oat/pea hay-alfalfa-alfalfa (C-S-H-A-A) annual ...

  18. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above. PMID:23762259

  19. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  20. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  1. Control of the gray field slug during annual ryegrass establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather conditions, in particular soil moisture and soil and air temperature, interact with both crop seedling and slug emergence during the early autumn season. Late, or inadequate autumn rainfall in western Oregon occasionally causes the timing of emergence of newly established annual ryegrass see...

  2. Modeling biogeochemistry in agricultural soils

    SciTech Connect

    Li, C.; Frolking, S.; Harriss, R.

    1994-09-01

    An existing model of C and N dynamics in soils was supplemented with a plant growth submodel and cropping practice routines (fertilization, irrigation, tillage, crop rotation, and manure amendments) to study the biogeochemistry of soil carbon in arable lands. The new model was validated against field results for short-term (1-9 years) decomposition experiments, the seasonal pattern of soil CO{sub 2} respiration, and long-term (100 years) soil carbon storage dynamics. A series of sensitivity runs investigated the impact of varying agricultural practices on soil organic carbon (SOC) sequestration. The tests were simulated for corn (maize) plots over a range of soil and climate conditions typical of the United States. The largest carbon sequestration occurred with manure additions; the results were very sensitive to soil texture (more clay led to greater sequestration). Increased N fertilization generally enhanced carbon sequestration, but the results were sensitive to soil texture, initial soil carbon content, and annual precipitation. Reduced tillage also generally (but not always) increased SOC content, through the results were very sensitive to soil texture, initial SOC content, and annual precipitation. A series of long-term simulations investigated the SOC equilibrium for various agricultural practices, soil and climate conditions, and crop rotations. Equilibrium SOC content increased with decreasing temperatures, increasing clay content, enhanced N fertilization, manure amendments, and crops with higher residue yield. Time to equilibrium appears to be one hundred to several hundred years. In all cases, equilibration time was longer for increasing SOC content than for decreasing SOC content. Efforts to enhance carbon sequestration in agricultural soils would do well to focus on those specific areas and agricultural practices with the greatest potential for increasing soil carbon content. 64 refs., 13 figs., 5 tabs.

  3. Observing Mean Annual Mediterranean Maquis Ecosystem Respiration

    NASA Astrophysics Data System (ADS)

    Marras, S.; Bellucco, V.; Mereu, S.; Sirca, C.; Spano, D.

    2014-12-01

    In semi arid ecosystems, extremely low Soil Water Content (SWC) values may limit ecosystem respiration (Reco) to the point of hiding the typical exponential response of respiration to temperature. This work is aimed to understand and model the Reco of an evergreen Mediterranean maquis ecosystem and to estimate the contribution of soil CO2 efflux to Reco. The selected site is located in the center of the Mediterranean sea in Sardinia (Italy). Mean annual precipitation is 588 mm and mean annual temperature is 15.9 °C. Vegetation cover is heterogeneous: 70% covered by shrubs and 30% of bare soil. Net Ecosystem Exchange (NEE) is monitored with an Eddy Covariance (EC) tower since April 2004. Soil collars were placed underneath the dominant species (Juniperus phoenicea and Pistacia lentiscus) and over the bare soil. Soil CO2 efflux was measured once a month since April 2012. Soil temperature and SWC were monitored continuously at 5 cm depth in 4 different positions close to the soil collars. Six years of EC measurements (2005-2010) and two years of soil CO2 efflux (2012-2013) measurements were analysed. Reco was estimated from the measured EC fluxes at night after filtering for adequate turbulence (u* > 1.5). Reco measurements were then binned into 1°C intervals and median values were first fitted using the Locally Estimated Scatterplot Smoothing (LOESS) method (to determine the dominant trend of the experimental curve) Reco shows an exponential increase with air and soil temperature, until SWC measured at 0.2 m depth remains above 19% vol. Secondly, the coefficients of the selected Lloyd and Taylor (1994) were estimated through the nonlinear least square (nls) method: Rref (ecosystem respiration rate at a reference temperature of 10 °C was equal to 1.65 μmol m-2 s-1 and E0 (activation energy parameter that determines the temperature sensitivity) was equal to 322.46. In addition, bare and drier soils show a reduced response of measured CO2 efflux to increasing

  4. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  5. Concentrations of metals in very small volumes of soil solution

    USGS Publications Warehouse

    Hinkley, T.

    1979-01-01

    A new method of sampling very small amounts of soil solution (0.3 g) shows that soil solutions contain high concentrations and unusual proportions of metals. In the soils studied, the solution is close in both metal proportions and total metal mass to what may be taken up annually by the growth of plants at the sites sampled. Composition of soil solution varies seasonally and with depth in soil. ?? 1979 Nature Publishing Group.

  6. Bioreduction amenability testing of actinide contaminated soils. The systems: Am{sup 241}-Pu{sup 238}, Am{sup 241}-Pu{sup 239/40}, U

    SciTech Connect

    Korich, D.G.; Sharp, J.E.

    1995-01-01

    Bioreductive processing of actinide contaminated soils can achieve extraction levels in excess of 97% for both plutonium and uranium contaminants. Reasonable reaction rates of 4 to 6 day resident times for Pu-Am have been demonstrated on 4 gram sample charges. Longer reaction times of 17 days required for uranium extraction can be improved by soil sample preconditioning and/or an increase in process reagent concentrations. The environmentally benign treatment process operates at pH 6--7, preserves the original soil matrix, and utilizes standard processing equipment. The process reagent component (inoculum SD-1 and biological growth medium PX100{trademark}) are available for utilization in an integrated system. Process techniques developed by MBX, involving graduated volume bioreactors have been proven to alleviate biological toxicity problems in treatment leachates. Bioreduction processing of actinide contaminated soils, preconditioning of soil charges, and recycling or vegetation of unacceptable tailings can be combined to provide an effective and environmentally attractive method of remediation. The soil test program was designed to determine the applicability of the MBX bioreductive technology to solubilize Pu and Am from RFP, Mound and LANL soils and uranium from Hanford and Fernald soils.

  7. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  8. Annual Fund. Estate Planning.

    ERIC Educational Resources Information Center

    Stuhr, Robert L.; Jarc, Jerry A.

    The first of a series, this publication consists of two symposium presentations. The first paper, "Annual Fund: Cornerstone of Development," by Robert L. Stuhr, defines the annual fund concept in the context of institutional development and provides five requisites for a successful annual fund: it must (1) be part of an ongoing development…

  9. Application of in-situ gamma spectrometry in the remediation of radioactively contaminated soil

    SciTech Connect

    Sutton, C.; Yesso, J.D.; Danahy, R.J.; Cox, T.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Most of the remediation effort entails massive excavation of soil for disposal, both offsite and onsite, at an engineered disposal facility. In-situ gamma spectrometry is routinely used to support soil excavation operations to accurately and quickly identify soil areas as being above or below regulatory remediation criteria. Two different in-situ gamma spectrometry systems are used. The first is a sodium iodide (NaI) detector mounted either on a tractor or a jogging stroller, depending on the terrain to be measured. The NaI system allows the collection of a gamma energy spectrum which can be analyzed to identify and quantify radioactive isotopes which are present within the detector`s viewing area. Each energy spectrum is tagged by location coordinates provided by an on-board global positioning system (GPS) to precisely locate elevated contamination areas. The second is a tripod-mounted, high purity germanium detector (HPGe) gamma spectrometry system that is functionally similar to the NaI system. The principal advantage of the HPGe is its superior resolution, which allows much more accurate identification and quantification of radionuclide contaminants in soils. In order to effectively utilize the data quality objective process with these systems, three quality assurance (QA) elements had to be performed.

  10. How does soil management affect carbon losses from soils?

    NASA Astrophysics Data System (ADS)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  11. Evaluation of soil characterization technologies using a stochastic, value-of-information approach

    SciTech Connect

    Kaplan, P.G.

    1993-11-01

    The US Department of Energy has initiated an integrated demonstration program to develop and compare new technologies for the characterization of uranium-contaminated soils. As part of this effort, a performance-assessment task was funded in February, 1993 to evaluate the field tested technologies. Performance assessment can be cleaned as the analysis that evaluates a system`s, or technology`s, ability to meet the criteria specified for performance. Four new technologies were field tested at the Fernald Environmental Management Restoration Co. in Ohio. In the next section, the goals of this performance assessment task are discussed. The following section discusses issues that must be resolved if the goals are to be successfully met. The author concludes with a discussion of the potential benefits to performance assessment of the approach taken. This paper is intended to be the first of a series of documentation that describes the work. Also in this proceedings is a paper on the field demonstration at the Fernald site and a description of the technologies (Tidwell et al, 1993) and a paper on the application of advanced geostatistical techniques (Rautman, 1993). The overall approach is to simply demonstrate the applicability of concepts that are well described in the literature but are not routinely applied to problems in environmental remediation, restoration, and waste management. The basic geostatistical concepts are documented in Clark (1979) and in Issaks and Srivastava (1989). Advanced concepts and applications, along with software, are discussed in Deutsch and Journel (1992). Integration of geostatistical modeling with a decision-analytic framework is discussed in Freeze et al (1992). Information-theoretic and probabilistic concepts are borrowed from the work of Shannon (1948), Jaynes (1957), and Harr (1987). The author sees the task as one of introducing and applying robust methodologies with demonstrated applicability in other fields to the problem at hand.

  12. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  13. Plant-Soil Relationships of Bromus tectorum L.: Interactions among Labile Carbon Additions, Soil Invasion Status, and Fertilizer.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of western North America by the annual exotic grass Bromus tectorum L. (cheatgrass) has been an ecological disaster. High soil bioavailability of nitrogen is a contributing factor in the invasive potential of B. tectorum. Application of labile carbon sources to the soil can immobilize soil ...

  14. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, L.A.; Detling, J.K.; Tracy, C.R.; Warren, S.D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g-1 dry mass). However, total shoot N (mg N m-2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass x concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one

  15. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  16. Bench- and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants.

    PubMed

    Francis, C W; Timpson, M E; Wilson, J H

    1999-04-23

    Development of the nuclear industry has resulted in soil becoming contaminated with uranium from a variety of sources. To avoid the disposal of these soils in conventional low-level radwaste burial sites, a technology is needed to extract/leach and concentrate uranium in soil into small volumes of an acceptable waste form and returning the soil to its original place. Two lixiviants, carbonate and citrate, were evaluated as to their ability to extract uranium from soil in a soil washing engineering process. The objective was to use a washing/extracting process to selectively remove the uranium from soil without seriously degrading the soil's physicochemical characteristics or generating a secondary waste form that is difficult to manage and/or dispose. Both carbonate and citric acid lixiviants were observed to be effective extractants to remove uranium from the soils tested. Carbonate, because of the its ability to be recycled and its tendency to be more selective for uranium, is preferred for most soils. A major obstacle for using citric acid as well as mineral-based acids is their generation of waste streams from which it is difficult to remove uranium and manage (and dispose of any residual waste water sludges) in an environmentally acceptable manner. The removal of uranium was examined for three soils sampled from two US Department of Energy sites. Two soils were from the facility formerly called the Feed Materials Production Center at Fernald, Ohio and the other soil was from the Oak Ridge Tennessee Y-12 Plant. In the bench-scale studies, general relationships, such as the effect of carbonate and citrate concentrations, pH, the presence of oxidants, such as KMnO4, temperature, and extraction time were investigated. The best pilot-scale treatment consisted of three successive extractions with 0.25 M carbonate-bicarbonate (in presence of KMnO4 as an oxidant) at 40 degrees C followed with two water rinses. PMID:10379031

  17. Metals in European roadside soils and soil solution--a review.

    PubMed

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table.

  18. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  19. Clumped isotopes in soil carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J. M.; Daeron, M.

    2011-12-01

    We are monitoring soil temperature and measuring clumped isotopes from modern soil carbonate in North and South America, Hawaii, and Tibet. Clumped isotopes from 50-200 cm soil depth show a strong and systematic bias toward formation in the warmest summer months. For example, soil carbonate as these depths exceed local mean annual temperature by 10-15°C in soils from India and Tibet. Clumped isotope temperatures from modern carbonate increase very regularly (r2 = 0.90) with elevation gain from lowland India to Tibet. Here carbonate forms largely in May-June, just prior to the arrival of the soil-cooling monsoon rains. In this regard, clumped isotopes hold great promise as a paleoaltimeter on the plateau. The question is whether these patterns from a monsoonal climate can be generalized (and they probably can't be) to other climate regimes when soil carbonate forms at a different time of year than the pre-monsoon. For example, in winter-dominated rainfall regimes soil carbonate may form as soils dewater in the spring and soil temperature is closer to mean annual temperature. These are open questions. Diurnal temperature information is also archived in the upper 30 cm of soils. Modern carbonate in Tibet appears to form in very late morning through afternoon, when the surface soil is warmest. Shade and aspect also strongly influence measured soil and clumped isotope temperatures. Both variables will have to be controlled for to correctly interpret clumped isotopes from the paleosol record. Clumped isotope values correlate with δ13C values in soil carbonate from shallowly buried (<1 km) paleosols from Nepal and Pakistan. This makes sense since δ13C values in the sub-tropics are determined the fraction of tree (C3) to grass (C4) cover, and soils under tree-covered areas are cooler. Finally, clumped isotopes from carbonates are reset to higher temperatures at burial depths roughly >2-3 km or >50-75°C. This was reproduced from paleosol and lake carbonates from three

  20. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    USGS Publications Warehouse

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  1. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  2. Seasonal changes in soil water repellency and their effect on soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil water repellency (SWR) is a seasonally variable phenomenon controlled by moisture content and at the same time a regulator of the distribution and conductivity of water in the soil. The distribution and availability of water in soil is also an important factor for microbial activity, decomposition of soil organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. It has been therefore hypothesised that SWR by restricting water availability in soil can affect the production and the transport of CO2 in the soil and between the soil and the atmosphere. This study investigates the effect of seasonal changes in soil moisture and water repellency on CO2 fluxes from soil. The study was conducted for 3 year at four grassland and pine forest sites in the UK with contrasting precipitation. The results show the temporal changes in soil moisture content and SWR are affected by rainfall intensity and the length of dry periods between the storms. Soils exposed to very high annual rainfall (>1200mm) can still exhibit high levels of SWR for relatively long periods of time. The spatial variation in soil moisture resulting from SWR affects soil CO2 fluxes, but the most profound effect is visible during and immediately after the rainfall events. Keywords: soil water repellency, CO2 flux, hydrophobicity, preferential flow, gas exchange, rainfall

  3. Annual Energy Review, 2008

    SciTech Connect

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  4. Soil Ecology

    NASA Astrophysics Data System (ADS)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  5. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  6. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    NASA Astrophysics Data System (ADS)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm

  7. Temporal changes of soil respiration under different tree species.

    PubMed

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir.

  8. Soil penetrometer

    NASA Technical Reports Server (NTRS)

    Howard, E. A.; Hotz, G. M.; Bryson, R. P. (Inventor)

    1968-01-01

    An auger-type soil penetrometer for burrowing into soil formations is described. The auger, while initially moving along a predetermined path, may deviate from the path when encountering an obstruction in the soil. Alterations and modifications may be made in the structure so that it may be used for other purposes.

  9. Soil erosion in river basins of Georgia

    NASA Astrophysics Data System (ADS)

    Gogichaishvili, G. P.

    2016-06-01

    The area of cultivated lands in western and eastern Georgia comprises 28-40 and 29-33% of the total catchment areas, respectively. Eroded arable soils in Georgia occupy 205700 ha, i.e. 30.5% of the total plowland area, including 110500 ha (16.4%) of slightly eroded soils, 74400 ha (11%) of moderately eroded soils, and 20800 ha (3.1%) of strongly eroded soils. The maximum denudation rate in catchments of western Georgia reaches 1.0 mm/yr. The minimum denudation (0.01 mm/yr.) is typical of river catchments in southern Georgia. The mean annual soil loss from plowed fields in western Georgia reaches 17.4 t/ha and exceeds the soil loss tolerance by nearly four times. In eastern Georgia, it is equal to 10.46 t/ha and exceeds the soil loss tolerance by 2.5 times. In southern Georgia, the mean annual soil loss from plowed fields is as low as 3.08 t per ha, i.e., much lower than the soil loss tolerance.

  10. Stochastic soil water balance under seasonal climates

    PubMed Central

    Feng, Xue; Porporato, Amilcare; Rodriguez-Iturbe, Ignacio

    2015-01-01

    The analysis of soil water partitioning in seasonally dry climates necessarily requires careful consideration of the periodic climatic forcing at the intra-annual timescale in addition to daily scale variabilities. Here, we introduce three new extensions to a stochastic soil moisture model which yields seasonal evolution of soil moisture and relevant hydrological fluxes. These approximations allow seasonal climatic forcings (e.g. rainfall and potential evapotranspiration) to be fully resolved, extending the analysis of soil water partitioning to account explicitly for the seasonal amplitude and the phase difference between the climatic forcings. The results provide accurate descriptions of probabilistic soil moisture dynamics under seasonal climates without requiring extensive numerical simulations. We also find that the transfer of soil moisture between the wet to the dry season is responsible for hysteresis in the hydrological response, showing asymmetrical trajectories in the mean soil moisture and in the transient Budyko's curves during the ‘dry-down‘ versus the ‘rewetting‘ phases of the year. Furthermore, in some dry climates where rainfall and potential evapotranspiration are in-phase, annual evapotranspiration can be shown to increase because of inter-seasonal soil moisture transfer, highlighting the importance of soil water storage in the seasonal context. PMID:25663808

  11. Global climate changes and the soil cover

    NASA Astrophysics Data System (ADS)

    Kudeyarov, V. N.; Demkin, V. A.; Gilichinskii, D. A.; Goryachkin, S. V.; Rozhkov, V. A.

    2009-09-01

    The relationships between climate changes and the soil cover are analyzed. The greenhouse effect induced by the rising concentrations of CO2, CH4, N2O, and many other trace gases in the air has been one of the main factors of the global climate warming in the past 30-40 years. The response of soils to climate changes is considered by the example of factual data on soil evolution in the dry steppe zone of Russia. Probable changes in the carbon cycle under the impact of rising CO2 concentrations are discussed. It is argued that this rise may have an effect of an atmospheric fertilizer and lead to a higher productivity of vegetation, additional input of organic residues into the soils, and activation of soil microflora. Soil temperature and water regimes, composition of soil gases, soil biotic parameters, and other dynamic soil characteristics are most sensitive to climate changes. For the territory of Russia, in which permafrost occupies more than 50% of the territory, the response of this highly sensitive natural phenomenon to climate changes is particularly important. Long-term data on soil temperatures at a depth of 40 cm are analyzed for four large regions of Russia. In all of them, except for the eastern sector of Russian Arctic, a stable trend toward the rise in the mean annual soil temperature. In the eastern sector (the Verkhoyansk weather station), the soil temperature remains stable.

  12. 2010 Annual Report

    SciTech Connect

    2010-01-01

    This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.

  13. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  14. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  15. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest.

    PubMed

    Wood, Tana E; Detto, Matteo; Silver, Whendee L

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m(2)), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal controls on soil CO2 efflux from a humid tropical forest in Puerto Rico. We measured hourly soil CO2 efflux, temperature and moisture in control and exclusion plots (n = 6) for 6-months. The variance of each time series was analyzed using orthonormal wavelet transformation and Haar-wavelet coherence. We found strong negative coherence between soil moisture and soil respiration in control plots corresponding to a two-day periodicity. Across all plots, there was a significant parabolic relationship between soil moisture and soil CO2 efflux with peak soil respiration occurring at volumetric soil moisture of approximately 0.375 m(3)/m(3). We additionally found a weak positive coherence between CO2 and temperature at longer time-scales and a significant positive relationship between soil temperature and CO2 efflux when the analysis was limited to the control plots. The coherence between CO2 and both temperature and soil moisture were reduced in exclusion plots. The reduced CO2 response to temperature in exclusion plots suggests that the positive effect of temperature on CO2 is constrained by soil moisture availability.

  16. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest.

    PubMed

    Wood, Tana E; Detto, Matteo; Silver, Whendee L

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m(2)), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal controls on soil CO2 efflux from a humid tropical forest in Puerto Rico. We measured hourly soil CO2 efflux, temperature and moisture in control and exclusion plots (n = 6) for 6-months. The variance of each time series was analyzed using orthonormal wavelet transformation and Haar-wavelet coherence. We found strong negative coherence between soil moisture and soil respiration in control plots corresponding to a two-day periodicity. Across all plots, there was a significant parabolic relationship between soil moisture and soil CO2 efflux with peak soil respiration occurring at volumetric soil moisture of approximately 0.375 m(3)/m(3). We additionally found a weak positive coherence between CO2 and temperature at longer time-scales and a significant positive relationship between soil temperature and CO2 efflux when the analysis was limited to the control plots. The coherence between CO2 and both temperature and soil moisture were reduced in exclusion plots. The reduced CO2 response to temperature in exclusion plots suggests that the positive effect of temperature on CO2 is constrained by soil moisture availability. PMID:24312508

  17. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility

  18. Soil Physics

    NASA Astrophysics Data System (ADS)

    Marshall, T. J.; Holmes, J. W.; Rose, C. W.

    1996-06-01

    Now in its third edition, this textbook gives a comprehensive account of soil physics with emphasis on field applications for students and research workers engaged in water resources studies, soil sciences, and plant sciences. The authors have added chapters on soil erosion, conservation, and the role of soil in affecting water quality to this new edition. The book gives an account of how water influences the structure and strength of soil; how plants absorb water from soils; how water from rain and irrigation enters the soil and flows through it to contribute to stream flow and flow in artificial drains; how soluble salts and chemical pollutants are transported; how soils are eroded by water and wind; and how the evaporation rate from the land surface is influenced by soil water supply, the nature of the plant cover and the evaporative power of the atmosphere. This book will be useful to students and research workers in environmental sciences, hydrology, agriculture, soil science, and civil engineering.

  19. Soil: A Public Health Threat or Savior

    SciTech Connect

    IL Pepper; CP Gerba; DT Newby; CW Rice

    2009-05-01

    Soil is the most complicated biomaterial on the planet due to complex soil architecture and billions of soil microbes with extreme biotic diversity. Soil is potentially a source of human pathogens, which can be defined as geo-indigenous, geo-transportable, or geotreatable. Such pathogens cumulatively can and do result in multiple human fatalities annually. A striking example is Helminths, with current infections worldwide estimated to be around two billion. However, soil can also be a source of antibiotics and other natural products that enhance human health. Soilborne antibiotics are used to treat human infections, but can also result in antibiotic-resistant bacteria. Natural products isolated from soil resulted in 60% of new cancer drugs between the period 1983–1994. Soils are also crucial to human health through their impact on human nutrition. Finally, from a global perspective, soils are vital to the future well-being of nations through their impact on climate change and global warming. A critical review of soil with respect to public health leads to the conclusion that overall soil is a public health savior. The value of soil using a systems approach is estimated to be $20 trillion, and is by far the most valuable ecosystem in the world.

  20. [Soil moisture dynamics of apple orchard in Loess Plateau dryland].

    PubMed

    Zhao, Gang; Fan, Ting-lu; Li, Shang-zhong; Zhang, Jian-jun; Wang, Yong; Dang, Yi; Wang, Lei

    2015-04-01

    The soil moisture of 0-500 cm soil layer in a dryland orchard at its full fruit period was measured from 2009 to 2013 to explore the soil moisture dynamics. Results indicated that soil water consumption mainly occurred in the soil layer of 0-300 cm in normal rainfall year and below the 300 cm soil layer when the annual rainfall was less than 400 mm. The soil moisture in the 200-300 cm soil layer fluctuated most and was affected by rainfall and apple consumption. Seasonal drought usually happened between April and late June, while the accumulation of soil moisture mainly occurred in the rainy season from July to mid-October to alleviate the drought effectively in next spring.

  1. Editorial: Organic wastes in soils: Biogeochemical and Environmental Aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue of Soil Biology and Biochemistry presents papers from the Second General Annual Conference of European Geosciences Union, Session SSS12 Recycling of Organic Wastes in Soils: Biogeochemical and Environmental Issues, held at the Austria Center Vienna, 24-29 April 2005. Session SSS12...

  2. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  3. Task E container corrosion studies: Annual report

    SciTech Connect

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is {approx} 500 days. Third, an atmospheric corrosion test of low-carbon steel was put initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status.

  4. [Variations of soil fertility level in red soil region under long-term fertilization].

    PubMed

    Yu, Han-qing; Xu, Ming-gang; Lü, Jia-long; Bao, Yao-xian; Sun, Nan; Gao, Ju-sheng

    2010-07-01

    Based on the long-term (1982-2007) field experiment of "anthropogenic mellowing of raw soil" at the Qiyang red soil experimental station under Chinese Academy of Agricultural Sciences, and by using numerical theory, this paper studied the variations of the fertility level of granite red soil, quaternary red soil, and purple sandy shale soil under six fertilization patterns. The fertilization patterns included non-fertilization (CK), straw-returning without fertilizers (CKR), chemical fertilization (NPK), NPK plus straw-return (NPKR), rice straw application (M), and M plus straw-return (MR). The soil integrated fertility index (IFI) was significantly positively correlated with relative crop yield, and could better indicate soil fertility level. The IFI values of the three soils all were in the order of NPK, NPKR > M, MR > CK, CKR, with the highest value in treatment NPKR (0.77, 0.71, and 0.71 for granite red soil, quaternary red soil, and purple sandy shale soil, respectively). Comparing with that in the treatments of no straw-return, the IFI value in the treatments of straw return was increased by 6.72%-18.83%. A turning point of the IFI for all the three soils was observed at about 7 years of anthropogenic mellowing, and the annual increasing rate of the IFI was in the sequence of purple sandy shale soil (0.016 a(-1)) > quaternary red clay soil (0.011 a(-1)) > granite red soil (0.006 a(-1)). It was suggested that a combined application of organic and chemical fertilizers and/or straw return could be an effective and fast measure to enhance the soil fertility level in red soil region.

  5. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  6. Soils based productivity evaluation

    SciTech Connect

    Hooks, C.

    1998-12-31

    Since the passage of SMCRA, reclamation success on agricultural lands has been determined by long-term yield testing. This required a long bond release period lasting ten years or more. Recently, landowners, mine operators, and regulators have voiced a need for methods to expedite the bond release process. The financial burdens of annual cropping and field maintenance by mine operators and monitoring by regulators are of major concern. Landowners need to have the land returned to their production operations instead of being locked in the bond release process for a decade or more. A soils based formula could relieve these financial burdens and ensure the most efficient process to return the productive soil resource to the landowner. In addition, this method will also identify problem fields immediately after reclamation. Currently, some fields undergo ten years of testing before a problem becomes evident. Once a problem is identified and remediation occurs, another period of testing is required. A soils based productivity index, currently being developed in Illinois, will be presented. This will include the basic concepts and findings from earlier research. The needs, benefits, and limitations will also be discussed.

  7. Natural gas annual 1997

    SciTech Connect

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  8. International energy annual 1996

    SciTech Connect

    1998-02-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  9. Annual Energy Outlook

    EIA Publications

    2015-01-01

    The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2015 (AEO2015) focus on the factors that shape the U.S. energy system over the long term. For the first time, the Annual Energy Outlook (AEO) is presented as a shorter edition under a newly adopted two-year release cycle. With this approach, full editions and shorter editions of the AEO will be produced in alternating years. This approach will allow EIA to focus more resources on rapidly changing energy markets both in the United States and internationally, and to consider how they might evolve over the next few years.

  10. Interactive effects of litter quality and soil mineralogy on temperate forest soil carbon response to temperature

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Horwath, W.; Southard, R.

    2007-12-01

    Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted climate change. To address feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter quality and temperature change as a function of soil parent material. We collected soils from three conifer forest-types dominated by ponderosa pine (PP), white fir (WF), and red fir (RF) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. AN soils were dominated by short-range-order (SRO) minerals, GR soils by crystalline minerals, and BS soils by a mix of crystalline and SRO minerals. Field soils were incubated in the laboratory at their mean annual soil temperature (MAST), with addition of native 13C-labeled litter. Further, we incubated WF and RF soils at PP MAST with 13C-labeled PP litter; and RF soils at WF MAST with 13C-labeled WF litter to simulate a migration of MAST and vegetation type up-elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly across forest-types, following the pattern of GR>BS>AN. Regression analyses indicated significant control of C mineralization and soil C priming by litter quality and SRO minerals. Addition of litter derived water-soluble compounds enabled priming of recalcitrant soil C in soils with high SRO mineral content, whereas water-soluble litter components did little to promote priming of extant soil C in soils of low SRO mineral content. Results further indicated a 10-300% increase in WF and RF forest-type soil C mineralization under climate change conditions that varied substantially between parent materials. Soils derived from andesite exhibited minimal change; whereas granite and basalt derived soils lost large amounts of soil C under climate change conditions. This study corroborates the

  11. Ecosystem impacts of exotic annual invaders in the Genus Bromus

    USGS Publications Warehouse

    Germino, Matthew J.; Belnap, Jayne; Stark, John M.; Allen, Edith B.; Rau, Benjamin M.

    2016-01-01

    An understanding of the impacts of exotic plant species on ecosystems is necessary to justify and guide efforts to limit their spread, restore natives, and plan for conservation. Invasive annual grasses such as Bromus tectorum, B. rubens, B. hordeaceus, and B. diandrus (hereafter collectively referred to as Bromus) transform the structure and function of ecosystems they dominate. Experiments that prove cause-and-effect impacts of Bromus are rare, yet inferences can be gleaned from the combination of Bromus-ecosystem associations, ecosystem condition before/after invasion, and an understanding of underlying mechanisms. Bromus typically establishes in bare soil patches and can eventually replace perennials such as woody species or bunchgrasses, creating a homogeneous annual cover. Plant productivity and cover are less stable across seasons and years when Bromus dominates, due to a greater response to annual climate variability. Bromus’ “flash” of growth followed by senescence early in the growing season, combined with shallow rooting and annual habit, may lead to incomplete use of deep soil water, reduced C sequestration, and accelerated nutrient cycling. Litter produced by Bromus alters nearly all aspects of ecosystems and notably increases wildfire occurrence. Where Bromus has become dominant, it can decrease soil stability by rendering soils bare for months following fire or episodic, pathogen-induced stand failure. Bromus-invaded communities have lower species diversity, and associated species tend to be generalists adapted to unstable and variable habitats. Changes in litter, fire, and soil properties appear to feedback to reinforce Bromus’ dominance in a pattern that portends desertification.

  12. High potential for iron reduction in upland soils.

    PubMed

    Yang, Wendy H; Liptzin, Daniel

    2015-07-01

    Changes in the redox state of iron (Fe) can be coupled to the biogeochemical cycling of carbon (C), nitrogen, and phosphorus, and thus regulate soil C, ecosystem nutrient availability, and greenhouse gas production. However, its importance broadly in non-flooded upland terrestrial ecosystems is unknown. We measured Fe reduction in soil samples from an annual grassland, a drained peatland, and a humid tropical forest We incubated soil slurries in an anoxic glovebox for 5.5 days and added sodium acetate daily at rates up to 0.4 mg C x (g soil)(-1) x d(-1). Soil moisture, poorly crystalline Fe oxide concentrations, and Fe(II) concentrations differed among study sites in the following order: annual grassland < drained peatland < tropical forest (P < 0.001 for all characteristics). All of the soil samples demonstrated high Fe reduction potential with maximum rates over the course of the incubation averaging 1706 ± 66, 2016 ± 12, and 2973 ± 115 μg Fe x (g soil)(-1) x d(-1) (mean ± SE) for the tropical forest, annual grassland, and drained peatland, respectively. Our results suggest that upland soils from diverse ecosystems have the potential to exhibit high short-term rates of Fe reduction that may play an important role in driving soil biogeochemical processes during periods of anaerobiosis. PMID:26378323

  13. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    PubMed

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  14. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    PubMed

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland. PMID:27396128

  15. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  16. Carolinas Communication Annual, 1998.

    ERIC Educational Resources Information Center

    McLennan, David B.

    1998-01-01

    This 1998 issue of "Carolinas Communication Annual" contains the following articles: "Give Me That Old Time Religion?: A Study of Religious Themes in the Rhetoric of the Ku Klux Klan" (John S. Seiter); "The Three Stooges versus the Third Reich" (Roy Schwartzman); "Interdisciplinary Team Teaching: Implementing Collaborative Instruction in an…

  17. UNICEF Annual Report, 1996.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    At this time, the United Nations Children Fund (UNICEF) is commemorating its 50th anniversary, under the slogan "children first." This annual UNICEF report reviews the organization's activities during 1995. An introduction by the executive director states that the report will give readers a sense of what UNICEF is doing with partners to rise to…

  18. NERSC Annual Report 2004

    SciTech Connect

    Hules, John; Bashor, Jon; Yarris, Lynn; McCullough, Julie; Preuss, Paul; Bethel, Wes

    2005-04-15

    The National Energy Research Scientific Computing Center (NERSC) is the premier computational resource for scientific research funded by the DOE Office of Science. The Annual Report includes summaries of recent significant and representative computational science projects conducted on NERSC systems as well as information about NERSC's current and planned systems and services.

  19. 2010 AAUW Annual Report

    ERIC Educational Resources Information Center

    American Association of University Women, 2010

    2010-01-01

    This report highlights some of the outstanding accomplishments of AAUW (American Association of University Women) for fiscal year 2010. This year's annual report also features stories of remarkable women who are leading the charge to break through barriers and ensure that all women have a fair chance. Sharon is working to reduce the pay gap…

  20. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  1. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  2. UNICEF Annual Report, 1995.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, N.Y.

    This annual report for the United Nations Children's Fund (UNICEF) details the programs and services provided by this organization in 1994. Following an overview of the year and a remembrance of former UNICEF Executive Director James P. Grant, the report describes developments in seven world regions and in specific emergency countries. The report…

  3. Annual research briefs, 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Briefs of the 1994 annual progress reports of the Research Fellows and students of the Center for Turbulence Research are presented. Subjects covered include turbulence combustion, large eddy simulation, Reynolds-averaged turbulence modeling, turbulence control, postprocessing, sound generation, and turbulence physics.

  4. Annual Review 1995.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This document provides an annual report and financial review for 1995 of the Bernard van Leer Foundation, a private institution created in 1949 for broad humanitarian purposes. The report includes feature articles highlighting specific aspects of the year's activities: (1) "Growing Up in France: Parental Creches"; (2) "Changing the Nature of…

  5. Annual Review 1994.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    The report provides an annual report and financial review for 1994 of the Bernard van Leer Foundation, a private institution that was created for broad humanitarian purposes in 1949, and shows the varied aspects of the foundation's activities in the project field. In addition, it includes a number of feature articles which highlight specific…

  6. TACSCE Research Annual 1991.

    ERIC Educational Resources Information Center

    Lesko, Silvia Jo

    1991-01-01

    This annual contains the paper that won the 1991 President's Award of the Texas Association for Community Service and Continuing Education (TACSCE) as well as the runner-up paper and other articles. An editorial, "Learning to Crawl" (Silvia Lesko), focuses on the editor's "discovery" of the adult learner. "Ethics and Continuing Education" (Janet…

  7. NRCC annual report, 1979

    SciTech Connect

    Not Available

    1980-11-01

    This annual report of the National Research for Computation in Chemistry (NRCC) Division describes the program of research workshops, software development, and scientific research of the Division in 1979. This year marked the first full calendar year of activity of the Division. Initial staffing in the core scientific areas was completed by the addition of a crystallographer.

  8. NERSC Annual Report 2002

    SciTech Connect

    Hules, John

    2003-01-31

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2002 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects), and information about NERSC's current and planned systems and service

  9. International Energy Annual, 1992

    SciTech Connect

    Not Available

    1994-01-14

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  10. NERSC Annual Report 2005

    SciTech Connect

    Hules , John

    2006-07-31

    The National Energy Research Scientific Computing Center (NERSC) is the premier computational resource for scientific research funded by the DOE Office of Science. The Annual Report includes summaries of recent significant and representative computational science projects conducted on NERSC systems as well as information about NERSC's current and planned systems and services.

  11. Annual Research Briefs - 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report contains the 1996 annual progress reports of the research fellows and students supported by the Center for Turbulence Research. Last year, CTR hosted twelve resident Postdoctoral Fellows, three Research Associates, four Senior Research Fellows, and supported one doctoral student and ten short term visitors.

  12. UNICEF Annual Report. 1984.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    This annual report reviews the work UNICEF has been doing to help transform the "Child Survival Revolution" from a dream into a reality. Discussion focuses primarily on child health and nutrition and other basic services for children. Throughout, the review is supplemented with profiles of program initiatives made to improve the conditions of the…

  13. Carolinas Communication Annual, 1999.

    ERIC Educational Resources Information Center

    McLennan, David B.

    1999-01-01

    This 1999 issue of the "Carolinas Communication Annual" contains the following articles: "The Unmade Analogy: Alcohol and Abortion" (Richard W. Leeman); "Say, You Want a Revolution" (Roy Schwartzman and Constance Y. Green); "Exploring the Relationship between Perceived Narrativity and Persuasiveness" (Richard Olsen and Rodney A. Reynolds); "In…

  14. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  15. UNICEF Annual Report 1983.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    In introducing this annual report, the executive director of UNICEF delineates the four techniques for primary health care and basic services reported in the publication "State of the World's Children, 1982-1983." The ensuing review of UNICEF's activities illustrates highlights of the year's program cooperation, including trends and key events, by…

  16. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  17. UNICEF Annual Report, 1994.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    This annual report for the United Nations Children's Fund (UNICEF) describes the programs and services provided by this organization in 1993. Following an introduction by UNICEF's executive director, the report reviews regional developments in Sub-Saharan Africa, the Middle East and North Africa, East Asia and the Pacific, South Asia, Latin…

  18. Uranium industry annual 1998

    SciTech Connect

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  19. Annual Income Tax Guide.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1988

    1988-01-01

    The annual income tax guide is designed to familiarize parents with the tax laws that specifically affect persons with disabilities and their families. Summarized are the changes for 1988 as well as guidelines for itemized deductions, tax credits, and the deduction for dependents. (DB)

  20. Marketing the Annual Fund.

    ERIC Educational Resources Information Center

    Cover, Nelson, Jr.

    1980-01-01

    Colleges and universities must develop complete and coherent marketing strategies that aim at communicating a solid, identifiable, and structured image and purpose to alumni and friends, and to their regional and national communities. Some examples of how a particular institution should structure its annual fund are provided. (MLW)

  1. UNICEF Annual Report, 1993.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    This annual report for the United Nations Children's Fund (UNICEF) details the programs and services provided by this organization in 1992-93. Following an introduction by UNICEF's executive director, the report briefly reviews UNICEF activities for 1992, then describes specific projects in the following areas: (1) child survival and development;…

  2. Annual HR Salary Survey.

    ERIC Educational Resources Information Center

    Schaeffer, Patricia

    2000-01-01

    A trainers' salary survey collected data on 1,091 companies, 31,615 employees, and 97 human resource jobs. Results show pay for human resource professionals is continuing to rise. The survey contains information on base salaries, annual bonuses and incentives, and long-term eligibility incentives. (JOW)

  3. Ultrasound Annual, 1984

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1984-01-01

    The 1984 edition of Ultrasound Annual explores new applications of ultrasound in speech and swallowing and offers guidelines on the use of ultrasound and nuclear medicine in thyroid and biliary tract disease. Other areas covered include Doppler sonography of the abdomen, intraoperative abdominal ultrasound, sonography of the placenta, ultrasound of the neonatal head and abdomen, and sonographic echo patterns created by fat.

  4. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  5. The impact of soil degradation on soil functioning in Europe

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2010-05-01

    actual economic impact of soil degradation in Europe.The total costs of soil degradation that could be assessed for erosion, organic matter decline, salinisation, landslides and contamination on the basis of available data, would be up to €38 billion annually for EU25. These estimates are necessarily wide ranging due to the lack of sufficient quantitative and qualitative data. Future research activities will have to address, in multidisciplinary teams, the social and economic aspects of soil degradation in Europe, in order to come up with more reliable estimates of the economic impact of soil degradation. A more reliable and updated system of indicators needs to be developed in order to cover the full cycle of the Driving forces-Pressures-State-Impact-Response (DPSIR) framework. Recent developments towards a new soil monitoring system for Europe will be presented as well as some of the recent outputs of the European Soil Data Centre (ESDAC).

  6. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  7. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss. PMID:25655192

  8. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  9. Convergence of soil nitrogen isotopes across global climate gradients

    PubMed Central

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss. PMID:25655192

  10. Estimates of soil erosion using cesium-137 tracer models.

    PubMed

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  11. Convergence of soil nitrogen isotopes across global climate gradients

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-02-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  12. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    PubMed

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping.

  13. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  14. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  15. [Responses of Manglietia glauca growth to soil nutrients and climatic factors].

    PubMed

    Lu, Li-Hua; He, Ri-Ming; Nong, Rui-Hong; Li, Zhong-Guo

    2014-04-01

    Tree height and diameter of breast height (DBH) as growth characteristics of Manglietia glauca introduced from Vietnam were measured at many sites in south China and responses of M. glauca growth to soil nutrients and climatic factors were analyzed in this study. Annual average increments of tree height and DBH among different planted sites had significant differences. Annual average increments of tree height and DBH had significant positive correlation with soil total N and P, available N and P, but no significant correlation with soil organic matter, total K, available K, indicating that soil N and P contents could be the main affecting factors for the growth of M. glauca. Annual average increment of tree height had significant difference, but annual average increment of DBH had no significant difference at different altitudes. Annual average increment of tree height increased with the altitude from 150 to 550 m, the maximum was at the altitude of 550 m, and then it decreased. It indicated that the most appropriate altitude for M. glauca introduction is 550 m. Annual average increments of tree height and DBH had significant negative correlation with annual average temperature and > or = 10 degrees C accumulated temperature, and significant positive correlation with annual average precipitation, suggesting that annual mean temperature, > or = 10 degrees C accumulated temperature and annual average precipitation could be the main climatic factors influencing the growth of M. glauca. PMID:25011286

  16. Disappearance and persistence of aldrin after five annual applications

    USGS Publications Warehouse

    Korschgen, L.J.

    1971-01-01

    Investigation was initiated in 1965 to ascertain the disappearance rate of aldrin applied on loam soils at the recommended level of 1.5 lb per acre from 1960 through 1964. There was no further application of pesticides. Sampling began in 1965 and extended into 1970. Data from gas chromatographic analyses of soil and earthworm samples, collected spring and fall, showed that more than 95 percent of the pesticide had disappeared before the study began. There was no significant (P > 0.05) reduction in aldrin plus dieldrin residues throughout 6 years of study. Similarly, residues in earthworms (Allolobophora caligimosa) failed to decline during the 6 years. Average combined residues for 11 semi-annual collection periods was 0.11 ppm in soils, 0.61 ppm in earthworms, wet-weight bases. Results showed that high levels of pesticide did not accumulate and remain in the soil as a result of annual applications and that a large part of applied aldrin had disappeared within 1 year. Earthworms contained 4 to 15 times (average 5.6) as much aldrin plus dieldrin as was found in soils.

  17. Soil heterotrophic respiration responses to meteorology, soil types and cropping systems in a temperate agricultural watershed.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Viaud, Valérie; Fléchard, Chris

    2015-04-01

    Within the context of Climate Change, a better understanding of soil organic matter dynamics is of considerable importance in agro-ecosystems, due to their large mitigation potential. This study aims at better understanding the process of soil heterotrophic respiration at the annual scale and at the watershed scale, with these temporal and spatial scales allowing an integration of the most important drivers: cropping systems and management, topography, soil types, soil organic carbon content and meteorological conditions. Twenty-four soil CO2 flux measurement sites - comprising three PVC collars each - were spread over the Naizin-Kervidy catchment (ORE AgrHys, 4.9 km², W. France) in March 2014. These sites were selected in order to represent most of the diversity in drainage classes, soil types and cropping systems. Soil CO2 flux measurements were performed about every ten to fifteen days at each site, starting from 20 March 2014, using the dynamic closed chamber system Li-COR 8100. Soil temperature and soil moisture content down to 5 cm depth were measured simultaneously. An empirical model taking the influence of meteorological drivers (soil temperature and soil water content) on soil CO2 fluxes was applied to each site and the different responses were analyzed with regard to site characteristics (topography, soil organic carbon content, soil microbial biomass, crop type, crop management,…) in order to determine the most important driving variables of soil heterotrophic respiration. The modeling objective is then to scale the fluxes measured at all sites up to the full watershed scale.

  18. Annual Energy Review 2007

    SciTech Connect

    Seiferlein, Katherine E.

    2008-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....”

  19. International energy annual 1997

    SciTech Connect

    1999-04-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  20. Renewable energy annual 1995

    SciTech Connect

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  1. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Petroleum marketing annual 1994

    SciTech Connect

    1995-08-24

    The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

  3. NERSC 2001 Annual Report

    SciTech Connect

    Hules, John

    2001-12-12

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005.

  4. NERSC 1998 annual report

    SciTech Connect

    Hules, John

    1999-03-01

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  5. NSLS annual report 1984

    SciTech Connect

    Klaffky, R.; Thomlinson, W.

    1984-01-01

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  6. 2008 annual merit review

    SciTech Connect

    None, None

    2009-01-18

    The 2008 DOE Vehicle Technologies Program Annual Merit Review was held February 25-28, 2008 in Bethesda, Maryland. The review encompassed all of the work done by the Vehicle Technologies Program: a total of 280 individual activities were reviewed, by a total of just over 100 reviewers. A total of 1,908 individual review responses were received for the technical reviews, and an additional 29 individual review responses were received for the plenary session review.

  7. Annual Energy Outlook

    EIA Publications

    2016-01-01

    Projections in the Annual Energy Outlook 2016 (AEO2016) focus on the factors expected to shape U.S. energy markets through 2040. The projections provide a basis for examination and discussion of energy market trends and serve as a starting point for analysis of potential changes in U.S. energy policies, rules, and regulations, as well as the potential role of advanced technologies.

  8. Nuclear Medicine Annual, 1986

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1986-01-01

    Nuclear Medicine Annual, l986 features state-of-the-art reports on the technical aspects and clinical applications of single-photon emission computed tomography, as well as on monoclonal antibodies for radioimmunoimaging and on receptorbinding radiopharmaceuticals. Also included is a review of magnetic resonance imaging of congenital cardiac abnormalities. Other contributions cover bone mineral measurements; skeletal scintigraphy of the hands and wrists; and radionuclide blood-pool imaging in the diagnosis of deep-vein thrombosis of the leg.

  9. Quantification of soil fauna metabolites and dead mass as humification sources in forest soils

    NASA Astrophysics Data System (ADS)

    Chertov, O. G.

    2016-01-01

    The analysis of publications on soil food webs (FWs) allowed calculation of the contents of soil fauna metabolites and dead mass, which can serve as materials for humification. Excreta production of FWmicrofauna reaches 570 kg/ha annually, but the liquid excreta of protozoa and nematodes compose about 25%. The soil fauna dead mass can be also maximally about 580 kg/ha per year. However, up to 70% of this material is a dead mass of bacteria, protozoa, and nematodes. The undecomposed forest floor (L) has low values of these metabolites in comparison with the raw humus organic layer (F + H). The mass of these metabolites is twice lower in Ah. Theoretical assessment of earthworms' role in SOM formation shows that the SOM amount in fresh coprolites can be 1.4 to 4.5-fold higher than SOM in the bulk soil in dependence on food assimilation efficiency, the soil: litter ratio in the earthworms' ration, and SOM quantity in the bulk soil. Excreta production varies from 0.2 to 1.9% of the total SOM pool annually, including 0.15-1.5% of excrements of arthropods and enchytraeidae, but the amount of arthropods' dead mass comprises 0.2-0.4%. The calculated values of the SOM increase due to earthworms' coprolites are of the same order (0.9-2.7% of SOM pool annually). These values of SOM-forming biota metabolites and dead mass are close to the experimental and simulated data on labile and stable SOM fractions decomposition in forest soils (about 2% annually). Therefore, these biota's products can play a role to restock SOM decrease due to mineralization.

  10. Can Long-Term Precipitation Trends Explain Net Annual Carbon Loss From High Elevation Alpine Tundra?

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Blanken, P.; Williams, M. W.

    2013-12-01

    Five continuous years of eddy covariance measurements over predominantly snow-free alpine tundra on Niwot Ridge, Colorado show that ecosystem respiration dominates over gross primary productivity on an annual basis, and that this ecosystem is a significant source of carbon to the atmosphere over long periods of time. Long-term data also show that precipitation has increased since the 1960s, in contrast to modeled forecasts that generally predict decreasing precipitation through the 21st century across the Rocky Mountain region. To constrain the specific relationship between precipitation and the alpine tundra carbon cycle, we tested the degree to which precipitation and soil moisture determined respiration fluxes over the course of three years, and across a range of 17 sites, including xeric, mesic, and hydric alpine tundra soils, within the footprint of ongoing eddy covariance measurements. Overall, we found that respiration from this ecosystem was principally moisture-limited. Cumulatively, the highest respiration rates were measured from hydric soils associated with seasonal ice lenses and perched water tables, however, growing season respiration rates peaked in mesic areas when hydric soils were saturated. Respiration from xeric soils increased with soil moisture, but fluxes from these areas were small in magnitude relative to mesic and hydric soils. Changes in precipitation and resultant soil moisture thus invoked a bidirectional response from alpine tundra soils, as moisture and respiration were positively correlated in some areas, but negatively correlated in others, depending on landscape position and prevailing soil moisture regime. Interannually, however, respiration fluxes were highest in wet years, indicating that moisture stimulated respiration from xeric and mesic soils more than it was suppressed from hydric soils. In sum, increased precipitation over the last half-century may be augmenting respiratory fluxes from alpine tundra, but changes in

  11. Rates of soil development from four soil chronosequences in the southern Great Basin

    USGS Publications Warehouse

    Harden, J.W.; Taylor, E.M.; Hill, C.; Mark, R.K.; McFadden, L.D.; Reheis, M.C.; Sowers, J.M.; Wells, S.G.

    1991-01-01

    Four soil chronosequences in the southern Great Basin were examined in order to study and quantify soil development during the Quaternary. Soils of all four areas are developed in gravelly alluvial fans in semiarid climates with 8 to 40 cm mean annual precipitation. Lithologies of alluvium are granite-gneiss at Silver Lake, granite and basalt at Cima Volcanic Field, limestone at Kyle Canyon, and siliceous volcanic rocks at Fortymile Wash. Ages of the soils are approximated from several radiometric and experimental techniques, and rates are assessed using a conservative mathematical approach. Average rates for Holocene soils at Silver Lake are about 10 times higher than for Pleistocene soils at Kyle Canyon and Fortymile Wash, based on limited age control. Holocene soils in all four areas appear to develop at similar rates, and Pleistocene soils at Kyle Canyon and Fortymile Wash may differ by only a factor of 2 to 4. Over time spans of several millennia, a preferred model for the age curves is not linear but may be exponential or parabolic, in which rates decrease with increasing age. These preliminary results imply that the geographical variation in rates within the southern Great Basin-Mojave region may be much less significant than temporal variation in rates of soil development. The reasons for temporal variation in rates and processes of soil development are complexly linked to climatic change and related changes in water and dust, erosional history, and internally driven chemical and physical processes. ?? 1991.

  12. Soil organic carbon dynamics in a sod-based rotation on coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A frequently used cropping system in the southeastern Coastal Plain is an annual rotation of cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) under conventional tillage (CT). The traditional peanut-cotton rotation (TR) often results in erosion and loss of soil organic carbon (SOC). In...

  13. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    SciTech Connect

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.; Guo, Shenglian; Liu, Pan; Sivapalan, Murugesu

    2014-03-28

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography and vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.

  14. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    SciTech Connect

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg

  15. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    SciTech Connect

    Ye, Sheng; Li, Hongyi; Li, Shuai; Leung, Lai-Yung R.; Demissie, Yonas; Ran, Qihua; Blschl, Gnter

    2015-12-16

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability, but in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index as a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.

  16. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Li, Hong-Yi; Li, Shuai; Leung, L. Ruby; Demissie, Yonas; Ran, Qihua; Blöschl, Günter

    2015-12-01

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability. But in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index as a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.

  17. Global biogeography of highly diverse protistan communities in soil.

    PubMed

    Bates, Scott T; Clemente, Jose C; Flores, Gilberto E; Walters, William Anthony; Parfrey, Laura Wegener; Knight, Rob; Fierer, Noah

    2013-03-01

    Protists are ubiquitous members of soil microbial communities, but the structure of these communities, and the factors that influence their diversity, are poorly understood. We used barcoded pyrosequencing to survey comprehensively the diversity of soil protists from 40 sites across a broad geographic range that represent a variety of biome types, from tropical forests to deserts. In addition to taxa known to be dominant in soil, including Cercozoa and Ciliophora, we found high relative abundances of groups such as Apicomplexa and Dinophyceae that have not previously been recognized as being important components of soil microbial communities. Soil protistan communities were highly diverse, approaching the extreme diversity of their bacterial counterparts across the same sites. Like bacterial taxa, protistan taxa were not globally distributed, and the composition of these communities diverged considerably across large geographic distances. However, soil protistan and bacterial communities exhibit very different global-scale biogeographical patterns, with protistan communities strongly structured by climatic conditions that regulate annual soil moisture availability.

  18. Examining the Intra-annual Variance in Streamflow: What is the Contribution from Climate Variability?

    NASA Astrophysics Data System (ADS)

    Ye, S.; Li, H. Y.; Li, S.; Leung, L. R.

    2014-12-01

    Assessing the influence of climate forcing on streamflow, and how it varies from place to place is an important component of catchment hydrology. A great number of studies have explored this issue analytically or empirically. One widely used framework is the Budyko curve, which describes catchments by the partition of precipitation between flow and evapotranspiration at annual scale. Both climate change and human activities such as water management and land use have important effects on the seasonal water balance. However, with the increased complexity of soil water storage change at seasonal scale, more research is needed to extend the Budyko framework for the intra-annual relationship between climate and streamflow. In this study, we extended the equation quantifying the propagation of variability from climate to runoff at annual scale to monthly scale. Besides the aridity index (AI), the variance ratio between soil storage change and precipitation as well as the covariance among the soil water storage, precipitation and evapotranspiration could also play significant roles in intra-annual variability. The new equation was then applied to 232 catchments across the continental US for validation. The calculated variance ratio and the observed variance ratio of runoff and precipitation agree reasonably well. The new relationship suggested that when the intra-annual variability in precipitation is larger, the amount of intra-annual variability propagating to streamflow is dominated by the annual AI. When the variability in precipitation is small, the interaction between soil water storage and climate has to be taken into account, which may be also related to the vegetation type. This new analytical framework will improve the understanding of the close interactions between climate, soil, vegetation and topography at the catchment scale, and has the potential to facilitate the parameterization of coupled ecological and hydrological processes in the land surface and

  19. Annual Energy Review 2001

    SciTech Connect

    Seiferlein, Katherine E.

    2002-11-01

    The Annual Energy Review (AER) is a statistical history of energy activities in the United States. It documents trends and milestones in U.S. energy production, trade, storage, pricing, and consumption. Each new year of data that is added to the time series—which now reach into 7 decades—extends the story of how Americans have acquired and used energy. It is a story of continual change as the Nation's economy grew, energy requirements expanded, resource availability shifted, and interdependencies developed among nations.

  20. Annual research briefs, 1989

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1990-01-01

    This report contains the 1989 annual progress reports of the Research Fellows of the Center for Turbulence Research. It is intended as a year end report to NASA, Ames Research Center which supports this group through core funding and by making available physical and intellectual resources. The Center for Turbulence Research is devoted to the fundamental study of turbulent flows; its objectives are to simulate advances in the physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control. The reports appearing in the following pages are grouped in the general areas of modeling, experimental research, theory, simulation and numerical methods, and compressible and reacting flows.

  1. Ultrasound Annual, 1983

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1983-01-01

    The 1983 edition of Ultrasound Annual features a state-of-the-art assessment of real-time ultrasound technology and a look at improvements in real-time equipment. Chapters discuss important new obstetric applications of ultrasound in measuring fetal umbilical vein blood flow and monitoring ovarian follicular development in vivo and in vitro fertilization. Other topics covered include transrectal prostate ultrasound using a linear array system; ultrasound of the common bile duct; ultrasound in tropical diseases; prenatal diagnosis of craniospinal anomalies; scrotal ultrasonography; opthalmic ultrasonography; and sonography of the upper abdominal venous system.

  2. Annual Research Briefs, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The 1990 annual progress reports of the Research Fellows and students of the Center for Turbulent Research (CTR) are included. It is intended primarily as a contractor report to NASA, Ames Research Center. In addition, numerous CTR Manuscript Reports were published last year. The purpose of the CTR Manuscript Series is to expedite the dissemination of research results by the CTR staff. The CTR is devoted to the fundamental study of turbulent flow; its objectives are to produce advances in physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control.

  3. International energy annual 1995

    SciTech Connect

    1996-12-01

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  4. Renewable energy annual 1996

    SciTech Connect

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  5. Annual Energy Review 2010

    SciTech Connect

    2011-10-01

    This twenty-ninth edition of the Annual Energy Review (AER) presents the U.S. Energy Information Administration’s (EIA) most comprehensive look at integrated energy statistics. The summary statistics on the Nation’s energy production, consumption, trade, stocks, and prices cover all major energy commodities and all energy-consuming sectors of the U.S. economy from 1949 through 2010. The AER is EIA’s historical record of energy statistics and, because the coverage spans six decades, the statistics in this report are well-suited to long-term trend analysis.

  6. Nuclear Medicine Annual, 1989

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  7. NPL 1999 Annual Report

    SciTech Connect

    2000-01-01

    OAK-B135 NPL 1999 Annual Report. The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics research. Research activities are conducted locally and at remote sites. The current program includes ''in-house'' research on nuclear collisions using the local tandem Van de Graaff and superconducting linac accelerators as well as local and remote non-accelerator research on fundamental symmetries and weak interactions and user-mode research on relativistic heavy ions at large accelerator facilities around the world.

  8. Modelling agricultural suitability along soil transects under current conditions and improved scenario of soil factors

    NASA Astrophysics Data System (ADS)

    Abd-Elmabod, Sameh K.; Jordán, Antonio; Fleskens, Luuk; van der Ploeg, Martine; Muñoz-Rojas, Miriam; Anaya-Romero, María; van der Salm, Renée J.; De la Rosa, Diego

    2015-04-01

    Agricultural land suitability analysis and improvement of soils by addressing major limitations may be a strategy for climate change adaptation. This study aims to investigate the influence of topography and variability of soil factors on the suitability of 12 annual, semiannual and perennial Mediterranean crops in the province of Seville (southern Spain). In order to represent the variability in elevation, lithology and soil, two latitudinal and longitudinal (S-N and W-E) soil transects (TA and TB) were considered including 63 representative points at regular 4 km intervals. These points were represented by 41 soil profiles from the SDBm soil database -Seville. Almagra model, a component of the agro-ecological decision support system MicroLEIS, was used to assess soil suitability. Results were grouped into five soil suitability classes: S1-optimum, S2-high, S3-moderate, S4-marginal and S5-not suitable. Each class was divided in subclasses according to the main soil limiting factors: depth (p), texture (t), drainage (d), carbonate content (c), salinity (s), sodium saturation (a), and the degree of development of the soil profile (g). This research also aimed to maximize soil potential by improving limiting factors d, c, s and a after soil restoration. Therefore, management techniques were also considered as possible scenarios in this study. The results of the evaluation showed that soil suitability ranged between S1 and S5p - S5s along of the transects. In the northern extreme of transect TA, high content of gravels and coarse texture are limiting factors (soils are classified as S4t) In contrast, the limiting factor in the eastern extreme of transect TB is the shallow useful depth (S5p subclass). The absence of calcium carbonate becomes a limiting factor in some parts of TA. In contrast, the excessive content of calcium carbonate appeared to be a limiting factor for crops in some intermediate points of TB transect. For both transects, soil salinity is the main

  9. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2015-07-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 under bare soil. The sequestration of SOC in the 1-2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  10. Schoolground Soil Studies.

    ERIC Educational Resources Information Center

    Doyle, Charles

    1978-01-01

    Outlined are simple activities for studying soil, which can be conducted in the schoolyard. Concepts include soil profiles, topsoil, soil sizes, making soil, erosion, slope, and water absorption. (SJL)

  11. Soil C Dynamics: Measurement, Simulation and Site-to-Region Scale-Up

    SciTech Connect

    Izaurralde, Roberto C.; Haugen-Kozyra, K. H.; Jans, D. C.; Mcgill, William B.; Grant, R. F.; Hiley, J. C.

    2001-01-01

    Soil organic matter (SOC)has been recognized as a primary soil property with an essential role in soil conservation and sustainable agriculture (Johnston, 1994). SOC participates prominently in the global carbon cycle by serving as a repository that regulates the amounts that transfer annually among land, atmosphere and oceans. The degree of this regulation, however, is subject to management. Soils have acted as net sources of atmospheric CO2 during the conversion of forests and grasslands to agriculture. The Intergovernmental Panel of Climate Change (IPCC) (Cole et al., 1996) estimates losses from cultivated soils to have been 55 Pg (including 11 Pg from wetland Soils).

  12. Electric power annual 1992

    SciTech Connect

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  13. CMS Annual Report 2004

    SciTech Connect

    de la Rubia, T D; Shang, S P; Rennie, G; Fluss, M; Westbrook, C

    2005-07-29

    Glance at the articles in this report, and you will sense the transformation that is reshaping the landscape of materials science and chemistry. This transformation is bridging the gaps among chemistry, materials science, and biology--ushering in a wealth of innovative technologies with broad scientific impact. The emergence of this intersection is reinvigorating our strategic investment into areas that build on our strength of interdisciplinary science. It is at the intersection that we position our strategic vision into a future where we will provide radical materials innovations and solutions to our national-security programs and other sponsors. Our 2004 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. We have organized this report into two major sections: research themes and our dynamic teams. The research-theme sections focus on achievements arising from earlier investments while addressing future challenges. The dynamic teams section illustrates the directorate's organizational structure of divisions, centers, and institutes that support a team environment across disciplinary and institutional boundaries. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national-security mission. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes.

  14. Annual Energy Review 1993

    SciTech Connect

    Not Available

    1994-07-14

    This twelfth edition of the Annual Energy Review (AER) presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1993. Because coverage spans four and a half decades, the statistics in this report are well-suited to long-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels and electricity. The AER also presents Energy Information Administration (EIA) statistics on some renewable energy sources. EIA estimates that its consumption series include about half of the renewable energy used in the United States. For a more complete discussion of EIA`s renewables data, see p. xix, ``Introducing Expanded Coverage of Renewable Energy Data Into the Historical Consumption Series.`` Copies of the 1993 edition of the Annual Energy Review may be obtained by using the order form in the back of this publication. Most of the data in the 1993 edition also are available on personal computer diskette. For more information about the diskettes, see the back of this publication. In addition, the data are available as part of the National Economic, Social, and Environmental Data Bank on a CD-ROM. For more information about the data bank, contact the US Department of Commerce Economics and Statistics Administration, on 202-482-1986.

  15. Annual Energy Review 2006

    SciTech Connect

    Seiferlein, Katherine E.

    2007-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  16. Annual Energy Review 2005

    SciTech Connect

    Seiferlein, Katherine E.

    2006-07-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  17. Annual Energy Review 2004

    SciTech Connect

    Seiferlein, Katherine E.

    2005-08-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  18. Annual Energy Review 2009

    SciTech Connect

    Fichman, Barbara T.

    2010-08-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  19. Annual Energy Review 2011

    SciTech Connect

    Fichman, Barbara T.

    2012-09-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, and renewable energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  20. 2006 Annual Merit Review Proceedings

    SciTech Connect

    2009-01-18

    Each year hydrogen and fuel cell projects funded by DOE's Hydrogen Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. The 2006 Annual Merit Review, held May 16-19, 2006 in Arlington, Va., showcased approximately 250 projects. Principal investigators presented their project status and results in oral and poster presentations, which are available in the 2006 Annual Merit Review Proceedings. A panel of more than 150 community experts peer reviewed two-t

  1. [Characteristics of soil nematode community of different agricultural areas in Jiangsu Province, China].

    PubMed

    Jiao, Jia-guo; Liu, Bei-bei; Mao, Miao; Ye, Cheng-long; Yu, Li; Hu, Feng

    2015-11-01

    This paper investigated the genus diversity of soil nematodes of different agricultural areas in Jiangsu Province, analyzed the relationship between soil nematodes and soil environmental factors, and discussed the roles of soil nematodes as biological indicators of soil health. The results showed that, a total of 41 nematode genera were found in all six agricultural areas, belonging to 19 families, 7 orders, 2 classes. The numbers and community compositions of nematodes were obviously influenced by soil texture, fertilization and tillage practices. In all six agricultural areas, the numbers of nematodes in coastal agricultural area (400 individuals per 100 g dry soil) were significantly larger than that in Xuhuai, Ningzhenyang, and riverside agricultural areas. While the smallest number of nematodes was found in Yanjiang agricultural area (232 individuals per 100 g dry soil), which might be due to the differences in soil texture, annual rainfall and annual air temperature and other factors. The dominant genera of nematodes were similar in the adjacent agricultural areas. Correlation analysis showed that there was a significant positive correlation between the number of soil nematodes and levels of soil nutrients (soil organic matter, total nitrogen, available nitrogen, available potassium and available phosphorus). Redundancy analysis (RDA) indicated the total nitrogen, available potassium and pH obviously affected some soil nematode genera. The analysis of spatial distribution characteristics of soil nematode community in farmland of Jiangsu Province could provide data for health assessment of agricultural ecosystems. PMID:26915207

  2. Assemblage of a semi-arid annual plant community: abiotic and biotic filters act hierarchically.

    PubMed

    Luzuriaga, Arantzazu L; Sánchez, Ana M; Maestre, Fernando T; Escudero, Adrián

    2012-01-01

    The study of species coexistence and community assembly has been a hot topic in ecology for decades. Disentangling the hierarchical role of abiotic and biotic filters is crucial to understand community assembly processes. The most critical environmental factor in semi-arid environments is known to be water availability, and perennials are usually described as nurses that create milder local conditions and expand the niche range of several species. We aimed to broaden this view by jointly evaluating how biological soil crusts (BSCs), water availability, perennial species (presence/absence of Stipa tenacissima) and plant-plant interactions shape a semi-arid annual plant community. The presence and cover of annual species was monitored during three years of contrasting climate. Water stress acted as the primary filter determining the species pool available for plant community assembly. Stipa and BSCs acted as secondary filters by modulating the effects of water availability. At extremely harsh environmental conditions, Stipa exerted a negative effect on the annual plant community, while at more benign conditions it increased annual community richness. Biological soil crusts exerted a contradictory effect depending on climate and on the presence of Stipa, favoring annuals in the most adverse conditions but showing repulsion at higher water availability conditions. Finally, interactions among co-occurring annuals shaped species richness and diversity of the final annual plant assembly. This study sheds light on the processes determining the assembly of annual communities and highlights the importance of Biological Soil Crusts and of interactions among annual plants on the final outcome of the species assembly.

  3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.

  4. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  5. Estimation of effective hydrologic properties of soils from observations of vegetation density

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.; Eagleson, P. S.

    1980-01-01

    A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  6. Soil respiration under different land uses in Eastern China.

    PubMed

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84-98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86-1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  7. Soil Respiration under Different Land Uses in Eastern China

    PubMed Central

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  8. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    PubMed

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. PMID:23128732

  9. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    NASA Astrophysics Data System (ADS)

    Holleran, M.; Levi, M.; Rasmussen, C.

    2015-01-01

    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil

  10. Delineation of soil temperature regimes from HCMM data

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W. (Principal Investigator)

    1982-01-01

    Average daily temperatures (ADT) were calculated for five Heat Capacity Mapping Mission scenes by averaging raw daytime temperature and nighttime temperature values using the SUBTRAN program. Mean annual soil temperatures (MAST) were calculated using ADT as input into a linearized one-dimensional heat flow equation describing the theoretical temperature response curve at the Earth's surface. The annual amplitude (AMP) of the response curve was also calculated. Finally, versatec plots of MAST and AMP were generated showing their spatial distribution.

  11. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    of urban land use is not found to be definite. Air temperature (Ta) anomalies of the suburban sites from the inner city site are analysed for several periods and seasons. During daytime a significant annual mean deviation is observed above unsealed, vegetated surfaces from a sealed site during selected relevant days. Remarkably, about a fifth of the variance of the diurnal Ta span, i.e. increase of Ta during the day, is found to be explained by normalized Θ for selected meteorological situations. In this contribution this observed relation between topsoil moisture and air temperature increase during daytime at suburban sites will be presented after describing the local conditions and soil hydrological heterogeneities at the observed urban sites.

  12. Annual Energy Review 1999

    SciTech Connect

    Seiferlein, Katherine E.

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  13. Estimation of effective hydrologic properties of soils from observations of vegetation density. M.S. Thesis; [water balance of watersheds in Clinton, Maine and Santa Paula, California

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.

    1980-01-01

    An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  14. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability.

    PubMed

    He, Mingzhu; Dijkstra, Feike A; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-11-06

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.

  15. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  16. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  17. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  18. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  19. Dynamics of Soil Heat Flux in Lowland Area: Estimating the Soil Thermal Conductivy

    NASA Astrophysics Data System (ADS)

    Zimmer, T.; Silveira, M. V.; Roberti, D. R.

    2013-05-01

    through this method was divided in flooded period and normal period. Given the region characteristics, the normal period has saturated soil. It was used the mean annual soil temperature in 14h because it shows, in average, the highest difference between the soil temperatures in 5 and 10 cm is -1.5396°C. The mean squared error between experimental soil heat flux and estimated soil heat flux using the method (1) was higher than using method (2), and those values were 0.1419 W/m2 and 0.1333 W/m2, respectively. The estimated values for Ks in the flooded period was Ks=1.31 and in the normal period Ks=1.44. A sensibility test for Ks values between 1.0 and 1.7 has an error varying close to 30%. In conclusion, the soil thermal conductivity lowers in flooded soils and that for a saturated soil, the literature values can be overestimated.

  20. Annual energy review 1994

    NASA Astrophysics Data System (ADS)

    1995-07-01

    This 13th edition presents the Energy Information Administration's historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector for 1949 through 1994. Data from electric utilities and nonutilities are integrated as 'electric power industry' data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA's International Energy Annual).

  1. Uranium Industry Annual, 1992

    SciTech Connect

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  2. Annual energy review 1994

    SciTech Connect

    1995-07-01

    This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector for 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).

  3. Annual Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1993-01-01

    This report contains the 1992 annual progress reports of the Research Fellows and students of the Center for Turbulence Research. Considerable effort was focused on the large eddy simulation technique for computing turbulent flows. This increased activity has been inspired by the recent predictive successes of the dynamic subgrid scale modeling procedure which was introduced during the 1990 Summer Program. Several Research Fellows and students are presently engaged in both the development of subgrid scale models and their applications to complex flows. The first group of papers in this report contain the findings of these studies. They are followed by reports grouped in the general areas of modeling, turbulence physics, and turbulent reacting flows. The last contribution in this report outlines the progress made on the development of the CTR post-processing facility.

  4. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Investigation of the Relative Roles of Climate Seasonality and Landscape Properties on Mean Annual and Monthly Water Balances

    NASA Astrophysics Data System (ADS)

    Yokoo, Y.; Sivapalan, M.

    2005-12-01

    This paper explores the effects of climate seasonality, soil characteristics, and topography on annual and monthly water balances with conservation equations governing hillslope responses derived by Reggiani et al. (2000). Numerical simulations for 4,500 different hypothetical basins helped to understand the controls on annual and monthly water balances from multiple viewpoints. The results on annual water balance showed that climate seasonality decreased annual evapotranspiration and this tendency becomes stronger if the basin is mildly sloped and covered by silty loam type soil in a climate that is dominated by storms. The summary of results on monthly water balance is as follows: (1) seasonality becomes more significant for monthly water balance when precipitation and potential evapotranspiration are of opposite phase; (2) surface and subsurface runoff respond quickly and become more seasonal under humid climate; (3) soil saturation degree and evapotranspiration experience strong seasonality and longer delay time against precipitation, if precipitation and potential evapotranspiration are of opposite phase under arid climate; (4) soil saturation degree and surface runoff show strong seasonality and longer delay time against precipitation, when basin_fs soil has higher storage capacity (higher porosity and deep soil); (5) soils with lower storage capacity cause strong seasonality and short delay time against precipitation to soil saturation degree and surface runoff; (6) groundwater level and subsurface runoff show strong seasonality and long delay time against precipitation when soil has high drainability (higher hydraulic conductivity and steep topography); and (7) soil with lower drainability causes strong seasonality and short delay time against precipitation to soil saturation degree and surface runoff. We verified the adequacy and reality of our simulation based results through comparisons with observed data oriented results in previous research. We can

  6. 1994 MCAP annual report

    SciTech Connect

    Harmony, S.C.; Boyack, B.E.

    1995-04-01

    VELCOR is an integrated, engineering-level computer code that models the progression of severe accidents in light water reactor (LWR) nuclear power plants. The entire spectrum of severe accident phenomena, including reactor coolant system and containment thermal-hydraulic response, core heatup, degradation and relocation, and fission product release and transport is treated in MELCOR in a unified framework for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Its current uses include the estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. Independent assessment efforts have been successfully completed by the US and international MELCOR user communities. Most of these independent assessment efforts have been conducted to support the needs and fulfill the requirements of the individual user organizations. The resources required to perform an extensive set of model and integral code assessments are large. A prudent approach to fostering code development and maturation is to coordinate the individual assessment efforts of the MELCOR user community. While retaining individual control over assessment resources, each organization using the MELCOR code could work with the other users to broaden assessment coverage and minimize duplication. In recognition of these considerations, the US Nuclear Regulatory Commission (US NRC) has initiated the MELCOR Cooperative Assessment Program (MCAP), a vehicle for coordinating and standardizing the assessment practices of the various MELCOR users. In addition, the user community will have a forum to better communicate lessons learned regarding MELCOR applications, capabilities, and user guidelines and limitations and to provide a user community perspective on code development needs and priorities. This second Annual Report builds on the foundation laid with the first Annual Report.

  7. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    PubMed

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils. PMID:26263510

  8. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate

    PubMed Central

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0–15 cm and 30–60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1–2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils. PMID:26263510

  9. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1988-12-31

    The behavior of arctic ecosystems is directly related to the ongoing physical processes of heat and mass transfer. Furthermore, this system undergoes very large fluctuations in the surface energy balance. The buffering effect of both snow and the surface organic soils can be seen by looking at the surface and 40 cm soil temperatures. The active layer, that surface zone above the permafrost table, is either continually freezing or thawing. A large percentage of energy into and out of a watershed must pass through this thin veneer that we call the active layer. Likewise, most water entering and leaving the watershed does so through the active layer. To date, we have been very successful at monitoring the hydrology of Imnavait Creek with special emphasis on the active layer processes. The major contribution of this study is that year-round hydrologic data are being collected. An original objective of our study was to define how the thermal and moisture regimes within the active layer change during an annual cycle under natural conditions, and then to define how the regime will be impacted by some imposed terrain alteration. Our major analysis of the hydrologic data sets for Imnavait Creek have been water balance evaluations for plots during snowmelt, water balance for the watershed during both rainfall and snowmelt, and the application of a hydrologic model to predict the Imnavait Creek runoff events generated by both snowmelt and rainfall.

  10. Annual Energy Outlook Retrospective Review

    EIA Publications

    2015-01-01

    The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.

  11. 2005 Annual Merit Review Proceedings

    SciTech Connect

    2009-01-18

    Each year hydrogen and fuel cell projects funded by DOE's Hydrogen Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. The 2005 Annual Merit Review was held May 23-25, 2005 in Arlington, VA

  12. 2004 Annual Merit Review Proceedings

    SciTech Connect

    2009-01-18

    Each year hydrogen and fuel cell projects funded by DOE's Hydrogen Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. The 2004 Annual Merit Review was held May 24-27, 2004 in Philadelphia, PA

  13. Nutrients in soil water under three rotational cropping systems, Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    tSubsurface nutrient losses differ between annual and perennial crops; however, nutrient losses fromcropping systems that rotate annual and perennial crops are poorly documented. This study trackedNO3-N and P in soil water under three cropping systems suited for the U.S. Midwest, includingtwo-year (...

  14. The impact of management and climate on soil nitric oxide fluxes from arable land in the Southern Ukraine

    NASA Astrophysics Data System (ADS)

    Medinets, Sergiy; Gasche, Rainer; Skiba, Ute; Medinets, Volodymyr; Butterbach-Bahl, Klaus

    2016-07-01

    NO fluxes from soils are a significant source for tropospheric NOx, though global and regional estimates of the soil source strength are constrained by the paucity of measurements. In a continuous 18 month effort (2012-2014) soil NO fluxes from an intensively managed arable site in the black soil region of the Southern Ukraine (Odessa region) were measured using an automated dynamic chamber system. Measurements revealed three periods of peak NO emissions (fertigation, re-wetting of soils, and to a lower extend during winter), with a pulse emission peak during soil re-wetting in summer of 88.4 μg N m-2 h-1. The mean annual NO flux was 5.1 ± 8.9 μg N m-2 h-1 and total annual NO emissions were 0.44 ± 0.78 kg N ha-1 yr-1. The fertilizer induced emission factor for NO was 0.63% under beetroot. The combined effect of soil temperature, soil moisture and soil DIN (NH4+ and NO3-) concentrations were identified as drivers of the temporal and spatial variability of soil NO fluxes. This work shows that long-term measurements are needed for estimating annual fluxes and the importance of soils as a source for tropospheric NOx as the contribution of different seasons and crop growing periods to the annual budget differed markedly.

  15. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  16. The Sand Land Soil System and Society

    NASA Astrophysics Data System (ADS)

    Mahjoory, R. A.

    Worldwide arid soils such as Latterites from African Savannas to the Xeralfs and Xererts of the Mediterranean Basin Ortents and Orthids of Asian Deserts are uniquely different in their strategic roles for utilizing the land in places where a delicate balance between annual climatic cycles and general trends toward desertification predominate Arid lands cover 1 3 of global land surface and contain irreplaceable natural resources with potential productivity of meeting the demands of more than two billion people and serving as sources and sinks of atmospheric CO2 to combat global warming The soil system in these arid areas are being degraded underutilized and kept in a stage of obliviousness due to inadequate public literacy and most importantly in-sufficient scientific evaluations based on pedology and soil taxonomy standards Implementation of food security projects and sustainable development programs on randomly selected sites and assessment of land degradation worldwide by powerful computers and satellite imagery techniques without field work and identification of Representative Soil Units are data producing and grant attracting but counter productive We live in a world in which there is an order out there and things are precisely measured and categorized for efficient utilization Why not the soils mainly in arid areas How we could generalize the world of soils under our feet by concept of soils are the same Expansion of educational programs quantification of multiple ecosystems within the arid regions through detailed and correlated

  17. Soil Salinity Mapping Using Multitemporal Landsat Data

    NASA Astrophysics Data System (ADS)

    Azabdaftari, A.; Sunar, F.

    2016-06-01

    Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM+ satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field's electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.

  18. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  19. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  20. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2015-08-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  1. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  2. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  3. Pyromineralization of soil phosphorus in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Hartshorn, A.; Coetsee, C.; Chadwick, O.

    2007-12-01

    The weathering of rock supplies phosphorus (P) to ecosystems. Phosphorus limitation of ecosystems can be severe in thicker or older soils, where soil production rates from rock and therefore release of P is slower than in thinner or younger soils. Limitation may be especially pronounced in drier ecosystems that are experiencing increasing N deposition. Our savanna field sites in Kruger National Park, South Africa meet all three of these criteria: soil residence times average 250 ky, the climate is semiarid, and N inputs average 20 kg ha-1 y-1. Not all soil P is plant-available, and because our field sites experience occasional fires, our objectives were to quantify the importance of pyromineralization of soil P, the transfer by fire of soil P from recalcitrant to labile (HCO3- extractable) pools. We quantified these soil P pools using a modified Hedley scheme (an array of chemical extractants). Three sets of soils were fractionated: 1. soils from 10 profiles along an intensively studied hillslope, bracketing a pronounced structural and functional ecotone; 2. surface soils from these 10 profiles after a simulated burn; and 3. surface soils from the Shabeni Experimental Plots, where 4 fire treatments have been maintained for decades: no fire, annual fire in the dry season, triennial fire in the dry season, and triennial fire in the wet season. Total P for hillslope soils ranged from 45 to 135 g m-2 (to 50 cm depth) and from 8 to 15 g m-2 (to 5 cm depth). Total soil P was lowest in midslope soils, where upslope sandy soils dominated by broad-leafed vegetation shift abruptly to downslope clayey soils with fine-leafed vegetation. Simulated fire for the hillslope soils reduced total P slightly, but boosted labile P by 1.7 g m-2 (to 5 cm), representing 17% of total P in the surface 5 cm. This pyromineralization effect was not uniform across the hillslope: downslope soils gained about 50% more labile P than midslope soils with simulated burning. With a fire return interval

  4. Improving revegetation success: Evaluation of several soil treatments

    SciTech Connect

    Hayward, W.M.; Sackschewsky, M.R.; Kemp, C.J.

    1993-09-01

    The current Hanford practice for stabilizing contaminated soil sites and retired burial grounds involves placing clean soil over the surface, followed by revegetation. This procedure has resulted in the establishment of a viable plant cover at a number of locations. In other cases, however, these efforts have failed to establish healthy shallow-rooted grass coverage. The establishment of a viable plant community is inherently difficult on the Hanford Site for a variety of reasons, including inadequate and sporadic natural precipitation; windy conditions that produce large erosive forces; soils low in nutrients and organic matter; invasion of disturbed sites by aggressive, weedy annuals; and limited supplies of quality topsoil. This report describes the results of work designed to address three environmental issues (soil moisture, erosion, and soil nutrients). Compost and soil sealants were evaluated in various combinations with the expectation of developing revegetation procedures with a higher probability of success.

  5. [CO2 release from typical Stipa grandis grassland soil].

    PubMed

    Cui, X; Chen, S; Chen, Z

    2000-06-01

    Determinations on the soil respiration in a typical Stipa grandis grassland of Inner Mongolica by the method of static chamber/alkaline absorbing show that there existed great spatial and temporal variances of soil respiration, and the factors controlling these variances were different. The seasonal variance of soil respiration had a close relationship with the aboveground biomass of S. grandis and the status of soil moisture. The total amount of annual CO2 release in 1995, 1997 and 1998 was estimated as 180, 45.8 and 225 gC.m-2.yr-1, respectively. Overgrazing greatly decreased the biomass of the community, and also, decreased the CO2 release from the soil. The possibility of establishing a dynamic model of soil respiration in grassland with precipitation as a driven factor was discussed. PMID:11767639

  6. Soil conservation applications with C-band SAR

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.

    1992-01-01

    Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.

  7. Scientific support, soil information and education provided by the Austrian Soil Science Society

    NASA Astrophysics Data System (ADS)

    Huber, Sigbert; Baumgarten, Andreas; Birli, Barbara; Englisch, Michael; Tulipan, Monika; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The Austrian Soil Science Society (ASSS), founded in 1954, is a non-profit organisation aiming at furthering all branches of soil science in Austria. The ASSS provides information on the current state of soil research in Austria and abroad. It organizes annual conferences for scientists from soil and related sciences to exchange their recent studies and offers a journal for scientific publications. Annually, ASSS awards the Kubiena Research Prize for excellent scientific studies provided by young scientists. In order to conserve and improve soil science in the field, excursions are organized, also in cooperation with other scientific organisations. Due to well-established contacts with soil scientists and soil science societies in many countries, the ASSS is able to provide its members with information about the most recent developments in the field of soil science. This contributes to a broadening of the current scientific knowledge on soils. The ASSS also co-operates in the organisation of excursions and meetings with neighbouring countries. Several members of the ASSS teach soil science at various Austrian universities. More detail on said conferences, excursions, publications and awards will be given in the presentation. Beside its own scientific journal, published once or twice a year, and special editions such as guidebooks for soil classification, the ASSS runs a website providing information on the Society, its activities, meetings, publications, awards and projects. Together with the Environment Agency Austria the ASSS runs a soil platform on the internet. It is accessible for the public and thus informs society about soil issues. This platform offers a calendar with national and international soil events, contacts of soil related organisations and networks, information on national projects and publications. The society has access to products, information material and information on educational courses. Last but not least information on specific soil

  8. Soil organic matter degradability in four Japanese forest soils

    NASA Astrophysics Data System (ADS)

    Moriya, K.; Koarashi, J.; Atarashi-Andoh, M.; Moriizumi, J.; Yamazawa, H.; Ishizuka, S.

    2011-12-01

    Soil organic carbon (SOC) is the largest carbon reservoir in terrestrial ecosystems, and CO2 emission derived from SOC decomposition is considered to strongly influence atmospheric CO2 concentration. Therefore, it is important to understand what factors control the process of SOC decomposition. We studied the temperature sensitivity of SOC decomposition in forest surface soils by an incubation experiment at two temperatures. Soil samples were collected from the top 20 cm of mineral soils at four forest sites in Japan: AP (Appi: 40°00'N, 140°56'E), US (Ushiku: 35°57'N, 140°10'E), OG (Ogawa: 36°56'N, 140°35'E), and HO (Hitsujigaoka: 43°59'N, 141°23'E). The soil samples were sieved with a 4 mm-mesh and remaining roots in the samples were carefully removed by hand. Approximately a 75 g dry weight equivalent of the sample was adjusted to 50% of water holding capacity and put into a 1 L jar. Triplicate jars were enclosed after flushing their headspaces with CO2-free air and incubated at temperatures of 10°C and 20°C, respectively. We periodically collected 1 mL of headspace gas from the jars to measure CO2 concentration using a gas chromatograph. When the CO2 concentration in each jar reached 1.5% in volume, the headspace gas in the jar was collected to measure carbon isotope ratio of the CO2, and then the headspace of the jar was re-flushed and continued to incubate. The SOC decomposition rate at 20°C was consistently higher than that at 10°C, the order of which was AP ≤ US ≤ OG < HO. This order did not correspond to the orders of both mean annual temperature at the sites (AP < HO < OG < US), and total organic carbon content per dry soil weight (HO < US < AP < OG). Our result suggests that field temperature does not exert predominant control over SOC degradability in Japanese forest surface soils. Q10 values obtained for the AP, US, and OG soils was initially approximately 3 and increased up to 4 after one month of incubation. The increase in Q10 value

  9. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  10. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling — A modeling analysis

    NASA Astrophysics Data System (ADS)

    Gu, Chuanhui; Riley, William J.

    2010-03-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical system in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, NH 3, and N 2O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH 3, NO, N 2O and NO 3- fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N 2O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount

  11. Microbial responses to southward and northward Cambisol soil transplant.

    PubMed

    Wang, Mengmeng; Liu, Shanshan; Wang, Feng; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2015-12-01

    Soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity at both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO3 ¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO3 ¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.

  12. [Soil moisture dynamics under artificial Caragana microphylla shrub].

    PubMed

    Alamusa; Jiang, Deming; Fan, Shixiang; Luo, Yongming

    2002-12-01

    Applying the methods of deducing time series from vegetation space alignment, we analyzed the spatial and temporal variation features of soil moisture under artificial Caragana microphylla shrubs built in 1984, 1987, 1995, 1999. The results showed that affected by mechanical composition of mobile sandy dunes, the soil of sandy land was mainly composed of sandy particle, and the particles of > 0.01 mm were accounted for 97%. The withered moisture was 1.55%. The field waterhold capacity was 5.5%, and the available moisture storage was 3.95%. With the increase of the dominance of fix-sand vegetation, the moisture content of soil under artificial Caragana microphylla shrubs was decreased. The soil moisture of vegetation built in 1984 was lower than that built in 1999. The soil moisture conditions of four stages vegetation were continued depressing from April to June in a year, the lowest point presenced in June, and then gradually increased from July to October. The vertical change of soil moisture showed the tendency of increasing with soil depth. The soil moisture decreased by the degrees of early built vegetation (1984, 1987). Especially in 70 cm soil depth, the moisture content of soil decreased obviously. Caragana microphylla shrubs absorbed water and aggravated the shortage of soil moisture content near the root system, which affected the component of vegetation in Caragana microphylla shrubs. The species of herbaceous plants and annual plants increased during the growth of Caragana microphylla shrub.

  13. Linking soil functions to carbon fluxes and stocks

    NASA Astrophysics Data System (ADS)

    Olesen, Jørgen E.

    2014-05-01

    flows may also be related to specific cropping systems and environmental conditions. Much of the effects of soil C fluxes and stocks in cropping systems on crop productivity and needs for input are linked to N supply for the crops and in some regions to harvesting and storage of water for supporting plant needs. The quality of organic matter inputs and the SOM stock determines soil N supply, and here improved models both at strategic (crop rotation) and tactical (annual) scale may improve the precision of crop management with higher crop productivity and reduced environmental impacts. Targeting the needs to manage water also requires improved management of soil C flows and stocks, and here the vertical soil C profile often needs to be considered.

  14. Towards decadal soil salinity mapping using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang; Weng, Yongling; Tao, Jinmei

    2016-10-01

    Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.

  15. Ecological Indicators of Native Rhizobia in Tropical Soils

    PubMed Central

    Woomer, Paul; Singleton, Paul W.; Bohlool, B. Ben

    1988-01-01

    The relationship between environment and abundance of rhizobia was described by determining the populations of root nodule bacteria at 14 diverse sites on the island of Maui. Mean annual rainfall at the sites ranged from 320 to 1,875 mm, elevation from 37 to 1,650 m, and soil pH from 4.6 to 7.9. Four different soil orders were represented in this study: inceptisols, mollisols, ultisols, and an oxisol. The rhizobial populations were determined by plant infection counts of five legumes (Trifolium repens, Medicago sativa, Vicia sativa, Leucaena leucocephala, and Macroptilium atropurpureum). Populations varied from 1.1 to 4.8 log10 cells per g of soil. The most frequently occurring rhizobia were Bradyrhizobium spp., which were present at 13 of 14 sites with a maximum of 4.8 log10 cells per g of soil. Rhizobium trifolii and R. leguminosarum occurred only at higher elevations. The presence of a particular Rhizobium or Bradyrhizobium sp. was correlated with the occurrence of its appropriate host legume. Total rhizobial populations were significantly correlated with mean annual rainfall, legume cover and shoot biomass, soil temperature, soil pH, and phosphorus retention. Regression models are presented which describe the relationship of legume hosts, soil climate, and soil fertility on native rhizobial populations. PMID:16347624

  16. Using hyperaccumulator plants to phytoextract soil Ni and Cd.

    PubMed

    Chaney, Rufus L; Angle, J Scott; McIntosh, Marla S; Reeves, Roger D; Li, Yin-Ming; Brewer, Eric P; Chen, Kuang-Yu; Roseberg, Richard J; Perner, Henrike; Synkowski, Eva Claire; Broadhurst, C Leigh; Wang, S; Baker, Alan J M

    2005-01-01

    Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd

  17. FURTHER EVALUATIONS OF RADIONUCLIDE PHYTOEXTRACTION FEASIBILITY USING SOILS FROM THE U.S. DEPARTMENT OF ENERGY COMPLEX

    SciTech Connect

    Jay Cornish

    1999-01-01

    Fiscal Year 98 (FY98) radionuclide phytoextraction studies involved resumption of the radiocesium-137 ({sup 137}Cs) investigations at Brookhaven National Laboratory (BNL) and the total uranium (U{sub t}) investigations at the Fernald Environmental Management Project (FEMP) site. This project was a collaborative effort involving scientists and engineers from MSE Technology Applications, Inc.; the US Department of Agriculture (USDA) Plant Growth Laboratory at Cornell University; Phytotech, Inc.; BNL; and FEMP. In both cases, the essential goal was to improve bioavailability, uptake, and transport of these contaminants from soil to leaf-and-stalk biomass (LSB). In particular, the practical goal was to demonstrate that about half the radionuclide contaminant mass present in near surface [{le}30 centimeters (cm) below ground surface (bgs)] soils could be transferred into LSB in approximately 5 years. Based on previous (1996) study results, it would require concentration ratios (CRs) of at 5-to-10 to achieve this goal. In addition, the rate of {sup 137}Cs removal must be {ge} 2.3% per year{sup -1} [i.e., (0.693/30.2) {center_dot} 100] to equal or exceed the loss of this radionuclide through natural decay. This report first presents and discusses the results from greenhouse and field evaluations of {sup 137}Cs uptake from rooting zone soils (0-15 cm bgs) located near the Medical/Biological Research Building (No. 490) at BNL. Contamination of this site resulted from the use of near surface soils originating at the former Hazardous Waste Management Facility (HWMF), which served as a source of landscaping materials for erosion control, etc. Project personnel from USDA evaluated various combinations of nonradioactive solutions of cesium chloride (CsCl) and rubidium chloride, ammonium nitrate solution (NH{sub 4}NO{sub 3}), and humic acid suspensions to enhance and sustain {sup 137}Cs levels in soil solution. Of the plants grown in such amended soils, the highest CRs occurred

  18. Effect of land use change on soil properties and functions

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  19. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  20. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China.

    PubMed

    Yu, Xinxiao; Zha, Tianshan; Pang, Zhuo; Wu, Bin; Wang, Xiaoping; Chen, Guopeng; Li, Chunping; Cao, Jixin; Jia, Guodong; Li, Xizhi; Wu, Hailong

    2011-01-01

    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (R(s)) ranged from 0.09 to 4.87 µmol CO(2) m(-2) s(-1), with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly R(s) and soil temperature (T(s)), explaining 82% of the variation in R(s) over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m(-2) year(-1). The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of R(s). The logistic model will potentially overestimate R(s) at high T(s) and low VWC. Seasonally, R(s) increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, R(s) showed a positively exponential relationship with T(s). The seasonal sensitivity of soil respiration to T(s) (Q(10)) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting.

  1. [Dynamic changes in soil respiration components and their regulating factors in the Moso bamboo plantation in subtropical China].

    PubMed

    Yang, Wen-jia; Li, Yong-fu; Jiang, Pei-kun; Zhou, Guo-mo; Liu, Juan

    2015-10-01

    Dynamic changes (from April 2013 to March 2014) in soil respiration components were investigated by Li-8100 in the Moso bamboo plantation in Lin' an City, Zhejiang Province. Results showed that the average annual values for the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate in the Moso bamboo plantation were 2.93, 1.92 and 1.01 imol CO2 . m-2 . s-1, respectively. The soil respiration rate and its components exhibited strongly a seasonal dynamic pattern. The maximum appeared in July 2013, and the minimum appeared in January 2014. The annual cumulative CO2 emissions through soil respiration, heterotrophic respiration, and autotrophic respiration were 37.25, 24.61 and 12.64 t CO2 . hm-2 . a-1, respectively. The soil respiration and its components showed a close relation with soil temperature of 5 cm depth, and the corresponding Q10, values at 5 cm depth were 2.05, 1.95 and 2.34, respectively. Both the soil respiration and heterotrophic respiration were correlated to soil water soluble organic C (WSOC) content, but no significant relationship between autotrophic respiration and WSOC was observed. There were no significant relationships between soil respiration components and soil moisture content or microbial biomass C. The seasonal changes in soil respiration components in the Moso bamboo plantation were predominantly controlled by the soil temperature, and the soil WSOC content was an important environmental factor controlling total soil respiration and soil heterotrophic respiration. PMID:26995900

  2. Annual Energy Review 2000

    SciTech Connect

    Seiferlein, Katherine E.

    2001-08-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  3. Annual Energy Review 2002

    SciTech Connect

    Seiferlein, Katherine E.

    2003-10-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.

  4. 2007 LDRD ANNUAL REPORT

    SciTech Connect

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  5. Annual Research Briefs: 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide.

  6. Nuclear medicine annual 1990

    SciTech Connect

    Freeman, L.M. )

    1990-01-01

    Two of the major areas of cutting-edge nuclear medicine research, single-photon emission computed tomography (SPECT) functional brain imaging and monoclonal antibody studies receive attention in this volume. Advances in these areas are critical to the continued growth of our specialty. Fortunately, the current outlook in both areas remains quite optimistic. As has been the policy in the first decade of publication, thorough state-of-the-art reviews on existing procedures are interspersed with chapters dealing with research developments. The editor wishes to express a particular note of appreciation to a very supportive British colleague, Dr. Ignac Fogelman, who is becoming a regular contributor. His exhaustive review of the role of nuclear medicine in the evaluation of osteoporotic patients is packed with extremely useful information that will prove to be fruitful to all readers. The author would like to thank the readers and colleagues who have taken the time to offer useful and constructive comments over the past ten years. The author continue to welcome suggestions that will help to further improve this Annual.

  7. Annual Energy Review 1997

    SciTech Connect

    Seiferlein, Katherine E.

    1998-07-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is in keeping with responsibilities given to the Energy Information Administration (EIA) in Public Law 95–91 (Department of Energy Organization Act), which states, in part, in Section 205(a)(2) that: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  8. LIVESTOCK ACTIVITY AND CHIHUAHUAN DESERT ANNUAL-PLANT COMMUNITIES: BOUNDARY ANALYSIS OF DISTURBANCE GRADIENTS

    EPA Science Inventory

    The impact of domestic livestock on soil properties and perennial vegetation is greatest close to water points and generally decreases exponentially with distance from water. We hypothesized that the impact of livestock on annual-plant communities would be similar to that on per...

  9. Invasion of Mediterranean Annual Grasses in Western North America Ecosystems: Kids in a Candy Store

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this issue of Plant and Soil, Blank and Sforza (2007) contribute to a growing body of work focused on describing mechanisms by which exotic annual grasses invade ecosystems in the western United States. Their findings, that medusahead wildrye (Taeniatherum caput-medusae [L.] Nevski) was most pro...

  10. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  11. Environmental monitoring at the Lawrence Livermore National Laboratory. 1985 annual report

    SciTech Connect

    Griggs, K.S.; Buddemeier, R.W.

    1986-02-01

    Results are reported of the Environmental Quality Verification Program, which is an expanded continuation of the program of environmental monitoring previously carried out by the Environmental Measurements Group of the Hazards Control Department. Data are reported on air, soils, water, vegetation, foodstuffs, and annual radiation doses at perimeter of facility.

  12. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...

  13. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  14. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  15. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    EPA Science Inventory

    As crop and non-crop lands are increasingly converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples were obtained from diverse regionally distributed biofuel cropping si...

  16. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  17. Soil phosphorus compounds in integrated crop-livestock systems of subtropical Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil phosphorus (P) utilization and loss mechanisms may be affected by agricultural complexity, in particular when combining annual and perennial crops and livestock grazing on the same land area and at overlapping time periods. Our objectives were to (i) qualify and quantify soil organic and inorga...

  18. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation.

  19. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  20. Biological Control on Mineral Transformation in Soils ?

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Hsieh, J. C.; Chadwick, O. A.; Kelly, E. F.

    2001-12-01

    Weathering of primary minerals is commonly linked to biological processes through the production of carbonic and organic acids. Plants can also play a role in weathering by removing soluble constituents and enhancing diffusion gradients within the soil. Here we investigate the synthesis of secondary minerals and the role of plants in removing elements that act as building blocks for these minerals. In order to minimize losses from leaching, we have sampled a chronosequence of soils forming on lava flows on Hawaii Island that receive about 200 mm of rain annually and have never been subjected to high levels of rainfall. The P concentration in the soils drops from almost 3000 mg/kg on a 1.5 ky lava flow to around 1000 mg/kg on a 350 ky lava flow. This loss of P can only be ascribed to P-uptake by plants with subsequent removal through the loss of above ground biomass through fire and/or wind removal. Over the same time frame the amount of plagioclase in the soils drops from around 22% of the <2 mm soil fraction on the youngest lava flow to virtually 0% on the 350 ky flow, suggesting a substantial release of Si. Elevated silicon in arid, basaltic soil environments often leads to formation of smectite, a feature not observed along the chronosequence. In fact, plagioclase is replaced by the kaolin mineral halloysite with allophane as an apparent precursor. Kaolin minerals are associated with moderate to intense leaching environments rather than the mild leaching conditions that influence these soils. We selected an intermediate age soil profile (170 ky lava flow) to conduct an in-depth investigation of the soil mineral composition. We detected a strong dominance of halloysite, the presence of gibbsite, but no smectite. Secondary halloysite formation is preferred over smectite formation when Si activities are relatively low, and the pH is acidic rather than alkaline. Although this mineral assemblage seems to imply formation under a wetter climatic regime, the oxygen

  1. Generating Interest in Soil Science through Collegiate Soils Contests

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher; Valentine, Joe

    2015-04-01

    The inaugural National Collegiate Soils Contest (NCSC) was hosted by the University of Kentucky in Lexington, KY in 1961 and has been held every year since. Initially the NCSC was an open contest in which any team could participate, but due to increased interest, it became an event which only qualifying teams are invited to participate. To facilitate qualification, the U.S. was divided up into seven regions. Teams qualify for the NCSC by placing among the top teams within their regional contests, which are held in the fall prior to the NCSC. Typically 18-22 institutions and 80-100 students attend the NCSC each year. The NCSC is sponsored by the Soil Science Society of America (SSSA) and is organized by a committee of SSSA members that include previous and future hosts of the NCSC. The committee maintains the official rules for the NCSC and makes any necessary changes during an annual meeting. The NCSC host rotates among the seven regions and among teams within the respective regions. In 2014, the NCSC hosted by Delaware Valley College in Doylestown, PA served as qualifying contest for the team representing the U.S. at the inaugural International Soil Judging Contest in JeJu, South Korea.

  2. Continuous Monitoring of Soil Respiration in Black Spruce Forest Soils, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, S.; Kim, W.

    2009-12-01

    This research was carried out to estimate the continuous monitoring of soil respiration using automatic chamber system that was equipped with a control system, a compressor, and seven chambers (50 cm diameter, 30 cm high) set in sphagnum moss, feather moss, lichen, and tussock in black spruce forest soils, interior Alaska during growing season of 2008. The average daily soil respirations were 0.050±0.012 (standard deviation, CV 23%), 0.022±0.020 (91%), 0.082±0.035 (43%), and 0.027±0.010 mgCO2/m2/s (37%) in lichens, sphagnum moss, tussock and feather moss on black spruce forest soils with light chamber made by transparent material. The temporal variation of soil respiration in different vegetation types on black spruce forest soils during the growing season of 2008 is shown in Figure 1. The accumulative daily soil respiration was 5.2, 9.5, 2.3, and 2.8 mgCO2/m2/s in lichen, tussock, sphagnum moss, and feather moss of black spruce forest ground during the growing periods of 103 days, 2008 (Figure 2). Therefore, averaged regional soil respiration rate is 0.19±0.18 and 0.12±0.08 kgC/m2/(growing season) of 2007 and 2008 in black spruce forest soils, interior Alaska. The winter soil respiration was 0.049±0.013 gC/m2/(winter season), corresponding from 21±7% to 29±13% of the annual CO2 emitted from black spruce forest soils, interior Alaska.

  3. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    NASA Astrophysics Data System (ADS)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  4. Annual Site Environmental Report: 2006

    SciTech Connect

    Nuckolls, H.; /SLAC

    2008-02-22

    This report provides information about environmental programs during the calendar year (CY) of 2006 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year; i.e., stormwater monitoring covering the winter season of 2006/2007 (October 2006 through May 2007), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC continued to follow the path to self-declare an environmental management system under DOE Order 450.1, 'Environmental Protection Program' and effectively applied environmental management in meeting the site's integrated safety and environmental management system goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that Worker safety and health are protected; The environment is protected; and Compliance is ensured. Throughout 2006, SLAC focused on these activities through the SLAC management systems. These systems were also the way SLAC approached implementing 'greening of the government' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. The SLAC Office of Assurance was created during 2006 in response to DOE Order 226.1. During 2006, there were no reportable releases to the environment from SLAC operations, and there were no Notice of Violations issued to SLAC from any of the regulatory agencies that oversee SLAC. In addition, many improvements in waste minimization, recycling, stormwater drain system, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2006 to better manage

  5. LLNL NESHAPs 2004 Annual Report

    SciTech Connect

    Harrach, R; Gallegos, G; Peterson, R; Wilson, K; Harrach, R J; Gallegos, G M; Peterson, S R; Wilson, K R

    2005-06-27

    This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from Department of Energy (DOE) facilities.

  6. 2005 Annual Report

    SciTech Connect

    Chrzanowski, P; Walter, K

    2006-03-31

    As the cover of our ''2005 Annual Report'' highlights, Lawrence Livermore National Laboratory joined the international science community in celebrating the World Year of Physics in 2005, with special events and science outreach and education programs. Einstein's remarkable discoveries in 1905 provided an opportunity to reflect on how physics has changed the world during the last century and on the promise of future beneficial discoveries. For half of the past century, Lawrence Livermore, which was established to meet an urgent national security need, has been contributing to the advancement of science and technology in a very special way. Co-founder Ernest O. Lawrence was the leading proponent in his generation of large-scale, multidisciplinary science and technology teams. That's Livermore's distinctive heritage and our continuing approach as a national laboratory managed and operated by the University of California for the Department of Energy's National Nuclear Security Administration (DOE/NNSA). We focus on important problems that affect our nation's security and seek breakthrough advances in science and technology to achieve mission goals. An event in 2005 exemplifies our focus on science and technology advances in support of mission goals. In October, distinguished visitors came to Livermore to celebrate the tenth anniversary of the Accelerated Strategic Computing Initiative (now called the Advanced Simulation and Computing Program, or ASC). ASC was launched in 1995 by DOE/NNSA to achieve a million-fold increase in computing power in a decade. The goal was motivated by the need to simulate the three-dimensional performance of a nuclear weapon in sufficient resolution and with the appropriately detailed physics models included. This mission-driven goal is a key part of fulfilling Livermore's foremost responsibility to ensure that the nuclear weapons in the nation's smaller 21st-century stockpile remain safe, reliable, and secure.

  7. Annual energy review 2003

    SciTech Connect

    Seiferlein, Katherin E.

    2004-09-30

    The Annual Energy Review 2003 is a statistical history of energy activities in the United States in modern times. Data are presented for all major forms of energy by production (extraction of energy from the earth, water, and other parts of the environment), consumption by end-user sector, trade with other nations, storage changes, and pricing. Much of the data provided covers the fossil fuels—coal, petroleum, and natural gas. Fossil fuels are nature’s batteries; they have stored the sun’s energy over millennia past. It is primarily that captured energy that we are drawing on today to fuel the activities of the modern economy. Data in this report measure the extraordinary expansion of our use of fossil fuels from 29 quadrillion British thermal units (Btu) in 1949 to 84 quadrillion Btu in 2003. In recent years, fossil fuels accounted for 86 percent of all energy consumed in the United States. This report also records the development of an entirely new energy industry—the nuclear electric power industry. The industry got its start in this country in 1957 when the Shippingport, Pennsylvania, nuclear electric power plant came on line. Since that time, the industry has grown to account for 20 percent of our electrical output and 8 percent of all energy used in the country. Renewable energy is a third major category of energy reported in this volume. Unlike fossil fuels, which are finite in supply, renewable energy is essentially inexhaustible because it can be replenished. Types of energy covered in the renewable category include conventional hydroelectric power, which is power derived from falling water; wood; waste; alcohol fuels; geothermal; solar; and wind. Together, these forms of energy accounted for about 6 percent of all U.S. energy consumption in recent years.

  8. Annual Research Briefs

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1997-01-01

    This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.

  9. Annual energy review 1997

    SciTech Connect

    1998-07-01

    The Annual Energy Review (AER) is a historical data report that tells many stories. It describes, in numbers, the changes that have occurred in US energy markets since the midpoint of the 20th century. In many cases, those markets differ vastly from those of a half-century ago. By studying the graphs and data tables presented in this report, readers can learn about past energy supply and usage in the United States and gain an understanding of the issues in energy and the environment now before use. While most of this year`s report content is similar to last year`s, there are some noteworthy developments. Table 1.1 has been restructured into more summarized groupings -- fossil fuels, nuclear electric power, and renewable energy -- to aid analysts in their examination of the basic trends in those broad categories. Readers` attention is also directed to the electricity section, where considerable reformatting of the tables and graphs has been carried out to help clarify past and recent trends in the electric power industry as it enters a period of radical restructuring. Table 9.1, which summarizes US nuclear generating units, has been redeveloped to cover the entire history of the industry in this country and to provide categories relevant in assessing the future of the industry, such as the numbers of ordered generating units that have been canceled and those that were built and later shut down. In general, the AER emphasizes domestic energy statistics. Sections 1 through 10 and Section 12 are devoted mostly to US data; Section 11 reports on international statistics and world totals. 140 figs., 141 tabs.

  10. Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Hupp, Cliff R.; Rybicki, Nancy B.

    2013-01-01

    Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.

  11. Problems with Estimating Annual Mean Indoor Radon Concentrations

    NASA Astrophysics Data System (ADS)

    Marušiaková, Miriam; Hůlka, Jińrí

    2010-09-01

    Radon and its progeny in dwellings is responsible for the majority of the total radiation dose among the general population. The indoor radon concentration varies considerably during the daytime, individual days, seasons and even years. It is affected by many factors such as ventilation, soil concentration, quality of house insulation and others. The annual mean value of the radon concentration in buildings is important in order to estimate the effective dose to inhabitants. However, it is not always possible to perform radon measurements over a period of one year. Thus estimates based on short-term continuous measurements are suggested. We analyse hourly radon measurements obtained from one uninhabited rural house in Telecí in the Czech Republic. We study the behaviour of the radon concentration with time and its relationship to meteorological variables such as outdoor temperature, wind speed or pressure. Further we discuss various estimates of the annual mean radon concentration and their properties.

  12. Problems with Estimating Annual Mean Indoor Radon Concentrations

    SciTech Connect

    Marusiakova, Miriam; Hulka, Jiri

    2010-09-30

    Radon and its progeny in dwellings is responsible for the majority of the total radiation dose among the general population. The indoor radon concentration varies considerably during the daytime, individual days, seasons and even years. It is affected by many factors such as ventilation, soil concentration, quality of house insulation and others.The annual mean value of the radon concentration in buildings is important in order to estimate the effective dose to inhabitants. However, it is not always possible to perform radon measurements over a period of one year. Thus estimates based on short-term continuous measurements are suggested.We analyse hourly radon measurements obtained from one uninhabited rural house in Teleci in the Czech Republic. We study the behaviour of the radon concentration with time and its relationship to meteorological variables such as outdoor temperature, wind speed or pressure. Further we discuss various estimates of the annual mean radon concentration and their properties.

  13. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect

    Garten Jr, Charles T

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  14. Comparison of soil respiration methods in a mid-latitude deciduous forest

    SciTech Connect

    Wayson, C. A.; Randolph, J. C.; Hanson, Paul J; Schmid, H. P.; Grimmond, CSB

    2006-01-01

    In forest ecosystems the single largest respiratory flux influencing net ecosystem productivity (NEP) is the total soil CO2 efflux; however, it is difficult to make measurements of this flux that are accurate at the ecosystem scale. We examined patterns of soil CO2 efflux using five different methods: auto-chambers, portable gas analyzers, eddy covariance along and two models parameterized with the observed data. The relation between soil temperature and soil moisture with soil CO2 effluxes are also investigated, both inter-annually and seasonally, using these observations/results. Soil respiration rates (Rsoil) are greatest during the growing season when soil temperatures are between 15 and 25 C, but some soil CO2 efflux occurs throughout the year. Measured soil respiration was sensitive to soil temperature, particularly during the spring and fall. All measurement methods produced similar annual estimates. Depending on the time of the year, the eddy covariance (flux tower) estimate for ecosystem respiration is similar to or slightly lower than estimates of annual soil CO2 efflux from the other methods. As the eddy covariance estimate includes foliar and stem respiration which the other methods do not; it was expected to be larger (perhaps 15-30%). The auto-chamber system continuously measuring soil CO2 efflux rates provides a level of temporalr esolution that permits investigation of short- to longer term influences of factors on these efflux rates. The expense of building and maintaining an auto chamber system may not be necessary for those esearchers interested in estimating Rsoil annually, but auto-chambers do allow the capture of data from all seasons needed for model parameterization.

  15. Inter-annual Variability of Aboveground Net Primary Productivity in Regenerating Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Powers, J. S.; Becknell, J. M.

    2015-12-01

    Globally, there are now more secondary forests regenerating following anthropogenic disturbance than primary forests. However, carbon dynamics in secondary tropical forests in general, and seasonally dry forests in particular, have not been as well studied as primary wet forests. Young, regenerating forests may be more sensitive to climatic variability than older forests because of their dynamic demographic rates. Similarly, seasonally dry tropical forests may be particularly sensitive to changes in precipitation, as tree growth is highly constrained by water availability. We examined how inter-annual variability in precipitation affected above-ground net primary productivity in chronosequences of dry forest in Costa Rica. Our sites included three forest cover types, whose distribution is linked to edaphic variation. Over our 6-yr dataset, annual rainfall varied from 1110 to 3040mm, with a 5-6 month dry season. ANPP ranged from 2.96 to 18.98 Mg ha-1 across sites that have been recovering for 7 to 67 years. Fine litter production dominated ANPP, and increased with forest age but not annual rainfall. By contrast, woody stem growth did not vary among forests that differed in age, but increased as a function of annual rainfall. These results differed b