Sample records for ferric ion binding

  1. Folding process of silk fibroin induced by ferric and ferrous ions

    NASA Astrophysics Data System (ADS)

    Ji, Dan; Deng, Yi-Bin; Zhou, Ping

    2009-12-01

    Bombyx mori silk fiber has useful mechanical properties largely due to a high content of ordered β-sheet crystallites separated by non-crystalline spacers. Metallic ions present in the silk dope in nature could affect the β-sheet content. In this work, we used solid-state 13C NMR, EPR and Raman spectroscopy to investigate how the ferric/ferrous ions affect the folding process of the silk fibroin. NMR and Raman results indicate that ferric and ferrous ions have different effects on the secondary structure of silk fibroin. Ferric ions can induce a conformation change from helix to β-sheet form in silk fibroin when their concentration exceeds a critical value, while ferrous ions cannot. EPR results indicate that the ferric ions bound with silk fibroin have a high-spin state ( S = 5/2) with g-value of g1 = 1.950, g2 = 1.990 and g3 = 1.995, zero-field splitting interaction D of 1.2-2 cm -1, and symmetric character of E/ D = 1/3, resulting in an effective g-value of g' = 4.25. The hydrophilic spacer GTGSSGFGPYVAN(H)GGYSGYEYAWSSESDFGT in the heavy chain of silk fibroin is likely to be involved in the binding of ferric ions, and His, Asn and Tyr residues are considered as the potential binding sites.

  2. Binding of the Zn2+ ion to ferric uptake regulation protein from E. coli and the competition with Fe2+ binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur

    NASA Astrophysics Data System (ADS)

    Jabour, Salih; Hamed, Mazen Y.

    2009-04-01

    The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.

  3. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    NASA Astrophysics Data System (ADS)

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-07-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.

  4. A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore.

    PubMed

    Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E

    2018-05-23

    Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.

  5. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  6. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  7. Microbial Copper-binding Siderophores at the Host-Pathogen Interface*

    PubMed Central

    Koh, Eun-Ik; Henderson, Jeffrey P.

    2015-01-01

    Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity and redox-based phagocyte defenses distinguishes it from other E. coli siderophores. Here we compare yersiniabactin to other extracellular copper-binding molecules and review how copper-binding siderophores may confer virulence-associated gains of function during infection pathogenesis. PMID:26055720

  8. The impact of highly hydrophobic material on the structure of transferrin and its ability to bind iron.

    PubMed

    Drug, E; Fadeev, L; Gozin, M

    2011-05-30

    Transferrin is a blood-plasma glycoprotein, which is responsible for ferric-ion delivery and which functions as the most important ferric pool in the body. The reversible complexation process of Fe(3+) ions is associated with conformational changes of the three-dimensional structure of the transferrin. This conformational dynamics is attributed to a partial unfolding of the N-lobe of the protein and could be described as a transition between the holo to the apo forms of the transferrin. The aim of the present work is to demonstrate the unprecedented ability of the transferrin to solubilize various polycyclic aromatic hydrocarbons in physiological solution and to explore the impact of these materials on the structure and functionality of the transferrin. The synthesis and characterization of novel materials, consisting of complexes between human transferrin and hydrophobic high-carbon-content compounds, is reported here for the first time. Furthermore, it is shown that the preparation of these complexes from holo-transferrin leads to an irreversible loss of the ferric ions from the protein. Analytical studies of these novel complexes may shed a light on the mechanism by which transferrin could lose its ability to bind and thus to transport and store iron. These findings clearly demonstrate a possible damaging impact of various hydrophobic pollutants, which can enter an organism by inhalation or ingestion, on the functionality of the transferrin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site.

    PubMed

    Pang, Yu; Lan, Wanjun; Huang, Xuelei; Zuo, Guanke; Liu, Hui; Zhang, Jingyan

    2015-10-01

    Oxalate oxidase (OxOx), a well known enzyme catalyzes the cleavage of oxalate to carbon dioxide with reduction of dioxygen to hydrogen peroxide, however its catalytic process is not well understood. To define the substrate binding site, interaction of Fe(3+) ions with OxOx was systemically investigated using biochemical method, circular dichrosim spectroscopy, microscale thermophoresis, and computer modeling. We demonstrated that Fe(3+) is a non-competitive inhibitor with a milder binding affinity to OxOx, and the secondary structure of the OxOx was slightly altered upon its binding. On the basis of the structural properties of the OxOx and its interaction with Fe(3+) ions, two residue clusters of OxOx were assigned as potential Fe(3+) binding sites, the mechanism of the inhibition of Fe(3+) was delineated. Importantly, the residues that interact with Fe(3+) ions are involved in the substrate orienting based on computer docking. Consequently, the interaction of OxOx with Fe(3+) highlights insight into substrate binding site in OxOx.

  10. Functional characterization of the dimerization domain of the ferric uptake regulator (Fur) of Pseudomonas aeruginosa

    PubMed Central

    Bai, Erdeni; Rosell, Federico I.; Lige, Bao; Mauk, Marcia R.; Lelj-Garolla, Barbara; Moore, Geoffrey R.; Mauk, A. Grant

    2006-01-01

    The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents. PMID:16928194

  11. Evolution reversed: the ability to bind iron restored to the N-lobe of the murine inhibitor of carbonic anhydrase by strategic mutagenesis.

    PubMed

    Mason, Anne B; Judson, Gregory L; Bravo, Maria Cristina; Edelstein, Andrew; Byrne, Shaina L; James, Nicholas G; Roush, Eric D; Fierke, Carol A; Bobst, Cedric E; Kaltashov, Igor A; Daughtery, Margaret A

    2008-09-16

    The murine inhibitor of carbonic anhydrase (mICA) is a member of the superfamily related to the bilobal iron transport protein transferrin (TF), which binds a ferric ion within a cleft in each lobe. Although the gene encoding ICA in humans is classified as a pseudogene, an apparently functional ICA gene has been annotated in mice, rats, cows, pigs, and dogs. All ICAs lack one (or more) of the amino acid ligands in each lobe essential for high-affinity coordination of iron and the requisite synergistic anion, carbonate. The reason why ICA family members have lost the ability to bind iron is potentially related to acquiring a new function(s), one of which is inhibition of certain carbonic anhydrase (CA) isoforms. A recombinant mutant of the mICA (W124R/S188Y) was created with the goal of restoring the ligands required for both anion (Arg124) and iron (Tyr188) binding in the N-lobe. Absorption and fluorescence spectra definitively show that the mutant binds ferric iron in the N-lobe. Electrospray ionization mass spectrometry confirms the presence of both ferric iron and carbonate. At the putative endosomal pH of 5.6, iron is released by two slow processes indicative of high-affinity coordination. Induction of specific iron binding implies that (1) the structure of mICA resembles those of other TF family members and (2) the N-lobe can adopt a conformation in which the cleft closes when iron binds. Because the conformational change in the N-lobe indicated by metal binding does not impact the inhibitory activity of mICA, inhibition of CA was tentatively assigned to the C-lobe. Proof of this assignment is provided by limited trypsin proteolysis of porcine ICA.

  12. FpvA-mediated ferric pyoverdine uptake in Pseudomonas aeruginosa: identification of aromatic residues in FpvA implicated in ferric pyoverdine binding and transport.

    PubMed

    Shen, Jiang-Sheng; Geoffroy, Valérie; Neshat, Shadi; Jia, Zongchao; Meldrum, Allison; Meyer, Jean-Marie; Poole, Keith

    2005-12-01

    A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.

  13. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  14. Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria

    PubMed Central

    Steiner, Michael; Lazaroff, Norman

    1974-01-01

    A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066

  15. Nuclear magnetic resonance studies of high-spin ferric hemoproteins.

    PubMed

    Morishmima, I; Ogawa, S; Inubushi, T; Iizuka, T

    1978-01-01

    220 MHz proton Fourier transform (FT) NMR with quadrature phase detection (QPD) technique is applied to observe largely hyperfine-shifted signals of various hemoproteins and hemoenzymes in ferric high-spin state. The binding of F-, OCN-, SCN-, and CH3OH to the ferric heme iron in high-spin state in various hemoproteins has been studied by the use of FT/QPD technique at 220 MHz. The binding of formate ion to metmyoglobin (metMb) has also been studied. The spectrum of the formate complex was compared with that of hemoglobin M Milwaukee where carboxylate groups are bound to the hemes of the beta subunits. The acid-base transition of ferric myoglobin (Mb) was confirmed by monitoring the pH-dependent shift of the heme side methyl signals with the reflection point at pH 9.1. This finding is analyzed on the basis of rapid exchange between alkaline (low spin) and acidic (high spin) forms accompanied by the dissociation and association of one proton in the ferric Mb. The structure of the heme environment of ferric horseradish peroxidase (HRP) was studied. The pH-dependent features of NMR spectra of the ferric enzyme and its complexes with cyanide and azide were discussed in terms of heme environmental structures, comparing with the case of metMb. The results were interpreted as follows: There exists an ionizable amino group near the heme responsible for the ligand binding reactions of the enzyme, which modulates the entry of external azide to the heme iron through protolytic equilibrium of this group. The pK value of this group was determined to be 5.9 by monitoring the pH-dependent shift of the heme peripheral methyl signals of the native enzyme, indicating that the group is probably a histidyl residue. Acid-alkaline transition of metMb was confirmed to associate with the proton dissociation of an iron-bound water molecule, whereas in HRP, pH-dependent spin state change characterized by pK 11 is attributed not to the simple protolytic reaction of the iron-bound water but to the direct coordination of an amino acid residue of the polypeptide chain to the ferric heme iron. Histidyl imidazole is a possible candidate for the new sixth iron ligand in alkaline peroxidase above pH 11. Interaction of HRP with electron donor(indolepropionic acid, IPA) was also studied. The hyperfine-shifted proton signals of the heme peripheral groups of the enzyme showed a small but significant shift with stepwise additions of IPA, indicating that the donor binds at a specific site of HRP. There results are interpreted in terms of the interaction between the enzyme and the donor at the heme edge site.

  16. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  17. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic compounds. In summary, the information obtained by the present approach using a microbial model system provides important information to better understand the interactions between heavy metals and biofilms, and microbially formed Fe(III) minerals and heavy metals in complex natural environments.

  18. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    ERIC Educational Resources Information Center

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  19. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.

    PubMed

    Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J

    2016-01-01

    The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.

  20. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace.

    PubMed

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.

  1. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    NASA Astrophysics Data System (ADS)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  2. Application of an M13 bacteriophage displaying tyrosine on the surface for detection of Fe(3+) and Fe(2+) ions.

    PubMed

    Guo, Xiaohua; Niu, Chuncheng; Wu, Yunhua; Liang, Xiaosheng

    2015-12-01

    Ferric and ferrous ion plays critical roles in bioprocesses, their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix. In this study, an M13 bacteriophage (phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein. The interaction between the specific phenol group of tyrosine and Fe(3+) / Fe(2+) was used as the sensor. Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe(3+) and Fe(2+). The aggregated phages infected the host bacterium inefficiently. This phenomenon could be utilized for detection of ferric and ferrous ions. For ferric ions, a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired. For ferrous ions, a calibration curve ranging from 800 nmol/L to 8 μmol/L with a detection limit of 641.7 nmol/L was acquired. The assay was specific for Fe(3+) and Fe(2+) when tested against Ni(2+), Pb(2+), Zn(2+), Mn(2+), Co(2+), Ca(2+), Cu(2+), Cr(3+), Ba(2+), and K(+). The tyrosine displaying phage to Fe(3+) and Fe(2+) interaction would have plenty of room in application to biomaterials and bionanotechnology.

  3. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Landel, Robert F. (Inventor); Yen, Shiao-Ping S. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  4. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  5. Retro-inverso forms of gastrin5-12 are as biologically active as glycine-extended gastrin in vitro but not in vivo.

    PubMed

    Marshall, Kathryn M; Laval, Marie; Sims, Ioulia; Shulkes, Arthur; Baldwin, Graham S

    2015-12-01

    Non-amidated gastrin peptides such as glycine-extended gastrin (Ggly) are biologically active in vitro and in vivo and have been implicated in the development of gastric and colonic cancers. Previous studies have shown that the truncated form of Ggly, the octapeptide LE5AY, was still biologically active in vitro, and that activity was dependent on ferric ion binding but independent of binding to the cholecystokinin 2 (CCK2) receptor. The present work was aimed at creating more stable gastrin-derived 'super agonists' using retro-inverso technology. The truncated LE5AY peptide was synthesized using end protecting groups in three forms with l-amino acids (GL), d-amino acids (GD) or retro-inverso (reverse order with d-amino acids; GRI). All of these peptides bound ferric ions with a 2:1 (Fe: peptide) ratio. As predicted, Ggly, GL and GRI were biologically active in vitro and increased cell proliferation in mouse gastric epithelial (IMGE-5) and human colorectal cancer (DLD-1) cell lines, and increased cell migration in DLD-1 cells. These activities were likely via the same mechanism as Ggly since no CCK1 or CCK2 binding was identified, and GD remained inactive in all assays. Surprisingly, unlike Ggly, GL and GRI were not active in vivo. While Ggly stimulated colonic crypt height and proliferation rates in gastrin knockout mice, GL and GRI did not. The apparent lack of activity may be due to rapid clearance of these smaller peptides. Nevertheless further work designing and testing retro-inverso gastrins is warranted, as it may lead to the generation of super agonists that could potentially be used to treat patients with gastrointestinal disorders with reduced mucosal function. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    PubMed

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Chemistry of carcinogenic metals.

    PubMed Central

    Martell, A E

    1981-01-01

    The periodic distribution of known and suspected carcinogenic metal ions is described, and the chemical behavior of various types of metal ions is explained in terms of the general theory of hard and soft acids and bases. The chelate effect is elucidated, and the relatively high stability of metal chelates in very dilute solutions is discussed. The concepts employed for the chelate effect are extended to explain the high stabilities of macrocyclic and cryptate complexes. Procedures for the use of equilibrium data to determine the speciation of metal ions and complexes under varying solution conditions are described. Methods for assessing the interferences by hydrogen ion, competing metal ions, hydrolysis, and precipitation are explained, and are applied to systems containing iron(III) chelates of fourteen chelating agents designed for effective binding of the ferric ion. The donor groups available for the building up of multidentate ligands are presented, and the ways in which they may be combined to achieve high affinity and selectivity for certain types of metal ions are explained. PMID:6791915

  8. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  9. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.

    PubMed

    Behera, Rabindra K; Theil, Elizabeth C

    2014-06-03

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) < Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations.

  10. Protein Association and Dissociation Regulated by Ferric Ion

    PubMed Central

    Li, Chaorui; Fu, Xiaoping; Qi, Xin; Hu, Xiaosong; Chasteen, N. Dennis; Zhao, Guanghua

    2009-01-01

    Iron stored in phytoferritin plays an important role in the germination and early growth of seedlings. The protein is located in the amyloplast where it stores large amounts of iron as a hydrated ferric oxide mineral core within its shell-like structure. The present work was undertaken to study alternate mechanisms of core formation in pea seed ferritin (PSF). The data reveal a new mechanism for mineral core formation in PSF involving the binding and oxidation of iron at the extension peptide (EP) located on the outer surface of the protein shell. This binding induces aggregation of the protein into large assemblies of ∼400 monomers. The bound iron is gradually translocated to the mineral core during which time the protein dissociates back into its monomeric state. Either the oxidative addition of Fe2+ to the apoprotein to form Fe3+ or the direct addition of Fe3+ to apoPSF causes protein aggregation once the binding capacity of the 24 ferroxidase centers (48 Fe3+/shell) is exceeded. When the EP is enzymatically deleted from PSF, aggregation is not observed, and the rate of iron oxidation is significantly reduced, demonstrating that the EP is a critical structural component for iron binding, oxidation, and protein aggregation. These data point to a functional role for the extension peptide as an iron binding and ferroxidase center that contributes to mineralization of the iron core. As the iron core grows larger, the new pathway becomes less important, and Fe2+ oxidation and deposition occurs directly on the surface of the iron core. PMID:19398557

  11. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    NASA Astrophysics Data System (ADS)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  12. Disinhibition of excessive volatile fatty acids to improve the efficiency of autothermal thermophilic aerobic sludge digestion by chemical approach.

    PubMed

    Jin, Ningben; Jin, Bo; Zhu, Nanwen; Yuan, Haiping; Ruan, Jianbo

    2015-01-01

    In this study, we explored a chemical approach to eliminate inhibition of excessive volatile fatty acids (VFAs) in autothermal thermophilic aerobic digestion (ATAD). Ferric nitrate, ferric chloride, potassium nitrate and potassium chloride were employed to demonstrate the combined action of ferric ion and nitrate ion. Supplementation of ferric nitrate in the sludge digestion system resulted in reducing the concentration of Total VFAs (TVFA) by round 5000mg/L and more than 2000mg/L of acetic acid at the end of digestion. Lower TVFA concentration contributed to faster sludge stabilization rate and the VS removal of ferric nitrate dosed digester achieved 38.18% after 12days digestion which was 9days in advance compared with the stabilization time of sludge in digester without chemicals addition. Lower concentrations of NH4(+)-N and SCOD in supernatant while higher content of TP in digestion sludge were obtained in digester with ferric nitrate added. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anodemore » of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.« less

  14. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    PubMed Central

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  15. [Study on the degradation and transformation of nonylphenol in water containing algae].

    PubMed

    Peng, Zhang-E; Feng, Jin-Mei; He, Shu-Ying; Wu, Feng

    2012-10-01

    The photodegradation of nonylphenol induced by two common freshwater algae was investigated. The mechanism of nonylphenol photodegradation induced by algae was analyzed. The synergistic induction of nonylphenol degradation by algae and substances in water such as humic acid and ferric ions was also investigated. Results showed that the algae could induce the photodegradation of nonylphenol. The degradation of nonylphenol in water in the presence of algae, humic acid and ferric ions was obvious and the efficiency of degradation could reach 58% after 4 h illumination. Based on the results, it was speculated that the algae, humic acid and ferric ions system could produce more active oxygen after illumination, which could promote the photodegradation of the organic contaminants in water.

  16. Effect of ferric hydroxide suspension on blood chemstry in the common shiner, Notropus cornutus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, F.J.; Corbett, S.; Shertzer, R.

    1976-05-01

    Common shiners, Notropus cornutus, were exposed to 3 ppM ferric hydroxide for periods from two to eight weeks. Ferric hydroxide resulted in initial changes in serum protein, glucose, Na and K ions, but these changes did not adversely affect the internal dynamics of the fish.

  17. A novel colorimetric and turn-on fluorescent chemosensor for iron(III) ion detection and its application to cellular imaging

    NASA Astrophysics Data System (ADS)

    Luo, Aoheng; Wang, Hongqing; Wang, Yuyuan; Huang, Qiao; Zhang, Qin

    2016-11-01

    A novel rhodamine-based dual probe Rh-2 for trivalent ferric ions (Fe3 +) was successfully designed and synthesized, which exhibited a highly sensitive and selective recognition towards Fe3 + with an enhanced fluorescence emission in methanol-water media (v/v = 7/3, pH = 7.2). The probe Rh-2 could be applied to the determination of Fe3 + with a linear range covering from 3.0 × 10- 7 to 1.4 × 10- 5 M and a detection limit of 1.24 × 10- 8 M. Meanwhile, the binding ratio of Rh-2 and Fe3 + was found to be 1:1. Most importantly, the fluorescence and color signal changes of the Rh-2 solution were specific to Fe3 + over other commonly coexistent metal ions. Moreover, the probe Rh-2 has been used to image Fe3 + in living cells with satisfying results.

  18. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Human granulocyte/pollen-binding protein. Recognition and identification as transferrin.

    PubMed Central

    Sass-Kuhn, S P; Moqbel, R; Mackay, J A; Cromwell, O; Kay, A B

    1984-01-01

    Normal human serum was found to contain a heat-stable protein which promoted the binding of granulocytes to timothy grass pollen (granulocyte/pollen-binding protein [GPBP]). GPBP was purified by gel filtration, anion exchange, and affinity chromatography. Virtually all of the granulocyte/pollen-binding activity was associated with a beta-1-protein having a molecular mass of approximately 77,000 D and an isoelectric point of between 5.5 and 6.1. By immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein was identified as transferrin. Monospecific antisera raised against either GPBP or transferrin removed biological activity from GPBP preparations, and GPBP and transferrin gave lines of identity with these two antisera. The apparent heterogeneity in the molecular size and charge of GPBP observed during progressive purification was minimal when GPBP was saturated with ferric ions before the separation procedures. These experiments indicate that granulocyte/pollen binding is a hitherto unrecognized property of transferrin which appears to be unrelated to iron transport and raises the possibility that transferrin might have a physiological role in the removal of certain organic matter. Images PMID:6690479

  20. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates

    PubMed Central

    Behera, Rabindra K.; Theil, Elizabeth C.

    2014-01-01

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron–protein cofactors and oxidant protection (Fe2+ and O2 sequestration). Fe2+ passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe2+ substrate movement to ferritin enzyme (Fox) sites. Fe2+ and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe3+–O–Fe3+] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe2+ concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe2+ access), Mn2+ << Co2+ < Cu2+ < Zn2+, reflecting metal ion–protein binding stabilities. Fe2+–Cys126 binding in ferritin ion channels, observed as Cu2+–S–Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu2+ inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe2+ movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe2+ into ferritin enzymatic sites. The results clarify Fe2+ transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174

  1. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  2. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  3. Catalytic photodegradation of pharmaceuticals - homogeneous and heterogeneous photocatalysis.

    PubMed

    Klementova, S; Kahoun, D; Doubkova, L; Frejlachova, K; Dusakova, M; Zlamal, M

    2017-01-18

    Photocatalytic degradation of pharmaceuticals (hydrocortisone, estradiol, and verapamil) and personal care product additives (parabens-methyl, ethyl, and propyl derivatives) was investigated in the homogeneous phase (with ferric ions as the catalyst) and on TiO 2 . Ferric ions in concentrations corresponding to concentrations in natural water bodies were shown to be a significant accelerator of the degradation in homogeneous reaction mixtures. In heterogeneous photocatalytic reactions on TiO 2 , lower reaction rates, but mineralisation to higher extents, were observed.

  4. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching. PMID:9758769

  5. Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization.

    PubMed

    Ferreira, Gabriel Max Dias; Ferreira, Guilherme Max Dias; Agudelo, Álvaro Javier Patiño; Hudson, Eliara Acipreste; Dos Santos Pires, Ana Clarissa; da Silva, Luis Henrique Mendes

    2018-05-11

    Here, investigation was made of the interaction between Lactoferrin (Lf) and the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and sodium decyl sulfate (DSS), using isothermal titration calorimetry, Nano differential scanning calorimetry (NanoDSC), and fluorescence spectroscopy. The Lf-surfactant interaction was enthalpically favorable (the integral enthalpy change ranged from -5.99 kJ mol -1 , for SDS at pH 3.0, to -0.61 kJ mol -1 , for DSS at pH 12.0) and promoted denaturation of the protein. The Lf denaturation efficiency followed the order DSS < SDS < SDBS. The extent of binding of the surfactants to Lf strongly depended on pH and the surfactant structure, reaching a maximum value of 505 SDBS molecules per gram of Lf at pH 3.0. The different efficiencies of the surfactants in denaturing Lf were attributed to the balance of hydrophobic and electrostatic interactions, which also depended on pH and the surfactant structure, highlighting the SDBS-tryptophan residue specific interaction, where SDBS acted as a quencher of fluorescence. Interestingly, the NanoDSC and fluorescence measurements showed that the ferric ion bound to Lf increased its stability against denaturation induced by the surfactants. The results have important implications for understanding the influence of surfactants on structural changes in metalloproteins. Copyright © 2017. Published by Elsevier B.V.

  6. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  7. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  8. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  9. Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion.

    PubMed

    Wang, Guang; Wang, Tong

    2008-12-10

    Oxidative stability of egg and soy lecithin in emulsion was evaluated with two transition metal ions, cupric and ferric ion, at two concentration levels (50 and 500 microM). The effect of pH on lipid oxidation was also examined under these two concentrations for each ion. Egg lecithin (EL) had similar peroxide value (PV) development pattern as soy lecithin (SL) when treated with cupric ion under both acidic and neutral pH. Acidic pH of 3 accelerated oxidation of both EL and SL, especially under high concentration of copper. When treated with ferric ion, EL oxidized much faster than SL did. EL had higher value of thiobarbituric acid-reactive substances (TBARS) than SL, possibly because of its higher content of long-chain polyunsaturated fatty acids (PUFA). Acidic pH accelerated TBARS development for both EL and SL, but EL had more significantly increased values. Cupric ion was more powerful than ferric in catalyzing oxidation of both EL and SL under both acidic and neutral pH conditions as measured by PV and TBARS. Linoleic acid may contribute to higher PV production, however, arachidonic acid and docosahexaenoic acid may have contributed more to TBARS production. Overall, SL showed better oxidative stability than EL under the experimental conditions. This study also suggests that using multiple methods is necessary in properly evaluating lipid oxidative stability.

  10. Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, J.M.; Manceau, A.; Calas, G.

    1989-03-01

    X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond tomore » the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.« less

  11. Evidence of the direct involvement of the substrate TCP radical in functional switching from oxyferrous O2 carrier to ferric peroxidase in the dual-function hemoglobin/dehaloperoxidase from Amphitrite ornata.

    PubMed

    Sun, Shengfang; Sono, Masanori; Du, Jing; Dawson, John H

    2014-08-05

    The coelomic O2-binding hemoglobin dehaloperoxidase (DHP) from the sea worm Amphitrite ornata is a dual-function heme protein that also possesses a peroxidase activity. Two different starting oxidation states are required for reversible O2 binding (ferrous) and peroxidase (ferric) activity, bringing into question how DHP manages the two functions. In our previous study, the copresence of substrate 2,4,6-trichlorophenol (TCP) and H2O2 was found to be essential for the conversion of oxy-DHP to enzymatically active ferric DHP. On the basis of that study, a functional switching mechanism involving substrate radicals (TCP(•)) was proposed. To further support this mechanism, herein we report details of our investigations into the H2O2-mediated conversion of oxy-DHP to the ferric or ferryl ([TCP] < [H2O2]) state triggered by both biologically relevant [TCP and 4-bromophenol (4-BP)] and nonrelevant (ferrocyanide) compounds. At <50 μM H2O2, all of these conversion reactions are completely inhibited by ferric heme ligands (KCN and imidazole), indicating the involvement of ferric DHP. Furthermore, the spin-trapping reagent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) effectively inhibits the TCP/4-BP (but not ferrocyanide)-triggered conversion of oxy-DHP to ferric DHP. These results and O2 concentration-dependent conversion rates observed in this study demonstrate that substrate TCP triggers the conversion of oxy-DHP to a peroxidase by TCP(•) oxidation of the deoxyferrous state. TCP(•) is progressively generated, by increasingly produced amounts of ferric DHP, upon H2O2 oxidation of TCP catalyzed initially by trace amounts of ferric enzyme present in the oxy-DHP sample. The data presented herein further address the mechanism of how the halophenolic substrate triggers the conversion of hemoglobin DHP into a peroxidase.

  12. Effects of gel properties produced by chemical reactions on viscous fingering

    NASA Astrophysics Data System (ADS)

    Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka

    2011-11-01

    We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.

  13. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    PubMed

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    PubMed Central

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B.; Erman, James E.

    2013-01-01

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0. PMID:24291498

  15. SU-E-T-516: Investigation of a Novel Radiochromic Radiation Reporting System Utilizing the Reduction of Ferric Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose To introduce and characterize a new “reverse-Fricke” radiation reporting system utilizing the reduction of ferric ions (Fe{sup 3+}) to ferrous ions (Fe{sup 2+}). Methods Two formulations of the radiochromic reporting system, referred to as A and B, were prepared for investigation. Formulation-A consisted of 14 mM 1,10-phenanthroline, 42 mM ethanol, and 57 mM ammonium ferric oxalate in water. Formulation-B consisted of 27 mM 1,10-phenanthroline, 42 mM ethanol, and 28 mM ammonium ferric oxalate in water. Solutions were prepared immediately prior to irradiation with a Cobalt-60 unit with radiation doses of 0, 1, 5, 10, 15, 20, and 25 Gy.more » The change in optical density over the visible range of 450–650 nm was measured using a spectrophotometer immediately after irradiation. The effective atomic numbers of the formulations were calculated using Mayneord’s formula. Results Ionizing radiation energy absorbed in the solutions causes the reduction of ferric ions (Fe{sup 3+}) into ferrous ions (Fe{sup 2+}), which then forms a 1:3 red colored complex with 1,10-phenanthroline ([(C{sub 1} {sub 2}H{sub 8}N{sup 2}){sub 3}Fe]{sup 2+}) that can be measured spectrophotometrically. The absorbance spectra of the resulting complex displayed a peak maximum at 512 nm with a greater change in absorbance for Formulation-B after receiving comparable radiation doses. The change in absorbance relative to dose exhibited a linear response up to 25 Gy for both Formulation-A (R{sup 2} = 0.98) and Formulation-B (R{sup 2} = 0.97). The novel formulations were also nearly water equivalent (Zeff = 7.42) with effective atomic numbers of 7.65 and 7.52 and mass densities within 0.2% of water. Conclusion Both formulations displayed visible Fe{sup 2+} complex formation with 1,10-phenanthroline after irradiation using a Cobalt-60 source. The higher sensitivity measured for Formulation-B is attributed to the increase in 1,10-phenanthroline concentration and the increase in the 1,10-phenanthroline to ammonium ferric oxalate ratio. Further investigation of this radiation reporting system in a 3D matrix material is encouraged. NSF GRFP Grant Award #LH-102SPS.« less

  16. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH ofmore » 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.« less

  17. Ferric ion as a scavenging agent in a solvent extraction process

    DOEpatents

    Bruns, Lester E.; Martin, Earl C.

    1976-01-01

    Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.

  18. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein.

    PubMed

    Atilgan, Canan; Atilgan, Ali Rana

    2009-10-01

    We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the "conformational selection" model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion.

  19. Evaluation of different iron compounds in chlorotic Italian lemon trees (Citrus lemon).

    PubMed

    Ortiz, Patricio Rivera; Castro Meza, Blanca I; de la Garza Requena, Francisco R; Flores, Guillermo Mendoza; Etchevers Barra, Jorge D

    2007-05-01

    The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.

  20. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  1. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    PubMed

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Determination of the Molecular Structures of Ferric Enterobactin and Ferric Enantioenterobactin Using Racemic Crystallography.

    PubMed

    Johnstone, Timothy C; Nolan, Elizabeth M

    2017-10-25

    Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.

  3. Is His54 a gating residue for the ferritin ferroxidase site?

    PubMed

    Bernacchioni, Caterina; Ciambellotti, Silvia; Theil, Elizabeth C; Turano, Paola

    2015-09-01

    Ferritin is a ubiquitous iron concentrating nanocage protein that functions through the enzymatic oxidation of ferrous iron and the reversible synthesis of a caged ferric-oxo biomineral. Among vertebrate ferritins, the bullfrog M homopolymer ferritin is a frequent model for analyzing the role of specific amino acids in the enzymatic reaction and translocation of iron species within the protein cage. X-ray crystal structures of ferritin in the presence of metal ions have revealed His54 binding to iron(II) and other divalent cations, with its imidazole ring proposed as "gate" that influences iron movement to/from the active site. To investigate its role, His54 was mutated to Ala. The H54A ferritin variant was expressed and its reactivity studied via UV-vis stopped-flow kinetics. The H54A variant exhibited a 20% increase in the initial reaction rate of formation of ferric products with 2 or 4 Fe²⁺/subunit and higher than 200% with 20 Fe²⁺/subunit. The possible meaning of the increased efficiency of the ferritin reaction induced by this mutation is proposed taking advantage of the comparative sequence analysis of other ferritins. The data here reported are consistent with a role for His54 as a metal ion trap that maintains the correct levels of access of iron to the active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nitrogen doped carbon nanodots as fluorescent probes for selective detection and quantification of Ferric(III) ions

    NASA Astrophysics Data System (ADS)

    Chin, Suk-Fun; Tan, Shao-Chien; Pang, Suh-Cem; Ng, Sing-Muk

    2017-11-01

    Nitrogen (N) doped carbon dots (N-CDs) that showed blue fluorescence with quantum yield (QY) of 12.25% were synthesized by one step microwave irradiation of lysine in ortho-phosphoric acid at 1000 W for 5 min. The as-synthesized N-CDs were successfully explored as fluorescent probes for selective detection of ferric (Fe3+) ions in aqueous condition with a linear range from 0.2 to 5.0 mM and a detection limit of 0.074 mM ± 0.081 (S/N = 3). The N-CDs exhibited high selectivity towards the detection of Fe3+ ions even in the presence of interfering ions. The N-CDs also demonstrated the potential of practical application for determining of Fe3+ ions concentration in real samples with high recovery rate and low relative standard deviation error.

  5. Iron Binding at Specific Sites within the Octameric HbpS Protects Streptomycetes from Iron-Mediated Oxidative Stress

    PubMed Central

    Wedderhoff, Ina; Kursula, Inari; Groves, Matthew R.; Ortiz de Orué Lucana, Darío

    2013-01-01

    The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress. PMID:24013686

  6. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    PubMed

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-05

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A simple LC-MS/MS method for determination of deferasirox in human plasma: Troubleshooting of interference from ferric ion in method development and its application.

    PubMed

    Li, Tengfei; Cui, Zhimin; Wang, Yan; Yang, Wen; Li, Duo; Song, QinXin; Sun, Luning; Ding, Li

    2018-03-20

    As an orally active iron chelator, deferasirox forms its ion complexes in the prepared plasma samples and LC-MS mobile phase where ferric ion exists, and then comparing with the nominal concentration level, a lower detected concentration level of deferasirox would be obtained after LC-MS analysis, if no proper treatment was adopted. Meanwhile, the phenomenon would be observed that multiple repeat injections of the same deferasirox plasma sample in the same tube would show the lower and lower detected concentration levels of deferasirox, which caused by more and more ferric ions from the injection needle dissolved in the sample solution as multiple repeated injections. The addition of a proper concentration of EDTA in the mobile phase and the sample will competitively inhibit deferasirox from complexing with ferric ion, and prevent the decrease of deferasirox concentration. In this paper, an LC-MS/MS method was developed and validated for the determination of deferasirox in human plasma. To achieve the protein precipitation, the analytes were extracted from aliquots of 200 μL human plasma with acetonitrile. Chromatographic separation was performed on an ODS-C18 column with the mobile phase consisted of methanol and 0.1% formic acid containing 0.04 mM ethylenediamine tetraacetate dihydrate (EDTA) (80:20, v/v) at a flow rate of 0.5 mL/min. Deferasirox and the internal standard (IS, mifepristone) were detected using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor-to-product ion transitions m/z 374.2 → 108.1 for deferasirox and m/z 430.1 → 372.2 for the IS. The method exhibited good linearity over the concentration range of 0.04-40 μg/mL for deferasirox. The method was successfully applied to a pharmacokinetic study in 10 Chinese healthy volunteers after oral administration of deferasirox. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.

    PubMed

    Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie

    2004-02-09

    Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.

  9. Use of a Molecular Decoy to Segregate Transport from Antigenicity in the FrpB Iron Transporter from Neisseria meningitidis

    PubMed Central

    Saleem, Muhammad; Prince, Stephen M.; Rigby, Stephen E. J.; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C. J.; Feavers, Ian M.; Derrick, Jeremy P.

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance. PMID:23457610

  10. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.

    PubMed

    Saleem, Muhammad; Prince, Stephen M; Rigby, Stephen E J; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C J; Feavers, Ian M; Derrick, Jeremy P

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe(3+) with high affinity. EPR spectra of the bound Fe(3+) ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe(3+) binding was reduced or abolished on mutation of the Fe(3+)-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe(3+). The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a 'molecular decoy' to distract immune surveillance.

  11. Free Fe(3+)/Fe(2+) improved the biomass resource recovery and organic matter removal in Rhodobacter sphaeroides purification of sewage.

    PubMed

    Liu, Rijia; Wu, Pan; Lang, Lang; Xu, Changru; Wang, Yanling

    2016-01-01

    The enhancement in biomass production and organic matter removal of Rhodobacter sphaeroides (R. sphaeroides) through iron ions in soybean protein wastewater treatment was investigated. Different dosages of ferric ions were introduced in the reactors under light-anaerobic conditions. Free ferric and ferrous ions in wastewater were formed and their concentrations were the optimal for the growth of R. sphaeroides when the total Fe dosage was 20 mg/L. At the optimal dosage, biomass production (4000 mg/L) and protease activity improved by 50% and 48% when compared to the controls, respectively. The organic matter and protein removal reached above 90% and hydraulic retention time was shortened from 96 to 72 h. A mechanism analysis indicated that iron ions can effectively improve the adenosine triphosphate production, which may furthermore encourage the synthesis of protease and the cellular material.

  12. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    PubMed

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

  13. Clay Mineral Crystal Structure Tied to Composition

    NASA Image and Video Library

    2016-12-13

    This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148

  14. Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide.

    PubMed

    Carlsson, Gunilla H; Nicholls, Peter; Svistunenko, Dimitri; Berglund, Gunnar I; Hajdu, Janos

    2005-01-18

    Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.

  15. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  16. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  17. Kinetics of the Decomposition of Hydrogen Peroxide Catalyzed by Ferric Ethylenediaminetetraacetate Complex

    PubMed Central

    Walling, Cheves; Partch, Richard E.; Weil, Tomas

    1975-01-01

    Added substrates, acetone and t-butyl alcohol, strongly retard the decomposition of H2O2 brought about by ferric ethylenediaminetetraacetate (EDTA) at pH 8-9.5. Their relative effectiveness and the kinetic form of the retardation are consistent with their interruption of a hydroxyl radical chain that is propagated by HO· attack both upon H2O2 and on complexed and uncomplexed EDTA. Similar retardation is observed with decompositions catalyzed by ferric nitrilotriacetate and hemin, and it is proposed that such redox chains may be quite a general path for transition metal ion catalysis of H2O2 decomposition. PMID:16592209

  18. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    NASA Astrophysics Data System (ADS)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  19. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  20. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  1. Effect of conditioning solutions containing ferric chloride on dentin bond strength and collagen degradation.

    PubMed

    Rodrigues, Raquel Viana; Giannini, Marcelo; Pascon, Fernanda Miori; Panwar, Preety; Brömme, Dieter; Manso, Adriana Pigozzo; Carvalho, Ricardo Marins

    2017-10-01

    To investigate the effects of conditioning solutions containing ferric chloride (FeCl 3 ) on resin-dentin bond strength; on protection of dentin collagen against enzymatic degradation and on cathepsin-K (CT-K) activity. Conditioning solutions were prepared combining citric acid (CA) and anhydrous ferric chloride (FeCl 3 ) in different concentrations. The solutions were applied to etch flat dentin surfaces followed by bonding with adhesive resin. Phosphoric acid (PA) gel etchant was used as control. The microtensile bond strength (μTBS) was tested after 24h of storage in water and after 9 months of storage in phosphate buffer saline. Dentin slabs were demineralized in 0.5M EDTA, pre-treated or not with FeCl 3 and incubated with CT-K. The collagenase activity on dentin collagen matrix was examined and characterized by SEM. Additional demineralized dentin slabs were treated with the conditioning solutions, and the amount of Fe bound to collagen was determined by EDX. The activity of CT-K in the presence of FeCl 3 was monitored fluorimetrically. Data were analyzed by ANOVA followed by post-hoc tests as required (α=5%). Slightly higher bond strengths were obtained when dentin was conditioned with 5% CA/0.6% FeCl 3 and 5% CA-1.8%FeCl 3 regardless of storage time. Bond strengths reduced significantly for all tested conditioners after 9 months of storage. Treating dentin with 1.8% FeCl 3 was effective to preserve the structure of collagen against CT-K. EDX analysis revealed binding of Fe-ions to dentin collagen after 15s immersion of demineralized dentin slabs into FeCl 3 solutions. FeCl 3 at concentration of 0.08% was able to suppress CT-K activity. This study shows that FeCl 3 binds to collagen and offers protection against Cat-K degradation. Mixed solutions of CA and FeCl 3 may be used as alternative to PA to etch dentin in resin-dentin bonding with the benefits of preventing collagen degradation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Concerted loop motion triggers induced fit of FepA to ferric enterobactin

    PubMed Central

    Smallwood, Chuck R.; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W.; Gala, Amparo; Hanson, Mathew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M.C.

    2014-01-01

    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. PMID:24981231

  3. Concerted loop motion triggers induced fit of FepA to ferric enterobactin.

    PubMed

    Smallwood, Chuck R; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W; Gala, Amparo; Hanson, Mathew; Hanson, Matthew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M C; Klebba, Phillip E

    2014-07-01

    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. © 2014 Smallwood et al.

  4. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  5. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco

    2017-04-01

    This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    PubMed

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  8. Spectroscopic studies on the antioxidant activity of p-coumaric acid.

    PubMed

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sampling the oxidative weathering products and the potentially acidic permafrost on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Large areas of Mars' surface are covered by oxidative weathering products containing ferric and sulfate ions having analogies to terrestrial gossans derived from sulfide mineralization associated with iron-rich basalts. Chemical weathering of such massive and disseminated pyrrhotite-pentlandite assemblages and host basaltic rocks in the Martian environment could have produced metastable gossaniferous phases (limonite containing poorly crystalline hydrated ferric sulfates and oxyhydroxides, clay silicates and opal). Underlying groundwater, now permafrost on Mars, may still be acidic due to incomplete buffering reactions by wall-rock alteration of unfractured host rock. Such acidic solutions stabilize temperature-sensitive complex ions and sols which flocculate to colloidal precipitates at elevated temperatures. Sampling procedures of Martian regolith will need to be designed bearing in mind that the frozen permafrost may be corrosive and be stabilizing unique complex ions and sols of Fe, Al, Mg, Ni and other minor elements.

  10. Breadboard wash water renovation system. [using ferric chloride and ion exchange resins to remove soap and dissolved salts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.

  11. The fate of iron on Mars: Mechanism of oxidation of basaltic minerals to ferric-bearing assemblages

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Perhaps the most conspicuous indication that chemical weathering has occurred on the surface of Mars is the overall color of the red planet and the spectroscopic features that identify ferric-bearing assemblages in the martian regolith. Apparently, Fe(2+) ions in primary minerals in parent igneous rocks on the martian surface have been oxidized to ferric iron, which occurs in degradation products that now constitute the regolith. The mineralogy of the unweathered igneous rocks prior to weathering on the martian surface is reasonably well constrained, mainly as a result of petrographic studies of the SNC meteorites. However, the alteration products resulting from oxidative weathering of these rocks are less well-constrained. The topics covered include the following: primary rocks subjected to chemical weathering; dissolution processes; oxidation of dissolved Fe(2+); mechanism of polymerization of hydrous ferric oxides; terrestrial occurrences of ferromagnesian smectites; and dehydroxylated Mg-Fe smectites on Mars.

  12. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface.

    PubMed

    Härle, C; Kim, I; Angerer, A; Braun, V

    1995-04-03

    Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    PubMed

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.

  14. Chemical Synthesis of the 20 kDa Heme Protein Nitrophorin 4 by α-Ketoacid-Hydroxylamine (KAHA) Ligation.

    PubMed

    He, Chunmao; Kulkarni, Sameer S; Thuaud, Frédéric; Bode, Jeffrey W

    2015-10-26

    The chemical synthesis of the 184-residue ferric heme-binding protein nitrophorin 4 was accomplished by sequential couplings of five unprotected peptide segments using α-ketoacid-hydroxylamine (KAHA) ligation reactions. The fully assembled protein was folded to its native structure and coordinated to the ferric heme b cofactor. The synthetic holoprotein, despite four homoserine residues at the ligation sites, showed identical properties to the wild-type protein in nitric oxide binding and nitrite dismutase reactivity. This work establishes the KAHA ligation as a valuable and viable approach for the chemical synthesis of proteins up to 20 kDa and demonstrates that it is well-suited for the preparation of hydrophobic protein targets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    PubMed

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  16. Cyanide binding to human plasma heme-hemopexin: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it; Istituto Nazionale di Biostrutture e Biosistemi, Roma; Leboffe, Loris

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C,more » are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.« less

  17. Binding and Utilization of Human Transferrin by Prevotella nigrescens

    PubMed Central

    Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis

    1999-01-01

    To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061

  18. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  19. Metals removal from aqueous solution by iron-based bonding agents.

    PubMed

    Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A

    2004-01-01

    GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.

  20. A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein.

    PubMed

    Rinaldo, David; Field, Martin J

    2003-12-01

    Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.

  1. Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.

    PubMed

    Jadhav, Umesh U; Hocheng, Hong

    2014-01-01

    The removal of nickel (Ni) and cadmium (Cd) from spent batteries was studied by the chemical method. A novel leaching system using ferric sulphate hydrate was introduced to dissolve heavy metals in batteries. Ni-Cd batteries are classified as hazardous waste because Ni and Cd are suspected carcinogens. More efficient technologies are required to recover metals from spent batteries to minimize capital outlay, environmental impact and to respond to increased demand. The results obtained demonstrate that optimal conditions, including pH, concentration of ferric sulphate, shaking speed and temperature for the metal removal, were 2.5, 60 g/L, 150 rpm and 30 degrees C, respectively. More than 88 (+/- 0.9) and 84 (+/- 2.8)% of nickel and cadmium were recovered, respectively. These results suggest that ferric ion oxidized Ni and Cd present in battery waste. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  2. A Comparative Study of Iron Uptake Mechanisms in Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step1[W][OA

    PubMed Central

    Sutak, Robert; Botebol, Hugo; Blaiseau, Pierre-Louis; Léger, Thibaut; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2012-01-01

    We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface. PMID:23033141

  3. Selectivity of Vibrio cholerae H-NOX for Gaseous Ligands Follows “Sliding Scale Rule” Hypothesis

    PubMed Central

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-lim

    2014-01-01

    Vc H-NOX (or VCA0720) is an H-NOX (heme-nitric oxide and oxygen binding) protein from facultative aerobic bacterium Vibrio cholerae. It shares significant sequence homology with soluble guanylyl cyclase (sGC), a NO sensor protein commonly found in animals. Similar to sGC, Vc H-NOX binds strongly to NO and CO with affinities of 0.27 nM and 0.77 μM, respectively, but weakly to O2. When positioned in “sliding scale” plot {Tsai, A.-L. et. al. (2012) Biochemistry, 51, pp172-86}, the line connecting logKD(NO) and logKD(CO) of Vc H-NOX is almost superimposable with that of Ns H-NOX. Therefore, the measured affinities and kinetic parameters of gaseous ligands to Vc H-NOX provide more evidence to validate the “sliding scale rule” hypothesis. Like sGC, Vc H-NOX binds NO in multiple steps, forming first a 6-coordinate heme-NO complex with a rate of 1.1 × 109 M−1s−1, and then converts to a 5c heme-NO complex at a rate also dependent on [NO]. Although the formation of oxyferrous Vc H-NOX is not detectable under normal atmospheric oxygen level, ferrous Vc H-NOX is oxidized to ferric form at a rate of 0.06 s−1 when mixed with O2. Ferric Vc H-NOX exists as a mixture of high- and low-spin states and is influenced by binding to different ligands. Characterization of both ferric and ferrous Vc H-NOX and their complexes with various ligands lay the foundation for understanding the possible dual roles in gas and redox sensing of Vc H-NOX. PMID:24351060

  4. Iron uptake in Mycelia sterilia EP-76.

    PubMed Central

    Adjimani, J P; Emery, T

    1987-01-01

    The cyclic trihydroxamic acid, N,N',N''-triacetylfusarinine C, produced by Mycelia sterilia EP-76, was shown to be a ferric ionophore for this organism. The logarithm of the association constant k for the ferric triacetylfusarinine C chelate was determined to be 31.8. Other iron-chelating agents, such as rhodotorulic acid, citric acid, and the monomeric subunit of triacetylfusarinine C, N-acetylfusarinine, delivered iron to the cells by an indirect mechanism involving iron exchange into triacetylfusarinine C. In vitro ferric ion exchange was found to be rapid with triacetylfusarinine C. Gallium uptake rates comparable to those of iron were observed with the chelating agents that transport iron into the cell. Ferrichrome, but not ferrichrome A, was also capable of delivering iron and gallium to this organism, but not by an exchange mechanism. Unlike triacetylfusarinine C, the 14C-ligand of ferrichrome was retained by the cell. A midpoint potential of -690 mV with respect to the saturated silver chloride electrode was obtained for the ferric triacetylfusarinine C complex, indicating that an unfavorable reduction potential was not the reason for the use of a hydrolytic mechanism of intracellular iron release from the ferric triacetylfusarinine C chelate. PMID:3611025

  5. FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus - A case of gene duplication and lateral transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebulsky, M. Tom; Speziali, Craig D.; Shilton, Brian H.

    Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us tomore » examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.« less

  6. Preparation and evaluation of magnetic carbonaceous materials for pesticide and metal removal.

    PubMed

    Ohno, Masaki; Hayashi, Hiroki; Suzuki, Kazuyuki; Kose, Tomohiro; Asada, Takashi; Kawata, Kuniaki

    2011-07-15

    Magnetic carbonaceous materials were produced by carbonization of a cation exchange resin loaded with ferrous or ferric iron and activation using sieved oyster shell as the activation agent. The magnetic carbonaceous material with the maximum magnetic flux density on every axis (ESS-1) was obtained from the ferric-loaded resin by carbonization at 700°C, followed by activation with the oyster shell at 900°C, and magnetization. A separate step of carbonization and activation appears to cause more of a reduction reaction of Fe to form γ-Fe(2)O(3). The Fe compound in the magnetic carbonaceous material was identified from the XRD pattern as mainly γ-Fe(2)O(3). The magnetic flux density on every axis increased linearly as the amount of the oyster shell increased. Moreover, the adsorption ability of the products was evaluated for pesticides and metal ions. Both ESS-1 and a carbonaceous material obtained from the resin without ferric ion (RC) appear to have the highest adsorption ability for lead. Furthermore, the adsorption ability of ESS-1 might decrease by blockages of the pores with the loaded Fe compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    PubMed

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  8. Mechanism of Sulfide Binding by Ferric Hemeproteins.

    PubMed

    Boubeta, Fernando M; Bieza, Silvina A; Bringas, Mauro; Estrin, Darío A; Boechi, Leonardo; Bari, Sara E

    2018-06-19

    The reaction of hydrogen sulfide (H 2 S) with hemeproteins is a key physiological reaction; still, its mechanism and implications are not completely understood. In this work, we propose a combination of experimental and theoretical tools to shed light on the reaction in model system microperoxidase 11 (MP11-Fe III ) and myoglobin (Mb-Fe III ), from the estimation of the intrinsic binding constants of the species H 2 S and hydrosulfide (HS - ), and the computational description of the overall binding process. Our results show that H 2 S and HS - are the main reactive species in Mb-Fe III and MP11-Fe III , respectively, and that the magnitude of their intrinsic binding constants are similar to most of the binding constants reported so far for hemeproteins systems and model compounds. However, while the binding of HS - to Mb-Fe III was negligible, the binding of H 2 S to MP11-Fe III was significant, providing a frame for a discriminated analysis of both species and revealing differential mechanistic aspects. A joint inspection of the kinetic data and the free energy profiles of the binding processes suggests that a dissociative mechanism with the release of a coordinated water molecule as rate limiting step is operative in the binding of H 2 S to Mb-Fe III and that the binding of HS - is prevented in the access to the protein matrix. For the MP11-Fe III case, where no access restrictions for the ligands are present, an associative component in the mechanism seems to be operative. Overall, the results suggest that if accessing the active site then both H 2 S and HS - are capable of binding a ferric heme moiety.

  9. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    NASA Astrophysics Data System (ADS)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  10. A novel, kinetically stable, catalytically active, all-ferric, nitrite-bound complex of Paracoccus pantotrophus cytochrome cd1.

    PubMed Central

    Allen, James W A; Higham, Christopher W; Zajicek, Richard S; Watmough, Nicholas J; Ferguson, Stuart J

    2002-01-01

    The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling. PMID:12086580

  11. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  12. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    PubMed

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  13. Silica-Induced Protein (Sip) in Thermophilic Bacterium Thermus thermophilus Responds to Low Iron Availability

    PubMed Central

    Fujino, Yasuhiro; Nagayoshi, Yuko; Iwase, Makoto; Yokoyama, Takushi; Ohshima, Toshihisa

    2016-01-01

    ABSTRACT Thermus thermophilus HB8 expresses silica-induced protein (Sip) when cultured in medium containing supersaturated silicic acids. Using genomic information, Sip was identified as a Fe3+-binding ABC transporter. Detection of a 1-kb hybridized band in Northern analysis revealed that sip transcription is monocistronic and that sip has its own terminator and promoter. The sequence of the sip promoter showed homology with that of the σA-dependent promoter, which is known as a housekeeping promoter in HB8. Considering that sip is transcribed when supersaturated silicic acids are added, the existence of a repressor is presumed. DNA microarray analysis suggested that supersaturated silicic acids and iron deficiency affect Thermus cells similarly, and enhanced sip transcription was detected under both conditions. This suggested that sip transcription was initiated by iron deficiency and that the ferric uptake regulator (Fur) controlled the transcription. Three Fur gene homologues (TTHA0255, TTHA0344, and TTHA1292) have been annotated in the HB8 genome, and electrophoretic mobility shift assays revealed that the TTHA0344 product interacts with the sip promoter region. In medium containing supersaturated silicic acids, free Fe3+ levels were decreased due to Fe3+ immobilization on colloidal silica. This suggests that, because Fe3+ ions are captured by colloidal silica in geothermal water, Thermus cells are continuously exposed to the risk of iron deficiency. Considering that Sip is involved in iron acquisition, Sip production may be a strategy to survive under conditions of low iron availability in geothermal water. IMPORTANCE The thermophilic bacterium Thermus thermophilus HB8 produces silica-induced protein (Sip) in the presence of supersaturated silicic acids. Sip has homology with iron-binding ABC transporter; however, the mechanism by which Sip expression is induced by silicic acids remains unexplained. We demonstrate that Sip captures iron and its transcription is regulated by the repressor ferric uptake regulator (Fur). This implies that Sip is expressed with iron deficiency. In addition, it is suggested that negatively charged colloidal silica in supersaturated solution absorbs Fe3+ ions and decreases iron availability. Considering that geothermal water contains ample silicic acids, it is suggested that thermophilic bacteria are always facing iron starvation. Sip production may be a strategy for surviving under conditions of low iron availability in geothermal water. PMID:26994077

  14. Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate

    NASA Astrophysics Data System (ADS)

    Li, Qian; Lai, Huimin; Yang, Yongbin; Xu, Bin; Jiang, Tao; Zhang, Yaping

    The intensified effects of ferric phosphate and ferric sulfate as nutrient and oxidant on the bioleaching of pentlandite concentrate with Acidithiobacillus ferrooxidans and Sulfobacillus thermosulfidooxidans were studied. The results showed that the nickel leaching rate was enhanced continuously with FePO4 or Fe2(SO4)3 added in certain extent, but declined at excess. For A. ferrooxidans, the optimum additive amount of Fe2(SO4)3 was 6.63mM/L and the nickel leaching rate reached 71.76%. Compared with Fe2(SO4)3, the optimum additive amount of FePO4 was 26.52mM/L for both strains. For A. ferrooxidans and S. thermosulfidooxidans, the nickel leaching rate could increase to 98.06% and 98.11% which was 1.83 times and 1.55 times of the leachig rate of blank test, respectively.

  15. Synthesis, molecular modeling and biological evaluation of novel 2-allyl amino 4-methyl sulfanyl butyric acid as α-amylase and α-glucosidase inhibitor

    NASA Astrophysics Data System (ADS)

    Balan, Kannan; Perumal, Perumal; Sundarabaalaji, Narayanan; Palvannan, Thayumanavan

    2015-02-01

    In the present study 2-allyl amino 4-methyl sulfanyl butyric acid (AMSB) was synthesized in good yield. AMSB was characterized by Fourier transforms infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) (1H and 13C) and Liquid chromatography mass spectrometry (LCMS). The radical scavenging activity and reducing power assay of AMSB was assessed using 1-1-diphenyl 2-picryl hydrazyl (DPPH), 2,2‧-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power assay (FRAP) and was found to be 44.1, 34.71 and 41.7 μg/ml respectively. The compound showed effective inhibition against α-amylase and α-glucosidase. AMSB was identified to be a reversible mixed noncompetitive inhibitor of α-amylase and α-glucosidase. The molecular docking study was carried out to evaluate the specific groove binding properties and affords valuable information of AMSB binding mode in the active site of α-glucosidase the study may lead to the which leads to the rational design of new class of antidiabetic drugs targeting α-glucosidase based on AMSB in near future.

  16. Testing the role of metal hydrolysis in the anomalous electrodeposition of Ni-Fe alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, T.M.; St. Clair, J.

    1996-12-01

    With the objective of testing several models of the anomalous codeposition (ACD) encountered in the electrodeposition of nickel-iron alloys, the effects of bath pH and complexing agents on the composition of deposits were examined. When the pH of the base line bath was increased from 3.0 to 5.0, the Ni/Fe mass ratio of the deposit increased (i.e., the deposition became less anomalous). The presence of tartrate ion in the bath produced a slight decrease in the Ni/Fe of the deposit. This complexing agent complexes ferric ion and thus prevents its precipitation but has little interaction with ferrous ion or nickelmore » ion under the electrodeposition conditions examined. The addition of ethylenediamine to the bath produced a significant increase in the Ni/Fe mass ratio. This complexing agent does not interact significantly with ferric ion or ferrous ion under the test conditions. None of these observations are consistent with the Dahms and Croll model of ACD. The effects of pH and tartaric acid on the deposit composition are consistent with the predictions of the Grande and Talbot model and the Matlosz model. The effect of ethylenediamine is not consistent with the Grande and Talbot model, but may be interpreted within the framework of the Matlosz model and the Hessami and Tobias model.« less

  17. Molecular dynamics simulation study of the early stages of nucleation of iron oxyhydroxide nanoparticles in aqueous solutions

    DOE PAGES

    Zhang, Hengzhong; Waychunas, Glenn A.; Banfield, Jillian F.

    2015-07-29

    Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron–hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate tomore » form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe–O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. Overall, our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.« less

  18. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    PubMed

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil.

    PubMed

    Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Iron crystallization in a fluidized-bed Fenton process.

    PubMed

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Geometries and Electronic Structures of Cyanide Adducts of the Non-Heme Iron Active Site of Superoxide Reductases: Vibrational and ENDOR Studies†

    PubMed Central

    Clay, Michael D.; Yang, Tran-Chin; Jenney, Francis E.; Kung, Irene Y.; Cosper, Christopher A.; Krishnan, Rangan; Kurtz, Donald M.; Adams, Michael W.W.; Hoffman, Brian M.; Johnson, Michael K.

    2008-01-01

    We have added cyanide to oxidized 1Fe and 2Fe superoxide reductase (SOR) as a surrogate for the putative ferric-(hydro)peroxo intermediate in the reaction of the enzymes with superoxide, and have used vibrational and ENDOR spectroscopies to study the properties of the active-site paramagnetic iron center. Addition of cyanide changes the active-site iron center in oxidized SOR from rhombic high-spin ferric (S = 5/2) to axial-like low-spin ferric (S = 1/2). Low-temperature resonance Raman and ENDOR data show that the bound cyanide adopts three distinct conformations in Fe(III)-CN SOR. On the basis of 13CN, C15N, and 13C15N isotope shifts of the Fe–CN stretching/Fe–C–N bending modes, resonance Raman studies of 1Fe-SOR indicate one near-linear conformation (Fe–C–N angle ∼175°) and two distinct bent conformations (Fe–C–N angles < 140°). FTIR studies of 1Fe-SOR at ambient temperatures reveals three bound C–N stretching frequencies in the oxidized (ferric) state and one in the reduced (ferrous) state indicating that the conformational heterogeneity in cyanide binding is a characteristic of the ferric state and is not caused by freezing-in of conformational substates at low temperature. 13C-ENDOR spectra for the 13CN-bound ferric active sites in both 1Fe- and 2Fe-SORs also show three well-resolved Fe–C–N conformations. Analysis of the 13C hyperfine tensors for the three substates of the 2Fe-SOR within a simple heuristic model for the Fe-C bonding gives values for the Fe–C–N angles in the three substates of ca. 123° (C3), 133° (C2), taking a reference value from vibrational studies of 175° (C1 species). Resonance Raman and ENDOR studies of SOR variants, in which the conserved glutamate and lysine residues in a flexible loop above the substrate binding pocket have been individually replaced by alanine, indicate that the side chains of these two residues are not involved in direct interaction with bound cyanide. The implications of these results for understanding the mechanism of SOR are discussed. PMID:16401073

  2. O2 availability impacts iron homeostasis in Escherichia coli.

    PubMed

    Beauchene, Nicole A; Mettert, Erin L; Moore, Laura J; Keleş, Sündüz; Willey, Emily R; Kiley, Patricia J

    2017-11-14

    The ferric-uptake regulator (Fur) is an Fe 2+ -responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O 2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O 2 availability. We found that the intracellular, labile Fe 2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe 2+ availability drove the formation of more Fe 2+ -Fur and, accordingly, more DNA binding. O 2 regulation of Fur activity required the anaerobically induced FeoABC Fe 2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O 2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.

  3. O2 availability impacts iron homeostasis in Escherichia coli

    PubMed Central

    Beauchene, Nicole A.; Mettert, Erin L.; Moore, Laura J.; Keleş, Sündüz; Willey, Emily R.; Kiley, Patricia J.

    2017-01-01

    The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis. PMID:29087312

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satterlee, J.D.; Erman, J.E.; Mauro, J.M.

    Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli expressed proteins, the parent expressed protein (CcP(MI)) and the site-directed mutant CcP(MI,D235N) (Asp-235 {yields} Asn-235), have been examined. At neutral pH and in the presence of only potassium phosphate buffer and potassium nitrate, wild-type Ccp and CcP(MI) demonstrate nearly identical spectra corresponding to normal (i.e., unaged) high-spin ferric peroxidase. In contrast, the mutant protein displays a spectrum characteristic of a low-spin form, probably a result of hydroxide ligation. Asp-235 is hydrogen-bonded to the proximal heme ligand, His-175. Changing Asp-235 to Asn results inmore » alteration of the pK for formation of the basic form of CcP. Thus, changes in proximal side structure mediate the chemistry of the distal ligand binding site. All three proteins bind F{sup {minus}}, N{sub 3}{sup {minus}}, and CN{sup {minus}} ions, although the affinity of the mutant protein (D235N) for fluoride ion appears to be much higher than that of the other two proteins. Analysis of proton NMR spectra of the cyanide ligated forms leads to the conclusion that the mutant protein (D235N) possesses a more neutral proximal histidine imidazole ring than does either wild-type CcP or CcP(MI). It confirms that an important feature of the cytochrome c peroxidase structure is at least partial, and probably full, imidazolate character for the proximal histidine (His-175).« less

  5. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    PubMed Central

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to assemble iron sulfur clusters in Bfd before the iron stored in BfrB can be mobilized and utilized. PMID:19575528

  6. FerriCast: a macrocyclic photocage for Fe3+.

    PubMed

    Kennedy, Daniel P; Incarvito, Christopher D; Burdette, Shawn C

    2010-02-01

    The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when evaluating the interaction of aniline-containing systems with redox active metal ions.

  7. Overproduction in Escherichia coli and Characterization of a Soybean Ferric Leghemoglobin Reductase.

    PubMed Central

    Ji, L.; Becana, M.; Sarath, G.; Shearman, L.; Klucas, R. V.

    1994-01-01

    We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups. PMID:12232320

  8. Oxygen reactivity of the biferrous site in the de novo designed four helix bundle peptide DFsc: nature of the "intermediate" and reaction mechanism.

    PubMed

    Calhoun, Jennifer R; Bell, Caleb B; Smith, Thomas J; Thamann, Thomas J; DeGrado, William F; Solomon, Edward I

    2008-07-23

    The DFsc and DFscE11D de novo designed protein scaffolds support biomimetic diiron cofactor sites that react with dioxygen forming a 520 nm "intermediate" species with an apparent pseudo-first-order formation rate constant of 2.2 and 4.8 s-1, respectively. Resonance Raman spectroscopy shows that this absorption feature is due to a phenolate-to-ferric charge transfer transition arising from a single tyrosine residue coordinating terminally to one of the ferric ions in the site. Phenol coordination could provide a proton to promote rapid loss of a putative peroxo species.

  9. Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.

    PubMed

    Lalli, Daniela; Turano, Paola

    2013-11-19

    Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.

  10. Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complexes

    USDA-ARS?s Scientific Manuscript database

    Nanofibers and fibrous mats of polyvinyl alcohol (PVA) loaded with tannic acid (TA) and ferric ion (Fe+++) complexes (TA-Fe+++) were synthesized by the electrospinning technique. The spinning solutions were characterized for surface tension, electrical conductivity, and viscosity. It was found that ...

  11. Transformation of Chlorinated Hydrocarbons on Synthetic Green Rusts

    EPA Science Inventory

    Green rusts (GRs) are layered double hydroxides that contain both ferrous and ferric ions in their structure. GRs can potentially serve as a chemical reductant for degradation of chlorinated hydrocarbons. GRs are found in zerovalent iron based permeable reactive barriers and in c...

  12. Iron binding to caseins in the presence of orthophosphate.

    PubMed

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An intrinsically self-healing NiCo//Zn rechargeable battery by self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte.

    PubMed

    Huang, Yan; Liu, Jie; Wang, Jiaqi; Hu, Mengmeng; Mo, Funian; Liang, Guojin; Zhi, Chunyi

    2018-06-15

    Self-healing solid-state aqueous rechargeable NiCo//Zn batteries are an essential element of flexible/wearable electronics due to their inherent safety, high energy density and mechanical robustness etc. However, the self-healability of solid-state batteries is only realized by few studies, in which electron/ion-inactive self-healable substrates are utilized. This fundamentally arises from the lack of self-healable electrolytes for solid-state batteries, and therefore, results in low healing efficiency and volume/mass diseconomy. Here we develop an intrinsically self-healing battery by designing a new electrolyte that is intrinsically self-healable. Sodium polyacrylate hydrogel chains are crosslinked by ferric ions to promote dynamic reconstruction of an integral network. These non-covalent crosslinkers can form ionic bonds to reconnect damaged surfaces when the hydrogel is cut off, providing an ultimate solution to the intrinsic self-healability problem of batteries. As a result, our NiCo//Zn battery with this hydrogel electrolyte can be autonomically self-healed with over 87% of capacity retained after 4 cycles of breaking/healing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A rapid TLC autographic method for the detection of glucosidase inhibitors.

    PubMed

    Salazar, Mario O; Furlan, Ricardo L E

    2007-01-01

    A new bioautographic assay suitable for the localisation of beta-glucosidase inhibitors present in a complex matrix is described. Enzyme activity was detected using esculin as the substrate to produce esculetin, which reacts with ferric ion to form a brown complex.

  15. SEPARATION OF RADIOACTIVE COLUMBIUM TRACER

    DOEpatents

    Glendenin, L.E.; Gest, H.

    1958-08-26

    A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.

  16. Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions.

    PubMed

    Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun

    2017-05-15

    In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Role of IscX in Iron-Sulfur Cluster Biogenesis in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin Hae; Bothe, Jameson R.; Frederick, Ronnie O.

    2014-08-20

    The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron–sulfur (Fe–S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe–S cluster biogenesis. We have used a combination ofmore » NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe 2+ from added ferrous ammonium sulfate binds IscX much more avidly than does Fe 3+ from added ferric ammonium citrate and that Fe 2+ strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU–IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe–S cluster assembly in which IscX serves both as a donor of Fe 2+ and as a regulator of cysteine desulfurase activity.« less

  18. Iron and gallium increase iron uptake from transferrin by human melanoma cells: further examination of the ferric ammonium citrate-activated iron uptake process.

    PubMed

    Richardson, D R

    2001-04-30

    Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).

  19. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  20. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    PubMed

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Application of Ion Exchange Technique to Decontamination of Polluted Water Generated by Fukushima Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Takeshita, Kenji; Ogata, Takeshi

    By the Fukushima nuclear disaster, large amounts of water and sea water polluted mainly with radioactive Cs were generated and the environment around the nuclear site was contaminated by the fallout from the nuclear site. The coagulation settling process using ferric ferrocyanide and an inorganic coagulant and the adsorption process using ferric ferrocyanide granulated by silica binder were applied to the treatment of polluted water. In the coagulation settling process, Cs was removed completely from polluted water and sea water (DF∼104). In the adsorption process, the recovery of trace Cs (10 ppb) in sea water, which was not suitable for the use of zeolite, was attained successfully. Finally, the recovery of Cs from sewage sludge was tested by a combined process with the hydrothermal process using subcritical water and the coagulation settling process using ferric ferrocyanide. 96% of radioactive Cs was recovered successfully from sewage sludge with the radioactivity of 10,000 Bq/kg.

  2. SU-E-I-78: Neuromelanin in the Subthalamic Nucleus of Patients with Parkinson's Disease: An Electron Spin Resonance Spectroscopy Study.

    PubMed

    Gomez, J; Salmon, C Garrido; Filho, O Baffa; Santos, J Peixoto; Pitella, J

    2012-06-01

    Parkinson disease and related syndromes are associated directly with the concentrations of neuromelanin, iron and other heavy metals, and nowadays it is discussed the possible protective role of neuromelanin by the sequester redox active iron ions, reducing the formation of free hydroxyl radicals and therefore inactivating the iron ions that induce oxidative stress. The aim of this work is to study the concentration ratios between iron ions and neuromelanin in subthalamic nucleus of patients with Parkinson's disease (PD) using Electron Spin Resonance (ESR). Necropsy samples of subthalamic nucleus from eight human brains were studied: three non-affected by any neurodegenerative disease and five with Parkinson's disease. The samples were stored in formaldehyde and washed with a solution of 0.01 molar of ethylenediaminetetraacetic acid. ESR experiments were development in a JEOL FA-200 X-Band spectrometer at different temperatures between -170° C to room temperature. The relative concentrations of each species were estimated from the double integral values of the fitted spectra. For all samples, ESR spectra showed to be composed of three different signals following the Curie's law. One signal was attributed to high-spin ferric ions (g∼ 4.3) in rhomboedric symmetry, Cu(II) ions (close to g=2.0) and neuromelanin (g∼ 2.01). The ferric ions concentration ratio between patients and controls was 3.0±0.2. The same ratio for neuromelanine was 0.24±0.06. Our preliminary results indicated a significant increment of iron concentration in PD samples which agrees with previous histochemical and biochemical reports. This finding and the clear reduction of neuromelanin concentration in PD samples suggest the possible role of neuromelanin as iron ions storage. © 2012 American Association of Physicists in Medicine.

  3. Wash water waste pretreatment system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  4. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.

    PubMed

    Jensen, Birgitte; Fago, Angela

    2018-05-01

    Ferric hemoglobin (metHb) and myoglobin (metMb), present at low levels in vivo, have been recently found to oxidize hydrogen sulfide (H 2 S) in excess, thus potentially contributing to removal of toxic H 2 S in blood and heart, respectively. Here, we present a kinetic and thermodynamic study of the reaction of metHb and metMb with H 2 S under physiological conditions, i.e. at low H 2 S concentrations and with protein in excess of H 2 S. We show here that both proteins react with sub-stoichiometric H 2 S:heme ratios following two processes: a fast reversible binding of H 2 S to ferric heme that prevails at high H 2 S and a slow heme reduction to the ferrous state that prevails at low H 2 S. While these two processes are fast for metMb, H 2 S-induced heme reduction is slow for metHb and the metHb-H 2 S complex once formed is therefore relatively stable. We find that metHb binds H 2 S reversibly and cooperatively with a pH-dependent ligand affinity that is within the physiological range of H 2 S concentrations found in blood. Stopped-flow kinetics show identical association rate constants for H 2 S at varying pH, demonstrating that H 2 S and not HS - enters the ferric heme pocket. Dissociation rates of the metHb-H 2 S complex increase when decreasing pH, consistent with the pH-dependent affinity. Taken together, these data are consistent with a novel biological role of metHb as a H 2 S carrier in the blood, in parallel with the oxygen carrier function of the much more abundant ferrous Hb. In contrast, metMb in the heart could participate to redox-signaling involving H 2 S. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    PubMed

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

  6. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    PubMed Central

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen. PMID:27902780

  7. Using magnetic beads to reduce reanut allergens from peanut extracts.

    USDA-ARS?s Scientific Manuscript database

    Ferric irons (Fe3+) and phenolic compounds have been shown to bind to peanut allergens. An easy way to isolate peanut allergens is by use of magnetic beads attached with or without phenolics to capture peanut allergens or allergen-Fe3+ complexes, thus, achieving the goal of producing peanut extracts...

  8. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins.

    PubMed

    Abdizadeh, H; Atilgan, A R; Atilgan, C; Dedeoglu, B

    2017-11-15

    With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.

  9. Photodegradation behaviour of sethoxydim and its comercial formulation Poast® under environmentally-relevant conditions in aqueous media. Study of photoproducts and their toxicity.

    PubMed

    Sevilla-Morán, Beatriz; Calvo, Luisa; López-Goti, Carmen; Alonso-Prados, José L; Sandín-España, Pilar

    2017-02-01

    Photolysis is an important route for the abiotic degradation of many pesticides. However, the knowledge of the photolytic behaviour of these compounds and their commercial formulations under environmentally-relevant conditions are limited. The present study investigated the importance of photochemical processes on the persistence and fate of the herbicide sethoxydim and its commercial formulation Poast ® in aqueous media. Moreover, the effect of important natural water substances (nitrate, calcium, and ferric ions) on the photolysis of the herbicide was also studied. The results showed that additives existing in the commercial formulation Poast ® accelerated the rate of photolysis of sethoxydim by a factor of 3. On the contrary, the presence of nitrate and calcium ions had no effect on the photodegradation rate while ferric ions resulted in an important decrease in the half-life of sethoxydim possibly due to the formation of a complex. Different transformation products were identified in the course of sethoxydim irradiation and the effect of experimental conditions on their concentrations was investigated. Finally, Microtox ® test revealed that aqueous solutions of sethoxydim photoproducts increased the toxicity to the bacteria Vibrio fischeri. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    PubMed

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  12. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less

  13. The Siderocalin/Enterobactin Interaction: a Link Between Mammalian Immunity And Bacterial Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abergel, R.J.; Clifton, M.C.; Pizarro, J.C.

    2009-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less

  14. A Method for Detection of Pseudobactin, the Siderophore Produced by a Plant-Growth-Promoting Pseudomonas Strain, in the Barley Rhizosphere

    PubMed Central

    Buyer, Jeffrey S.; Kratzke, Marian G.; Sikora, Lawrence J.

    1993-01-01

    Detection in the rhizosphere of the siderophore produced by an inoculated microorganism is critical to determining the role of microbial iron chelators on plant growth promotion. We previously reported the development of monoclonal antibodies (MAb) to ferric pseudobactin, the siderophore of plant-growth-promoting Pseudomonas strain B10. One of these MAb reacted less strongly to pseudobactin than to ferric pseudobactin. The MAb reacted to Al(III), Cr(III), Cu(II), and Mn(II) complexes of pseudobactin at a level similar to the level at which it reacted to ferric pseudobactin and reacted less to the Zn(II) complex, but these metals would make up only a small fraction of chelated pseudobactin in soil on the basis of relative abundance of metals and relative binding constants. Fourteen-day-old barley plants grown in limed and autoclaved soil were inoculated with 109 CFU of Pseudomonas strain Sm1-3, a strain of Pseudomonas B10 Rifr Nalr selected for enhanced colonization, and sampled 3 days later. Extraction and analysis of the roots and surrounding soil using the MAb in an immunoassay indicated a concentration of 3.5 × 10-10 mol of ferric pseudobacting g-1 (wet weight). This is the first direct measurement of a pseudobactin siderophore in soil or rhizosphere samples. PMID:16348884

  15. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.

    USGS Publications Warehouse

    Hearn, P.P.; Parkhurst, D.L.; Callender, E.

    1983-01-01

    Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.

  16. Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life

    ERIC Educational Resources Information Center

    Frieden, Earl

    1974-01-01

    Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

  17. SYNTHESIS OF A POLYMERIC HYBRID ION EXCHANGER WITH RECOVERED IRON(III) TOWARDS THE REMOVAL OF ARSENIC

    EPA Science Inventory

    Every year, millions of tons of ferric hydroxide loaded water treatment residuals are disposed of under current EPA regulations into landfills and other waste sites. Meanwhile, half way around the world, millions of people are drinking arsenic contaminated water on a daily bas...

  18. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    PubMed

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Iron restriction and the growth of Salmonella enteritidis.

    PubMed Central

    Chart, H.; Rowe, B.

    1993-01-01

    Strains of Salmonella enteritidis were examined for their ability to remove ferric-ions from the iron chelating agents ovotransferrin, Desferal and EDDA. Growth of S. enteritidis phage type (PT) 4 (SE4) in trypticase soy broth containing ovotransferrin resulted in the expression of iron regulated outer membrane proteins (OMPs) of 74, 78 and 81 kDa, and unexpectedly the repression of expression of OMP C. The 38 MDa 'mouse virulence' plasmid was not required for the expression of the iron-regulated OMPs (IROMPs). SE4 was able to obtain iron bound to the iron chelator Desferal and EDDA without expressing a high-affinity iron uptake system. Strains of S. enteritidis belonging to PTs 7, 8, 13a, 23, 24 and 30 were also able to remove ferric ions from Desferal and EDDA without expressing a high-affinity iron uptake system. We conclude that strains of SE4 possess a high-affinity iron sequestering mechanism that can readily remove iron from ovotransferrin. It is likely that iron limitation, and not iron restriction, is responsible for the bacteriostatic properties of fresh egg whites. Images Fig. 2 PMID:8432322

  1. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawadzka, A. M.; Kim, Y.; Maltseva, N

    2009-12-22

    Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B. anthracis. Isogenic disruption mutants in the yclNOPQ transporter, including permease YclN, ATPase YclP, and a substrate-binding protein YclQ, are unable to use either PB or the photoproduct of FePB (FePB{sup {nu}}) for ironmore » delivery and growth, in contrast to the wild-type B. subtilis. Complementation of the mutations with the copies of the respective genes restores this capability. The YclQ receptor binds selectively iron-free and ferric PB, the PB precursor, 3,4-dihydroxybenzoic acid (3,4-DHB), and FePB{sup {nu}} with high affinity; the ferric complexes are seen in ESI-MS, implying strong electrostatic interaction between the protein-binding pocket and siderophore. The first structure of a Gram-positive siderophore receptor is presented. The 1.75-{angstrom} crystal structure of YclQ reveals a bilobal periplasmic binding protein (PBP) fold consisting of two {alpha}/{beta}/{alpha} sandwich domains connected by a long {alpha}-helix with the binding pocket containing conserved positively charged and aromatic residues and large enough to accommodate FePB. Orthologs of the B. subtilis PB-transporter YclNOPQ in PB-producing Bacilli are likely contributors to the pathogenicity of these species and provide a potential target for antibacterial strategies.« less

  2. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  3. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    PubMed Central

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  4. Honey bee (Apis mellifera) transferrin-gene structure and the role of ecdysteroids in the developmental regulation of its expression.

    PubMed

    do Nascimento, Adriana Mendes; Cuvillier-Hot, Virginie; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2004-05-01

    Social life is prone to invasion by microorganisms, and binding of ferric ions by transferrin is an efficient strategy to restrict their access to iron. In this study, we isolated cDNA and genomic clones encoding an Apis mellifera transferrin (AmTRF) gene. It has an open reading frame (ORF) of 2136 bp spread over nine exons. The deduced protein sequence comprises 686 amino acid residues plus a 26 residues signal sequence, giving a predicted molecular mass of 76 kDa. Comparison of the deduced AmTRF amino acid sequence with known insect transferrins revealed significant similarity extending over the entire sequence. It clusters with monoferric transferrins, with which it shares putative iron-binding residues in the N-terminal lobe. In a functional analysis of AmTRF expression in honey bee development, we monitored its expression profile in the larval and pupal stages. The negative regulation of AmTRF by ecdysteroids deduced from the developmental expression profile was confirmed by experimental treatment of spinning-stage honey bee larvae with 20-hydroxyecdysone, and of fourth instar-larvae with juvenile hormone. A juvenile hormone application to spinning-stage larvae, in contrast, had only a minor effect on AmTRF transcript levels. This is the first study implicating ecdysteroids in the developmental regulation of transferrin expression in an insect species.

  5. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  6. The green hemoproteins of bovine erythrocytes. II. Spectral, ligand-binding, and electrochemical properties.

    PubMed

    DeFilippi, L J; Hultquist, D E

    1978-05-10

    The two green hemoproteins isolated from bovine erythrocytes (form I and form II) have been characterized as to spectral, electrochemical, and chemical properties. The absorption spectra of the isolated hemoproteins are typical of high spin ferric states. Reduction of the hemoproteins yields high spin ferrohemoproteins. Complexation of the ferrohemoproteins with CO and the ferrihemoproteins with cyanide yields low spin complexes, demonstrating the presence of an exchangeable weak field ligand in both the ferrous and ferric states of the hemoproteins. The differences in position and intensity of the absorption peaks of the visible spectra allow the two forms to be distinguished from one another. The midpoint potential of forms I and II were found to be +0.075 and +0.019 V, respectively, at pH 6.4 and +0.038 and -0.005 V, respectively, at pH 7.0. This is consistent with the gaining of 1 proton/electron during the reduction. The Nernst plot reveals an unusual 0.5-electron transfer, whereas a quantitative titration demonstrates a 1-electron transfer. Form I binds cyanide more tightly than form II (KD of 84 and 252 micrometer, respectively). The observed spectral, electrochemical, and ligand-binding differences between forms I and II can be explained in terms of a greater electron-withdrawing ability of the side chains of the heme of form I relative to the heme of form II.

  7. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    PubMed

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  8. Analysis of the pH-Dependent Fe(III) Ion Chelating Activity of Anthocyanin Extracted from Black Soybean [Glycine max (L.) Merr.] Coats.

    PubMed

    Xie, Yanli; Zhu, Xiaolu; Li, Yuan; Wang, Chen

    2018-02-07

    The Fe(III) chelating activity of anthocyanin extracted from black soybean coats was investigated at pH 3.0, 5.0, 6.5, 7.0, and 7.4 with fluorescence spectroscopy and microscale thermophoresis (MST). Cyanidin-3-glucoside (C3G) was determined to be 98% of the total anthocyanin by high-performance liquid chromatography. The binding affinity (K a ) exhibited significant pH-dependent behavior: K a was 9.7167 × 10 4 , 1.0837 × 10 4 , 1.4284 × 10 4 , 5.4550 × 10 4 , and 3.0269 × 10 4 M -1 at pH 3.0, 5.0, 6.5, 7.0, and 7.4, respectively (p < 0.05). The MST data showed that ΔG < 0 and ΔH < 0, demonstrating that chelation is spontaneous and exothermic. Because both ΔH and ΔS < 0, the chelation involves hydrogen bonds and/or van der Waals forces for pH 3.0, 5.0, and 6.5. Electrostatic interactions contributed to chelation at pH 7.0 and 7.4 with ΔH < 0 and ΔS > 0. With the formation of chelates, C3G improved the solubility of Fe(III) at pH 6.5, 7.0, and 7.4 to enhance the ferric ion bioavailability, except for aggregation observed at pH 5.0.

  9. Microprocessor depends on hemin to recognize the apical loop of primary microRNA

    PubMed Central

    Park, Joha; Dang, Thi Lieu; Choi, Yeon-Gil; Kim, V Narry

    2018-01-01

    Abstract Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction. PMID:29750274

  10. Microprocessor depends on hemin to recognize the apical loop of primary microRNA.

    PubMed

    Nguyen, Tuan Anh; Park, Joha; Dang, Thi Lieu; Choi, Yeon-Gil; Kim, V Narry

    2018-06-20

    Microprocessor, which consists of a ribonuclease III DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) maturation by cleaving primary miRNA transcripts (pri-miRNAs). We recently demonstrated that the DGCR8 dimer recognizes the apical elements of pri-miRNAs, including the UGU motif, to accurately locate and orient Microprocessor on pri-miRNAs. However, the mechanism underlying the selective RNA binding remains unknown. In this study, we find that hemin, a ferric ion-containing porphyrin, enhances the specific interaction between the apical UGU motif and the DGCR8 dimer, allowing Microprocessor to achieve high efficiency and fidelity of pri-miRNA processing in vitro. Furthermore, by generating a DGCR8 mutant cell line and carrying out rescue experiments, we discover that hemin preferentially stimulates the expression of miRNAs possessing the UGU motif, thereby conferring differential regulation of miRNA maturation. Our findings reveal the molecular action mechanism of hemin in pri-miRNA processing and establish a novel function of hemin in inducing specific RNA-protein interaction.

  11. Lactoferricin B Inhibits the Phosphorylation of the Two-Component System Response Regulators BasR and CreB*

    PubMed Central

    Ho, Yu-Hsuan; Sung, Tzu-Cheng; Chen, Chien-Sheng

    2012-01-01

    Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly. PMID:22138548

  12. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB.

    PubMed

    Ho, Yu-Hsuan; Sung, Tzu-Cheng; Chen, Chien-Sheng

    2012-04-01

    Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly.

  13. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    PubMed Central

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  14. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.

  15. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koretsky, Carla

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatlymore » impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, γ-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to γ-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.« less

  16. Effects of acid-mine wastes on aquatic ecosystems

    Treesearch

    John David Parsons

    1976-01-01

    The Cedar Creek Basin (39th N parallel 92nd W meridian) was studied for the period June 1952 through August 1954 to observe the effects of both continuous and periodic acid effluent flows on aquatic communities. The acid strip-mine effluent contained ferric and ferrous iron, copper, lead, zinc, aluminum, magnesium, titratable acid, and elevated hydrogen ion...

  17. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  18. An unprecedented Fe(36) phosphonate cage.

    PubMed

    Beavers, Christine M; Prosvirin, Andrey V; Prosverin, Andrey V; Cashion, John D; Dunbar, Kim R; Richards, Anne F

    2013-02-18

    The reaction of 2-pyridylphosphonic acid (LH(2)) with iron(II) perchlorate and iron(III) nitrate afforded an interconnected, double-layered, cationic iron cage, [{Fe(36)L(44)(H(2)O)(48)}](20+) (1a), the largest interconnected, polynuclear ferric cage reported to date. Magnetic studies on 1a revealed antiferromagnetic coupling between the spins on adjacent Fe(III) ions.

  19. The 1.3 A resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): metal ion binding correlates with base unstacking and groove contraction.

    PubMed

    Timsit, Youri; Bombard, Sophie

    2007-12-01

    Metal ions play a key role in RNA folding and activity. Elucidating the rules that govern the binding of metal ions is therefore an essential step for better understanding the RNA functions. High-resolution data are a prerequisite for a detailed structural analysis of ion binding on RNA and, in particular, the observation of monovalent cations. Here, the high-resolution crystal structures of the tridecamer duplex r(GCGUUUGAAACGC) crystallized under different conditions provides new structural insights on ion binding on GAAA/UUU sequences that exhibit both unusual structural and functional properties in RNA. The present study extends the repertory of RNA ion binding sites in showing that the two first bases of UUU triplets constitute a specific site for sodium ions. A striking asymmetric pattern of metal ion binding in the two equivalent halves of the palindromic sequence demonstrates that sequence and its environment act together to bind metal ions. A highly ionophilic half that binds six metal ions allows, for the first time, the observation of a disodium cluster in RNA. The comparison of the equivalent halves of the duplex provides experimental evidences that ion binding correlates with structural alterations and groove contraction.

  20. An allosterically regulated reversible mechanical molecular switch: A de novo protein maquette functions as a redox/ionic strength sensor coupling chemical binding energy or charge interactions to conformational change

    NASA Astrophysics Data System (ADS)

    Grosset, Anne Marie

    2000-10-01

    Switch-like structural rearrangements of subunits due to charge-interactions are common in the basic biological action of proteins that couple and transfer chemical and ionic signals, sensing and regulation, mechanical force and electrochemical free energy. A simple synthetic protein model (maquette) has been designed to better understand the engineering of natural switches. Basic thermodynamic principles define the two key elements required for biological or chemical function of a switch. First, there must be two well-defined states. In this case, the two conformational states must have an energetic difference (DeltaDeltaG°) that is spanned by the applied driving force. Second, there must be an external stimulus, which preferentially interacts with one of the two states. The external stimulus provides the driving force that shifts the equilibrium from the first state to the second state (≥10:1 shifting towards ≤1:10). The energetic difference between the states must be the same order of magnitude as the driving force. In this synthetic protein, the two conformational states correspond to parallel (syn) and antiparallel (anti) assembly of the two identical helix-ss-helix subunits that bind heme close to the di-sulfide loop region. Charge interactions between two ferric hemes bound to histidines provide a driving force on the order of 2 kcal/mol (corresponding in the syn-topology to the 75--100 mV split in the heme redox potentials, or the 25--80 times weaker binding for the second ferric heme). The tetra-alpha-helix bundle has been modified to have a DeltaG around 1.8--2.5 kcal/mol (a 50--80 fold difference in the anti/syn ratio). Therefore, oxidation and reduction of the heme, or the binding of a second charged ferric heme can reversibly switch between syn- and anti-topologies, providing a sensitive detector of redox state or heme concentration. External solution conditions (e.g. ionic composition) can act on the protein remotely from the primary internal switch action and confer a secondary level of allosteric regulation. Bifunctional ligands can link subunits to shift topology. Scanning redox potentiometry can monitor the kinetics of topological change. Point amino acid substitutions and computer repacking of the hydrophobic core can modulate both the kinetics and the energetics.

  1. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    PubMed

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  2. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria

    PubMed Central

    Troxell, Bryan; Hassan, Hosni M.

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria. PMID:24106689

  3. Characterization of the Heme Environment in Arabidopsis thaliana Fatty Acid α-Dioxygenase-1*

    PubMed Central

    Liu, Wen; Rogge, Corina E.; Bambai, Bijan; Palmer, Graham; Tsai, Ah-Lim; Kulmacz, Richard J.

    2010-01-01

    Plant α-dioxygenases (PADOX) are hemoproteins in the myeloperoxidase family. We have used a variety of spectroscopic, mutagenic, and kinetic approaches to characterize the heme environment in Arabidopsis thaliana PADOX-1. Recombinant PADOX-1 purified to homogeneity contained 1 mol of heme bound tightly but noncovalently per protein monomer. Electronic absorbance, electron paramagnetic resonance, and magnetic circular dichroism spectra showed a high spin ferric heme that could be reduced to the ferrous state by dithionite. Cyanide bound relatively weakly in the ferric PADOX-1 heme vicinity (Kd ~10 mm) but did not shift the heme to the low spin state. Cyanide was a very strong inhibitor of the fatty acid oxygenase activity (Ki ~5 µm) and increased the Km value for oxygen but not that for fatty acid. Spectroscopic analyses indicated that carbon monoxide, azide, imidazole, and a variety of substituted imidazoles did not bind appreciably in the ferric PADOX-1 heme vicinity. Substitution of His-163 and His-389 with cysteine, glutamine, tyrosine, or methionine resulted in variable degrees of perturbation of the heme absorbance spectrum and oxygenase activity, consistent with His-389 serving as the proximal heme ligand and indicating that the heme has a functional role in catalysis. Overall, A. thaliana PADOX-1 resembles a b-type cytochrome, although with much more restricted access to the distal face of the heme than seen in most other myeloperoxidase family members, explaining the previously puzzling lack of peroxidase activity in the plant protein. PADOX-1 is unusual in that it has a high affinity, inhibitory cyanide-binding site distinct from the distal heme face and the fatty acid site. PMID:15100225

  4. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle.

    PubMed

    Grosset, A M; Gibney, B R; Rabanal, F; Moser, C C; Dutton, P L

    2001-05-08

    New understanding of the engineering and allosteric regulation of natural protein conformational switches (such as those that couple chemical and ionic signals, mechanical force, and electro/chemical free energy for biochemical activation, catalysis, and motion) can be derived from simple de novo designed synthetic protein models (maquettes). We demonstrate proof of principle of both reversible switch action and allosteric regulation in a tetra-alpha-helical bundle protein composed of two identical di-helical subunits containing heme coordinated at a specific position close to the disulfide loop region. Individual bundles assume one of two switch states related by large-scale mechanical changes: a syn-topology (helices of the different subunits parallel) or anti-topology (helices antiparallel). Both the spectral properties of a coproporphyrin probe appended to the loop region and the distance-dependent redox interaction between the hemes identify the topologies. Beginning from a syn-topology, introduction of ferric heme in each subunit (either binding or redox change) shifts the topological balance by 25-50-fold (1.9-2.3 kcal/mol) to an anti-dominance. Charge repulsion between the two internal cationic ferric hemes drives the syn- to anti-switch, as demonstrated in two ways. When fixed in the syn-topology, the second ferric heme binding is 25-80-fold (1.9-2.6 kcal/mol) weaker than the first, and adjacent heme redox potentials are split by 80 mV (1.85 kcal/mol), values that energetically match the shift in topological balance. Allosteric and cooperative regulation of the switch by ionic strength exploits the shielded charge interactions between the two hemes and the exposed, cooperative interactions between the coproporphyrin carboxylates.

  5. Heme-assisted S-Nitrosation Desensitizes Ferric Soluble Guanylate Cyclase to Nitric Oxide*

    PubMed Central

    Fernhoff, Nathaniel B.; Derbyshire, Emily R.; Underbakke, Eric S.; Marletta, Michael A.

    2012-01-01

    Nitric oxide (NO) signaling regulates key processes in cardiovascular physiology, specifically vasodilation, platelet aggregation, and leukocyte rolling. Soluble guanylate cyclase (sGC), the mammalian NO sensor, transduces an NO signal into the classical second messenger cyclic GMP (cGMP). NO binds to the ferrous (Fe2+) oxidation state of the sGC heme cofactor and stimulates formation of cGMP several hundred-fold. Oxidation of the sGC heme to the ferric (Fe3+) state desensitizes the enzyme to NO. The heme-oxidized state of sGC has emerged as a potential therapeutic target in the treatment of cardiovascular disease. Here, we investigate the molecular mechanism of NO desensitization and find that sGC undergoes a reductive nitrosylation reaction that is coupled to the S-nitrosation of sGC cysteines. We further characterize the kinetics of NO desensitization and find that heme-assisted nitrosothiol formation of β1Cys-78 and β1Cys-122 causes the NO desensitization of ferric sGC. Finally, we provide evidence that the mechanism of reductive nitrosylation is gated by a conformational change of the protein. These results yield insights into the function and dysfunction of sGC in cardiovascular disease. PMID:23093402

  6. A new automated colorimetric method for measuring total oxidant status.

    PubMed

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, P<0.001 for all). In addition, the new assay presented a typical sigmoidal reaction pattern in copper-induced lipoprotein autoxidation. The novel assay is linear up to 200 micromol H2O2 Equiv./L and its precision value is lower than 3%. The lower detection limit is 1.13 micromol H2O2 Equiv./L. The reagents are stable for at least 6 months on the automated analyzer. Serum TOS level was significantly higher in patients with osteoarthritis (21.23+/-3.11 micromol H2O2 Equiv./L) than in healthy subjects (14.19+/-3.16 micromol H2O2 Equiv./L, P<0.001) and the results showed a significant negative correlation with total antioxidant capacity (TAC) (r=-0.66 P<0.01). This easy, stable, reliable, sensitive, inexpensive and fully automated method that is described can be used to measure total oxidant status.

  7. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.

    PubMed

    Hu, Xiuzhen; Dong, Qiwen; Yang, Jianyi; Zhang, Yang

    2016-11-01

    More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. We proposed a new ligand-specific approach devoted to the binding site prediction of 13 metal ions (Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Na + , K + ) and acid radical ion ligands (CO3 2- , NO2 - , SO4 2- , PO4 3- ) that are most frequently seen in protein databases. A sequence-based ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is extended to balance binding and non-binding residue samples. A composite method IonCom is then developed to combine the ab initio model with multiple threading alignments for further improving the robustness of the binding site predictions. The pipeline was tested using 5-fold cross validations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands. Significant advantage was demonstrated compared with the state of the art ligand-binding methods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data analyses show that the major advantage of IonCom lies at the integration of complementary ab initio and template-based components. Ion-specific feature design and binding library selection also contribute to the improvement of small ion ligand binding predictions. http://zhanglab.ccmb.med.umich.edu/IonCom CONTACT: hxz@imut.edu.cn or zhng@umich.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Enhanced Fe dispersion via "pinning" effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode

    NASA Astrophysics Data System (ADS)

    Shu, Chengyong; Chen, Yuanzhen; Yang, Xiao-Dong; Liu, Yan; Chong, Shaokun; Fang, Yuan; Liu, Yongning; Yang, Wei-Hua

    2018-02-01

    In this study, by using thiocyanate as an iron ion dispersing agent, the pinning effect of thiocyanate ion (SCN-) enables the high dispersion of Fe3+ in a nitrogen-doped carbon polymer and significantly promotes ORR catalysis in both acidic and alkaline media. It shows 47.3 A g-1 kinetic ORR current density in 0.1 M H2SO4 solution at 0.8 V vs. RHE. In addition, SCN- can dope into the base material and modify the surface of catalysts, which generates strong cyanide N functional groups. Additionally, it also has a higher BET surface area and more uniform granularity, which accounts for the enhancement in mass transport.

  9. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  10. Nitrosoamphetamine binding to myoglobin and hemoglobin: Crystal structure of the H64A myoglobin-nitrosoamphetamine adduct

    PubMed Central

    Wang, Bing; Powell, Samantha M.; Guan, Ye; Xu, Nan; Thomas, Leonard M.; Richter-Addo, George B.

    2017-01-01

    N-hydroxyamphetamine (AmphNHOH) is an oxidative metabolite of amphetamine and methamphetamine. It is known to form inhibitory complexes upon binding to heme proteins. However, its interactions with myoglobin (Mb) and hemoglobin (Hb) have not been reported. We demonstrate that the reactions of AmphNHOH with ferric Mb and Hb generate the respective heme-nitrosoamphetamine derivatives characterized by UV-vis spectroscopy. We have determined the X-ray crystal structure of the H64A Mb-nitrosoamphetamine complex to 1.73 Å resolution. The structure reveals the N-binding of the nitroso-d-amphetamine isomer, with no significant H-bonding interactions between the ligand and the distal pocket amino acid residues. PMID:28450187

  11. Ferric ion-assisted in situ synthesis of silver nanoplates on polydopamine-coated silk.

    PubMed

    Xiao, Jing; Zhang, Huihui; Mao, Cuiping; Wang, Ying; Wang, Ling; Lu, Zhisong

    2016-10-01

    In the present study, a ferric ion (Fe(3+))-assisted in situ synthesis approach was developed to grow silver (Ag) nanoplates on the polydopamine (PDA)-coated silk without the use of additional reductants. The essential role of Fe(3+) in the formation of Ag nanoplates is revealed by comparing the morphologies of Ag nanostructures prepared on the silk-coated PDA film with/without Fe(3+) doping. Scanning electron micrographs show that high-density Ag nanoplates could be synthesized in the reaction system containing 50μg/mL FeCl3 and 50mM AgNO3. The size of the Ag nanoplate could be tuned by adjusting the reaction duration. Based on the data, a mechanism involving the Fe(3+)-selected growth of Ag atoms along the certain crystal faces was proposed to explain the fabrication process. Transmission electron microscopy and X-ray diffractometry indicate that the Ag nanoplates possess good crystalline structures. Raman spectra demonstrate that the nanoplates could strongly enhance the Raman scattering of the PDA molecules. The Ag nanoplate-coated silk could be utilized as a flexible substrate for the development of surface-enhanced Raman scattering biosensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces

    NASA Astrophysics Data System (ADS)

    Ujiie, Tomohiro

    2012-11-01

    We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.

  13. Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh

    PubMed Central

    Heinzelmann, Germano; Baştuğ, Turgut; Kuyucak, Serdar

    2011-01-01

    Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters. PMID:22098736

  14. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    PubMed

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  15. Predicting Nonspecific Ion Binding Using DelPhi

    PubMed Central

    Petukh, Marharyta; Zhenirovskyy, Maxim; Li, Chuan; Li, Lin; Wang, Lin; Alexov, Emil

    2012-01-01

    Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally. PMID:22735539

  16. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    DOEpatents

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  17. The Solution Structure, Binding Properties, and Dynamics of the Bacterial Siderophore-binding Protein FepB*

    PubMed Central

    Chu, Byron C. H.; Otten, Renee; Krewulak, Karla D.; Mulder, Frans A. A.; Vogel, Hans J.

    2014-01-01

    The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs. PMID:25173704

  18. [Dexrazoxane (ICRF-187)--a cardioprotectant and modulator of action of some anticancer drugs].

    PubMed

    Kik, Krzysztof; Szmigiero, Leszek

    2006-01-01

    The nthracycline antibiotics are among the most widely used and effective anticancer drugs. The therapeutic efficacy of this class of drugs is limited by cumulative cardiac toxicity. Dexrazoxane is the only clinically approved cardioprotective agent used in anthracycline-containing anticancer therapy. Its cardioprotective action allows the use of a much higher cumulative dose of anthracyclines and improvement in the effectiveness of treatment. Anthracyclines form complexes with iron ions, which are very active in the production of reactive oxygen species responsible for the lipid peroxidation of mitochondrial and endoplasmatic reticulum membranes. This process seems to be the major cause of anthracycline-induced cardiotoxicity. Dexrazoxane exerts its protective effects by rapid and complete binding of ferric and ferrous ions, even by displacing the metal ions from complexes with anthracyclines. Besides its cardioprotective effect, dexrazoxane also exhibits anticancer properties. Like other derivatives of bisdioxopiperazine, dexrazoxane is a catalytic inhibitor of eukaryotic DNA topoisomerase II, the key enzyme controlling DNA topology and contributing to the replication and transcription processes. Dexrazoxane is able to lock topoisomerase II at the stage of the enzyme reaction cycle where the enzyme forms a closed clamp around the DNA. This phenomenon seems to be the main reason for the generation of DNA double-strand breaks by dexrazoxane as well as its cytotoxicity against quickly proliferating cancer cells. Other effects of its topoisomerase II catalytic inhibition is the induction of cell differentiation and apoptosis. Dexrazoxane may be used not only as a cardioprotective agent, but also as a modulator of action of some anticancer drugs by enhancing their selectivity or by delaying the development of multidrug resistance.

  19. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  20. Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water

    NASA Astrophysics Data System (ADS)

    Shi, Lei; You, Jing; Liu, Na; Liu, Xinmin; Wang, Zhiqiang; Zhang, Tiantian; Gu, Yi; Guo, Suzhen; Gao, Shanshan

    2017-12-01

    The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc. The influence of various ions on the flowing gel system can be reduced by increasing polymer concentration, adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW). The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield. The flowing gel system is injected from 10 downflow wells and the 15 offsetting production wells have increased the yield by 1770 tons.

  1. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  2. Protein microspheres for controlled drug delivery and related analysis of biopolymers

    NASA Astrophysics Data System (ADS)

    Kirk, James Forrest

    Rheumatoid arthritis (RA) is a systemic disorder which manifests itself most notably in the synovial joints. In recent years, methotrexate (MTX), a foliate antagonist, has been used with some success for treatment of RA. MTX has a maximum cumulative dose beyond which it becomes dangerous to administer due primarily to liver toxicity. This unfortunate side effect has prompted research into means of delivering MTX to the synovial joint in hopes of making more efficient use of the drug. Both MTX and its sodium salt (Na-MTX) were loaded into microspheres (MS) composed of bovine serum albumin (BSA) stabilized by cross linking with dialdehydes or ferric ion. MS were prepared with two levels of drug loading at two different levels of cross linking. MTX loading densities as high as 46.8% w/w were achieved in the aldehyde cross linking system and as high as 46.3% w/w were achieved with ferric ion cross linking. Using Na-MTX, the values were 37.2% w/w and 31.7% w/w respectively. Both MTX and Na-MTX were elutable from the MS into phosphate buffered saline at 37sp°C. MTX elution from aldehyde cross linked microspheres was load dependent with ca. 60% eluted by 9 hours at low loading and ca. 60% eluted by 24 hours at high loading. In the ferric ion cross link system, the elution was independent of loading with 50% elution occurring between 20 and 48 hours. Na-MTX elution was independent of drug loading or cross link system with 50% elution occurring in less than two hours in all cases. Other investigations included the loading of mitoxantrone (NOV) and of enzyme. NOV was loaded onto BSA microspheres to a concentration of 19.3% w/w and was used successfully in the treatment of murine ovarian tumors. Acid phosphatase was successfully loaded onto and into BSA microspheres. This enzyme retained its initial activity up to four months on post-loaded spheres. The enzyme also remained active inside the microsphere as demonstrated by a substrate cleavage assay.

  3. Phenolic extract of Dialium guineense pulp enhances reactive oxygen species detoxification in aflatoxin B₁ hepatocarcinogenesis.

    PubMed

    Adeleye, Abdulwasiu O; Ajiboye, Taofeek O; Iliasu, Ganiyat A; Abdussalam, Folakemi A; Balogun, Abdulazeez; Ojewuyi, Oluwayemisi B; Yakubu, Musa T

    2014-08-01

    This study investigated the effect of Dialium guineense pulp phenolic extract on aflatoxin B1 (AFB1)-induced oxidative imbalance in rat liver. Reactive oxygen species (ROS) scavenging potentials of free and bound phenolic extract of D. guineense (0.2-1.0 mg/mL) were investigated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide ion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical, and ferric ion reducing system. In the in vivo study, 35 animals were randomized into seven groups of five rats each. Free and bound phenolic extract (1 mg/mL) produced 66.42% and 93.08%, 57.1% and 86.0%, 62.0% and 90.05%, and 60.11% and 72.37% scavenging effect on DPPH radical, O2(-) radical, H2O2, and hydroxyl radical, while ferric ion was significantly reduced. An AFB1-mediated decrease in the activities of ROS detoxifying enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6 phosphate dehydrogenase) was significantly attenuated (P<.05). AFB1-mediated elevation in the concentrations of oxidative stress biomarkers; malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and percentage DNA fragmentation were significantly lowered by D. guineense phenolic extract (P<.05). Overall, the in vitro and in vivo effects suggest that D. guineense phenolic extract elicited ROS scavenging and detoxification potentials, as well as the capability of preventing lipid peroxidation, protein oxidation, and DNA fragmentation.

  4. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  5. Initial Binding of Ions to the Interhelical Loops of Divalent Ion Transporter CorA: Replica Exchange Molecular Dynamics Simulation Study

    PubMed Central

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg2+ ions with binding free energy −7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation. PMID:22952795

  6. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  7. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    NASA Technical Reports Server (NTRS)

    Seger, R. Adam (Inventor); Pourmand, Nader (Inventor); Actis, Paolo (Inventor); Singaram, Bakthan (Inventor); Vilozny, Boaz (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  8. Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter.

    PubMed

    Bes, M T; Hernández, J A; Peleato, M L; Fillat, M F

    2001-01-15

    A gene coding for a Fur (ferric uptake regulation) protein from the cyanobacterium Anabaena PCC 7119 has been cloned and overexpressed in Escherichia coli. DNA sequence analysis confirmed the presence of a 151-amino-acid open reading frame that showed homology with the Fur proteins reported for the unicellular cyanobacteria Synechococcus 7942 and Synechocystis PCC 6803. Two putative Fur-binding sites were detected in the promoter regions of the fur gene from Anabaena. Partially purified recombinant Fur binds to the flavodoxin promoter as well as its own promoter. This suggests that the Fur gene is autoregulated in Anabaena.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex

    Baseline design of the JLEIC booster synchrotron is presented. Its aim is to inject and accumulate heavy ions and protons at 285 MeV, to accelerate them to about 7 GeV, and finally to extract the beam into the ion collider ring. The Figure-8 ring features two 2600 achromatic arcs configured with negative momentum compaction optics, designed to avoid transition crossing for all ion species during the course of acceleration. The lattice also features a specialized high dispersion injection insert optimized to facilitate the transverse phase-space painting in both planes for multi-turn ion injection. Furthermore, the lattice has been optimized tomore » ease chromaticity correction with two families of sextupoles in each plane. The booster ring is configured with super-ferric, 3 Tesla bends. We are presently launching optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime.« less

  10. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  11. Superconducting racetrack booster for the ion complex of MEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Yu; Kondratenko, A. M.; Kondratenko, M. A.

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c.more » The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.« less

  12. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  13. Sortase Independent and Dependent Systems for Acquisition of Haem and Haemoglobin in Listeria monocytogenes

    PubMed Central

    Xiao, Qiaobin; Jiang, Xiaoxu; Moore, Kyle J.; Shao, Yi; Pi, Hualiang; Dubail, Iharilalao; Charbit, Alain; Newton, Salete M.; Klebba, Phillip E.

    2011-01-01

    Summary We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb), respectively. Deletion of lmo2185 in the srtB region reduced listerial [59Fe]-Hn transport, and purified Lmo2185 bound [59Fe]-Hn (KD = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a hemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [59Fe]-Hn transport at external concentrations less than 10 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (KD = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (KD = 123 nM). Deletions of Hup permease components hupD, hupG, or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC+ and hupG+ alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [59Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall KM of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (Vmax = 23 pMol/109 cells/min) to those of ferric siderophore transporters. In the ΔhupDBGC strain uptake occurred at a 3-fold lower rate (Vmax = 7 pMol/109 cells/min). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g., Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD50 of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence. PMID:21545655

  14. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.

    PubMed

    Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J

    2004-04-23

    The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.

  15. Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage.

    PubMed

    Ajboye, Taofeek O; Yakubu, Musa T; Salau, Amadu K; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2010-12-01

     Despite the myriad uses of Annona senegalensis Pers. (Annonaceae) leaves in folklore medicine of Nigeria, the basis is yet to be substantiated by scientific investigations.  To investigate the antioxidant (in vitro and in vivo) and drug detoxification potential of aqueous extract of A. senegalensis leaves in CCl₄-induced hepatocellular damage.  In vitro antioxidant activity of the aqueous extract of A. senegalensis leaves was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), H₂O₂, superoxide ion, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and ferric ion models while in vivo antioxidant and drug detoxification activities of the extract at 100, 200, and 400 mg/kg body weight were done by assaying the levels of enzymic and non-enzymic indices in CCl₄-induced hepatocellular damage.  The extract at 1 mg/mL scavenged DPPH, H₂O₂, superoxide ion, and ABTS radicals, whereas ferric ion was significantly (P <0.05) reduced. The levels of alkaline and acid phosphatases, alanine and aspartate aminotransferases, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, reduced glutathione, vitamins C and E, glutathione S-transferase, nicotinamide adenine dinucleotide (reduced):Quinone oxidoreductase, uridyl diphosphoglucuronyl transferase, malondialdehyde, and lipid hydroperoxide that decreased in CCl₄ treated animals were significantly attenuated by the extract in a manner similar to the animals treated with the reference drug.  The ability of the aqueous extract of A. senegalensis leaves to scavenge free radicals in vitro and reversal of CCl₄-induced hepatocellular damage in rats suggest antioxidant and drug detoxification activities. Overall, this study has justified the rationale behind some of the medicinal uses of the plant in folklore medicine of Nigeria.

  16. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  17. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.

    PubMed

    Kinraide, Thomas B; Yermiyahu, Uri

    2007-09-01

    Equilibrium constants for binding to plant plasma membranes have been reported for several metal ions, based upon adsorption studies and zeta-potential measurements. LogK values for the ions are these: Al(3+), 4.30; La(3+), 3.34; Cu(2+), 2.60; Ca(2+) and Mg(2+), 1.48; Na(+) and K(+), 0 M(-1). These values correlate well with logK values for ion binding to many organic and inorganic ligands. LogK values for metal ion binding to 12 ligands were normalized and averaged to produce a scale for the binding of 49 ions. The scale correlates well with the values presented above (R(2)=0.998) and with ion binding to cell walls and other biomass. The scale is closely related to the charge (Z) and Pauling electronegativity (PE) of 48 ions (all but Hg(2+)); R(2)=0.969 for the equation (Scale values)=-1.68+Z(1.22+0.444PE). Minimum rhizotoxicity of metal ions appears to be determined by binding strengths: log a(PM,M)=1.60-2.41exp[0.238(Scale values)] determines the value of ion activities at the plasma membrane surface (a(PM,M)) that will ensure inhibition of root elongation. Additional toxicity appears to be related to softness, accounting for the great toxicity of Ag(+), for example. These binding-strength values correlate with additional physiological effects and are suitable for the computation of cell-surface electrical potentials.

  18. Galline Ex-FABP is an Antibacterial Siderocalin and a Lysophosphatidic Acid Sensor Functioning through Dual Ligand Specificities

    PubMed Central

    Correnti, Colin; Clifton, Matthew C.; Abergel, Rebecca J.; Allred, Ben; Hoette, Trisha M.; Ruiz, Mario; Cancedda, Ranieri; Raymond, Kenneth N.; Descalzi, Fiorella; Strong, Roland K.

    2011-01-01

    SUMMARY Galline Ex-FABP was identified as another candidate antibacterial, catecholate siderophore binding lipocalin (siderocalin) based on structural parallels with the family archetype, mammalian Siderocalin. Binding assays show that Ex-FABP retains iron in a siderophore-dependent manner in both hypertrophic and dedifferentiated chondrocytes, where Ex-FABP expression is induced after treatment with proinflammatory agents, and specifically binds ferric complexes of enterobactin, parabactin, bacillibactin and, unexpectedly, monoglucosylated enterobactin, which does not bind to Siderocalin. Growth arrest assays functionally confirm the bacteriostatic effect of Ex-FABP in vitro under iron-limiting conditions. The 1.8Å crystal structure of Ex-FABP explains the expanded specificity, but also surprisingly reveals an extended, multi-chambered cavity extending through the protein and encompassing two separate ligand specificities, one for bacterial siderophores (as in Siderocalin) at one end and one specifically binding co-purified lysophosphatidic acid, a potent cell signaling molecule, at the other end, suggesting Ex-FABP employs dual functionalities to explain its diverse endogenous activities. PMID:22153502

  19. Sulfide binding properties of truncated hemoglobins.

    PubMed

    Nicoletti, Francesco P; Comandini, Alessandra; Bonamore, Alessandra; Boechi, Leonardo; Boubeta, Fernando Martin; Feis, Alessandro; Smulevich, Giulietta; Boffi, Alberto

    2010-03-16

    The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.

  20. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). Copyright 2010 Elsevier Ltd. All rights reserved.

  1. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  2. A redox beginning: Which came first phosphoryl, acyl, or electron transfer ?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1994-01-01

    Thermodynamic and kinetic information available on the synthesis of prebiotic monomers and polymers will be examined in order to illuminate the prebiotic plausibility of polymer syntheses based on (a) phosphoryl transfer that yields phosphodiester polymers, (b) acyl transfer that gives polyamides, and (c) electron transfer that produces polydisulfide or poly(thio)ester polymers. New experimental results on the oxidative polymerization of 2,3-dimercaptopropanol by ferric ions on the surface of ferric hydroxide oxide will be discussed as a chemical model of polymerization by electron transfer. This redox polymerization that yields polymers with a polydisulfide backbone was found to give oligomers up to the 15-mer from 1 mM of 2,3-dimercaptopropanol after one day at 25 C. High pressure liquid chromatography (HPLC) analysis of the oligomers was carried out on an Alltech OH-100 column eluted with acetonitrile-water.

  3. Dissociation of heme from gaseous myoglobin ions studied by infrared multiphoton dissociation spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Sheng; Sabu, Sahadevan; Wei, Shih-Chia; Josh Kao, C.-M.; Kong, Xianglei; Liau, Shing-Chih; Han, Chau-Chung; Chang, Huan-Cheng; Tu, Shih-Yu; Kung, A. H.; Zhang, John Z. H.

    2006-10-01

    Detachment of heme prosthetic groups from gaseous myoglobin ions has been studied by collision-induced dissociation and infrared multiphoton dissociation in combination with Fourier-transform ion cyclotron resonance mass spectrometry. Multiply charged holomyoglobin ions (hMbn +) were generated by electrospray ionization and transferred to an ion cyclotron resonance cell, where the ions of interest were isolated and fragmented by either collision with Ar atoms or irradiation with 3μm photons, producing apomyoglobin ions (aMbn +). Both charged heme loss (with [Fe(III)-heme]+ and aMb(n-1)+ as the products) and neutral heme loss (with [Fe(II)-heme] and aMbn + as the products) were detected concurrently for hMbn + produced from a myoglobin solution pretreated with reducing reagents. By reference to Ea=0.9eV determined by blackbody infrared radiative dissociation for charged heme loss of ferric hMbn +, an activation energy of 1.1eV was deduced for neutral heme loss of ferrous hMbn + with n =9 and 10.

  4. Divalent Metal-Ion Complexes with Dipeptide Ligands Having Phe and His Side-Chain Anchors: Effects of Sequence, Metal Ion, and Anchor.

    PubMed

    Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos

    2015-09-24

    Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.

  5. Sequence-specific binding of counterions to B-DNA

    PubMed Central

    Denisov, Vladimir P.; Halle, Bertil

    2000-01-01

    Recent studies by x-ray crystallography, NMR, and molecular simulations have suggested that monovalent counterions can penetrate deeply into the minor groove of B form DNA. Such groove-bound ions potentially could play an important role in AT-tract bending and groove narrowing, thereby modulating DNA function in vivo. To address this issue, we report here 23Na magnetic relaxation dispersion measurements on oligonucleotides, including difference experiments with the groove-binding drug netropsin. The exquisite sensitivity of this method to ions in long-lived and intimate association with DNA allows us to detect sequence-specific sodium ion binding in the minor groove AT tract of three B-DNA dodecamers. The sodium ion occupancy is only a few percent, however, and therefore is not likely to contribute importantly to the ensemble of B-DNA structures. We also report results of ion competition experiments, indicating that potassium, rubidium, and cesium ions bind to the minor groove with similarly weak affinity as sodium ions, whereas ammonium ion binding is somewhat stronger. The present findings are discussed in the light of previous NMR and diffraction studies of sequence-specific counterion binding to DNA. PMID:10639130

  6. Cyanide binding to ferrous and ferric microperoxidase-11.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  7. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.

    PubMed

    Pedersen, T V; Olsen, D R; Skretting, A

    1997-08-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.

  8. Corrosion of Steel in a Black Mangrove Environment

    DTIC Science & Technology

    1982-10-01

    neceaaary and Identify by block number) Black Mangrove Environment Chloride Salts Corrosion Iron- Tannin Complex Steel Tannic Acid Tropic Test Center...identified to be as follows: rain water falling through the mangrove canopy picks up salts and tannins from the black mangroves. The salts...attack steel, forming water-soluble ferric ions. The tannins react DD , JAN 73 •*/J EDITION OF » MOV 65 IS OBSOLETE UNCLASSIFIED SECURITY

  9. Potential Applications of Biotechnology to Aerospace Materials.

    DTIC Science & Technology

    1986-11-01

    sulfate:(1) ms + 202 a msO4 where m is a bivalent metal. In the indirect method of bioleach- ing, the metal sulfide is oxidized by ferric ion: ms + 2Fe...possibility exists of using bioleaching or biosorption for recovery of strategic and precious metals such as cobalt, nickel, zinc, arsenic, gallium ...workshop that could be of significant interest to the Materials Laboratory including acetylene compounds , adhesives, structural materials, lubricants, and

  10. Stabilized aqueous hydrogen peroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  11. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex

    NASA Astrophysics Data System (ADS)

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.

    2015-11-01

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c

  12. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.

  13. Study on treatment technology of wastewater from hydrolysis of acid oil

    NASA Astrophysics Data System (ADS)

    Li, Yuejin; Lin, Zhiyong; Han, Yali

    2017-06-01

    In this paper, the degumming of ferric chloride, calcium hydroxide after the removal of acid acidification hydrolysis of waste oil as raw material, through the treatment process to purify the wastewater. Choose different chemical additives, investigation of different temperature, pH value and other factors, find the best extraction condition. Through the orthogonal test of sodium carbonate, sodium oxalate, barium carbonate, compared with three kinds of chemical additives. The best chemical assistant is sodium carbonate, the best treatment temperature is 80 degrees Celsius, pH value is 8.0. After the reaction, the content of calcium and iron ions were determined by suitable methods. The removal rate of calcium ion is 98%, the removal rate of iron ion is 99%, and the effect of calcium and iron ion precipitation on the subsequent evaporation operation is reduced. Finally, the comparison is made to clarify the Dilute Glycerol water solution.

  14. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  15. Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase: Kinetics and Specificity†

    PubMed Central

    Frantom, Patrick A.; Seravalli, Javier; Ragsdale, Stephen W.; Fitzpatrick, Paul F.

    2006-01-01

    Tyrosine hydroxylase (TyrH) is a pterin-dependent enzyme that catalyzes the hydroxylation of tyrosine to form dihydroxyphenylalanine. The oxidation state of the active site iron atom plays a central role in the regulation of the enzyme. The kinetics of reduction of ferric TyrH by several reductants were determined by anaerobic stopped-flow spectroscopy. Anaerobic rapid freeze–quench EPR confirmed that the change in the near-UV absorbance of TyrH upon adding reductant corresponded to iron reduction. Tetrahydrobiopterin reduces wild-type TyrH following a simple second-order mechanism with a rate constant of 2.8 ± 0.1 mM−1 s−1. 6-Methyltetrahydropterin reduces the ferric enzyme with a second-order rate constant of 6.1 ± 0.1 mM−1 s−1 and exhibits saturation kinetics. No EPR signal for a radical intermediate was detected. Ascorbate, glutathione, and 1,4-benzoquinone all reduce ferric TyrH, but much more slowly than tetrahydrobiopterin, suggesting that the pterin is a physiological reductant. E332A TyrH, which has an elevated Km for tetrahydropterin in the catalytic reaction, is reduced by tetrahydropterins with the same kinetic parameters as those of the wild-type enzyme, suggesting that BH4 does not bind in the catalytic conformation during the reduction. Oxidation of ferrous TyrH by molecular oxygen can be described as a single-step second-order reaction, with a rate constant of 210 mM−1 s−1. S40E TyrH, which mimics the phosphorylated state of the enzyme, has oxidation and reduction kinetics similar to those of the wild-type enzyme, suggesting that phosphorylation does not directly regulate the interconversion of the ferric and ferrous forms. PMID:16475826

  16. Ion-binding properties of the ClC chloride selectivity filter

    PubMed Central

    Lobet, Séverine; Dutzler, Raimund

    2006-01-01

    The ClC channels are members of a large protein family of chloride (Cl−) channels and secondary active Cl− transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl− ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl− channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction. PMID:16341087

  17. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  18. Binding of corroded ions to human saliva.

    PubMed

    Mueller, H J

    1985-05-01

    Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.

  19. Effect of cycled combustion ageing on a cordierite burner plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustionmore » conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.« less

  20. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    PubMed

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  2. Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.

  3. Equivalence of two approaches for modeling ion permeation through a transmembrane channel with an internal binding site

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2011-04-01

    Ion permeation through transmembrane channels has traditionally been modeled using two different approaches. In one approach, the translocation of the permeant ion through the channel pore is modeled as continuous diffusion and the rate of ion transport is obtained from solving the steady-state diffusion equation. In the other approach, the translocation of the permeant ion through the pore is modeled as hopping along a discrete set of internal binding sites and the rate of ion transport is obtained from solving a set of steady-state rate equations. In a recent work [Zhou, J. Phys. Chem. Lett. 1, 1973 (2010)], the rate constants for binding to an internal site were further calculated by modeling binding as diffusion-influenced reactions. That work provided the foundation for bridging the two approaches. Here we show that, by representing a binding site as an energy well, the two approaches indeed give the same result for the rate of ion transport.

  4. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    PubMed Central

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  5. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  6. Interaction of nitric oxide with human heme oxygenase-1.

    PubMed

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  7. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation.

    PubMed

    Wang, Lu; Yan, WenChao; Chen, JiaChuan; Huang, Feng; Gao, PeiJi

    2008-03-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the beta-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more accessible to degradation.

  8. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    PubMed

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  9. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  10. Differential Cationization of Fatty Acids with Monovalent Cations Studied by ESI-MS/MS and Computational Approach.

    PubMed

    Sudarshana Reddy, B; Pavankumar, P; Sridhar, L; Saha, Soumen; Narahari Sastry, G; Prabhakar, S

    2018-04-24

    The intercellular and intracellular transport of charged species (Na + /K + ) entail interaction of the ions with neutral organic molecules and formation of adduct ions. The rate of transport of the ions across the cell membrane(s) may depend on the stability of the adduct ions, which in turn rely on structural aspects of the organic molecules that interact with the ions. Positive ion ESI mass spectra were recorded for the solutions containing fatty acids (FAs) and monovalent cations (X=Li + , Na + , K + , Rb + and Cs + ). Product ion spectra of the [FA+X] + ions were recorded at different collision energies. Theoretical studies were exploited under both gas phase and solvent phase to investigate the structural effects of the fatty acids during cationization. Stability of [FA+X] + adduct ions were further estimated by means of AIM topological analyses and interaction energy (IE) values. Positive ion ESI-MS analyses of the solution of FAs and X + ions showed preferential binding of the K + ions to FAs. The K + ion binding increased with the increase in number of double bonds of FAs, while decreased with increase in the number of carbons of FAs. Dissociation curves of [FA+X] + ions indicated the relative stability order of the [FA+X] + ions and it was in line with the observed trends in ESI-MS. The solvent phase computational studies divulged the mode of binding and the binding efficiencies of different FAs with monovalent cations. Among the studied monovalent cations, the cationization of FAs follow the order K + >Na + >Li + >Rb + >Cs + . The docosahexaenoic acid showed high efficiency in binding with K + ion. The K + ion binding efficiency of FAs depends on the number of double bonds in unsaturated FAs and the carbon chain length in saturated FAs. The cationization trends of FAs obtained from the ESI-MS, ESI-MS/MS analyses were in good agreement with solvent phase computational studies. This article is protected by copyright. All rights reserved.

  11. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  12. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.

    PubMed

    Hu, Jing; Guo, Huiyuan; Li, Junli; Gan, Qiuliang; Wang, Yunqiang; Xing, Baoshan

    2017-02-01

    The impacts of iron oxide nanoparticles (γ-Fe 2 O 3 NPs) and ferric ions (Fe 3+ ) on plant growth and molecular responses associated with the transformation and transport of Fe 2+ were poorly understood. This study comprehensively compared and evaluated the physiological and molecular changes of Citrus maxima plants as affected by different levels of γ-Fe 2 O 3 NPs and Fe 3+ . We found that γ-Fe 2 O 3 NPs could enter plant roots but no translocation from roots to shoots was observed. 20 mg/L γ-Fe 2 O 3 NPs had no impact on plant growth. 50 mg/L γ-Fe 2 O 3 NPs significantly enhanced chlorophyll content by 23.2% and root activity by 23.8% as compared with control. However, 100 mg/L γ-Fe 2 O 3 NPs notably increased MDA formation, decreased chlorophyll content and root activity. Although Fe 3+ ions could be used by plants and promoted the synthesis of chlorophyll, they appeared to be more toxic than γ-Fe 2 O 3 NPs, especially for 100 mg/L Fe 3+ . The impacts caused by γ-Fe 2 O 3 NPs and Fe 3+ were concentration-dependent. Physiological results showed that γ-Fe 2 O 3 NPs at proper concentrations had the potential to be an effective iron nanofertilizer for plant growth. RT-PCR analysis showed that γ-Fe 2 O 3 NPs had no impact on AHA gene expression. 50 mg/L γ-Fe 2 O 3 NPs and Fe 3+ significantly increased expression levels of FRO2 gene and correspondingly had a higher ferric reductase activity compared to both control and Fe(II)-EDTA exposure, thus promoting the iron transformation and enhancing the tolerance of plants to iron deficiency. Relative levels of Nramp3 gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ were significantly lower than control, indicating that all γ-Fe 2 O 3 NPs and Fe 3+ treatments could supply iron to C. maxima seedlings. Overall, plants can modify the speciation and transport of γ-Fe 2 O 3 NPs or Fe 3+ for self-protection and development by activating many physiological and molecular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  14. Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis.

    PubMed

    Millar, A D; Rampton, D S; Blake, D R

    2000-09-01

    Reactive oxygen species may be pathogenic in ulcerative colitis. Oral iron supplements anecdotally exacerbate inflammatory bowel disease and iron levels are elevated in the inflamed mucosa. Mucosal iron may enhance hydroxyl ion production via Fenton chemistry. Conversely, the iron chelator, desferrioxamine, is reportedly beneficial in Crohn's disease. To assess the in vitro effects of exogenous iron and of iron chelators on the production of reactive oxygen species by colonic biopsies from normal control subjects and patients with ulcerative colitis. Luminol-amplified chemiluminescence was used to measure mucosal reactive oxygen species production both before and after addition in vitro of ferric citrate (100 microM), desferrioxamine (1 mM) and 1,10-phenanthroline (1 mM). Ferric citrate had no effect on the chemiluminescence produced by human colonic mucosa. However, desferrioxamine and phenanthroline reduced chemiluminescence by 47% (n=7, P=0.018) and by 26% (n=10, P=0.005), respectively, in inactive ulcerative colitis, and by 44% (n=9, P=0. 008) and 42% (n=11, P=0.006) in active disease. The lack of effect of ferric citrate suggests that sufficient free iron is already present in inflamed biopsies to drive the Fenton reaction maximally. The effects of desferrioxamine and 1,10-phenanthroline on the chemiluminescence of biopsies from patients with ulcerative colitis suggest that a clinical trial of topical iron chelation in active disease is indicated.

  15. Attenuation of dissolved metals in neutral mine drainage in the Zambian Copperbelt.

    PubMed

    Sracek, Ondra; Filip, Jan; Mihaljevič, Martin; Kříbek, Bohdan; Majer, Vladimír; Veselovský, František

    2011-01-01

    Behaviour of metals like Cu and Co was studied in nearly neutral (pH ≥ 6.4) mine drainage seepage in a stream downgradient of a tailing dam at Chambishi site in the Copperbelt of Zambia. They are attenuated by precipitation of ferruginous ochres that incorporate significant quantities of metals. Using chemical analysis, X-ray powder diffraction and Mössbauer spectroscopy, we show that the ochres are composed mostly of amorphous ferric hydroxide. Close to the seepage face, the total Fe content of ochres increases due to precipitation of amorphous ferric hydroxide, but total Fe in sediment decreases further downstream. The stream then flows through wetland (dambo) where the remaining fraction of metals is removed. During rainy periods, increased flow rate may result in re-suspension of ochres, increasing thus the mobility of metals. Major ions like sulphate are conservative at the start of the dry period (May), but gypsum may probably precipitate later at the end of the dry period. Sequential extractions of bulk sediments indicate that Mn behaves differently to Fe, with a trend of increasing Mn with distance from the tailing dam. There is much more Fe than Mn in residual (Aqua Regia) fraction, indicating that amorphous ferric hydroxides are transformed to more crystalline phases deeper in sediment. Environmental impact of mine drainage is relatively limited due to its neutral character.

  16. Life cycle assessment of sustainable raw material acquisition for functional magnetite bionanoparticle production.

    PubMed

    Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R

    2017-09-01

    Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.

  18. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of monotheca buxifolia fruit.

    PubMed

    Jan, Shumaila; Khan, Muhammad Rashid; Rashid, Umbreen; Bokhari, Jasia

    2013-10-01

    This study was conducted to investigate the antioxidant potential of methanol extract and its derived fractions (hexane, ethyl acetate, butanol, and aqueous) of fruits of Monotheca buxifolia (Falc.) Dc., a locally used fruit in Pakistan. Dried powder of the fruit of M. buxifolia was extracted with methanol and the resultant was fractionated with solvents having escalating polarity; n-hexane, chloroform, ethyl acetate, n-butanol and the residual soluble aqueous fraction. Total phenolic and total flavonoid contents were estimated for the methanol and various fractions. These fractions were also subjected to various in vitro assays to estimate the scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide, hydroxyl, hydrogen peroxide and reductive ability for ferric ions and phosphomolybdate assay. The n-butanol, aqueous and methanol fractions possessed high amount of phenolics and flavonoids compared with other fractions, and subsequently showed a pronounced scavenging activity on DPPH, ABTS, superoxide, hydroxyl and hydrogen peroxide radicals and had a potent reductive ability on ferric ion and phosphomolybdate assay. There was a found significant correlation between total phenolic and flavonoid contents and EC50 of DPPH, superoxide, hydrogen peroxide radical and phosphomolybdate assays, whereas a nonsignificant correlation was found with the hydroxyl radical and ABTS radical assay. M. buxifolia fruit can be used as natural antioxidant source to prevent damage associated with free radicals.

  19. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  20. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  1. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  2. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  3. Structures of the carbohydrate recognition domain of Ca2+-independent cargo receptors Emp46p and Emp47p.

    PubMed

    Satoh, Tadashi; Sato, Ken; Kanoh, Akira; Yamashita, Katsuko; Yamada, Yusuke; Igarashi, Noriyuki; Kato, Ryuichi; Nakano, Akihiko; Wakatsuki, Soichi

    2006-04-14

    Emp46p and Emp47p are type I membrane proteins, which cycle between the endoplasmic reticulum (ER) and the Golgi apparatus by vesicles coated with coat protein complexes I and II (COPI and COPII). They are considered to function as cargo receptors for exporting N-linked glycoproteins from the ER. We have determined crystal structures of the carbohydrate recognition domains (CRDs) of Emp46p and Emp47p of Saccharomyces cerevisiae, in the absence and presence of metal ions. Both proteins fold as a beta-sandwich, and resemble that of the mammalian ortholog, p58/ERGIC-53. However, the nature of metal binding is distinct from that of Ca(2+)-dependent p58/ERGIC-53. Interestingly, the CRD of Emp46p does not bind Ca(2+) ion but instead binds K(+) ion at the edge of a concave beta-sheet whose position is distinct from the corresponding site of the Ca(2+) ion in p58/ERGIC-53. Binding of K(+) ion to Emp46p appears essential for transport of a subset of glycoproteins because the Y131F mutant of Emp46p, which cannot bind K(+) ion fails to rescue the transport in disruptants of EMP46 and EMP47 genes. In contrast the CRD of Emp47p binds no metal ions at all. Furthermore, the CRD of Emp46p binds to glycoproteins carrying high mannosetype glycans and the is promoted by binding not the addition of Ca(2+) or K(+) ion in These results suggest that Emp46p can be regarded as a Ca(2+)-independent intracellular lectin at the ER exit sites.

  4. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Motoyuki; Gouaux, Eric

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less

  5. Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules (CO2, H2O, NH3, CH4, H2), metal ions and onium ions.

    PubMed

    Umadevi, Deivasigamani; Narahari Sastry, G

    2015-11-11

    Graphane has emerged as a two-dimensional hydrocarbon with interesting physical properties and potential applications. Understanding the interaction of graphane with various molecules and ions is crucial to appreciate its potential applications. We investigated the interaction of nucleobases, aminoacids, saturated and unsaturated heterocycles, small molecules, metal ions and onium ions with graphane by using density functional theory calculations. The preferred orientations of these molecules and ions on the graphane surface have been analysed. The binding energies of graphane with these molecules have been compared with the corresponding binding energies of graphene. Our results reveal that graphane forms stable complexes with all the molecules and ions yet showing lesser binding affinity when compared to graphene. As an exemption, the preferential strong binding of H2O with graphane than graphene reveals the fact that graphane is more hydrophilic than graphene. Charge transfer between graphane and the molecules and ions have been found to be an important factor in determining the binding strength of the complexes. The effect of the interaction of these molecules and ions on the HOMO-LUMO energy gap of graphane has also been investigated.

  6. Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in Escherichia Coli ClC

    PubMed Central

    Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin

    2012-01-01

    Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693

  7. ACTION OF $gamma$-RAYS ON AQUEOUS SOLUTIONS OF CARBON MONOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raef, Y.; Swallow, A.J.

    1963-07-01

    Solutions of CO (4.84 x 10/sup -4/ M) in 0.1 N H/sub 2/SO/sub 4/ (oxygenfree) were irradiated with gamma rays ( approximates 30,000 rad/h) and found to give H with G = 0.95, CO/sub 2/ G = 2.6, formaldehyde G = 0.5, glyoxal G = 0.3, and formic acid G = 0.4. Hydrogen peroxid could not be detected. The results are interpreted in term of a mechanism involving CHO and COOH radicals, some of the products being secondary. The effect of variations in acidity were investigated, a striking observation being that formic acid is produced with G = 44 inmore » alkaline solution. In the presence of ferrous ions (2 x 10/sup -1/ 2 x 10/ sup -9/ M Fe/sup 2+/ 0.1 N H/sub 2/SO/sub 4/ no ferric was produced, but in the presence of ferric ions (2 x 10/sup -4/ 1 x 10/sup -9/ M Fe/sup 3+/, 0.1 N H/sub 2/SO/sub 4/) ferrous ions are produced with G = 8.3--8.4. The ratio of the rate constants for the reactions H + HCHO to H + CO ( in 0.1 N H/sub 2/ SO/sup 4/ is 14.8 plus or minus 3, of OH + CO to OH + Fe/sup 21/ (in 0.1 N H/sub 2/SO/sub 4/ ) is 8.8 plus or minus 0.5, and of H + CO to H + H/sup +/ + Fe/sup 21/ (in 0.1 N H/sub 2/SO /sub 4/ is 2.2 plus or minus 0.3, all at 23 deg C. (auth)« less

  8. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera).

    PubMed

    Nguyen, Van Tang; Ueng, Jinn-Pyng; Tsai, Guo-Jane

    2011-09-01

    The proximate composition of seagrape (Caulerpa lentillifera) from culture ponds in Penghu, Taiwan was analyzed. The phenolic content and the antioxidant activities including the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferric ion-reducing activity, hydrogen peroxide scavenging activity, and ferrous ion chelating (FIC) activity of the ethanolic extracts of dry seagrape samples using 2 drying methods of freeze drying and thermal drying were compared with the ethanolic extract of Oolong tea as a reference. The contents (dry weight basis) of carbohydrate, crude protein, crude lipid, crude fiber, and ash of seagrape obtained from culture ponds in Taiwan were 64.00%, 9.26%, 1.57%, 2.97%, and 22.20%, respectively. The total phenolic content (1.30 mg gallic acid equivalent [GAE]/g dry weight) of the ethanolic extract of thermally dried seagrape was significantly lower (P < 0.05) than that (2.04 mg GAE/g dry weight) of freeze-dried seagrape, and both were significantly lower than that (13.58 mg GAE/g dry weight) of Oolong tea. At the same phenolic content, the antioxidant activities of freeze-dried seagrape were significantly higher (P < 0.05) than those of thermally dried seagrape. Compared with Oolong tea, seagrape, irrespective of drying method used, generally had strong hydrogen peroxide scavenging activity; but it was weak in DPPH radical scavenging activity, ferric ion-reducing activity, and FIC activity. The antioxidant activity of seagrape and Oolong tea was significantly influenced by their phenolic contents. The proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera) in Taiwan were determined in this research to indicate nutritionally of this edible seaweed to human health, and compared these results to previous studies. © 2011 Institute of Food Technologists®

  9. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.

  10. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The color additive ferric ferrocyanide is a ferric hexacyanoferrate pigment characterized by the structual...

  11. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  12. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  13. Generic NICA-Donnan model parameters for metal-ion binding by humic substances.

    PubMed

    Milne, Christopher J; Kinniburgh, David G; van Riemsdijk, Willem H; Tipping, Edward

    2003-03-01

    A total of 171 datasets of literature and experimental data for metal-ion binding by fulvic and humic acids have been digitized and re-analyzed using the NICA-Donnan model. Generic parameter values have been derived that can be used for modeling in the absence of specific metalion binding measurements. These values complement the previously derived generic descriptions of proton binding. For ions where the ranges of pH, concentration, and ionic strength conditions are well covered by the available data,the generic parameters successfully describe the metalion binding behavior across a very wide range of conditions and for different humic and fulvic acids. Where published data for other metal ions are too sparse to constrain the model well, generic parameters have been estimated by interpolating trends observable in the parameter values of the well-defined data. Recommended generic NICA-Donnan model parameters are provided for 23 metal ions (Al, Am, Ba, Ca, Cd, Cm, Co, CrIII, Cu, Dy, Eu, FeII, FeIII, Hg, Mg, Mn, Ni, Pb, Sr, Thv, UVIO2, VIIIO, and Zn) for both fulvic and humic acids. These parameters probably represent the best NICA-Donnan description of metal-ion binding that can be achieved using existing data.

  14. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  15. Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells.

    PubMed

    Hayashi, Y; Tsunenari, T; Mori, T

    1999-03-01

    Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.

  16. TAME5OX, abiotic siderophore analogue to enterobactin involving 8-hydroxyquinoline subunits: Thermodynamic and photophysical studies

    NASA Astrophysics Data System (ADS)

    Akbar, Rifat; Baral, Minati; Kanungo, B. K.

    2015-05-01

    The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5‧-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe+3, Al+3 and Cr+3) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)]3+ below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Log β11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe+3, Al+3 and Cr+3 ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al3+ at pH 7.4, in water. Moreover, TAME5OX can distinguish Al3+ from Fe3+ and Cr3+ via two different sensing mechanisms: photoinduced electron transfer (PET) for Al3+ and internal charge transfer (ICT) for Fe3+ and Cr3+. Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies.

  17. TAME5OX, abiotic siderophore analogue to enterobactin involving 8-hydroxyquinoline subunits: thermodynamic and photophysical studies.

    PubMed

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2015-05-05

    The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5'-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe(+3), Al(+3) and Cr(+3)) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)](3+) below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Logβ11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe(+3), Al(+3) and Cr(+3) ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al(3+) at pH 7.4, in water. Moreover, TAME5OX can distinguish Al(3+) from Fe(3+) and Cr(3+) via two different sensing mechanisms: photoinduced electron transfer (PET) for Al(3+) and internal charge transfer (ICT) for Fe(3+) and Cr(3+). Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.K.; Chang, S.G.

    1987-04-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide form of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistrymore » relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.« less

  19. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D.K.; Chang, S.G.

    1987-01-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide from of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistrymore » relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.« less

  20. Spectroscopic studies of Fe(III) ion-exchanged ETS-10 and ETAS-10 molecular sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerfeld, D.A.; Ellis, W.R. Jr.; Eyring, E.M.

    1992-11-26

    Two new titanium silicate molecular sieves, designated ETS-10 and ETAS-10, have been ion-exchanged with Fe(III). Both products exhibit prominent EPR signals, at g = 6.0 and 4.3, that are assigned to populations of ferric iron on the surface and in the interior cavities, respectively, of the molecular sieve microcrystals. Corollary XPS measurements on these samples indicate that a substantial fraction of the surface iron is present as Fe(II). Chemical modification procedures have been explored in an effort to produce ion-exchanged materials containing no exterior iron. Acid treatment (pH 1.0) proved to be an effective means of achieving this goal inmore » the case of ETS-10-based materials. ETAS-10-based samples do not retain their crystallinity under these conditions. 35 refs., 4 figs., 2 tabs.« less

  1. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    NASA Astrophysics Data System (ADS)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  2. Evaluating and Improving Water Treatment Plant Processes at Fixed Army Installations.

    DTIC Science & Technology

    1985-05-01

    blender with variable speeds to handle different flow rates through the plant. * A coagulant feed system using orifices (facing upstream) may help achieve...cause the pipe to rupture. Tubercules are formed on pipe surfaces when iron ions are oxidized and ferric hydroxide precipitates: 2 + 2Fe + 5H20 + 1/20...2 2Fe (01)3 + 4H + " The tubercules interfere with flow and reduce the carrying capacity of the pipe . Several factors affect the rate of corrosion

  3. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  4. DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.

    1995-11-01

    A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less

  5. Spectroscopic characterization of metal bound phytochelatin analogue (Glu-Cys)4-Gly.

    PubMed

    Cheng, Yongsheng; Yan, Yong-Bin; Liu, Jinyuan

    2005-10-01

    The metal ion binding properties of a phytochelatin (PC) analogue, (Glu-Cys)4-Gly (named as EC4), have been studied by a divalent metal ion binding assay monitored by UV-visible spectroscopy, circular dichroism and NMR spectroscopy. Spectro- photometric titration with different divalent metal ions have revealed that the stiochoimetry of metal-bound EC4 was 1:1, and its metal binding affinities with different divalent metal ions in the order of Cd(II)>Cu(II)>Zn(II)>Pb(II)>Ni(II)>Co(II). UV-visible spectroscopic analysis of metal complexes indicated that four sulfur atoms in cysteine residues are attributable to ligand-to-metal charge transfer (LMCT) between divalent metal ions and EC4, and further confirmed by 1D H1 NMR study and Circular Dichroism. In addition, Circular Dichroism spectra of both free and metal-bound forms of EC4 revealed that metal coordination drives the nonapeptide chain to fold into a turned conformation. The comprehensive analysis of spectroscopic properties of the nonapeptide complexed with metal ions not only provides a fundamental description of the metal ion binding properties of PC analogue, but also shows a correlation between metal binding affinity of PC analogue and the induction activity of metal ions.

  6. Spectroscopic characterization of the oxyferrous complex of prostacyclin synthase in solution and in trapped sol–gel matrix

    PubMed Central

    Yeh, Hui-Chun; Hsu, Pei-Yung; Tsai, Ah-Lim; Wang, Lee-Ho

    2010-01-01

    Prostacyclin synthase (PGIS) is a member of the cytochrome P450 family in which the oxyferrous complexes are generally labile in the absence of substrate. At 4 °C, the on-rate constants and off-rate constants of oxygen binding to PGIS in solution are 5.9 × 105 m−1 ·s−1 and 29 s−1, respectively. The oxyferrous complex decays to a ferric form at a rate of 12 s−1. We report, for the first time, a stable oxyferrous complex of PGIS in a transparent sol–gel monolith. The encapsulated ferric PGIS retained the same spectroscopic features as in solution. The binding capabilities of the encapsulated PGIS were demonstrated by spectral changes upon the addition of O-based, N-based and C-based ligands. The peroxidase activity of PGIS in sol–gel was three orders of magnitude slower than that in solution owing to the restricted diffusion of the substrate in sol–gel. The oxyferrous complex in sol–gel was observable for 24 h at room temperature and displayed a much red-shifted Soret peak. Stabilization of the ferrous–carbon monoxide complex in sol–gel was observed as an enrichment of the 450-nm species over the 420-nm species. This result suggests that the sol–gel method may be applied to other P450s to generate a stable intermediate in the di-oxygen activation. PMID:18397321

  7. Rapid assay for microbially reducible ferric iron in aquatic sediments

    USGS Publications Warehouse

    Lovely, Derek R.; Philips , Elizabeth J.P.

    1987-01-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction.

  8. Yeast enolase: mechanism of activation by metal ions.

    PubMed

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  9. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or...

  10. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  11. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.

    PubMed

    Almog, Orna; González, Ana; Godin, Noa; de Leeuw, Marina; Mekel, Marlene J; Klein, Daniela; Braun, Sergei; Shoham, Gil; Walter, Richard L

    2009-02-01

    We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures. Copyright 2008 Wiley-Liss, Inc.

  12. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1.

    PubMed

    Brewer, J M; Wampler, J E

    2001-03-14

    The thermal denaturation of yeast enolase 1 was studied by differential scanning calorimetry (DSC) under conditions of subunit association/dissociation, enzymatic activity or substrate binding without turnover and substrate analogue binding. Subunit association stabilizes the enzyme, that is, the enzyme dissociates before denaturing. The conformational change produced by conformational metal ion binding increases thermal stability by reducing subunit dissociation. 'Substrate' or analogue binding additionally stabilizes the enzyme, irrespective of whether turnover is occurring, perhaps in part by the same mechanism. More strongly bound metal ions also stabilize the enzyme more, which we interpret as consistent with metal ion loss before denaturation, though possibly the denaturation pathway is different in the absence of metal ion. We suggest that some of the stabilization by 'substrate' and analogue binding is owing to the closure of moveable polypeptide loops about the active site, producing a more 'closed' and hence thermostable conformation.

  13. A dye-binding assay for measurement of the binding of Cu(II) to proteins.

    PubMed

    Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B

    2008-10-01

    We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).

  14. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis

    PubMed Central

    Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.

    2015-01-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  15. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  16. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  17. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities.

    PubMed

    Liger, Dominique; Graille, Marc; Zhou, Cong-Zhao; Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Blondeau, Karine; Janin, Joël; van Tilbeurgh, Herman

    2004-08-13

    Flavodoxins are involved in a variety of electron transfer reactions that are essential for life. Although FMN-binding proteins are well characterized in prokaryotic organisms, information is scarce for eukaryotic flavodoxins. We describe the 2.0-A resolution crystal structure of the Saccharomyces cerevisiae YLR011w gene product, a predicted flavoprotein. YLR011wp indeed adopts a flavodoxin fold, binds the FMN cofactor, and self-associates as a homodimer. Despite the absence of the flavodoxin key fingerprint motif involved in FMN binding, YLR011wp binds this cofactor in a manner very analogous to classical flavodoxins. YLR011wp closest structural homologue is the homodimeric Bacillus subtilis Yhda protein (25% sequence identity) whose homodimer perfectly superimposes onto the YLR011wp one. Yhda, whose function is not documented, has 53% sequence identity with the Bacillus sp. OY1-2 azoreductase. We show that YLR011wp has an NAD(P)H-dependent FMN reductase and a strong ferricyanide reductase activity. We further demonstrate a weak but specific reductive activity on azo dyes and nitrocompounds.

  18. Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone?

    PubMed

    Kalyuzhnyi, Yu V; Vlachy, Vojko; Dill, Ken A

    2010-06-21

    We use the AMSA, associative mean spherical theory of associative fluids, to study ion-ion interactions in explicit water. We model water molecules as hard spheres with four off-center square-well sites and ions as charged hard spheres with sticky sites that bind to water molecules or other ions. We consider alkali halide salts. The choice of model parameters is based on two premises: (i) The strength of the interaction between a monovalent ion and a water molecule is inversely proportional to the ionic (crystal) diameter sigma(i). Smaller ions bind to water more strongly than larger ions do, taking into account the asymmetry of the cation-water and anion-water interactions. (ii) The number of contacts an ion can make is proportional to sigma2(i). In short, small ions bind waters strongly, but only a few of them. Large ions bind waters weakly, but many of them. When both a monovalent cation and anion are large, it yields a small osmotic coefficient of the salt, since the water molecules avoid the space in between large ions. On the other hand, salts formed from one small and one large ion remain hydrated and their osmotic coefficient is high. The osmotic coefficients, calculated using this model in combination with the integral equation theory developed for associative fluids, follow the experimental trends, including the unusual behavior of caesium salts.

  19. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  20. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.

    PubMed

    Szunyogh, Dániel; Gyurcsik, Béla; Larsen, Flemming H; Stachura, Monika; Thulstrup, Peter W; Hemmingsen, Lars; Jancsó, Attila

    2015-07-28

    Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.

  1. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2%more » ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.« less

  2. Ferrous and ferric ion generation during iron electrocoagulation.

    PubMed

    Lakshmanan, Divagar; Clifford, Dennis A; Samanta, Gautam

    2009-05-15

    Our research on arsenate removal by iron electrocoagulation (EC) produced highly variable results, which appeared to be due to Fe2+ generation without subsequent oxidation to Fe3+. Because the environmental technology literature is contradictory with regard to the generation of ferric or ferrous ions during EC, the objective of this research was to establish the iron species generated during EC with iron anodes. Experimental results demonstrated that Fe2+, not Fe3+, was produced at the iron anode. Theoretical current efficiency was attained based on Fe2+ production with a clean iron rod, regardless of current, dissolved-oxygen (DO) level, or pH (6.5-8.5). The Fe2+ remaining after generation and mixing decreased with increasing pH and DO concentration due to rapid oxidation to Fe3+. At pH 8.5, Fe2+ was completely oxidized, which resulted in the desired Fe(OH)3(s)/ FeOOH(s), whereas, at pH 6.5 and 7.5, incomplete oxidation was observed, resulting in a mixture of soluble Fe2+ and insoluble Fe(OH)3(s)/FeOOH(s). When compared with Fe2+ chemical coagulation, a transient pH increase during EC led to faster Fe2+ oxidation. In summary, for EC in the pH 6.5-7.5 range and at low DO conditions, there is a likelihood of soluble Fe2+ species passing through a subsequentfiltration process resulting in secondary contamination and inefficient contaminant removals.

  3. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts.

    PubMed

    Glogauer, M; Ferrier, J; McCulloch, C A

    1995-11-01

    The ability to apply controlled forces to the cell membrane may enable elucidation of the mechanisms and pathways involved in signal transduction in response to applied physical stimuli. We have developed a magnetic particle-electromagnet model that allows the application of controlled forces to the plasma membrane of substrate-attached fibroblasts. The system allows applied forces to be controlled by the magnitude of the magnetic field and by the surface area of cell membrane covered with collagen-coated ferric beads. Analysis by single-cell ratio fluorimetry of fura 2-loaded cells demonstrated large calcium transients (50-300 nM) in response to the magnetic force applications. Experiments using either the stretch-activated channel blocker gadolinium chloride or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to eliminate external calcium ions, or addition of extracellular manganese ions, indicated that there was a calcium influx through putative stretch-activated channels. The probability of a calcium influx in single cells was increased by higher surface bead loading and the degree of cell spreading. Depolymerization of actin filaments by cytochalasin D increased the amplitude of calcium response twofold. The regulation of calcium flux by filamentous actin content and by cell spreading indicates a possible modulatory role for the cytoskeleton in channel sensitivity. Magnetic force application to beads on single cells provides a controlled model to study mechanisms and heterogeneity in physical force stimulation of cation-permeable channels.

  4. A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS

    EPA Science Inventory

    The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...

  5. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  7. Screening of biologically important Zn2 + by a chemosensor with fluorescent turn on-off mechanism

    NASA Astrophysics Data System (ADS)

    Khan, Tanveer A.; Sheoran, Monika; Nikhil Raj M., Venkata; Jain, Surbhi; Gupta, Diksha; Naik, Sunil G.

    2018-01-01

    Reported herein the synthesis, characterization and biologically important zinc ion binding propensity of a weakly fluorescent chemosensor, 4-methyl-2,6-bis((E)-(2-(4-phenylthiazol-2-yl)hydrazono)methyl)phenol (1). 1H NMR spectroscopic titration experiment reveals the binding knack of 1 to the essential Zn2 +. The photo-physical studies of 1 exhibit an enhancement in the fluorescence by several folds upon binding with the zinc ions attributed to PET-off process, with a binding constant value of 5.22 × 103 M- 1. 1 exhibits an excellent detection range for Zn2 + with lower detection limit value of 2.31 × 10- 8 M. The selectivity of 1 was studied with various mono and divalent metal cations and it was observed that most cations either quenches the fluorescence or remains unchanged except for Cd2 +, which shows a slight enhancement in fluorescence intensity of 1. The ratiometric displacement of Cd2 + ions by Zn2 + ions shows an excellent selectivity towards in-situ detection of Zn2 + ions. Photo-physical studies also support the reversible binding of 1 to Zn2 + ions having on and off mechanism in presence of EDTA. Such recognition of the biologically important zinc ions finds potential application in live cell imaging.

  8. Specificity in cationic interaction with poly(N-isopropylacrylamide).

    PubMed

    Du, Hongbo; Wickramasinghe, Sumith Ranil; Qian, Xianghong

    2013-05-02

    Classical molecular dynamics (MD) simulations were conducted for PNIPAM in 1 M monovalent alkali chloride salt solutions as well as in 0.5 M divalent Mg(2+) and Ca(2+) chloride salt solutions. It was found that the strength for the direct alkali ion-amide O binding is strongly correlated with the size of the ionic radius. The smallest Li(+) ion binds strongest to amide O, and the largest Cs(+) ion has the weakest interaction with the amide bond. For the divalent Mg(2+) and Ca(2+) ions, their interactions with the amide bond are weak and appear to be mediated by the water molecules, particularly in the case of Mg(2+), resulting from their strong hydration. The direct binding between the cations and amide O requires partial desovlation of the ions that is energetically unfavorable for Mg(2+) and also to a great extent for Ca(2+). The higher cation charge makes the electrostatic interaction more favorable but the dehydration process less favorable. This competition between electrostatic interaction and the dehydration process largely dictates whether the direct binding between the cation and amide O is energetically preferred or not. For monovalent alkali ions, it is energetically preferred to bind directly with the amide O. Moreover, Li(+) ion is also found to associate strongly with the hydrophobic residues on PNIPAM.

  9. Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms

    PubMed Central

    Noskov, Sergei Y.; Roux, Benoît

    2016-01-01

    The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500

  10. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  11. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    DOE R&D Accomplishments Database

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  12. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  13. Understanding How the Distal Environment Directs Reactivity in Chlorite Dismutase: Spectroscopy and Reactivity of Arg183 Mutants

    PubMed Central

    Blanc, Béatrice; Mayfield, Jeffery A.; McDonald, Claudia A.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2012-01-01

    The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O2 and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O–O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV–visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pKa values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pKa of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid–base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis. PMID:22313119

  14. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel.

    PubMed

    Arcario, Mark J; Mayne, Christopher G; Tajkhorshid, Emad

    2017-06-09

    General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    PubMed

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.

  16. Structure of Urtica dioica agglutinin isolectin I: dimer formation mediated by two zinc ions bound at the sugar-binding site.

    PubMed

    Harata, K; Schubert, W D; Muraki, M

    2001-11-01

    Ultica dioica agglutinin, a plant lectin from the stinging nettle, consists of a total of seven individual isolectins. One of these structures, isolectin I, was determined at 1.9 A resolution by the X-ray method. The crystals belong to the space group P2(1) and the asymmetric unit contains two molecules related by local twofold symmetry. The molecule consists of two hevein-like chitin-binding domains lacking distinct secondary structure, but four disulfide bonds in each domain maintain the tertiary structure. The backbone structure of the two independent molecules is essentially identical and this is similarly true of the sugar-binding sites. In the crystal, the C-terminal domains bind Zn(2+) ions at the sugar-binding site. Owing to their location near a pseudo-twofold axis, the two zinc ions link the two independent molecules in a tail-to-tail arrangement: thus, His47 of molecule 1 and His67 of molecule 2 coordinate the first zinc ion, while the second zinc ion links Asp75 of molecule 1 and His47 of molecule 2.

  17. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes.

    PubMed

    Arimi, Milton M; Zhang, Yongjun; Namango, Saul S; Geißen, Sven-Uwe

    2016-03-01

    Anaerobic digestion is used to treat effluents with a lot of organics, such as molasses distillery wastewater (MDW) which is the effluent of bioethanol production from molasses. The raw MDW requires a lot of dilution water before biodigestion, while the digested MDW has high level of recalcitrants which are problematic for its discharge. This study investigated ferric coagulation, Fenton, Fenton-like (with ferric ions as catalyst) processes and their combinations on the biodegradability of digested MDW. The Fenton and Fenton-like processes after coagulation increased the MDW biodegradability defined by (BOD5/COD) from 0.07 to (0.4-0.6) and saved 50% of H2O2 consumed in the classic Fenton process. The effluent from coagulation coupled to a Fenton-like process was used as dilution water for the raw MDW before the anaerobic digestion. The process was stable with volumetric loading of approx. 2.7 g COD/L/d. It resulted in increased overall biogas recovery and significantly decreased the demand for the dilution water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves.

    PubMed

    Sharma, Sonia; Vig, Adarsh Pal

    2013-01-01

    In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts.

  19. Evaluation of In Vitro Antioxidant Properties of Methanol and Aqueous Extracts of Parkinsonia aculeata L. Leaves

    PubMed Central

    Vig, Adarsh Pal

    2013-01-01

    In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts. PMID:24348173

  20. Green rusts synthesis by coprecipitation of Fe II-Fe III ions and mass-balance diagram

    NASA Astrophysics Data System (ADS)

    Ruby, Christian; Aïssa, Rabha; Géhin, Antoine; Cortot, Jérôme; Abdelmoula, Mustapha; Génin, Jean-Marie

    2006-06-01

    A basic solution is progressively added to various mixed Fe II-Fe III solutions. The nature and the relative quantities of the compounds that form can be visualised in a mass-balance diagram. The formation of hydroxysulphate green rust {GR( SO42-)} is preceded by the precipitation of a sulphated ferric basic salt that transforms in a badly ordered ferric oxyhydroxide. Then octahedrally coordinated Fe II species and SO42- anions are adsorbed on the FeOOH surface and GR( SO42-) is formed at the solid/solution interface. By using the same method of preparation, other types of green rust were synthesised, e.g. hydroxycarbonate green rust {GR( CO32-)}. Like other layered double hydroxides, green rusts obey the general chemical formula [ṡ[ṡmHO]x+ with x⩽1/3. Al-substituted hydroxysulphate green rust consists of small hexagonal crystals with a lateral size ˜50 nm, which is significantly smaller than the size of the GR( SO42-) crystals (˜500 nm). To cite this article: C. Ruby et al., C. R. Geoscience 338 (2006).

  1. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    PubMed

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  2. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric chloride production subcategory. The provisions of this subpart are applicable to discharges and to the...

  3. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  4. Remedying acidification and deterioration of aerobic post-treatment of digested effluent by using zero-valent iron.

    PubMed

    Wang, Shen; Zheng, Dan; Wang, Shuang; Wang, Lan; Lei, Yunhui; Xu, Ze; Deng, Liangwei

    2018-01-01

    This study presents a novel strategy for remedying acidification and improving the removal efficiency of pollutants from digested effluent by using Zero-Valent Iron (iron scraps) in a sequencing batch reactor. Through this strategy, the pH increased from 5.7 (mixed liquid in the reactor without added ZVI) to 7.8 (reactors with added ZVI) because of Fe 0 oxidation and NO 3 - reduction. The removal efficiencies of COD increased from 11.5% to 77.5% because of oxidation of ferric ion and OH produced in chemical reactions of ZVI with oxygen and because of flocculation of iron ions. The removal efficiencies of total nitrogen rose from 1.83% to 93.3% probably because of autotrophic denitrification using electron donors produced by the corrosion of iron, as well as the favorable conditions for anammox due to iron ions. Total phosphorus increased from -25.8% to 77.1% because of the increase in pH and the precipitation with iron ions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing...

  6. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5306 Ferric sodium pyrophosphate. (a) Product. Ferric sodium pyrophosphate. (b...

  7. Using 15N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy

    PubMed Central

    Werbeck, Nicolas D; Kirkpatrick, John; Reinstein, Jochen; Hansen, D Flemming

    2014-01-01

    A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic radii. In these cases, ammonium can be used as a proxy for potassium to characterise potassium binding sites in enzymes: the 1H,15N spin-pair of enzyme-bound 15NH4+ can be probed by 15N-edited heteronuclear NMR experiments. Here, we demonstrate the use of NMR spectroscopy to characterise binding of ammonium ions to two different enzymes: human histone deacetylase 8 (HDAC8), which is activated allosterically by potassium, and the bacterial Hsp70 homologue DnaK, for which potassium is an integral part of the active site. Ammonium activates both enzymes in a similar way to potassium, thus supporting this non-invasive approach. Furthermore, we present an approach to map the observed binding site onto the structure of HDAC8. Our method for mapping the binding site is general and does not require chemical shift assignment of the enzyme resonances. PMID:24520048

  8. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  9. Unusual heme iron-lipid acyl chain coordination in Escherichia coli flavohemoglobin.

    PubMed

    D'Angelo, Paola; Lucarelli, Debora; della Longa, Stefano; Benfatto, Maurizio; Hazemann, Jean Louis; Feis, Alessandro; Smulevich, Giulietta; Ilari, Andrea; Bonamore, Alessandra; Boffi, Alberto

    2004-06-01

    Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 A in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 A (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 A resolution obtained in the present work. Thus, the contributions at 2.7 A distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid.

  10. Ion Selectivity in the KcsA Potassium Channel from the Perspective of the Ion Binding Site

    PubMed Central

    Dixit, Purushottam D.; Merchant, Safir; Asthagiri, D.

    2009-01-01

    To understand the thermodynamic exclusion of Na+ relative to K+ from the S2 site of the selectivity filter, the distribution PX(ɛ) (X = K+ or Na+) of the binding energy (ɛ) of the ion with the channel is analyzed using the potential distribution theorem. By expressing the excess chemical potential of the ion as a sum of mean-field 〈ɛ〉 and fluctuation μexflux,X contributions, we find that selectivity arises from a higher value of μflux,Na+ex relative to μflux,K+ex. To understand the role of site-site interactions on μexflux,X, we decompose PX(ɛ) into n-dependent distributions, where n is the number of ion-coordinating ligands within a distance λ from the ion. For λ comparable to typical ion-oxygen bond distances, investigations building on this multistate model reveal an inverse correlation between favorable ion-site and site-site interactions: the ion-coordination states that most influence the thermodynamics of the ion are also those for which the binding site is energetically less strained and vice versa. This correlation motivates understanding entropic effects in ion binding to the site and leads to the finding that μexflux,X is directly proportional to the average site-site interaction energy, a quantity that is sensitive to the chemical type of the ligand coordinating the ion. Increasing the coordination number around Na+ only partially accounts for the observed magnitude of selectivity; acknowledging the chemical type of the ion-coordinating ligand is essential. PMID:19289040

  11. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    PubMed

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  12. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Calorimetric and counterion binding studies of the interactions between micelles and ions. The observation of lyotropic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, J.W.; Magid, L.J.

    1974-09-04

    Heats of transfer of a variety of salts from water to solutions of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulfate (NaLS) were measured. Lyotropic series for both cations and anions were observed for all soaps, the series for the 2 cationic soaps being almost identical. The dependence of the observed heats of transfer for anions from H/sub 2/O to CTAB and DTAB solutions and for cations from H2O to NaLS solutions on the hydrated radii of the ions involved supports the contention that favorable binding of counterions depends on how closely they can approach the charged micellarmore » surfaces. It is clear that a lyotropic series similar to that existing for proteins exists for ion binding to micelles. The controlling factor in this binding seems to be the distance of closest approach of the ion to the micelle, although polarizable organic ions may be the exceptions. Chain length has little effect on binding. It is felt that the work discussed has established the usefulness of a calorimetric investigation and the use of ion-specific electrodes for characterizing surfactant systems containing more than one species of counterions. (37 refs.)« less

  14. Simulation of a model nanopore sensor: Ion competition underlies device behavior.

    PubMed

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-28

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  15. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    NASA Astrophysics Data System (ADS)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  16. Specific binding of trivalent metal ions to λ-carrageenan.

    PubMed

    Cao, Yiping; Li, Shugang; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O; Lerbret, Adrien; Assifaoui, Ali

    2018-04-01

    Carrageenans are a family of sulphated cell wall polysaccharides extracted from seaweeds and are widely used in different industrial sectors. Relative to κ-carrageenan (κ-car) and ι-carrageenan (ι-car), the ionic binding behavior of λ-carrageenan (λ-car) is far less studied. In this work, the interaction and binding behavior between λ-car and metal ions of different valency (Na + , K + , Mg 2+ , Ca 2+ , Fe 2+ , Fe 3+ , Al 3+ , Cr 3+ ) have been investigated. In contrast to the non-specific interaction of the monovalent and divalent cations, specific binding has been identified between λ-car and Fe 3+ /Al 3+ . The specific binding could lead to either precipitation or gelation of λ-car, depending on the way of introducing Fe 3+ /Al 3+ ions. Fe 3+ and Al 3+ exhibit the same binding stoichiometry of [M 3+ ]/[repeating unit] = 1.0, with the former having a relatively larger binding constant. Cr 3+ , though having very similar physical properties with Fe 3+ /Al 3+ , is incapable of binding specifically to Cr 3+ . The phenomena could not be interpreted in terms of counterion condensation, and are rather attributable to a mechanism in which hexa-coordination of Fe 3+ /Al 3+ and entropy-driven cation dehydration play crucial roles in driving the binding of the trivalent metal ions to λ-car. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate

    PubMed Central

    Lott, William B.; Pontius, Brian W.; von Hippel, Peter H.

    1998-01-01

    Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 μM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and >50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and >37.5 μM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2′-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5′-oxygen in the transition state. We suggest structural reasons why the Mg2+–La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction. PMID:9435228

  18. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  19. Structure and electronic properties of ion pairs accompanying cyclic morpholinium cation and alkylphosphite anion based ionic liquids

    NASA Astrophysics Data System (ADS)

    Verma, Prakash L.; Singh, Priti; Gejji, Shridhar P.

    2017-07-01

    Molecular insights for the formation of ion pairs accompanying the cyclic ammonium cation based room temperature ionic liquids (RTILs) composed of alkyl substituted N-methylmorpholinium (RMMor) and alkylphosphite [(Rsbnd O)2PHdbnd O] (Rdbnd ethyl, butyl, hexyl, octyl) anion have been derived from the M06-2x level of theory. Electronic structures, binding energies, and spectral characteristics of the ion pairs underlying these RTILs have been characterized. The ion pair formation is largely governed by Csbnd H⋯O and other intermolecular interactions. Calculated binding energies increase with the increasing alkyl chain on either cation or alkylphosphite anion. The cation-anion binding reveals signature in the frequency down-(red) shift of the characteristic anionic Pdbnd O stretching whereas the Psbnd H stretching exhibits a shift in the opposite direction in vibrational spectra which has further been rationalized through molecular electron density topography. Correlations of measured electrochemical stability with the separation of frontier orbital energies and binding energies in the ion pairs have further been established.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof

    The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less

  1. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.

    PubMed

    Santos-Ocaña, C; Navas, P; Crane, F L; Córdoba, F

    1995-12-01

    The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.

  2. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size

    NASA Astrophysics Data System (ADS)

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C.

    2018-06-01

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+, Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  3. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size.

    PubMed

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C

    2018-06-14

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS 2 ) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na + , Zn 2+ , and Fe 3+ ) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS 2 shows 100% of Fe 3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  4. Ammonium Ion Binding to DNA G-Quadruplexes: Do Electrospray Mass Spectra Faithfully Reflect the Solution-Phase Species?

    NASA Astrophysics Data System (ADS)

    Balthasart, Françoise; Plavec, Janez; Gabelica, Valérie

    2013-01-01

    G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG4T4G4)2, (dG4T3G4)2, and (dG3T4G4)2, and the intramolecular G-quadruplexes dG4(T4G4)3 and dG2T2G2TGTG2T2G2 (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.[Figure not available: see fulltext.

  5. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  6. Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules† †Electronic supplementary information (ESI) available: Detailed description of the experimental and computational modeling methods. Isolation, BIRD and UVPD sequence for [Ru(NH3)6]3+·(H2O)169–171, nanoESI spectra for 2+ and 3+ ions. Detailed description of the isotope distribution simulation program. Comparison between experimental and simulated 1+, 2+ and 3+ ion isotope distributions. Wavelength dependence of the deduced sequential binding enthalpies. Comparison of experimental UVPD binding enthalpies to the liquid drop model at different temperatures. Complete list of binding enthalpies and average number of water molecules lost upon UVPD. See DOI: 10.1039/c6sc04957e Click here for additional data file.

    PubMed Central

    Heiles, Sven; Cooper, Richard J.; DiTucci, Matthew J.

    2017-01-01

    Sequential water molecule binding enthalpies, ΔH n,n–1, are important for a detailed understanding of competitive interactions between ions, water and solute molecules, and how these interactions affect physical properties of ion-containing nanodrops that are important in aerosol chemistry. Water molecule binding enthalpies have been measured for small clusters of many different ions, but these values for ion-containing nanodrops containing more than 20 water molecules are scarce. Here, ΔH n,n–1 values are deduced from high-precision ultraviolet photodissociation (UVPD) measurements as a function of ion identity, charge state and cluster size between 20–500 water molecules and for ions with +1, +2 and +3 charges. The ΔH n,n–1 values are obtained from the number of water molecules lost upon photoexcitation at a known wavelength, and modeling of the release of energy into the translational, rotational and vibrational motions of the products. The ΔH n,n–1 values range from 36.82 to 50.21 kJ mol–1. For clusters containing more than ∼250 water molecules, the binding enthalpies are between the bulk heat of vaporization (44.8 kJ mol–1) and the sublimation enthalpy of bulk ice (51.0 kJ mol–1). These values depend on ion charge state for clusters with fewer than 150 water molecules, but there is a negligible dependence at larger size. There is a minimum in the ΔH n,n–1 values that depends on the cluster size and ion charge state, which can be attributed to the competing effects of ion solvation and surface energy. The experimental ΔH n,n–1 values can be fit to the Thomson liquid drop model (TLDM) using bulk ice parameters. By optimizing the surface tension and temperature change of the logarithmic partial pressure for the TLDM, the experimental sequential water molecule binding enthalpies can be fit with an accuracy of ±3.3 kJ mol–1 over the entire range of cluster sizes. PMID:28451364

  7. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  8. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.

    PubMed

    Cortopassi, Wilian A; Simion, Robert; Honsby, Charles E; França, Tanos C C; Paton, Robert S

    2015-12-21

    JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated usingmore » a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.« less

  10. Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme

    NASA Astrophysics Data System (ADS)

    Harris, Michael E.; Christian, Eric L.

    There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.

  11. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA

    PubMed Central

    2016-01-01

    An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. PMID:27983843

  12. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA.

    PubMed

    Hayatshahi, Hamed S; Roe, Daniel R; Galindo-Murillo, Rodrigo; Hall, Kathleen B; Cheatham, Thomas E

    2017-01-26

    An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.

  13. Mechanistic characterization of the HDV genomic ribozyme: a mutant of the C41 motif provides insight into the positioning and thermodynamic linkage of metal ions and protons.

    PubMed

    Nakano, Shu-ichi; Bevilacqua, Philip C

    2007-03-20

    Binding of two Mg2+ and two H+ ions influences the self-cleavage activity of the genomic HDV ribozyme. The positioning of these four ligands and their thermodynamic linkage are not fully resolved. Protonated C41 engages in a base triple, whereas protonated C75 has been implicated as an acid-base catalyst in bond cleavage. Prior studies led to the identification of one structural inner-sphere ion and one catalytic outer-sphere ion. In the present study, the contributions of the C41 base triple to the metal ion- and pH-dependence of the reaction are examined. Experiments were conducted on a CG to UA double mutant (DM), which changes the base triple to one involving an unprotonated C41. Below pH 6, the DM has a steeper dependence on pH than the wild-type (WT), consistent with a single protonation misfolding the core; this conclusion is also supported by thermal denaturation studies. Between pH 6 and 8, the WT and DM display nearly identical catalytic metal ion and H+ binding profiles. In contrast, over the same pH range, the WT and DM have distinct structural ion binding profiles; for the WT, binding is favored at lower pH, whereas the DM shows no pH dependence. These data localize the structural ion to the vicinity of the C41 motif. An overall model is presented that accommodates binding affinity, coupling, and positioning of the two metal ions and the two protons within the ribozyme. The data suggest that a protonated base triple allows the WT ribozyme to maintain appreciable activity at acidic pH, which could play an important role in the life cycle of the virus.

  14. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristin

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less

  16. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  17. Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.

  18. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  19. Interactions between Hofmeister anions and the binding pocket of a protein.

    PubMed

    Fox, Jerome M; Kang, Kyungtae; Sherman, Woody; Héroux, Annie; Sastry, G Madhavi; Baghbanzadeh, Mostafa; Lockett, Matthew R; Whitesides, George M

    2015-03-25

    This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to—and to alter the charge and hydration structure of—polar, nonpolar, and topographically complex concavities on the surfaces of proteins.

  20. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  1. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  2. Reversible cobalt ion binding to imidazole-modified nanopipettes

    PubMed Central

    Sa, Niya; Fu, Yaqin; Baker, Lane A.

    2010-01-01

    In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co2+) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification response. By cycling nanopipettes between solutions of different pH, adsorbed Co2+ can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses to be attained. PMID:21090777

  3. Reversible cobalt ion binding to imidazole-modified nanopipettes.

    PubMed

    Sa, Niya; Fu, Yaqin; Baker, Lane A

    2010-12-15

    In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co(2+)) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification ratio. When nanopipettes are cycled between solutions of different pH, adsorbed Co(2+) can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses can be attained.

  4. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  5. Growth, spectroscopic and physicochemical properties of bis mercury ferric chloride tetra thiocyanate: A nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Ramesh, V.; Shihabuddeen Syed, A.; Jagannathan, K.; Rajarajan, K.

    2013-05-01

    Single crystal of bis mercury ferric chloride tetra thiocyanate [Hg2FeCl3(SCN)4; (MFCTC)] was grown from ethanol-water (3:1) mixed solvent using slow evaporation solvent technique (SEST) for the first time. The cell parameters of the grown crystal were confirmed by single crystal XRD. The coordination of transition metal ions with the SCN ligand is well-identified using FT-IR spectral analysis. The chemical composition of MFCTC was confirmed using CHNS elemental test. The ESR spectral profile of MFCTC was recorded from 298 K to 110 K, which strongly suggests the incorporation of Fe3+ ion and its environment with respect to SCN ligand. The HPLC chromatogram of MFCTC highlights the purity of the compound. The UV-Vis-NIR studies revealed the ultra violet cut-off wavelength of MFCTC in ethanol as 338 nm. The dielectric constant and dielectric loss of the sample were studied as a function of frequency and temperature. The TGA-DTA and DSC thermal analysis show that the sample is thermally stable up to 234.31 °C, which is comparatively far better than the thermal stability of Hg3CdCl2(SCN)6; (171.3 °C) and other metal-organic coordination complex crystals such as CdHg(SCN)4 (198.5 °C), Hg(N2H4CS)4Mn(SCN)4 (199.06 °C) and Hg(N2H4CS)4Zn(SCN)4 (185 °C). The SHG conversion efficiency of MFCTC is found to be higher than KDP.

  6. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2013-01-01

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by L-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. PMID:23258274

  7. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  8. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  9. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  10. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  11. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  12. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  13. Multifunctional properties of polysaccharides from Dalbergia sissoo, Tectona grandis and Mimosa diplotricha.

    PubMed

    Rana, Vikas; Das, Manuj K; Gogoi, Satyabrat; Kumar, Vineet

    2014-02-15

    Three water-soluble polysaccharides were isolated and purified from the leaves of Dalbergia sissoo Roxb. (DSLP), bark of Tectona grandis L. f (TGBP) and seeds of Mimosa diplotricha var. diplotricha Sauvalle (MDSP). Antioxidant and moisture preserving activities of these three polysaccharides were investigated using in vitro methods. The antioxidant activities studied include superoxide (O2(*-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH*), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(*+)), hydroxyl (OH(-)), nitric oxide (NO*), N,N-dimethyl-p-phenylenediamine (DMPD(+)) radical scavenging activities, ferric ion (Fe(3+)) reducing ability, ferrous ion (Fe(2+)) chelating and lipid peroxidation activities. The study revealed higher activity of TGBP in all antioxidant assays than DSLP and MDSP. Further, the three polysaccharides showed effective moisture retention properties in comparison with hyaluronic acid and glycerol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Spectral chemistry of green glass-bearing 15426 regolith

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Dyar, M. D.

    1983-01-01

    The detection of appreciable concentrations of ferric iron in a synthetic green glass equilibrated at an oxygen fugacity of 10 to the -11th atm prompted a Moessbauer spectral study of pristine emerald-green glass spherules carefully handpicked from regolith sample 15426. No Fe(3+) ions were detected in this lunar sample or in a synthetic green glass simulant equilibrated at fO2 = 10 to the -14th atm, suggesting that the green glass clods in rock 15426 formed under conditions of correspondingly low oxygen fugacities. The Moessbauer spectra indicated the presence of olivine crystallites in the lunar emerald green glass spherules. Measurements of homogeneous and partially devitrified synthetic silicate glasses revealed that significant changes of coordination environment about Fe(2+) ions in the glass structure occur during crystallization of olivine crystals from the melt.

  15. Metal Ion Interactions with Immunoglobulin G (IgG). 1. Preliminary Studies with Electron Paramagnetic Resonance (EPR) Spectroscopy and Ultrafiltration

    DTIC Science & Technology

    1978-12-12

    EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non

  16. Theoretical study of the BeLi, BeNa, MgLi, MgNa, and AlBe molecules and their negative ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1992-01-01

    The alkaline earth-alkali diatomics are found to have weak bonds, because the diffuse alkali valence s orbitals cannot form a bond of sufficient strength to pay the promotion energy of the alkaline-earth atoms. This leads to van der Waals bonding in the neutrals as well as the negative ions. In fact, the negative ions have larger binding energies than the neutrals as a result of the much larger polarizability of the negative ion. The binding energy of AlBe is significantly larger than the Be-alkali molecules, due to a covalent contribution to the bonding. The binding energy in AlBe(-) is considerably larger than AlBe; the binding energy of the X 3Sigma(-) state of AlBe(-) is computed to be 1.36 eV, as compared with 0.57 eV for the X 2Pi state of AlBe.

  17. Cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions.

    PubMed

    Okajima, Maiko K; Miyazato, Shinji; Kaneko, Tatsuo

    2009-08-04

    We extracted the megamolecular polysaccharide sacran, which contains carboxylate and sulfate groups, from the jellylike extracellular matrix (ECM) of the cyanobacterium Aphanothece sacrum, which has mineral adsorption bioactivity. We investigated the gelation properties of sacran binding with various heavy metal ions. The sacran chain adsorbed heavier metal ions such as indium, rare earth metals, and lead ions more efficiently to form gel beads. In addition, trivalent metal ions adsorbed onto the sacran chains more efficiently than did divalent ions. The investigation of the metal ion binding ratio on sacran chains demonstrated that sacran adsorbed gadolinium trivalent ions more efficiently than indium trivalent ions. Gel bead formation may be closely correlated to the liquid-crystalline organization of sacran.

  18. Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents

    PubMed Central

    Hao, Linlin; Wang, Peng; Valiyaveettil, Suresh

    2017-01-01

    For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (qexp). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification. PMID:28220853

  19. Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents

    NASA Astrophysics Data System (ADS)

    Hao, Linlin; Wang, Peng; Valiyaveettil, Suresh

    2017-02-01

    For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (qexp). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification.

  20. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  1. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.

    PubMed

    Prakash, Arushi; Sprenger, K G; Pfaendtner, Jim

    2018-03-29

    Many proteins exhibit strong binding affinities to surfaces, with binding energies much greater than thermal fluctuations. When modelling these protein-surface systems with classical molecular dynamics (MD) simulations, the large forces that exist at the protein/surface interface generally confine the system to a single free energy minimum. Exploring the full conformational space of the protein, especially finding other stable structures, becomes prohibitively expensive. Coupling MD simulations with metadynamics (enhanced sampling) has fast become a common method for sampling the adsorption of such proteins. In this paper, we compare three different flavors of metadynamics, specifically well-tempered, parallel-bias, and parallel-tempering in the well-tempered ensemble, to exhaustively sample the conformational surface-binding landscape of model peptide GGKGG. We investigate the effect of mobile ions and ion charge, as well as the choice of collective variable (CV), on the binding free energy of the peptide. We make the case for explicitly biasing ions to sample the true binding free energy of biomolecules when the ion concentration is high and the binding free energies of the solute and ions are similar. We also make the case for choosing CVs that apply bias to all atoms of the solute to speed up calculations and obtain the maximum possible amount of information about the system. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  3. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  4. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  5. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  6. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  7. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  8. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  9. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  10. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  11. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  12. Dynamics and lithium binding energies of polyelectrolytes based on functionalized poly(para-phenylene terephthalamide).

    PubMed

    Grozema, F C; Best, A S; van Eijck, L; Stride, J; Kearley, G J; de Leeuw, S W; Picken, S J

    2005-04-28

    Polyelectrolyte materials are an interesting class of electrolytes for use in fuel cell and battery applications. Poly(para-phenylene terephthalamide) (PPTA, Kevlar) is a liquid crystalline polymer that, when sulfonated, is a polyelectrolyte that exhibits moderate ion conductivity at elevated temperatures. In this work, quasi-elastic neutron scattering (QENS) experiments were performed to gain insight into the effect of the presence of lithium counterions on the chain dynamics in the material. It was found that the addition of lithium ions decreases the dynamics of the chains. Additionally, the binding of lithium ions to the sulfonic acids groups was investigated by density functional theory (DFT) calculations. It was found that the local surroundings of the sulfonic acid group have very little effect on the lithium-ion binding energy. Binding energies for a variety of different systems were all calculated to be around 150 kcal/mol. The DFT calculations also show the existence of a structure in which a single lithium ion interacts with two sulfonic acid moieties on different chains. The formation of such "electrostatic cross-links" is believed to be the source of the increased tendency to aggregate and the reduced dynamics in the presence of lithium ions.

  13. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata

    PubMed Central

    Cabral, Augusto C. S.; Jakovleska, Jovana; Deb, Aniruddha; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2017-01-01

    The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding. PMID:29218632

  14. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  15. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. The Phosphate Binder Ferric Citrate and Mineral Metabolism and Inflammatory Markers in Maintenance Dialysis Patients: Results From Prespecified Analyses of a Randomized Clinical Trial

    PubMed Central

    Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.

    2016-01-01

    Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079

  17. Counter-ion binding and mobility in the presence of hydrophobic polyions – combining molecular dynamics simulations and NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druchok, Maksym; Malikova, Natalie; Rollet, Anne-Laure

    Counter-ion binding and mobility in aqueous solutions of partially hydrophobic ionene oligoions is studied here by a combination of all-atomic molecular dynamics (MD) simulations and NMR ({sup 19}F and {sup 81}Br nuclei) measurements. We present results for 12, 12–ionenes in the presence of different halide ions (F{sup −}, Cl{sup −}, Br{sup −} and I{sup −}), as well as their mixtures; the latter allowing us to probe counter-ion selectivity of these oligoions. We consolidate both structural and dynamic information, in particular simulated radial distribution functions and average residence times of counter-ions in the vicinity of ionenes and NMR data in themore » form of counter-ion chemical shift and self-diffusion coefficients. On one hand, previously reported enthalpy of dilution and mixing measurements show a reverse counter-ion sequence for 12, 12–ionenes with respect to their less hydrophobic 3, 3– and 6, 6– analogues. On the other hand, the current MD and NMR data, reflecting the counter-ion binding tendencies to the ionene chain, give evidence for the same ordering as that observed by MD for 3, 3–ionenes. This is not seen as a contradiction and can be rationalized on the basis of increasing chain hydrophobicity, which has different consequences for enthalpy and ion-binding. The latter is reflecting free energy changes and as such includes both enthalpic and entropic contributions.« less

  18. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  19. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD.

    PubMed

    Yokoyama, Keitaro; Hirakata, Hideki; Akiba, Takashi; Fukagawa, Masafumi; Nakayama, Masaaki; Sawada, Kenichi; Kumagai, Yuji; Block, Geoffrey A

    2014-03-01

    Ferric citrate hydrate is a novel iron-based phosphate binder being developed for hyperphosphatemia in patients with CKD. A phase 3, multicenter, randomized, double blind, placebo-controlled study investigated the efficacy and safety of ferric citrate hydrate in nondialysis-dependent patients with CKD. Starting in April of 2011, 90 CKD patients (eGFR=9.21±5.72 ml/min per 1.73 m(2)) with a serum phosphate≥5.0 mg/dl were randomized 2:1 to ferric citrate hydrate or placebo for 12 weeks. The primary end point was change in serum phosphate from baseline to the end of treatment. Secondary end points included the percentage of patients achieving target serum phosphate levels (2.5-4.5 mg/dl) and change in fibroblast growth factor-23 at the end of treatment. The mean change in serum phosphate was -1.29 mg/dl (95% confidence interval, -1.63 to -0.96 mg/dl) in the ferric citrate hydrate group and 0.06 mg/dl (95% confidence interval, -0.20 to 0.31 mg/dl) in the placebo group (P<0.001 for difference between groups). The percentage of patients achieving target serum phosphate levels was 64.9% in the ferric citrate hydrate group and 6.9% in the placebo group (P<0.001). Fibroblast growth factor-23 concentrations were significantly lower in patients treated with ferric citrate hydrate versus placebo (change from baseline [median], -142.0 versus 67.0 pg/ml; P<0.001). Ferric citrate hydrate significantly increased serum iron, ferritin, and transferrin saturation compared with placebo (P=0.001 or P<0.001). Five patients discontinued active treatment because of treatment-emergent adverse events with ferric citrate hydrate treatment versus one patient with placebo. Overall, adverse drug reactions were similar in patients receiving ferric citrate hydrate or placebo, with gastrointestinal disorders occurring in 30.0% of ferric citrate hydrate patients and 26.7% of patients receiving placebo. In patients with nondialysis-dependent CKD, 12-week treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and fibroblast growth factor-23 while simultaneously increasing serum iron parameters.

  20. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    PubMed

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  1. Ferric Citrate Decreases Fibroblast Growth Factor 23 and Improves Erythropoietin Responsiveness in Hemodialysis Patients.

    PubMed

    Maruyama, Noriaki; Otsuki, Tomoyasu; Yoshida, Yoshinori; Nagura, Chinami; Kitai, Maki; Shibahara, Nami; Tomita, Hyoe; Maruyama, Takashi; Abe, Masanori

    2018-06-06

    Serum phosphate and vitamin D receptor activator regulate fibroblast growth factor 23 (FGF23), and iron may modulate FGF23 metabolism. The aim of the present study was to elucidate the effects of ferric citrate hydrate and lanthanum carbohydrate on serum FGF23 levels in hemodialysis patients. This prospective, open-label, multicenter study enrolled 60 patients on hemodialysis treated with lanthanum carbonate. Patients were randomly assigned to 2 groups: those switching from lanthanum carbonate to ferric citrate hydrate (ferric citrate group, n = 30) or those continuing lanthanum carbonate (control group, n = 30). Patients were monitored for 24 weeks. Endpoints included changes in FGF23, phosphate, and the dose of erythropoiesis stimulating agent (ESA), erythropoietin responsiveness index (ERI), and adverse events. FGF-23 levels were significantly lower in the ferric citrate group compared with the levels in the control group (change from baseline -6,160 vs. -1,118 pg/mL; p = 0.026). There were no significant changes in serum calcium, phosphate, and intact parathyroid hormone levels in either group. The ferric citrate group had significantly increased serum iron, ferritin, and transferrin saturation. Hemoglobin levels were significantly elevated, and the dose of ESA was significantly decreased in the ferric citrate group but not in the control group. ERI and the dose of intravenous saccharated ferric oxide were significantly lower in the ferric citrate group compared with those of the control group (p = 0.015 and p = 0.002). In patients on hemodialysis, 24-week treatment with ferric citrate hydrate resulted in significant reduction in FGF23 and ERI independently of serum phosphate level. © 2018 S. Karger AG, Basel.

  2. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  3. Proton delivery in NO reduction by fungal nitric-oxide reductase. Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes.

    PubMed

    Shimizu, H; Obayashi, E; Gomi, Y; Arakawa, H; Park, S Y; Nakamura, H; Adachi, S; Shoun, H; Shiro, Y

    2000-02-18

    Fungal nitric-oxide reductase (NOR) is a heme enzyme that catalyzes the reduction of NO to N(2)O through its ferric-NO complex, the first intermediate of the catalysis. Crystal structures of the ferric-NO forms of wild type (WT) fungal NOR, and of the Ser(286) --> Val and Ser(286) --> Thr mutant enzymes were determined to 1.7-A resolution at cryogenic temperature (100 K). This shows a slightly tilted and bent NO binding to the heme iron, in sharp contrast to the highly bent NO coordination found in ferrous hemoproteins. In the WT structure, a specific hydrogen-bonding network that connects the active site to the solvent was identified, H(2)O(Wat(74))-Ser(286)-H(2)O(Wat(33))-Asp(393)-solvent. Wat(74) is located 3.10 A from the iron-bound NO. Replacement of Ser(286) with Val or Thr scarcely alters the NO coordination structure but expels the water molecules, Wat(74) from the active site. The Asp(393) mutation does not influence the position of Wat(74), but disrupts the hydrogen-bonding network at Wat(33), as evidenced by enzymatic, kinetic, and spectroscopic (resonance Raman and IR) results. The structural changes observed upon the Ser(286) or the Asp(393) mutation are consistent with the dramatic loss of the enzymatic activity for the NO reduction of fungal NOR. We have conclusively identified the water molecule, Wat(74), adjacent to the iron-bound NO as a proton donor to the Fe-NO moiety. In addition, we find the hydrogen-bonding network, H(2)O(Wat(74))-Ser(286)-H(2)O(Wat(33))-Asp(393), as a proton delivery pathway in the NO reduction reaction by fungal NOR.

  4. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    PubMed

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  5. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity seems to be necessary for maintaining reducing conditions in the environments studied. ?? 1958.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  7. Carrageenans as a new source of drugs with metal binding properties.

    PubMed

    Khotimchenko, Yuri S; Khozhaenko, Elena V; Khotimchenko, Maxim Y; Kolenchenko, Elena A; Kovalev, Valeri V

    2010-04-01

    Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y(3+) or Pb(2+) ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that kappa-, iota-, and lambda-carrageenans are favorable sorbents. The largest amount of Y(3+) and Pb(2+) ions are bound by iota-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties.

  8. A Single Serine Residue Determines Selectivity to Monovalent Metal Ions in Metalloregulators of the MerR Family

    PubMed Central

    Ibáñez, María M.

    2015-01-01

    ABSTRACT MerR metalloregulators alleviate toxicity caused by an excess of metal ions, such as copper, zinc, mercury, lead, cadmium, silver, or gold, by triggering the expression of specific efflux or detoxification systems upon metal detection. The sensor protein binds the inducer metal ion by using two conserved cysteine residues at the C-terminal metal-binding loop (MBL). Divalent metal ion sensors, such as MerR and ZntR, require a third cysteine residue, located at the beginning of the dimerization (α5) helix, for metal coordination, while monovalent metal ion sensors, such as CueR and GolS, have a serine residue at this position. This serine residue was proposed to provide hydrophobic and steric restrictions to privilege the binding of monovalent metal ions. Here we show that the presence of alanine at this position does not modify the activation pattern of monovalent metal sensors. In contrast, GolS or CueR mutant sensors with a substitution of cysteine for the serine residue respond to monovalent metal ions or Hg(II) with high sensitivities. Furthermore, in a mutant deleted of the Zn(II) exporter ZntA, they also trigger the expression of their target genes in response to either Zn(II), Cd(II), Pb(II), or Co(II). IMPORTANCE Specificity in a stressor's recognition is essential for mounting an appropriate response. MerR metalloregulators trigger the expression of specific resistance systems upon detection of heavy metal ions. Two groups of these metalloregulators can be distinguished, recognizing either +1 or +2 metal ions, depending on the presence of a conserved serine in the former or a cysteine in the latter. Here we demonstrate that the serine residue in monovalent metal ion sensors excludes divalent metal ion detection, as its replacement by cysteine renders a pan-metal ion sensor. Our results indicate that the spectrum of signals detected by these sensors is determined not only by the metal-binding ligand availability but also by the metal-binding cavity flexibility. PMID:25691529

  9. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    PubMed

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  10. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    NASA Astrophysics Data System (ADS)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  11. Identification of Antidiabetic Compounds from Polyphenolic-rich Fractions of Bulbine abyssinica A. Rich Leaves

    PubMed Central

    Odeyemi, Samuel Wale; Afolayan, Anthony Jiede

    2018-01-01

    Background: Bulbine abyssinica has been reported to possess a variety of pharmacological activities traditionally. Previous work suggested its antidiabetic properties, but information on the antidiabetic compounds is still lacking. Objective: The present research exertion was aimed to isolate and identify biologically active polyphenols from B. abyssinica leaves and to evaluate their efficacy on carbohydrate digesting enzymes. Materials and Methods: Fractionation of the polyphenolic contents from the methanolic extract of B. abyssinica leaves was executed by the silica gel column chromatography to yield different fractions. The antioxidant activities of these fractions were carried out against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl radicals, and ferric ion-reducing antioxidant power (FRAP). In vitro antidiabetic experimentation was performed by evaluating the α-amylase and α-glucosidase inhibitory capacity. The isolated polyphenols were then identified using liquid chromatography and mass spectroscopy (LC/MS). Results: Out of the eight polyphenolic fractions (BAL 1–8), BAL-4 has the highest inhibitory activity against ABTS radicals whereas BAL-6 showed potent ferric ion-reducing capacity. BAL-5 was the most effective fraction with antidiabetic activity with IC50of 140.0 and 68.58 ± 3.2 μg/ml for α-amylase and α-glucosidase inhibitory activities, respectively. All the fractions competitively inhibited α-amylase, BAL-5 and BAL-6 also inhibited α-glucosidase competitively, while BAL-4 and BAL-1 exhibited noncompetitive and near competitive inhibitions against α-glucosidase, respectively. The LC/MS analysis revealed the presence of carvone in all the fractions. Conclusions: The present study demonstrates the antioxidant and antidiabetic activities of the isolated polyphenols from B. abyssinica. SUMMARY Polyphenols were successfully isolated and identified from Bulbine abyssinica leavesThe isolated polyphenols are biologically active with high antioxidant as well as inhibitor of carbohydrate-digesting enzymesB. abyssinica can be a good source of amylase and glucosidase inhibitorsB. abyssinica can be used as complementary or alternative therapeutic agents especially for the treatment of diabetesCarvone, quercetin, and psoralen could be the compounds responsible for the α-amylase and α-glucosidase inhibitory activities. Abbreviations Used: ABTS: 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion-reducing antioxidant power, LC/MS: Liquid chromatography and mass spectroscopy, AGEs: Advanced glycation end products, TLC: Thin-layer chromatography, MeOH: Methanol, PNP-G: ρ-Nitrophenyl-α-D-Glucoside, R2: Coefficient of determination, mgQE: Milligram quercetin equivalent, mgTAE: Milligram tannic acid equivalent, mgCE: Milligram catechin equivalent, g: Gram PMID:29568191

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry andmore » elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.« less

  13. Carbohydrates as a source of energy and matter for the origin of life

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1991-01-01

    Recently, we proposed a new model of early glycolysis in which the oxidation of glyceraldehyde self-hemiacetals yielded energy rich polyglyceric acid instead of energy rich thioesters. In this model, polyglyceric acid not only acts as an energy source for phosphoanhydride synthesis, but also as an autocatalyst that can replicate the sequence of D and L residues in its structure. We began our investigation of this new hypothesis - the triose model - by developing a thermal method for the racemization-free synthesis of polyglyceric acid. The hydrolytic stability and the role of chirality in interactions of polyglyceric acid were studied using this thermal polymer. Next, we established that the 2- and 3-glycerol esters of polyglyceric acid are energy rich by measuring the Gibbs free energy change of hydrolysis of the 2- and 3-glycerol esters of 2 and 3-O-L glyceroyl-glyceric acid methyl ester - a model of polyglyceric acid. Recently, we discovered that glyceraldehyde is bound and oxidized to glyceric acid on the surface of ferric hydroxide and that soluble ferric ion catalyzes the rearrangement of glyceraldehyde to lactic acid. We are exploring the possibility that these reactions could yield polyglyceric acid and polylactic acid under plausible prebiotic conditions.

  14. Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion

    NASA Astrophysics Data System (ADS)

    Singh, Pinki; Upadhyay, Chandan

    2018-05-01

    The synthesis parameters crucially affect the physical and chemical parameters of nanoparticles. Magnetite (Fe3O4) nanoparticles were synthesized using microemulsion method. This method does not require high temperature synthesis, nitrogen environment and/or pH regulation during synthesis process. We are presenting here a systematic study on role of different associated parameters of microemulsion synthesis method on the formation of Fe3O4 nanoparticles. From X-ray Diffraction and Transmission Electron Micoscopy data analysis the size of synthesized particles were observed to be <10 nm. The critical concentration of ferrous-ferric solution to obtain particles in single phase has been found to be ≤0.09 M and ≤0.184 M, respectively. The variation of molar concentration (0.01 M ≤x≤ 0.1 M) of CTAB leads to formation of Fe3O4 nano-scale particles of distinct morphologies e.g. nano-cubes, pentagons and spheres. The number of ferrous and ferric ions involved in the formation decides the size of the nanoparticles. The single crystallographic phase is obtained in reaction temperature range of 65° C

  15. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    PubMed

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions. Published by Elsevier Ltd.

  16. The Role and Specificity of the Catalytic and Regulatory Cation-binding Sites of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Juárez, Oscar; Shea, Michael E.; Makhatadze, George I.; Barquera, Blanca

    2011-01-01

    The Na+-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na+-NQR enables pumping of Li+, as well as Na+ across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na+-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with 22Na+ show that, in both its oxidized and reduced states, Na+-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states. PMID:21652714

  17. Dissolution of Nickel Ferrite in Aqueous Solutions Containing Oxalic Acid and Ferrous Salts.

    PubMed

    Figueroa, Carlos A.; Sileo, Elsa E.; Morando, Pedro J.; Blesa, Miguel A.

    2000-05-15

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.

  18. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.

    PubMed

    Fischer, Nina M; Polêto, Marcelo D; Steuer, Jakob; van der Spoel, David

    2018-06-01

    The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.

  19. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.

  20. Speciation in the Fe(III)-Cl(I)-H2O System at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C)

    NASA Astrophysics Data System (ADS)

    Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.

    2018-02-01

    This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).

  1. Insight into the coordination and the binding sites of Cu(2+) by the histidyl-6-tag using experimental and computational tools.

    PubMed

    Watly, Joanna; Simonovsky, Eyal; Wieczorek, Robert; Barbosa, Nuno; Miller, Yifat; Kozlowski, Henryk

    2014-07-07

    His-tags are specific sequences containing six to nine subsequent histydyl residues, and they are used for purification of recombinant proteins by use of IMAC chromatography. Such polyhistydyl tags, often used in molecular biology, can be also found in nature. Proteins containing histidine-rich domains play a critical role in many life functions in both prokaryote and eukaryote organisms. Binding mode and the thermodynamic properties of the system depend on the specific metal ion and the histidine sequence. Despite the wide application of the His-tag for purification of proteins, little is known about the properties of metal-binding to such tag domains. This inspired us to undertake detailed studies on the coordination of Cu(2+) ion to hexa-His-tag. Experiments were performed using the potentiometric, UV-visible, CD, and EPR techniques. In addition, molecular dynamics (MD) simulations and density functional theory (DFT) calculations were applied. The experimental studies have shown that the Cu(2+) ion binds most likely to two imidazoles and one, two, or three amide nitrogens, depending on the pH. The structures and stabilities of the complexes for the Cu(2+)-Ac-(His)6-NH2 system using experimental and computational tools were established. Polymorphic binding states are suggested, with a possibility of the formation of α-helix structure induced by metal ion coordination. Metal ion is bound to various pairs of imidazole moieties derived from the tag with different efficiencies. The coordination sphere around the metal ion is completed by molecules of water. Finally, the Cu(2+) binding by Ac-(His)6-NH2 is much more efficient compared to other multihistidine protein domains.

  2. Novel Mechanism of Hemin Capture by Hbp2, the Hemoglobin-binding Hemophore from Listeria monocytogenes*

    PubMed Central

    Malmirchegini, G. Reza; Sjodt, Megan; Shnitkind, Sergey; Sawaya, Michael R.; Rosinski, Justin; Newton, Salete M.; Klebba, Phillip E.; Clubb, Robert T.

    2014-01-01

    Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron. PMID:25315777

  3. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal

    PubMed Central

    2017-01-01

    Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164

  4. Mg2+ ions: do they bind to nucleobase nitrogens?

    PubMed Central

    Leonarski, Filip; D'Ascenzo, Luigi; Auffinger, Pascal

    2017-01-01

    Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments. PMID:27923930

  5. Lead-binding capacity of calcium pectates with different molecular weight.

    PubMed

    Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri

    2017-04-01

    Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cooperativity and complexity in the binding of anions and cations to a tetratopic ion-pair host.

    PubMed

    Howe, Ethan N W; Bhadbhade, Mohan; Thordarson, Pall

    2014-05-21

    Cooperative interactions play a very important role in both natural and synthetic supramolecular systems. We report here on the cooperative binding properties of a tetratopic ion-pair host 1. This host combines two isophthalamide anion recognition sites with two unusual "half-crown/two carbonyl" cation recognition sites as revealed by the combination of single-crystal X-ray analysis of the free host and the 1:2 host:calcium cation complex, together with two-dimensional NMR and computational studies. By systematically comparing all of the binding data to several possible binding models and focusing on four different variants of the 1:2 binding model, it was in most cases possible to quantify these complex cooperative interactions. The data showed strong negative cooperativity (α = 0.01-0.05) of 1 toward chloride and acetate anions, while for cations the results were more variable. Interestingly, in the competitive (CDCl3/CD3OD (9:1, v/v)) solvent, the addition of calcium cations to the tetratopic ion-pair host 1 allosterically switched "on" chloride binding that is otherwise not present in this solvent system. The insight into the complexity of cooperative interactions revealed in this study of the tetratopic ion-pair host 1 can be used to design better cooperative supramolecular systems for information transfer and catalysis.

  7. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting.

    PubMed

    Swainsbury, David J K; Martin, Elizabeth C; Vasilev, Cvetelin; Parkes-Loach, Pamela S; Loach, Paul A; Neil Hunter, C

    2017-11-01

    The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Measurement of Conformational Changes Accompanying Desensitization in an Ionotropic Glutamate Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong,N.; Jasti, J.; Beich-Frandsen, M.

    2006-01-01

    The canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use electrical, chemical, and crystallographic experiments on the AMPA-sensitive GluR2 receptor, defining the conformational rearrangements of the agonist binding cores that occur upon desensitization of this ligand-gated ion channel. These studies demonstrate that desensitization involves the rupture of an extensive interface between domain 1 of 2-foldmore » related glutamate-binding core subunits, compensating for the ca. 21{sup o} of domain closure induced by glutamate binding. The rupture of the domain 1 interface allows the ion channel to close and thereby provides a simple explanation to the long-standing question of how agonist binding is decoupled from ion channel gating upon receptor desensitization.« less

  10. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  11. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  12. In vitro antioxidant profiles of some flavonoids

    NASA Astrophysics Data System (ADS)

    Aksoy, Mine; Gülçin, Ilhami; Küfrevioǧlu, Ö. Irfan

    2016-04-01

    Baicalin ((2S,3S,4S,5R,6S)-6-(5,6-dihydroxy-4-oxo-2-phenyl-chromen-7-yl)oxy-3,4,5-trihydroxy-tetrahydropyran-2-carboxylic acid) and baicalein (5,6,7-trihydroxyflavone) are a flavone, a type of flavonoid. Baicalin is the glucuronide of baicalein. Phlorizin, or phloridzin is a naturally occurring flavonoid produced in some plants. It belongs to the group of dihydrochalcones. In this study, we investigated the in vitro antioxidant properties of baicalin, baicalein and phloridzin using different methods including ferric ion (Fe3+) reducing power, cupric ion (Cu2+) reducing power (CUPRAC method), reduction of Fe3+-TPTZ complex, 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid radicals (ABTS.+) scavenging activities. Also, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and α-Tocopherol were used as standard antioxidants.

  13. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  14. Antioxidant capacity and mineral contents of edible wild Australian mushrooms.

    PubMed

    Zeng, X; Suwandi, J; Fuller, J; Doronila, A; Ng, K

    2012-08-01

    Five selected edible wild Australian mushrooms, Morchella elata, Suillus luteus, Pleurotus eryngii, Cyttaria gunnii, and Flammulina velutipes, were evaluated for their antioxidant capacity and mineral contents. The antioxidant capacities of the methanolic extracts of the dried caps of the mushrooms were determined using a number of different chemical reactions in evaluating multi-mechanistic antioxidant activities. These included the Trolox equivalent antioxidant capacity, ferric ion reducing antioxidant power, and ferrous ion chelating activity. Mineral contents of the dried caps of the mushrooms were also determined by inductively coupled plasma-optical emission spectroscopy. The results indicated that these edible wild mushrooms have a high antioxidant capacity and all, except C. gunnii, have a high level of several essential micro-nutrients such as copper, magnesium, and zinc. It can be concluded that these edible wild mushrooms are good sources of nutritional antioxidants and a number of mineral elements.

  15. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  16. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I; Kondrat'eva, T F

    2014-01-01

    The bioregeneration of the solutions obtained after the leaching of copper and zinc from waste slag by sulfuric solutions of ferric sulfate is examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions obtained after the leaching of nonferrous metals from waste slag is possible at a dilution of the pregnant solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant solution with a nutrient medium. The application ofbioregeneration during the production of nonferrous metals from both waste and converter slags would make it possible to approach the technology of their processing using the closed cycle of workflows.

  17. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  18. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    PubMed

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  19. The nature of cation-pi binding: interactions between tetramethylammonium ion and benzene in aqueous solution.

    PubMed Central

    Gao, J; Chou, L W; Auerbach, A

    1993-01-01

    A combined quantum mechanical and molecular mechanical Monte Carlo simulation method was used to determine the free energy of binding between tetramethylammonium ion (TMA+) and benzene in water. The computed free energy as a function of distance (the potential of mean force) has two minima that represent contact and solvent-separated complexes. These species are separated by a broad barrier of about 3 kJ/mol. The results are in good accord with experimental data and suggest that TMA+ binds to benzene more favorably than to chloride ion, with an association constant of about 0.8 M-1. Images FIGURE 2 PMID:8369448

  20. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water in ferric sulfate-bearing montmorillonite. Reflectance spectra of ferric sulfate-bearing montmorillonite include a strong 3-micrometers band that is more resistant to dry atmospheric conditions than the 3-micrometers band in spectra of similarly prepared ferrihydrite-bearing montmorillonites.

  1. Ferric maltol therapy for iron deficiency anaemia in patients with inflammatory bowel disease: long-term extension data from a Phase 3 study.

    PubMed

    Schmidt, C; Ahmad, T; Tulassay, Z; Baumgart, D C; Bokemeyer, B; Howaldt, S; Stallmach, A; Büning, C

    2016-08-01

    Ferric maltol was effective and well-tolerated in iron deficiency anaemia patients with inflammatory bowel disease during a 12-week placebo-controlled trial. To perform a Phase 3 extension study evaluating long-term efficacy and safety with ferric maltol in inflammatory bowel disease patients in whom oral ferrous therapies had failed to correct iron deficiency anaemia. After 12 weeks of randomised, double-blind treatment, patients with iron deficiency anaemia and mild-to-moderate ulcerative colitis or Crohn's disease received open-label ferric maltol 30 mg b.d. for 52 weeks. 111 patients completed randomised treatment and 97 entered the open-label ferric maltol extension. In patients randomised to ferric maltol ('continued'; n = 50), mean ± s.d. haemoglobin increased by 3.07 ± 1.46 g/dL between baseline and Week 64. In patients randomised to placebo ('switch'; n = 47), haemoglobin increased by 2.19 ± 1.61 g/dL. Normal haemoglobin was achieved in high proportions of both continued and switch patients (89% and 83% at Week 64, respectively). Serum ferritin increased from 8.9 μg/L (baseline) to 26.0 μg/L (Week 12) in ferric maltol-treated patients, and to 57.4 μg/L amongst all patients at Week 64. In total, 80% of patients reported ≥1 adverse event by Week 64. Adverse events considered related to ferric maltol were recorded in 27/111 (24%) patients: 8/18 discontinuations due to adverse events were treatment-related. One patient was withdrawn due to increased ulcerative colitis activity. Normal haemoglobin was observed in ≥80% of patients from weeks 20-64 of long-term ferric maltol treatment, with concomitant increases in iron storage parameters. Ferric maltol was well-tolerated throughout this 64-week study. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  2. Importance of Diffuse Metal Ion Binding to RNA

    PubMed Central

    Tan, Zhi-Jie; Chen, Shi-Jie

    2016-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  3. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  4. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.

    PubMed

    Bolobajev, Juri; Trapido, Marina; Goi, Anna

    2016-06-01

    Doxycycline plays a key role in Fe(III)-to-Fe(II) redox cycling and therefore in controlling the overall reaction rate of the Fenton-based process (H2O2/Fe(III)). This highlights the autocatalytic profile of doxycycline degradation. Ferric iron reduction in the presence of doxycycline relied on doxycycline-to-Fe(III) complex formation with an ensuing reductive release of Fe(II). The lower ratio of OH-to-contaminant in an initial H2O2/Fe(III) oxidation step than in that of classical Fenton (H2O2/Fe(II)) decreased the doxycycline degradation rate. The quantum yield of doxycycline in direct UV-C photolysis was 3.1 × 10(-3) M E(-1). In spite of doxycycline-Fe(III) complexes could produce the adverse effect on the doxycycline degradation in the UV/Fe(III) system some acceleration of the rate was observed upon irradiation of the Fe(III)-hydroxy complex. Acidic reaction media (pH 3.0) and the molar ratio of DC/Fe(III) = 2/1 favored the complex formation. Doxycycline close degradation rates and complete mineralization achieved for 120 min (Table 1) with both UV/H2O2 and UV/H2O2/Fe(III) indicated the unsubstantial role of the reduction of Fe(III) to Fe(II) in UV/H2O2/Fe(III) system efficacy. Thus, factors such as doxycycline's ability to form complexes with ferric iron and the ability of complexes to participate in a reductive pathway should be considered at a technological level in process optimization, with chemistry based on iron ion catalysis to enhance the doxycycline oxidative pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  6. How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Sarah; Melissen, Sigismund T. A. G.; Duclaux, Loraine

    We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photo-electrochemical activity for TiO 2-based photo-anodes in water splitting devices. To do so, a wide range of photoelectrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol–gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO 2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe 2TiO 5. The as-synthesized compounds were testedmore » as photoelectrode and compared with pure nanoparticles of TiO 2, Fe 2TiO 5 and α- or γ-Fe 2O 3 and with corresponding nanocomposites. When TiO 2 is slightly doped by Fe, the performance of this photo-electrode improves particularly in the low-bias region (< 1.0 V vs. reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO 2/Fe 2O 3 and FeTi 2O 5, and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. Here, the results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems, but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode.« less

  7. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    PubMed

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  8. How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?

    DOE PAGES

    Petit, Sarah; Melissen, Sigismund T. A. G.; Duclaux, Loraine; ...

    2016-10-04

    We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photo-electrochemical activity for TiO 2-based photo-anodes in water splitting devices. To do so, a wide range of photoelectrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol–gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO 2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe 2TiO 5. The as-synthesized compounds were testedmore » as photoelectrode and compared with pure nanoparticles of TiO 2, Fe 2TiO 5 and α- or γ-Fe 2O 3 and with corresponding nanocomposites. When TiO 2 is slightly doped by Fe, the performance of this photo-electrode improves particularly in the low-bias region (< 1.0 V vs. reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO 2/Fe 2O 3 and FeTi 2O 5, and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. Here, the results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems, but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode.« less

  9. Binding of iron, zinc, and lead ions from aqueous solution by shea butter (Butyrospermun Parkii) seed husks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eromosele, I.C.; Otitolaye, O.O.

    1994-08-01

    Several workers have reported on the potential use of agricultural products as substrates for the removal of metal ions from aqueous solutions. These studies demonstrated that considerable amounts of metal ions can be removed from aqueous solutions by cellulosic materials. The merit in the use of the latter is their relative abundance and cheapness compared to conventional materials for the removal of toxic metal ions from waste-waters. In some of the studies, chemical modification of cellulosic materials significantly enhanced their ion-binding properties, providing greater flexibility in their applications to a wide range of heavy metal ions. Shea butter plant (Butyrospermunmore » Parkii) normally grows in the wild within the guinea-savana zone of Nigeria. The seeds are a rich source of edible oils and the husks are usually discarded. The husk is thus available in abundance and, hence, there is reason to examine its ion-binding properties for its possible application in the removal of toxic metal ions from industrial waste-waters. This paper reports on preliminary studies of the sorption of iron, zinc and lead ions from aqueous solution by modified and unmodified shea butter seed husks. 8 refs., 5 figs., 1 tab.« less

  10. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    PubMed

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  11. Identification of metal ion binding sites based on amino acid sequences

    PubMed Central

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  12. Identification of metal ion binding sites based on amino acid sequences.

    PubMed

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  13. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?

    PubMed Central

    Gil-Moreno, Selene; Jiménez-Martí, Elena; Palacios, Òscar; Zerbe, Oliver; Dallinger, Reinhard; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion. PMID:26703589

  14. Docking modes of BB-3497 into the PDF active site--a comparison of the pure MM and QM/MM based docking strategies.

    PubMed

    Kumari, Tripti; Issar, Upasana; Kakkar, Rita

    2014-01-01

    Peptide deformylase (PDF) has emerged as an important antibacterial drug target. Considerable effort is being directed toward developing peptidic and non-peptidic inhibitors for this metalloprotein. In this work, the known peptidic inhibitor BB-3497 and its various ionization and tautomeric states are evaluated for their inhibition efficiency against PDF using a molecular mechanics (MM) approach as well as a mixed quantum mechanics/molecular mechanics (QM/MM) approach, with an aim to understand the interactions in the binding site. The evaluated Gibbs energies of binding with the mixed QM/MM approach are shown to have the best predictive power. The experimental pose is found to have the most negative Gibbs energy of binding, and also the smallest strain energy. A quantum mechanical evaluation of the active site reveals the requirement of strong chelation by the ligand with the metal ion. The investigated ligand chelates the metal ion through the two oxygens of its reverse hydroxamate moiety, particularly the N-O(-) oxygen, forming strong covalent bonds with the metal ion, which is penta-coordinated. In the uninhibited state, the metal ion is tetrahedrally coordinated, and hence chelation with the inhibitor is associated with an increase of the metal ion coordination. Thus, the strong binding of the ligand at the binding site is accounted for.

  15. Energetics and kinetics of cooperative cofilin-actin filament interactions.

    PubMed

    Cao, Wenxiang; Goodarzi, Jim P; De La Cruz, Enrique M

    2006-08-11

    We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.

  16. Computational approaches for de novo design and redesign of metal-binding sites on proteins.

    PubMed

    Akcapinar, Gunseli Bayram; Sezerman, Osman Ugur

    2017-04-28

    Metal ions play pivotal roles in protein structure, function and stability. The functional and structural diversity of proteins in nature expanded with the incorporation of metal ions or clusters in proteins. Approximately one-third of these proteins in the databases contain metal ions. Many biological and chemical processes in nature involve metal ion-binding proteins, aka metalloproteins. Many cellular reactions that underpin life require metalloproteins. Most of the remarkable, complex chemical transformations are catalysed by metalloenzymes. Realization of the importance of metal-binding sites in a variety of cellular events led to the advancement of various computational methods for their prediction and characterization. Furthermore, as structural and functional knowledgebase about metalloproteins is expanding with advances in computational and experimental fields, the focus of the research is now shifting towards de novo design and redesign of metalloproteins to extend nature's own diversity beyond its limits. In this review, we will focus on the computational toolbox for prediction of metal ion-binding sites, de novo metalloprotein design and redesign. We will also give examples of tailor-made artificial metalloproteins designed with the computational toolbox. © 2017 The Author(s).

  17. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane.

    PubMed

    Welbourn, Elizabeth M; Wilson, Michael T; Yusof, Ashril; Metodiev, Metodi V; Cooper, Chris E

    2017-02-01

    Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set. Copyright © 2016. Published by Elsevier Inc.

  18. Adherence rates to ferric citrate as compared to active control in patients with end stage kidney disease on dialysis.

    PubMed

    Jalal, Diana; McFadden, Molly; Dwyer, Jamie P; Umanath, Kausik; Aguilar, Erwin; Yagil, Yoram; Greco, Barbara; Sika, Mohammed; Lewis, Julia B; Greene, Tom; Goral, Simin

    2017-04-01

    Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. We conducted a post-hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence. © 2016 International Society for Hemodialysis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theil, Elizabeth C.; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720

    Ferritins are protein nanocages that use iron and oxygen chemistry to concentrate iron and trap dioxygen or hydrogen peroxide in biominerals of hydrated ferric oxides, 5-8 nm in diameter, inside the cages. The proteins are found in nature from archea to humans. Protein catalytic sites are embedded in the protein cage and initiate mineralization by oxido-reduction of ferrous ions and dioxygen or hydrogen peroxide to couple two iron ions through a peroxo bridge, followed by decay to diferric oxo/hydroxyl mineral precursors; ferritin protein subdomains that fold/unfold independently of the protein cage control recovery of ferrous ions from the mineral. Earlymore » EXAFS (1978) was extremely useful in defining the ferritin mineral. More recent use of rapid freeze quench (RFQ) EXAFS spectroscopies, coupled with RFQ Moessbauer, Resonance Raman and rapid mixing UV-vis spectroscopy, have identified and characterized unusual ferritin protein catalytic intermediates and mineral precursors. EXAFS spectroscopy can play an important role in the future understanding of protein catalysis in metalloproteins such as ferritin, ribonucleotide reductase and methane monooxygenases. Needed are instrumentation improvements that will provide rapid-scan fluorescence spectra with high signal/noise ratios.« less

  20. Use of ferrous chelates of SH-containing amino acids and peptides for the removal of NO/sub x/ and SO/sub 2/ from flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.G.; Littlejohn, D.; Liu, D.K.

    1988-11-01

    The use of ferrous complexes of SH-containing amino acids and peptides for the removal of NO and SO/sub 2/ in wet flue gas clean-up systems is reported. The ferrous chelates investigated in the present study include those of cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, glutathine, and cysteinylglycine. Compared to conventional chelates such as EDTA, these thioamino acids/peptides not only can stabilize ferrous ion in alkaline solutions to promote the absorption of NO but are also capable of rapidly reducing any ferric ions formed during the scrubbing process back to ferrous ions so that continual absorption of NO can be achieved. In themore » case of ferrous cysteine and ferrous penicillamine, most of the absorbed NO is reduced to N/sub 2/. The disulfide form of several of the thioamino acids/peptides produced upon oxidation can be conveniently reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting materials, thus making possible the recycling of the reagents.« less

  1. Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries.

    PubMed

    Shen, Bolei; Xu, Maowen; Niu, Yubin; Han, Jin; Lu, Shiyu; Jiang, Jian; Li, Yi; Dai, Chunlong; Hu, Linyu; Li, Changming

    2018-01-10

    In this article, carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 nanoparticles (∼10 nm) were successfully synthesized via a facile sol-gel method and employed as cathode materials for sodium-ion batteries. The results show that the carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 cathode delivers a high reversible capacity of 99 mAh g -1 at 0.2 C, outstanding cycling life retention of 96%, and high Coulomb efficiency of almost 100% even after 1000 cycles at 10 C. Furthermore, the electrochemical performances of full batteries consisting of carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 nanoparticles as the cathode and commercialized hard carbon as the anode are tested. The full batteries exhibit a reversible capacity of 86 mAh g -1 at 0.5 C and capacity retention of 80% after 100 cycles. Therefore, the above-mentioned cathode is a potential candidate for developing inexpensive sodium-ion batteries in large-scale energy storage with long life.

  2. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.

    PubMed

    Warrilow, Andrew G; Parker, Josie E; Kelly, Diane E; Kelly, Steven L

    2013-03-01

    Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.

  3. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  4. Investigating the features in differential absorbance spectra of NOM associated with metal ion binding: A comparison of experimental data and TD-DFT calculations for model compounds.

    PubMed

    Yan, Mingquan; Han, Xuze; Zhang, Chenyang

    2017-11-01

    In this study, seven model compounds containing typical functional groups (phenolic and carboxylic groups) present in nature organic matter (NOM) were used to ascertain the nature of the characteristic bands in differential absorbance spectra (DAS) of NOM that are induced by metal ion binding. Some similarities were found between the DAS of the examined model compounds, caffeic acid, ferulic acid, sinapic acid, terephthalic acid, isophthalic acid, esculetin and myricetin and those of NOM. The binding of Cu(II) with carboxylic group might produce two peaks, A1 and A2, while the binding of Cu(II) with phenolic group might produce all four Gaussian peaks, from A1 to A4 displayed in the DAS of NOM. The UV-visible spectra predicted using time-dependent density functional theory (TD-DFT)-based methods met well with the experimental DAS of model compounds at different stages of Cu(II) binding. It demonstrates that the features in absorbance spectra are chiefly caused by HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) transitions in the molecule and that the appearance of peaks in DAS reflects the changes of the molecular orbitals around reactive functional groups in a molecule before and after metal ion binding. The basis of the DAS features of NOM that are induced by metal ion binding could be identified primarily by the frontier molecular orbital theory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  6. Comparison of the crystal structure and function to wild-type and His25Ala mutant human heme oxygenase-1.

    PubMed

    Zhou, Wen-Pu; Zhong, Wen-Wei; Zhang, Xue-Hong; Ding, Jian-Ping; Zhang, Zi-Li; Xia, Zhen-Wei

    2009-03-01

    Human heme oxygenase-1 (hHO-1) is a rate-limiting enzyme in heme metabolism. It regulates serum bilirubin level. Site-directed mutagenesis studies indicate that the proximal residue histidine 25 (His25) plays a key role in hHO-1 activity. A highly purified hHO-1 His25Ala mutant was generated and crystallized with a new expression system. The crystal structure of the mutant was determined by X-ray diffraction technology and molecular replacement at the resolution of 2.8 A, and the model of hHO-1 His25Ala mutant was refined. The final crystallographic and free R factors were 0.245 and 0.283, respectively. The standard bond length deviation was 0.007 A, and the standard bond angle deviation was 1.3 degrees . The mutation of His25 to Ala led to an empty pocket underneath the ferric ion in the heme, leading to loss of binding iron ligand. Although this did not cause an overall structural change, the enzymatic activity of the mutant hHO-1 was reduced by 90%. By supplementing imidazole, the HO-1 activity was restored approximately 90% to its normal level. These data suggest that Ala25 remains unchanged in the structure compared to His25, but the important catalytic function of hHO-1 is lost. Thus, it appears that His25 is a crucial residue for proper hHO-1 catalysis.

  7. Binding of Dissolved Strontium by Micrococcus luteus

    PubMed Central

    Faison, Brendlyn D.; Cancel, Carmen A.; Lewis, Susan N.; Adler, Howard I.

    1990-01-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity. PMID:16348370

  8. The regulation of integrin function by divalent cations

    PubMed Central

    Zhang, Kun; Chen, JianFeng

    2012-01-01

    Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca2+-binding motifs that have essential roles in integrin biogenesis. The function of another Ca2+-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions. PMID:22647937

  9. Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira; Mitsueda, Shinichiro

    1998-01-15

    A fundamental study of the application of bacteria to the recovery of toxic heavy metals from aqueous environments was carried out. The biosorption characteristics of cadmium and lead ions were determined with purple nonsulfur bacteria, Rhodobacter sphaeroides and hydrogen bacteria, Alcaligenes eutrophus H16 that were inactivated by steam sterilization. A simplified version of the metal binding model proposed by Plette et al. was used for the description of meal binding data. The results showed that the biosorption of bivalent metal ions to whole cell bodies of the bacteria was due to monodentate binding to two different types of acidic sites:more » carboxilic and phosphatic-type sites. The number of metal binding sites of A. eutrophus was 2.4-fold larger than that of R. sphaeroides.« less

  10. Transient species involved in catalytic dioxygen/peroxide activation by hemoproteins: possible involvement of protonated Compound I species.

    PubMed

    Silaghi-Dumitrescu, Radu; Cooper, Chris E

    2005-11-07

    Interaction of hemoproteins with peroxide leads in several cases to transient formation of ferric peroxo, ferric hydroperoxo, and "high-valent", formally Fev, oxo or hydroxo Compound species. Here, density functional calculations on ferric peroxo, ferric hydroperoxo, Compound and protonated Compound heme active site models are reported. The theoretical results, including calculated isotropic Fermi contact couplings and anisotropic spin dipole couplings, are found to generally correlate well with experimental EPR/ENDOR data. Hydrogen bonding and solvation affect the ferric-peroxo/ferrous-superoxo electromerism. The transition between the two electromers appears smooth, but neither hydrogen bonding to up to two water molecules, nor solvation appear able to dramatically alter the redox state of the superoxo ligand or of the iron. The presence of almost one full unpaired electron on the iron and of one full unpaired electron on the dioxygenic ligand in the "ferric-peroxo" state suggests a possible description of non-protonated "ferric-peroxo" as {ferric-superoxo+porphyrin radical}. Emerging from the DFT data is the possibility that a protonated Compound has already been detected in ENDOR experiments on cytochrome P450. The general feasibility of a protonated Compound in P450 monooxygenases is probed in light of these findings. To encompass the multiple mechanisms available in P450 for substrate oxidation, we define "mechanistic promiscuity" as the feature allowing an enzyme to perform the same reaction, with the same product, using more than one mechanism.

  11. Stochastic steps in secondary active sugar transport

    PubMed Central

    Adelman, Joshua L.; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D. F.; Choe, Seungho; Abramson, Jeff; Rosenberg, John M.; Wright, Ernest M.; Grabe, Michael

    2016-01-01

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773

  12. Stochastic steps in secondary active sugar transport.

    PubMed

    Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael

    2016-07-05

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.

  13. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  14. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  15. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  16. Application of differential scanning calorimetry to measure the differential binding of ions, water and protons in the unfolding of DNA molecules.

    PubMed

    Olsen, Chris M; Shikiya, Ronald; Ganugula, Rajkumar; Reiling-Steffensmeier, Calliste; Khutsishvili, Irine; Johnson, Sarah E; Marky, Luis A

    2016-05-01

    The overall stability of DNA molecules globally depends on base-pair stacking, base-pairing, polyelectrolyte effect and hydration contributions. In order to understand how they carry out their biological roles, it is essential to have a complete physical description of how the folding of nucleic acids takes place, including their ion and water binding. To investigate the role of ions, water and protons in the stability and melting behavior of DNA structures, we report here an experimental approach i.e., mainly differential scanning calorimetry (DSC), to determine linking numbers: the differential binding of ions (Δnion), water (ΔnW) and protons (ΔnH(+)) in the helix-coil transition of DNA molecules. We use DSC and temperature-dependent UV spectroscopic techniques to measure the differential binding of ions, water, and protons for the unfolding of a variety of DNA molecules: salmon testes DNA (ST-DNA), one dodecamer, one undecamer and one decamer duplexes, nine hairpin loops, and two triplexes. These methods can be applied to any conformational transition of a biomolecule. We determined complete thermodynamic profiles, including all three linking numbers, for the unfolding of each molecule. The favorable folding of a DNA helix results from a favorable enthalpy-unfavorable entropy compensation. DSC thermograms and UV melts as a function of salt, osmolyte and proton concentrations yielded releases of ions and water. Therefore, the favorable folding of each DNA molecule results from the formation of base-pair stacks and uptake of both counterions and water molecules. In addition, the triplex with C(+)GC base triplets yielded an uptake of protons. Furthermore, the folding of a DNA duplex is accompanied by a lower uptake of ions and a similar uptake of four water molecules as the DNA helix gets shorter. In addition, the oligomer duplexes and hairpin thermodynamic data suggest ion and water binding depends on the DNA sequence rather than DNA composition. Copyright © 2015. Published by Elsevier B.V.

  17. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag⁺ Ions.

    PubMed

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong; Rahman, Shofiur; Georghiou, Paris E; Zeng, Xi; Elsegood, Mark R J; Redshaw, Carl; Teat, Simon J; Yamato, Takehiko

    2018-02-21

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C₃-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the -cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C₃-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag⁺ ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag⁺. After complexation of tris(2-pyridylamide) derivative receptor cone-1 with Ag⁺, the original C₃-symmetry was retained and higher complexation selectivity for n-BuNH₃⁺ versus t-BuNH₃⁺ was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag⁺ and n-BuNH₃ + ions.

  18. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    PubMed

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  19. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag + Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C 3-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the π-cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C 3-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag + ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag +. After complexation of tris(2-pyridylamide) derivativemore » receptor cone-1 with Ag +, the original C 3-symmetry was retained and higher complexation selectivity for n-BuNH 3 + versus t-BuNH 3 + was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag + and n-BuNH 3 + ions.« less

  20. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag + Ions

    DOE PAGES

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong; ...

    2018-02-21

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C 3-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the π-cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C 3-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag + ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag +. After complexation of tris(2-pyridylamide) derivativemore » receptor cone-1 with Ag +, the original C 3-symmetry was retained and higher complexation selectivity for n-BuNH 3 + versus t-BuNH 3 + was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag + and n-BuNH 3 + ions.« less

  1. Iron Uptake Mechanisms in the Fish Pathogen Tenacibaculum maritimum

    PubMed Central

    Avendaño-Herrera, Ruben; Toranzo, Alicia E.; Romalde, Jesús L.; Lemos, Manuel L.; Magariños, Beatriz

    2005-01-01

    We present here the first evidence of the presence of iron uptake mechanisms in the bacterial fish pathogen Tenacibaculum maritimum. Representative strains of this species, with different serotypes and origins, were examined. All of them were able to grow in the presence of the chelating agent ethylenediamine-di- (o-hydroxyphenyl acetic acid) (EDDHA) and also produced siderophores. Cross-feeding assays suggest that the siderophores produced are closely related. In addition, all T. maritimum strains utilized transferrin, hemin, hemoglobin, and ferric ammonic citrate as iron sources when added to iron-deficient media. Whole cells of all T. maritimum strains, grown under iron-supplemented or iron-restricted conditions, were able to bind hemin, indicating the existence of constitutive binding components located at the T. maritimum cell surface. This was confirmed by the observation that isolated total and outer membrane proteins from all of the strains, regardless of the iron levels of the media, were able to bind hemin, with the outer membranes showing the strongest binding. proteinase K treatment of whole cells did not affect the hemin binding, indicating that, in addition to proteins, some protease-resistant components could also bind hemin. At least three outer membrane proteins were induced in iron-limiting conditions, and all strains, regardless of their serotype, showed a similar pattern of induced proteins. The results of the present study suggest that T. maritimum possesses at least two different systems of iron acquisition: one involving the synthesis of siderophores and another that allows the utilization of heme groups as iron sources by direct binding. PMID:16269729

  2. Iron uptake mechanisms in the fish pathogen Tenacibaculum maritimum.

    PubMed

    Avendaño-Herrera, Ruben; Toranzo, Alicia E; Romalde, Jesús L; Lemos, Manuel L; Magariños, Beatriz

    2005-11-01

    We present here the first evidence of the presence of iron uptake mechanisms in the bacterial fish pathogen Tenacibaculum maritimum. Representative strains of this species, with different serotypes and origins, were examined. All of them were able to grow in the presence of the chelating agent ethylenediamine-di-(o-hydroxyphenyl acetic acid) (EDDHA) and also produced siderophores. Cross-feeding assays suggest that the siderophores produced are closely related. In addition, all T. maritimum strains utilized transferrin, hemin, hemoglobin, and ferric ammonic citrate as iron sources when added to iron-deficient media. Whole cells of all T. maritimum strains, grown under iron-supplemented or iron-restricted conditions, were able to bind hemin, indicating the existence of constitutive binding components located at the T. maritimum cell surface. This was confirmed by the observation that isolated total and outer membrane proteins from all of the strains, regardless of the iron levels of the media, were able to bind hemin, with the outer membranes showing the strongest binding. Proteinase K treatment of whole cells did not affect the hemin binding, indicating that, in addition to proteins, some protease-resistant components could also bind hemin. At least three outer membrane proteins were induced in iron-limiting conditions, and all strains, regardless of their serotype, showed a similar pattern of induced proteins. The results of the present study suggest that T. maritimum possesses at least two different systems of iron acquisition: one involving the synthesis of siderophores and another that allows the utilization of heme groups as iron sources by direct binding.

  3. [Propranolol beta-blocker decrease in the concentration of high-affinity binding sites for calcium ions by sarcolemma membranes of the rat heart].

    PubMed

    Seleznev, Iu M; Martynov, A V; Smirnov, V N

    1982-05-01

    In vivo administration of propranolol considerably inhibits the isoproterenol-stimulated increase in 45Ca accumulation by the myocardium and completely eliminates the potentiation of isoproterenol effect by hydrocortisone. A significant lowering of the concentration of high affinity binding sites for calcium in the sarcolemmal membranes can be produced by propranolol in vitro. Under these conditions, the glucocorticoids do not change the sarcolemmal Ca2+-binding parameters or modulate the propranolol effect. Therefore, for the manifestation of glucocorticoid action to be brought about, the integrity of the cells is apparently required, while propranolol seems to change calcium binding by direct interaction with the sarcolemmal membranes. It is suggested that in vivo propranolol inhibition of catecholamine effect on calcium ion accumulation by the myocardium depends on the interaction with the beta-receptors and direct modulation of the concentration of high affinity binding sites for calcium ions on the surface of the sarcolemma.

  4. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels*

    PubMed Central

    Puljung, Michael C.; Zagotta, William N.

    2013-01-01

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108

  6. Colorimetric detection of copper in water using a Schiff base derivative

    NASA Astrophysics Data System (ADS)

    Peralta Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfán, N.

    2013-09-01

    Organic molecular sensors have the advantage of being used through an easy, fast, economical and reliable optical method for detecting toxic metal ions in our environment. In this work, we present a simple but highly specific organic ligand compound 5-Chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for ions in a mixture of acetonitrile/water (ratio 10:1, v:v). Binding interaction between L1 and various metal-ions has been established by ultraviolet-visible spectroscopic measurements that indicate favorable coordination of the ligand with selective metal ions, particularly, with copper. These results showed that the electronic transition band shape of L1 change after binding with copper in aqueous solution. L1 exhibited binding-induced color changes from yellow to pink one detected by the naked eye. This new sensor presented 2.5 × 10-6 M as limit detection, even under the presence of other metal ions.

  7. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...

  8. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  9. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...

  10. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  11. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  12. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  13. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  14. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...

  15. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...

  16. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  17. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...

  18. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution...

  19. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

  20. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...

Top