Johnson, D B; Bridge, T A M
2002-01-01
To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.
Rebalancing electrolytes in redox flow battery systems
Chang, On Kok; Pham, Ai Quoc
2014-12-23
Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.
Towards a More Complete Picture: Dissimilatory Metal Reduction by Anaeromyxobacter Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeffler, Frank E.
2004-06-01
We investigate the physiological requirements of available Anaeromyxobacter isolates, and assess their distribution and abundance in the environment, including DOE sites. The performers on this project include Frank Loeffler (PI), Robert Sanford (Co-PI), Qingzhong Wu (postdoc), Sara Henry (graduate student) and Cornell Gayle (undergraduate student). Year-1 efforts focused on method and tool development to address the research objectives. First, we compared different analytical assays (based on fluorescent light emission and calorimetric methods) to quantify U(VI) in cultures of Anaeromyxobacter dehalogenans strain 2CP-C. The assays were optimized to reflect specific culture conditions, and we found that a laser-excited spectrofluorescence assay providedmore » reproducible and accurate information on the amount of U(VI) reduced in bacterial cultures. To demonstrate the ability of Anaeromyxobacter dehalogenans strain 2CP-C to reduce U(VI), washed suspensions of fumarate-grown cells were prepared. These experiments confirmed that the rapid reduction of U(VI) to U(IV) depended on the presence of live cells, and no U(VI) reduction occurred in cell-free controls. Additional experiments explored the ability of three different Anaeromyxobacter strains to grow with the mineral hematite, an insoluble form of ferric iron, as electron acceptor. All strain grew equally well with soluble ferric iron (provided as ferric citrate) but distinct differences were observed between strains when grown with hematite. All strains tested shared a 16S rRNA gene similarity of >99.5%, suggesting that closely related strains may differ in their ability to access insoluble forms of ferric iron.« less
Rapid assay for microbially reducible ferric iron in aquatic sediments
Lovely, Derek R.; Philips , Elizabeth J.P.
1987-01-01
The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction.
Humic Acid Reduction by Propionibacterium freudenreichii and Other Fermenting Bacteria
Benz, Marcus; Schink, Bernhard; Brune, Andreas
1998-01-01
Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments. PMID:9797315
Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat
2016-02-01
This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J
1994-01-01
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204
FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.
Shen, Jiangsheng; Meldrum, Allison; Poole, Keith
2002-06-01
Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.
The abolition of the protective effect of Pasteurella septica antiserum by iron compounds
Bullen, J. J.; Wilson, A. B.; Cushnie, G. H.; Rogers, Henry J.
1968-01-01
Ferric ammonium citrate, haematin hydrochloride, soluble haematin, lysed mouse red cells and a variety of purified haemoglobins abolished the protective effect of Pasteurella septica antiserum in mice when the iron compounds were injected intraperitoneally with P. septica. Ferric ammonium citrate was less effective than haematin or lysed red cells when the dose of P. septica was reduced to less than 105. The ability of lysed red cells to abolish protection was greatly reduced if given 4 hours or more after infection. P. septica grew rapidly in unimmunized normal mice. In passively immunized mice the number of viable bacteria declined rapidly after infection. In passively immunized mice given haematin or lysed red cells the growth of bacteria was identical to that seen in unprotected normal mice. Large numbers of dead P. septica or carbon particles did not interfere with passive protection. PMID:5661980
Golestan, Ghazale; Salati, Amir Parviz; Keyvanshokooh, Saeed; Zakeri, Mohammad; Moradian, Hossein
2015-01-01
Aloe vera has been used worldwide in pharmaceutical, food and cosmetic industries due to the plethora of biological activities of its constituents. This study was done to evaluate the effects of dietary aloe vera on growth and lipid peroxidation in rainbow trout (Oncorhynchus mykiss). A total number of 480 O. mykiss (mean weight 9.50 ± 0.85 g) were randomized into four experimental groups including one control and three experimental groups that aloe vera was incorporated in their diet at 0.5, 1.0 and 2.0 g kg-1. Trial was done for eight weeks. Then biometry and blood sampling were done. Plasma malondialdehyde, ferric reducing ability of plasma and growth index were estimated at the end of study. The results showed that aloe vera extract did not affect growth indices. Malondialdehyde was increased in the experimental group compared to the control group but ferric reducing ability of plasma showed a decrease in experimental groups (p < 0.05) compared to the control group. Our findings showed that dietary aloe vera have adverse effects on antioxidant defense system in O. mykiss. PMID:25992253
Spectroscopic studies on the antioxidant activity of p-coumaric acid
NASA Astrophysics Data System (ADS)
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.
Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim
2016-01-01
Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic and flavonoids contents of the extracts were determined spectrophotometrically. Results. All the extracts showed interesting antioxidant activities compared to the standard antioxidants (butylated hydroxytoluene (BHT), quercetin, and Trolox). The aqueous extract of Juniperus oxycedrus showed the highest antioxidant activity as measured by DPPH, TEAC, and FRAP assays with IC50 values of 17.91 ± 0.37 μg/mL, 19.80 ± 0.55 μg/mL, and 24.23 ± 0.07 μg/mL, respectively. The strong correlation observed between antioxidant capacities and their total phenolic contents indicated that phenolic compounds were a major contributor to antioxidant properties of these plants extracts. Conclusion. These results suggest that the aqueous extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea, and Tetraclinis articulata can constitute a promising new source of natural compounds with antioxidants ability. PMID:27293428
Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction
Hernandez, Maria E.; Kappler, Andreas; Newman, Dianne K.
2004-01-01
Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment. PMID:14766572
Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia
2016-01-01
Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806
Agu, Kingsley C; Okolie, Paulinus N
2017-09-01
Numerous bioactive compounds and phytochemicals have been reported to be present Annona muricata (Soursop). Some of these chemical compounds have been linked to the ethnomedicinal properties of the plant and its antioxidant properties. The aim of this study was to assess the proximate composition, phytochemical constituents and in vitro antioxidant properties of A. muricata using standard biochemical procedures. The defatted Annona muricata crude methanolic extracts of the different parts of the plant were used for the estimation of proximate composition and phytochemical screening. The crude methanolic extracts of the different parts of the plant were also fractionated using solvent-solvent partitioning. Petroleum ether, chloroform, ethyl acetate, methanol, and methanol-water (90:10) were the solvents used for the fractionation. The different fractions obtained were then used to perform in vitro antioxidant analyses including, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, ferric reducing properties, and hydroxyl radical scavenging ability. The leaf methanolic extract had a higher lipid content, whereas its chloroform fraction demonstrated a better ability to quench DPPH free radical. The root-bark methanol-water, leaf methanol, fruit pulp chloroform, and leaf petroleum ether fractions demonstrated potent ferric reducing properties. The leaf and stem-bark petroleum ether fractions demonstrated better hydroxyl-free radical scavenging abilities. The leaf and fruit pulp of Annona muricata have a very potent antioxidant ability compared to the other parts of the plant. This can be associated with the rich phytochemicals and other phytoconstituents like phenols, flavonoids, alkaloids, and essential lipids, etc. Significant correlations were observed between the antioxidant status and phytochemicals present. These results thus suggest that some of the reported ethnomedicinal properties of this plant could be due to its antioxidant potentials.
Spectroscopic studies on the antioxidant activity of p-coumaric acid.
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras
2012-04-13
ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.
Spectroscopic studies on the antioxidant activity of ellagic acid
NASA Astrophysics Data System (ADS)
Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel
2014-09-01
Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.
Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Kowalska, Iwona; Stochmal, Anna
2014-10-01
Clovers were chosen on the basis of traditional medicine recommendations, agricultural value, or available information on their promising chemical profiles. This study evaluates and compares free radical scavenging and antioxidant properties of six clover species: Trifolium alexandrinum L. (Leguminosae), Trifolium fragiferum L., Trifolium hybridum L., Trifolium incarnatum L., Trifolium resupinatum var. majus Boiss., and Trifolium resupinatum var. resupinatum L. Free radical scavenging activity of the extracts (1.5-50 µg/ml) was estimated by reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS(•)) radicals. The Trifolium extract effects on total antioxidant capacity of blood plasma were determined by the reduction of ABTS(•+) and DPPH(•) radicals, as well as with the use of the ferric reducing ability of plasma (FRAP) assay. The UPLC analysis of chemical profiles of the examined extracts showed the presence of three or four groups of phenolic substances, including phenolic acids, clovamides, isoflavones, and other flavonoids. The measurements of free radical scavenging and ferric reducing ability of the examined clover extracts revealed the strongest effect for T. alexandrinum. Furthermore, antioxidant activity assays in human plasma have shown protective effects of all extracts against peroxynitrite-induced reduction of total antioxidant capacity. Trifolium plants may be a rich source of bioactive substances with antioxidant properties. The examined extracts displayed free radical scavenging action and partly protected blood plasma against peroxynitrite-induced oxidative stress; however, the beneficial effects of T. alexandrinum and T. incarnatum seem to be slightly higher.
The antioxidant activitives of mango peel among different cultivars
NASA Astrophysics Data System (ADS)
Liu, Yu-Ge; Zhang, Xiu-Mei; Ma, Fei-Yue; Fu, Qiong
2017-04-01
In this paper, the contents of total phenol and total flavonoid of 8 mango cultivars were determined. Their antioxidant abilities were also evaluated by 1,1-diphenyl-2-pireyhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). Correlations between total phenol, total flavonoid and FRAP as well as TEAC were also analyzed. Results showed that mango peels were rich in natural antioxidant compounds the antioxidant abilities were different among different cultivars. The correlations between total phenol, total flavonoid and FRAP indicated phenolics represent a major part of antioxidant capacity in mango peels. This was also useful in the utilization of mango processing waste.
Redox Reactions of Phenazine Antibiotics with Ferric (Hydr)oxides and Molecular Oxygen
Wang, Yun; Newman, Dianne K.
2009-01-01
Phenazines are small redox-active molecules produced by a variety of bacteria. Beyond merely serving as antibiotics, recent studies suggest that phenazines play important physiological roles, including one in iron acquisition. Here we characterize the ability of four electrochemically reduced natural phenazines—pyocyanin (PYO), phenazine-1-carboxylate (PCA), phenazine-1-carboxamide, and 1-hydroxyphenazine (1-OHPHZ)—to reductively dissolve ferrihydrite and hematite in the pH range 5–8. Generally, the reaction rate is higher for a phenazine with a lower reduction potential, with the reaction between PYO and ferrihydrite at pH 5 being an exception; the rate decreases as the pH increases; the rate is higher for poorly crystalline ferrihydrite than for highly crystalline hematite. Ferric (hydr)oxide reduction by reduced phenazines can potentially be inhibited by oxygen, where O2 competes with Fe(III) as the final oxidant. The reactivity of reduced phenazines with O2 decreases in the order: PYO > 1-OHPHZ > PCA. Strikingly, reduced PYO, which is the least reactive phenazine with ferrihydrite and hematite at pH 7, is the most reactive phenazine with O2. These results imply that different phenazines may perform different functions in environments with gradients of iron and O2. PMID:18504969
Cadmus, Pete; Guasch, Helena; Herdrich, Adam T; Bonet, Berta; Urrea, Gemma; Clements, William H
2018-05-01
Two mesocosm experiments were conducted to examine effects of ferric iron (Fe) and mixtures of ferric Fe with aqueous metals (Cu, Zn) on stream benthic communities. Naturally colonized benthic communities were exposed to a gradient of ferric Fe (0, 0.4, 1.0, 2.5, 6.2, and 15.6 mg/L) that bracketed the current US Environmental Protection Agency water quality criterion value (1.0 mg/L). After 10 d of exposure to ferric Fe, total macroinvertebrate abundance, number of taxa, and abundance of all major macroinvertebrate groups (Ephemeroptera, Plecoptera, Trichoptera, and Diptera) were significantly reduced. Heptageniid mayflies and chironomids were especially sensitive to Fe oxide deposition and were significantly reduced at 0.4 and 1.0 mg/L total Fe, respectively. In a second mesocosm experiment, periphyton and macroinvertebrate communities were exposed to ferric Fe (0.60 mg/L) with or without aqueous Cu and Zn at 2 treatment levels: low (0.01 mg/L Cu + 0.1 mg/L Zn) and high (0.05 mg/L Cu + 0.5 mg/L Zn). In contrast to previous research, we observed no evidence of a protective effect of Fe on toxicity of metals. Growth rates and protein content of periphyton were significantly reduced by both ferric Fe and aqueous metals, whereas abundance of heptageniid mayflies (Cinygmula) and whole community metabolism were significantly reduced by ferric Fe alone. We hypothesize that Fe oxides inhibited algal growth and enhanced metal accumulation, leading to a reduction in the quantity and quality of food resources for grazers. Mesocosm experiments conducted using natural benthic communities provide a unique opportunity to quantify the relative importance of indirect physical effects and to develop a better understanding of the relationship between basal food resources and consumers in natural stream ecosystems. Environ Toxicol Chem 2018;37:1320-1329. © 2017 SETAC. © 2017 SETAC.
Preparation and evaluation of magnetic carbonaceous materials for pesticide and metal removal.
Ohno, Masaki; Hayashi, Hiroki; Suzuki, Kazuyuki; Kose, Tomohiro; Asada, Takashi; Kawata, Kuniaki
2011-07-15
Magnetic carbonaceous materials were produced by carbonization of a cation exchange resin loaded with ferrous or ferric iron and activation using sieved oyster shell as the activation agent. The magnetic carbonaceous material with the maximum magnetic flux density on every axis (ESS-1) was obtained from the ferric-loaded resin by carbonization at 700°C, followed by activation with the oyster shell at 900°C, and magnetization. A separate step of carbonization and activation appears to cause more of a reduction reaction of Fe to form γ-Fe(2)O(3). The Fe compound in the magnetic carbonaceous material was identified from the XRD pattern as mainly γ-Fe(2)O(3). The magnetic flux density on every axis increased linearly as the amount of the oyster shell increased. Moreover, the adsorption ability of the products was evaluated for pesticides and metal ions. Both ESS-1 and a carbonaceous material obtained from the resin without ferric ion (RC) appear to have the highest adsorption ability for lead. Furthermore, the adsorption ability of ESS-1 might decrease by blockages of the pores with the loaded Fe compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
Antioxidant availability of turmeric in relation to its medicinal and culinary uses.
Tilak, Jai C; Banerjee, Meenal; Mohan, Hari; Devasagayam, T P A
2004-10-01
Turmeric (Curcuma longa) has been used in Indian cooking, and in herbal remedies. Its possible mechanism of action was examined in terms of antioxidant availability during actual cooking conditions and in therapeutic applications using standardized extracts. The assays involve different levels of antioxidant action such as oxygen radical absorbance capacity (ORAC), radical scavenging abilities using 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2'-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP) and protection of membranes examined by inhibition of lipid peroxidation besides the content of phenols and total flavonoids. The aqueous and ethanol extracts of two major preparations of turmeric, corresponding to its use in cooking and medicine, showed significant antioxidant abilities. In conclusion, the studies reveal that the ability of turmeric to scavenge radicals, reduce iron complex and inhibit peroxidation may explain the possible mechanisms by which turmeric exhibits its beneficial effects in relation to its use in cooking and medicine. Copyright 2004 John Wiley & Sons, Ltd.
Compositions and methods for removing arsenic in water
Gadgil, Ashok Jagannth [El Cerrito, CA
2011-02-22
Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.
Pistachio (Pistacia vera L.) gum: a potent inhibitor of reactive oxygen species.
Sehitoglu, M Hilal; Han, Hatice; Kalin, Pınar; Gülçin, İlhami; Ozkan, Ali; Aboul-Enein, Hassan Y
2015-04-01
In the present study, in order to evaluate antioxidant and radical scavenging properties of Pistachio gum (P-Gum), different bioanalytical methods such as DPPH(•) scavenging activity, DMPD(•+) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, reducing ability Fe(3+)-Fe(2+) transformation, Cuprac and FRAP assays, O2(•-) scavenging by riboflavin-methionine-illuminate system and ferrous ions (Fe(2+)) chelating activities by 2,2'-bipyridyl reagent were performed separately. P-Gum inhibited 54.2% linoleic acid peroxidation at 10 µg/ml concentration. On the other hand, BHA, BHT, α-tocopherol and trolox, pure antioxidant compounds, indicated inhibition of 80.3%, 73.5%, 36.2% and 72.0% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, all of sample had an effective DPPH(•), DMPD(•+) and O2(•-) scavenging, Fe(3+) reducing power by Fe(3+)-Fe(2+) transformation and FRAP assay, Cu(2+) reducing ability by Cuprac method and Fe(2+) chelating activities.
Microbial siderophores and their potential applications: a review.
Saha, Maumita; Sarkar, Subhasis; Sarkar, Biplab; Sharma, Bipin Kumar; Bhattacharjee, Surajit; Tribedi, Prosun
2016-03-01
Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35-7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the "Trojan horse strategy" to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.
Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution
2011-01-01
All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285
Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Moniuszko-Szajwaj, Barbara; Kowalska, Iwona; Stochmal, Anna
2015-01-01
Three clover [Trifolium L. (Leguminosae)] species were selected on the basis of data from traditional medicine, phytochemical profiles, and agricultural significance. The in vitro evaluations of free radical scavenging properties, ferric reducing abilities, and antioxidant effects of extracts from T. pratense L. (crude extract and phenolic fraction), T. pallidum L., and T. scabrum L. (phenolic fractions) were performed. Activities of the Trifolium extracts were determined at their final concentrations of 1.5-50 µg/ml. Free radical scavenging properties of methanol extract solutions were estimated by the reduction of DPPH(•) and ABTS(•) radicals. Measurements of the total antioxidant capacity (TAC) were carried out to assess the antioxidant activities of the extracts in human blood plasma under conditions of oxidative stress, induced by 200 μM peroxynitrite. The phenolic fraction of T. pratense displayed the strongest ABTS(•) and DPPH(•) radical scavenging effects (EC50 value of 21.69 and 12.27 µg/ml, respectively). The EC50 value for T. pallidum extract attained 29.77 and 30.06 µg/ml. The two remaining extracts were less potent scavengers (EC50 value higher than 50 µg/ml). Similar differences were obtained during evaluation of the ferric reducing abilities. Analysis of antioxidant properties of the extracts in blood plasma did not provide such evident differences in their actions, however, it indicated that the T. pratense phenolic fraction displayed the strongest effect. The examined Trifolium extracts partly protected blood plasma and enhanced its non-enzymatic antioxidant defense against harmful action of peroxynitrite in vitro.
Jiménez-Escrig, Antonio; Dragsted, Lars Ove; Daneshvar, Bahram; Pulido, Raquel; Saura-Calixto, Fulgencio
2003-08-27
Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) scavenging, (b) ferric-reducing antioxidant power (FRAP), and (c) inhibition of copper(II)-catalyzed in vitro human low-density lipoprotein (LDL) oxidation. In addition, the present study was performed to investigate the ability of the edible portion of artichoke to alter in vivo antioxidative defense in male rats using selected biomarkers of antioxidant status. One gram (dry matter) had a DPPH(*) activity and a FRAP value in vitro equivalent to those of 29.2 and 62.6 mg of vitamin C and to those of 77.9 and 159 mg of vitamin E, respectively. Artichoke extracts showed good efficiency in the inhibition in vitro of LDL oxidation. Neither ferric-reducing ability nor 2,2'-azinobis(3-ethylbenzothiazolin-6-sulfonate) radical scavenging activity was modified in the plasma of the artichoke group with respect to the control group. Among different antioxidant enzymes measured (superoxide dismutase, gluthatione peroxidase, gluthatione reductase, and catalase) in erythrocytes, only gluthatione peroxidase activity was elevated in the artichoke group compared to the control group. 2-Aminoadipic semialdehyde, a protein oxidation biomarker, was decreased in plasma proteins and hemoglobin in the artichoke-fed group versus the control group. In conclusion, the in vitro protective activity of artichoke was confirmed in a rat model.
Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R
2005-01-28
The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.
DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT
Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...
Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis
Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.
2015-01-01
Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, M.F.; Ruemmler, P.S.; Ryan, J.L.
Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and /sup 235/Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in /sup 237/Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the othermore » hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with /sup 235/Np and either ferric or ferrous iron. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).« less
Jin, Ningben; Jin, Bo; Zhu, Nanwen; Yuan, Haiping; Ruan, Jianbo
2015-01-01
In this study, we explored a chemical approach to eliminate inhibition of excessive volatile fatty acids (VFAs) in autothermal thermophilic aerobic digestion (ATAD). Ferric nitrate, ferric chloride, potassium nitrate and potassium chloride were employed to demonstrate the combined action of ferric ion and nitrate ion. Supplementation of ferric nitrate in the sludge digestion system resulted in reducing the concentration of Total VFAs (TVFA) by round 5000mg/L and more than 2000mg/L of acetic acid at the end of digestion. Lower TVFA concentration contributed to faster sludge stabilization rate and the VS removal of ferric nitrate dosed digester achieved 38.18% after 12days digestion which was 9days in advance compared with the stabilization time of sludge in digester without chemicals addition. Lower concentrations of NH4(+)-N and SCOD in supernatant while higher content of TP in digestion sludge were obtained in digester with ferric nitrate added. Copyright © 2014 Elsevier Ltd. All rights reserved.
ESTCP DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT
Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...
Onyeoziri, Ukoha Pius; Romanus, Ekere Nwachukwu; Onyekachukwu, Uzodinma Irene
2016-07-01
This report assessed and compared the antioxidant potentials, quantities of ascorbic acid and phenolic compounds in methanolic extract of varieties of onions and garlic cultivars in Nigeria. The pH and total acidity of the extracts were equally determined. Antioxidancy of the cultivars were analysed using the in vitro assay techniques with 2,2-diphenyl-1-picryl Hydrazyl (DPPH) free radical scavenging and ferric reducing capacity. Ascorbic acid phenolic content were determined by volumetric and Folin-Ciocalteu's method respectively. The pH and total acidity were respectively 5.65 and 0.150mmol/L (red onion), 5.69 and 0.123mmol/L (white onion) and 6.94 and 0.105mmol/L (garlic). Red onion had the highest value of total phenols, ascorbic acid and free radical scavenging activity of 14.25±0.35mg GAE/ml, 229.098mg/100g, 66.44% respectively. In DPPH assay, red and white onion showed higher tendency to inhibit auto-oxidation when compared to garlic. The ferric reducing ability was greatest in garlic and least in white onions. These data indicate that with respect to antioxidant activity, red onion variety has highest health promoting potential among others.
Reduction of costs for anemia-management drugs associated with the use of ferric citrate
Thomas, Anila; Peterson, Leif E
2014-01-01
Background Ferric citrate is a novel phosphate binder which has the potential to reduce usage of erythropoietin-stimulating agents (ESAs) and intravenous (IV) iron used for anemia management during hemodialysis (HD) among patients with end-stage renal disease (ESRD). Currently, the potential health care cost savings on a national scale due to the use of ferric citrate in ESRD are undetermined. Methods Per-patient-per-year costs of ESAs (Epogen® and Aranesp® [Amgen Inc., CA, USA]) and IV iron (Venofer® [American Regent, Inc., NY, USA] and Ferrlecit® [Sanofi US, Bridgewater, NJ, USA]) were based on RED BOOK™ (Truven Health Analytics New York, NY, USA) costs combined with the Centers for Medicare and Medicaid Services (CMS) base rate and actual usage in 2011 for the four drugs. The annual number of outpatients undergoing HD in the US was based on frequencies reported by the USRDS (United States Renal Data System). Monte Carlo uncertainty analysis was performed to determine total annual costs and cost reduction based on ferric citrate usage. Results Total annual cost of ESAs and IV iron for anemia management in ESRD determined by Monte Carlo analysis assuming CMS base rate value was 5.127 (3.664–6.260) billion USD. For actual utilization in 2011, total annual cost of ESAs and IV iron was 3.981 (2.780–4.930) billion USD. If ferric citrate usage reduced ESA utilization by 20% and IV iron by 40%, then total cost would be reduced by 21.2% to 4.038 (2.868–4.914) billion USD for the CMS base rate, and by 21.8% to 3.111 (2.148–3.845) billion USD, based on 2011 actual utilization. Conclusion It is likely that US health care costs for anemia-management drugs associated with ESRD among HD patients can be reduced by using ferric citrate as a phosphate binder. PMID:24899820
Nieman, David C; Capps, Courtney L; Capps, Christopher R; Shue, Zack L; McBride, Jennifer E
2018-05-03
This double-blind, randomized, placebo-controlled crossover trial determined if ingestion of a supplement containing a tomato complex with lycopene, phytoene, and phytofluene (T-LPP) and other compounds for 4 weeks would attenuate inflammation, muscle damage, and oxidative stress postexercise and during recovery from a 2-hr running bout that included 30 min of -10% downhill running. Study participants ingested the T-LPP supplement or placebo with the evening meal for 4 weeks prior to running 2 hr at high intensity. Blood samples and delayed onset muscle soreness ratings were taken pre- and post-4-week supplementation, and immediately following the 2-hr run, and then 1-hr, 24-hr, and 48-hr postrun. After a 2-week washout period, participants crossed over to the opposite treatment and repeated all procedures. Plasma lycopene, phytoene, and phytofluene increased significantly in T-LPP compared with placebo (p < .001 for each). Significant time effects were shown for serum creatine kinase, delayed onset muscle soreness, C-reactive protein, myoglobin, 9- and 13-hydroxyoctadecadienoic acids, ferric reducing ability of plasma, and six plasma cytokines (p < .001 for each). The pattern of increase for serum myoglobin differed between T-LPP and placebo (interaction effect, p = .016, with lower levels in T-LPP), but not for creatine kinase, delayed onset muscle soreness, C-reactive protein, the six cytokines, 9- and 13-hydroxyoctadecadienoic acids, and ferric reducing ability of plasma. No significant time or interaction effects were measured for plasma-oxidized low-density lipoprotein or serum 8-hydroxy-2'-deoxyguanosine. In summary, supplementation with T-LPP over a 4-week period increased plasma carotenoid levels 73% and attenuated postexercise increases in the muscle damage biomarker myoglobin, but not inflammation and oxidative stress.
Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun
2014-11-01
Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom
2006-10-01
Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.
Drug, E; Fadeev, L; Gozin, M
2011-05-30
Transferrin is a blood-plasma glycoprotein, which is responsible for ferric-ion delivery and which functions as the most important ferric pool in the body. The reversible complexation process of Fe(3+) ions is associated with conformational changes of the three-dimensional structure of the transferrin. This conformational dynamics is attributed to a partial unfolding of the N-lobe of the protein and could be described as a transition between the holo to the apo forms of the transferrin. The aim of the present work is to demonstrate the unprecedented ability of the transferrin to solubilize various polycyclic aromatic hydrocarbons in physiological solution and to explore the impact of these materials on the structure and functionality of the transferrin. The synthesis and characterization of novel materials, consisting of complexes between human transferrin and hydrophobic high-carbon-content compounds, is reported here for the first time. Furthermore, it is shown that the preparation of these complexes from holo-transferrin leads to an irreversible loss of the ferric ions from the protein. Analytical studies of these novel complexes may shed a light on the mechanism by which transferrin could lose its ability to bind and thus to transport and store iron. These findings clearly demonstrate a possible damaging impact of various hydrophobic pollutants, which can enter an organism by inhalation or ingestion, on the functionality of the transferrin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Microbe-Clay Mineral Reactions and Characterization Techniques
NASA Astrophysics Data System (ADS)
Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.
2008-12-01
Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides, solvents, explosives, and nitroaromatic and polychlorinated compounds. Inorganic contaminants include Cr(VI), U(VI), and Tc(VII). Despite significant efforts, our understanding of mechanisms of chemical and microbial reduction of ferric iron in clay minerals is still limited. While some studies have presented evidence for a solid-state reduction mechanism, others argue that the clay mineral structure dissolves when the extent of reduction is higher (greater than 30 percent). The electron transfer process is also dependent on the reducing agent. While chemical reduction of ferric iron appears to occur at the basal surfaces, bacteria appear to attack clay minerals at the edges.
Fadem, Stephen Z.; Kant, Kotagal S.; Bhatt, Udayan; Sika, Mohammed; Lewis, Julia B.; Negoi, Dana
2015-01-01
Ferric citrate is a novel phosphate binder that allows the simultaneous treatment of hyperphosphatemia and iron deficiency in patients being treated for end-stage renal disease with hemodialysis (HD). Multiple clinical trials in HD patients have uniformly and consistently demonstrated the efficacy of the drug in controlling hyperphosphatemia with a good safety profile, leading the US Food and Drug Administration in 2014 to approve its use for that indication. A concurrent beneficial effect, while using ferric citrate as a phosphate binder, is its salutary effect in HD patients with iron deficiency being treated with an erythropoietin-stimulating agent (ESA) in restoring iron that becomes available for reversing chronic kidney disease (CKD)-related anemia. Ferric citrate has also been shown in several studies to diminish the need for intravenous iron treatment and to reduce the requirement for ESA. Ferric citrate is thus a preferred phosphate binder that helps resolve CKD-related mineral bone disease and iron-deficiency anemia. PMID:26336594
Zhao, Yang; Kao, Chun-Pin; Wu, Kun-Chang; Liao, Chi-Ren; Ho, Yu-Ling; Chang, Yuan-Shiun
2014-11-10
This paper describes the development of an HPLC-UV-MS method for quantitative determination of andrographolide and dehydroandrographolide in Andrographis Herba and establishment of its chromatographic fingerprint. The method was validated for linearity, limit of detection and quantification, inter- and intra-day precisions, repeatability, stability and recovery. All the validation results of quantitative determination and fingerprinting methods were satisfactory. The developed method was then applied to assay the contents of andrographolide and dehydroandrographolide and to acquire the fingerprints of all the collected Andrographis Herba samples. Furthermore, similarity analysis and principal component analysis were used to reveal the similarities and differences between the samples on the basis of the characteristic peaks. More importantly, the DPPH free radical-scavenging and ferric reducing capacities of the Andrographis Herba samples were assayed. By bivariate correlation analysis, we found that six compounds are positively correlated to DPPH free radical scavenging and ferric reducing capacities, and four compounds are negatively correlated to DPPH free radical scavenging and ferric reducing capacities.
Bromate Reduction by Rhodococcus sp. Br-6 in the Presence of Multiple Redox Mediators.
Tamai, Naoko; Ishii, Takahiro; Sato, Yusuke; Fujiya, Hiroko; Muramatsu, Yasuyuki; Okabe, Nobuaki; Amachi, Seigo
2016-10-04
A bromate (BrO 3 - )-reducing bacterium, designated Rhodococcus sp. strain Br-6, was isolated from soil. The strain reduced 250 μM bromate completely within 4 days under growth conditions transitioning from aerobic to anaerobic conditions, while no reduction was observed under aerobic and anaerobic growth conditions. Bromate was reduced to bromide (Br - ) stoichiometrically, and acetate was required as an electron donor. Interestingly, bromate reduction by strain Br-6 was significantly dependent on both ferric iron and a redox dye 2,6-dichloroindophenol (DCIP). Cell free extract of strain Br-6 showed a dicumarol-sensitive diaphorase activity, which catalyzes the reduction of DCIP in the presence of NADH. Following abiotic experiments showed that the reduced form of DCIP was reoxidized by ferric iron, and that the resulting ferrous iron reduced bromate abiotically. Furthermore, activity staining of the cell free extract revealed that one of diaphorase isoforms possessed a bromate-reducing activity. Our results demonstrate that strain Br-6 utilizes multiple redox mediators, that is, DCIP and ferric iron, for bromate reduction. Since the apparent rate of bromate reduction by this strain (60 μM day -1 ) was 3 orders of magnitude higher than that of known bromate-reducing bacteria, it could be applicable to removal of this probable human carcinogen from drinking water.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.
1995-01-01
Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water in ferric sulfate-bearing montmorillonite. Reflectance spectra of ferric sulfate-bearing montmorillonite include a strong 3-micrometers band that is more resistant to dry atmospheric conditions than the 3-micrometers band in spectra of similarly prepared ferrihydrite-bearing montmorillonites.
Poscia, A; Stojanovic, J; Kheiraoui, F; Proli, E M; Scaldaferri, F; Volpe, M; Di Pietro, M L; Gasbarrini, A; Fabrizio, L; Boccia, S; Favaretti, C
2017-01-01
Iron deficiency anaemia (IDA) is the main extraintestinal manifestation affecting patients with inflammatory bowel disease (IBD). The Health Technology Assessment approach was applied to evaluate the sustainability of intravenous (IV) iron formulations in the Italian hospital setting, with particular focus on ferric carboxymaltose. Data on the epidemiology of IBD and associated IDA, in addition to the efficacy and safety of IV iron formulations currently used in Italy, were retrieved from scientific literature. A hospital-based cost-analysis of the outpatient delivery of IV iron treatments was performed. Organizational and ethical implications were discussed. IDA prevalence in IBD patients varies markedly from 9 to 73%. IV iron preparations were proven to have good efficacy and safety profiles, and ferric carboxymaltose provided a fast correction of haemoglobin and serum ferritin levels in iron-deficient patients. Despite a higher price, ferric carboxymaltose would confer a beneficial effect to the hospital, in terms of reduced cost related to individual patient management and additionally to the patient by reducing the number of infusions and admissions to healthcare facilities. Ethically, the evaluation is appropriate due to its efficacy and compliance. This assessment supports the introduction of ferric carboxymaltose in the Italian outpatient setting.
Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng
2016-03-01
Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.
Protein Hydrolysates as Promoters of Non-Haem Iron Absorption
Li, Yanan; Jiang, Han; Huang, Guangrong
2017-01-01
Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327
Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.
Kukiełka, E; Cederbaum, A I
1995-04-15
Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the microsomal reductant. Interactions between rifamycin SV, iron and NADH generating hydroxyl-radical-like species may play a role in some of the hepatotoxic effects associated with the use of this antibacterial antibiotic.
Zhu, Feng-Mei; Du, Bin; Li, Jun
2014-01-01
Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.
Ademosun, Ayokunle O.
2014-01-01
This study sought to investigate the effect of infusions from green tea (Camellia sinensis) and some citrus peels [shaddock (Citrus maxima), grapefruit (Citrus paradisi), and orange (Citrus sinensis)] on key enzymes relevant to the management of neurodegenerative conditions [monoamine oxidase (MAO) and butyrylcholinesterase (BChE)]. The total phenol contents and antioxidant activities as typified by their 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals scavenging abilities, ferric reducing antioxidant properties, and Fe2+ chelating abilities were also investigated. Green tea had the highest total phenol (43.3 mg/g) and total flavonoid (16.4 mg/g) contents, when compared to orange [total phenol (19.6 mg/g), total flavonoid (6.5 mg/g)], shaddock [total phenol (16.3 mg/g), total flavonoid (5.2 mg/g)], and grapefruit [total phenol (17.7 mg/g), total flavonoid (5.9 mg/g)]. Orange (EC50 = 1.78 mg/mL) had the highest MAO inhibitory ability, while green tea had the least MAO inhibitory ability (EC50 = 2.56 mg/mL). Similarly, green tea had the least BChE inhibitory ability (EC50 = 5.43 mg/mL) when compared to the citrus peels' infusions. However, green tea infusions had the strongest highest ABTS radical scavenging ability, reducing power, and Fe2+ chelating ability. The inhibition of MAO and BChE activities by the green tea and citrus peels infusions could make them good dietary means for the prevention/management of neurodegenerative conditions. PMID:25243093
Mojs, Ewa; Stanisławska-Kubiak, Maia; Wójciak, Rafał W; Wojciechowska, Julita; Przewoźniak, Sabina
2016-03-01
Anemia in patients with diabetes is not scarce and may contribute to the complications of the disease. The risk of iron deficiency parameters in child sufferers of diabetes type 1, observed in studies, can lead to cognitive impairment. The aim of the study was to determine whether children and adolescents with diabetes type 1, in whom reduced ferric parameters are observed in control tests, may also show reduced cognitive performance. The study included 100 children with diabetes type 1 at the age of 6-17 years. During control tests, patients' morphological blood parameters were measured: red blood cells (RBC), hemoglobin, glycosylated hemoglobin, hematocrit, RBC volume, the molar mass of hemoglobin in RBC (MCH), mean corpuscular hemoglobin in RBC and iron concentrations in serum using flame atomic absorption spectroscopy and the Wechsler Intelligence Scale for Children (WISC-R). Results in the group of children with a diabetes type 1 significantly lower concentration of three ferric parameters affect the non-verbal intelligence measured with WISC-R. The prevalence of reduced ferric parameters justifies further screening in all children with diabetes type 1 and taking up appropriate preventive measures to reduce the risk of their occurrence. Copyright © 2016 American Federation for Medical Research.
Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium
Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.
1996-01-01
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
Johnson, D Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.
Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects
Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina
2012-01-01
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed. PMID:22438853
Bhandari, Sunil
2011-01-01
The clinical need to be able to administer high doses of intravenous iron conveniently in a single rapid infusion has been addressed by the recent introduction of ferric carboxymaltose and subsequently iron isomaltoside 1000. Neither requires a test dose. Ferric carboxymaltose can be administered at 15 mg/kg body weight to a maximum dose of 1000 mg, whereas iron isomaltoside 1000 can be administered at 20 mg/kg body weight. The ability to give high doses of iron is important in the context of managing iron deficiency anemia in a number of clinical conditions where demands for iron are high (including chronic blood loss associated with inflammatory bowel disease, menorrhagia, and chronic kidney disease). It is also an important component in the strategy as an alternative to a blood transfusion. Affordability is a key issue for health services. This study was a comparative analysis of the costs of administering the newly available intravenous iron formulations against standard practice (blood transfusion, intravenous iron sucrose) by considering the cost of this treatment option plus nursing costs associated with administration, equipment for administration, and patient transportation in the secondary care (hospital) setting across three dosage levels (600 mg, 1000 mg, and 1600 mg). The analysis indicates that the use of iron isomaltoside 1000 results in a net saving when compared with iron sucrose, blood, and ferric carboxymaltose. At 600 mg and 1000 mg doses, it is cheaper than low-molecular-weight iron dextran but more expensive at a dose of 1600 mg. However, it takes six hours to administer low-molecular-weight iron dextran at this dose level, which is inconvenient and reduces patient throughput (productivity).
Central Heating Plant Coal Use Handbook. Volume 1: Technical Reference.
1996-11-01
variation of a dry desulfurization system simply uses dry calcium hydroxide that is injected into the flue gas stream before entry to a fabric filter...97/14, Voll 173 competitive capital and operating costs compared with conventional technology using flue gas desulfurization reduced NOx emissions...ferric iron in slag, expressed as a percentage of the total iron calculated as ferric iron FGD: Flue gas desulfurization filter: A device for
Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase: Kinetics and Specificity†
Frantom, Patrick A.; Seravalli, Javier; Ragsdale, Stephen W.; Fitzpatrick, Paul F.
2006-01-01
Tyrosine hydroxylase (TyrH) is a pterin-dependent enzyme that catalyzes the hydroxylation of tyrosine to form dihydroxyphenylalanine. The oxidation state of the active site iron atom plays a central role in the regulation of the enzyme. The kinetics of reduction of ferric TyrH by several reductants were determined by anaerobic stopped-flow spectroscopy. Anaerobic rapid freeze–quench EPR confirmed that the change in the near-UV absorbance of TyrH upon adding reductant corresponded to iron reduction. Tetrahydrobiopterin reduces wild-type TyrH following a simple second-order mechanism with a rate constant of 2.8 ± 0.1 mM−1 s−1. 6-Methyltetrahydropterin reduces the ferric enzyme with a second-order rate constant of 6.1 ± 0.1 mM−1 s−1 and exhibits saturation kinetics. No EPR signal for a radical intermediate was detected. Ascorbate, glutathione, and 1,4-benzoquinone all reduce ferric TyrH, but much more slowly than tetrahydrobiopterin, suggesting that the pterin is a physiological reductant. E332A TyrH, which has an elevated Km for tetrahydropterin in the catalytic reaction, is reduced by tetrahydropterins with the same kinetic parameters as those of the wild-type enzyme, suggesting that BH4 does not bind in the catalytic conformation during the reduction. Oxidation of ferrous TyrH by molecular oxygen can be described as a single-step second-order reaction, with a rate constant of 210 mM−1 s−1. S40E TyrH, which mimics the phosphorylated state of the enzyme, has oxidation and reduction kinetics similar to those of the wild-type enzyme, suggesting that phosphorylation does not directly regulate the interconversion of the ferric and ferrous forms. PMID:16475826
Storage quality of walnut oil containing lycopene during accelerated oxidation.
Xie, Chaonan; Ma, Zheng Feei; Li, Fang; Zhang, Hongxia; Kong, Lingming; Yang, Zhipan; Xie, Weifeng
2018-04-01
The purpose of investigation was to assess the effect of lycopene on the peroxide value, acid value, fatty acids, total phenolic content and ferric-reducing antioxidant power of walnut oil. Walnut oil was extracted from Xinjiang walnut variety using cold pressing method. Our study reported that after 45 days of accelerated oxidation at 60 °C (Schaal oven test), 0.005% lycopene exhibited the greatest antioxidant effect than other addition levels of lycopene. Therefore, under ambient storage conditions, the shelf-life of walnut oil could be extended up to 16 months by 0.005% lycopene. Moreover, 0.005% lycopene added to walnut oil had a significantly higher content of saturated fatty acid, unsaturated fatty acid, total phenol, reducing ability of the polar and non-polar components than the blank sample (walnut oil without any addition of lycopene). In conclusion, lycopene improved the quality of walnut oil because of its antioxidant effect against lipid oxidation.
Ajboye, Taofeek O; Yakubu, Musa T; Salau, Amadu K; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I
2010-12-01
Despite the myriad uses of Annona senegalensis Pers. (Annonaceae) leaves in folklore medicine of Nigeria, the basis is yet to be substantiated by scientific investigations. To investigate the antioxidant (in vitro and in vivo) and drug detoxification potential of aqueous extract of A. senegalensis leaves in CCl₄-induced hepatocellular damage. In vitro antioxidant activity of the aqueous extract of A. senegalensis leaves was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), H₂O₂, superoxide ion, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and ferric ion models while in vivo antioxidant and drug detoxification activities of the extract at 100, 200, and 400 mg/kg body weight were done by assaying the levels of enzymic and non-enzymic indices in CCl₄-induced hepatocellular damage. The extract at 1 mg/mL scavenged DPPH, H₂O₂, superoxide ion, and ABTS radicals, whereas ferric ion was significantly (P <0.05) reduced. The levels of alkaline and acid phosphatases, alanine and aspartate aminotransferases, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, reduced glutathione, vitamins C and E, glutathione S-transferase, nicotinamide adenine dinucleotide (reduced):Quinone oxidoreductase, uridyl diphosphoglucuronyl transferase, malondialdehyde, and lipid hydroperoxide that decreased in CCl₄ treated animals were significantly attenuated by the extract in a manner similar to the animals treated with the reference drug. The ability of the aqueous extract of A. senegalensis leaves to scavenge free radicals in vitro and reversal of CCl₄-induced hepatocellular damage in rats suggest antioxidant and drug detoxification activities. Overall, this study has justified the rationale behind some of the medicinal uses of the plant in folklore medicine of Nigeria.
[Effect of processing on the antioxidant capacity of the plum (Prunus domestica)].
Valero, Yolmar; Colina, Jhoana; Ineichen, Emilio
2012-12-01
Fruits are considered sources of antioxidant compounds whose properties could impair due to processing. The objective of this work was to determine the effect of blanching and osmotic dehydration on the total polyphenols content, tannins and antioxidant capacity of plums (Prunus domestica) in yellow and red varieties. The total phenolic content in plums was determined according to the Folin-Ciocalteu assay and tannins were determined by vanillin assay. The antiradical efficiency (AE) and ferric reducing power (FRP) were used to estimate the total antioxidant capacity. The content of total polyphenols and tannins were higher in the red plum. The content of polyphenols in the pulp was higher that the peel while for tannins the opposite was observed in both varieties. The red plum had higher antioxidant capacity. The AE was low and slow kinetics for the two varieties. There was a linear correlation between polyphenols and tannins with antiradical efficiency; however, there was no correlation with the reducing power. The total polyphenols content was increased with blanching, while the tannins and the AE decreased, ferric reducing power is unaffected. For osmotic dehydration, the tannins and the AE were decreased, while the total polyphenols content and ferric reducing power are unaffected. It is recommended the blanched as an alternative to consumption and conservation in the plum.
Total antioxidant capacity of commonly used fruits, vegetables, herbs and spices of Pakistan.
Abid, Mobasher Ali; Ashfaq, Muhammad; Sharif, Muhammad Junaid Hassan; Rauf, Khalid; Mahmood, Wajahat; Khan, Ikarmullah; Abbas, Ghulam
2017-11-01
The current study was aimed at investigating the total antioxidant activity (TAC) of various fruits, vegetables, herbs and spices habitat in Pakistan. The ferric reducing ability of plasma (FRAP) assay was used to measure the TAC of various extracts (aqueous, ethanolic and aqueous-ethanolic). Following is the potency order for fruits (guava >strawberry >Pomegranate >apple >kinnow >melon >lemon >banana), vegetables (spinach >Cabbage (Purple) >Jalapeno >Radish >Brinjal >Bell Pepper >Lettuce >Carrot >Cabbage (White) >Onion >Potato >Tomato >Cucumber) and herbs/spices (clove >Rosemary >Thyme >Oregano >Cinnamon >Cumin >Kalonji >Paprika >Neem (Flower) >Fennel >Black Cardamom >Turmeric >Coriander >Ginger >Garlic). In conclusion, the guava, spinach and clove provide the best natural dietary option for treatment / prevention of oxidative stress and thus could alleviate several associated ailments.
Analgesic activity of piracetam: effect on cytokine production and oxidative stress.
Navarro, Suelen A; Serafim, Karla G G; Mizokami, Sandra S; Hohmann, Miriam S N; Casagrande, Rubia; Verri, Waldiceu A
2013-04-01
Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1β as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic. Copyright © 2013 Elsevier Inc. All rights reserved.
Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W.; Conrad, Ralf; Kamagata, Yoichi
2015-01-01
Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8–98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides. PMID:25999927
Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi
2015-01-01
Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides.
Chemical composition and antioxidant activities of some indigenous spices consumed in Nigeria.
Ene-Obong, Henrietta; Onuoha, NneOla; Aburime, Lilian; Mbah, Obioma
2018-01-01
The chemical compositions and antioxidant capacities of seven spices consumed in Southern Nigeria were determined. They were purchased from majors markets in the study area. Edible portions of the spices were ground into fine powder and their nutrient and phytochemical compositions determined using standard methods. Antioxidant activity were determined on aqueous extract using standard assays, namely, 1,1-diphenyl-2picrylhydrazyl (DPPH) free radical ability and ferric reducing antioxidant potential (FRAP). The spices were rich in macro-and micro-nutrients. Ricinodendron heudelotii had the highest protein (30.6%) and fat (24.6%) contents. Tetrapleura tetraptera had the least fat content. The total phenol, flavonoid and vitamin C contents differed significantly (p<0.001) from each other. Aframomum citratum had the highest amount of total phenol, flavonoid and DPPH scavenging ability, while Afrostyrax lepidophyllus had the best FRAP. The spices have good nutrient profile and antioxidant potentials. Their increased consumption is recommended and use as functional foods needs to be exploited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M
2011-09-01
The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.
Agarwal, Charu; Máthé, Katalin; Hofmann, Tamás; Csóka, Levente
2018-03-01
Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids. The influence of 3 independent factors (time, input power, and methanol concentration) was evaluated on the extraction of total phenols (TPC), flavonoids (TF), ferric reducing ability of plasma (FRAP) and the overall yield. A face-centered central composite design was used for statistical modelling of the response data, followed by regression and analysis of variance in order to determine the significance of the model and factors. Both the solvent composition and the time significantly affected the extraction while the sonication power had no significant impact on the responses. The response predictions obtained at optimum extraction conditions of 15 min time, 130 W power, and 80% methanol were 314.822 mg GAE/g DW of TPC, 28.173 mg QE/g DW of TF, 18.79 mM AAE/g DW of FRAP, and 10.86% of yield. A good correlation was observed between the predicted and experimental values of the responses, which validated the mathematical model. On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses. Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis. Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control. © 2018 Institute of Food Technologists®.
Wang, Yu-Xin; Li, Yang; Sun, An-Min; Wang, Feng-Jiao; Yu, Guo-Ping
2014-09-16
The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food.
Lai, Wenzhen; Shaik, Sason
2011-04-13
In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-à-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed. © 2011 American Chemical Society
Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui
2015-04-01
In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.
Assessment of antioxidant activity by using different in vitro methods.
Schlesier, K; Harwat, M; Böhm, V; Bitsch, R
2002-02-01
In this study, six common tests for measuring antioxidant activity were evaluated by comparing four antioxidants and applying them to beverages (tea and juices): Trolox equivalent antioxidant capacity assay (TEAC I-III assay), Total radical-trapping antioxidant parameter assay (TRAP assay), 2,2-diphenyl-l-picrylhydrazyl assay (DPPH assay), N,N-dimethyl-p-phenylendiamine assay (DMPD assay), Photochemiluminescence assay (PCL assay) and Ferric reducing ability of plasma assay (FRAP assay). The antioxidants included gallic acid representing the group of polyphenols, uric acid as the main antioxidant in human plasma, ascorbic acid as a vitamin widely spread in fruits and Trolox as water soluble vitamin E analogue. The six methods presented can be divided into two groups depending on the oxidising reagent. Five methods use organic radical producers (TEAC I-III, TRAP, DPPH, DMPD, PCL) and one method works with metal ions for oxidation (FRAP). Another difference between these tests is the reaction procedure. Three assays use the delay in oxidation and determine the lag phase as parameter for the antioxidant activity (TEAC I, TRAP, PCL). They determine the delay of radical generation as well as the ability to scavenge the radical. In contrast, the assays TEAC II and III, DPPH, DMPD and FRAP analyse the ability to reduce the radical cation (TEAC II and III, DPPH, DMPD) or the ferric ion (FRAP). The three tests acting by radical reduction use preformed radicals and determine the decrease in absorbance while the FRAP assay measures the formed ferrous ions by increased absorbance. Gallic acid was the strongest antioxidant in all tests with exception of the DMPD assay. In contrast, uric acid and ascorbic acid showed low activity in some assays. Most of the assays determine the antioxidant activity in the micromolar range needing minutes to hours. Only one assay (PCL) is able to analyse the antioxidant activity in the nanomolar range. Black currant juice showed highest antioxidant activity in all tests compared to tea, apple juice and tomato juice. Despite these differences, results of these in vitro assays give an idea of the protective efficacy of secondary plant products. It is strongly recommended to use at least two methods due to the differences between the test systems investigated.
Jin, Ningben; Shou, Zongqi; Yuan, Haiping; Lou, Ziyang; Zhu, Nanwen
2016-03-01
The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar
2010-01-01
The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures. PMID:20716927
Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S
2010-01-01
The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.
Coagulant recovery and reuse for drinking water treatment.
Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J
2016-01-01
Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R
2017-09-01
Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.
Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia
2013-10-15
Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kharadi, G. J.
2014-01-01
An octahedral complexes of copper with clioquinol(CQ) and substituted terpyridine have been synthesized. The Cu(II) complexes have been characterized by elemental analyses, thermogravimetric analyses, magnetic moment measurements, FT-IR, electronic, 1H NMR and FAB mass spectra. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation. Ferric-reducing anti-oxidant power of all complexes were measured. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The antimicrobial efficiency of the complexes were tested on five different microorganisms and showed good biological activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, I.; van de Wetering, D.A.M.; Marschner, H.
The recent proposal of Tipton and Thowsen that iron-deficient plants reduce ferric chelates in cell walls by a system dependent on the leakage of malate from root cells was tested. Results are presented showing that this mechanism could not be responsible for the high rates of ferric reduction shown by roots of iron-deficient bean (Phaseolus vulgaris L. var Prelude) plants. The role of O/sub 2/ in the reduction of ferric chelates by roots of iron-deficient bean plants was also tested. The rate of Fe(III) reduction was the same in the presence and in the absence of O/sub 2/. However, inmore » the presence of O/sub 2/ the reaction was partially inhibited by superoxide dismutase (SOD), which indicates a role for the superoxide radical, O/sub 2//sup -/, as a facultative intermediate electron carrier. The inhibition by SOD increased with substrate pH and with decrease in concentration of the ferrous scavenger bathophenanthroline-disulfonate. The results are consistent with a mechanism for transmembrane electron in which a flavin or quinone is the final electron carrier in the plasma membrane. The results are discussed in relation to the ecological importance that O/sub 2//sup -/ may have in the acquisition of ferric iron by dicotyledonous plants.« less
Tannins from Canarium album with potent antioxidant activity*
Zhang, Liang-liang; Lin, Yi-ming
2008-01-01
The contents of total phenolics and extractable condensed tannins in the leaves, twigs and stem bark of Canarium album were determined. The structural heterogeneity of condensed tannins from stem bark was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) analyses. The results show the predominance of signals representative of procyanidins and prodelphinidins. In addition, epicatechin and epigallocatechin polymers with galloylated procyanidin or prodelphinidin were also observed. The tannins were screened for their potential antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) model systems. Tannins extracted from leaves, twigs and stem bark all showed a very good DPPH radical scavenging activity and ferric reducing power. PMID:18500781
Tannins from Canarium album with potent antioxidant activity.
Zhang, Liang-liang; Lin, Yi-ming
2008-05-01
The contents of total phenolics and extractable condensed tannins in the leaves, twigs and stem bark of Canarium album were determined. The structural heterogeneity of condensed tannins from stem bark was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) analyses. The results show the predominance of signals representative of procyanidins and prodelphinidins. In addition, epicatechin and epigallocatechin polymers with galloylated procyanidin or prodelphinidin were also observed. The tannins were screened for their potential antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) model systems. Tannins extracted from leaves, twigs and stem bark all showed a very good DPPH radical scavenging activity and ferric reducing power.
Cignini, Pietro; Mangiafico, Lucia; Padula, Francesco; D'Emidio, Laura; Dugo, Nella; Aloisi, Alessia; Giorlandino, Claudio; Vitale, Salvatore Giovanni
2015-01-01
During pregnancy, iron deficiency anemia is recognized as a specific risk factor for both adverse maternal and perinatal outcome. We decided to test the hypothesis that the daily administration of Lafergin(®), a dietary multicomponent based on Ferrazone(®) (Ferric Sodium EDTA), Lactoferrin, Vitamin C and Vitamin B12, from first trimester of pregnancy until the end of gestation, may significantly reduce, in anemic women, the severity of anemia compared to controls who received ferrous sulfate or liposomal iron.
Kant, Kamal; Lal, Uma Ranjan; Ghosh, Manik
2018-01-01
Globally, reactive oxygen species have served as an alarm predecessor toward pathogenesis of copious oxidative stress-related diseases. The researchers have turned their attention toward plant-derived herbal goods due to their promising therapeutic applications with minimal side effects. Arisaema tortuosum (Wall.) Schott (ATWS) is used in the traditional medicine since ancient years, but scientific assessments are relatively inadequate and need to be unlocked. Our aim was designed to validate the ATWS tuber and leaf extracts as an inhibitor of oxidative stress using computational approach. The reported chief chemical entities of ATWS were docked using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA) tool and further ATWS extracts (tubers and leaves) were validated with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), ferric-reducing ability of plasma (FRAP), and sulforhodamine B assays experimentally. In silico results showed notable binding affinity of ATWS phytoconstituents with the receptor (PDB: 3ERT). Experimentally, butanolic tuber fraction confirmed promising antioxidant potential (ABTS: IC 50 : 271.67 μg/ml; DPPH: IC 50 : 723.41 μg/ml) with a noteworthy amount of FRAP (195.96 μg/mg), total phenolic content (0.087 μg/mg), and total flavonoid content (7.5 μg/mg) while chloroform fraction (leaves) showed considerable reduction in the cell viability of MCF-7 cell line. The current findings may act as a precious tool to further unlock novel potential therapeutic agents against oxidative stress. Quercetin showed top.ranked glide score with notable binding toward 3ERT receptorAmong extracts, butanolic tubers confirmed as promising antioxidant with remarkable amount of TPC and TFCIn addition, chloroform fraction (leaves) revealed considerable decline in the cell viability of MCF-7 cell line. Abbreviations used: ATWS: Arisaema tortuosum (Wall.) Schott, DPPH: 2,2'-diphenyl-1-picrylhydrazyl, ABTS: 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, FRAP: Ferric-reducing ability of plasma, TPC: Total phenolic content, TFC: Total flavonoid content, SRB: Sulforhodamine B.
Aksan, A; Işık, H; Radeke, H H; Dignass, A; Stein, J
2017-05-01
Iron deficiency anaemia (IDA) is a common complication of inflammatory bowel disease (IBD) associated with reduced quality of life and increased hospitalisation rates. While the best way of treating IDA in IBD patients is not clearly established, current European guidelines recommend intravenous iron therapy in IBD patients with severe anaemia or intolerance to oral iron compounds. To compare the efficacy and tolerability of different intravenous iron formulations used to treat IDA in IBD patients in a systematic review and Bayesian network meta-analysis (NMA), PROSPERO registration number: 42016046565. In June 2016, we systematically searched for studies analysing efficacy and safety of intravenous iron for IDA therapy in IBD. Primary outcome was therapy response, defined as Hb normalisation or increase ≥2 g/dL. Five randomised, controlled trials (n = 1143 patients) were included in a network meta-analysis. Only ferric carboxymaltose was significantly more effective than oral iron [OR=1.9, 95% CrI: (1.1;3.2)]. Rank probabilities showed ferric carboxymaltose to be most effective, followed by iron sucrose, iron isomaltose and oral iron. Pooled data from the systematic review (n = 1746 patients) revealed adverse event rates of 12.0%, 15.3%, 12.0%, 17.0% for ferric carboxymaltose, iron sucrose, iron dextran and iron isomaltose respectively. One drug-related serious adverse event (SAE) each was reported for ferric carboxymaltose and iron isomaltoside, and one possibly drug-related SAE for iron sucrose. Ferric carboxymaltose was the most effective intravenous iron formulation, followed by iron sucrose. In addition, ferric carboxymaltose tended to be better tolerated. Thus, nanocolloidal IV iron products exhibit differing therapeutic and safety characteristics and are not interchangeable. © 2017 John Wiley & Sons Ltd.
Bernabeu-Wittel, Máximo; Aparicio, Reyes; Romero, Manuel; Murcia-Zaragoza, José; Monte-Secades, Rafael; Rosso, Clara; Montero, Abelardo; Ruiz-Cantero, Alberto; Melero-Bascones, María
2012-02-21
Around one third to one half of patients with hip fractures require red-cell pack transfusion. The increasing incidence of hip fracture has also raised the need for this scarce resource. Additionally, red-cell pack transfusions are not without complications which may involve excessive morbidity and mortality. This makes it necessary to develop blood-saving strategies. Our objective was to assess safety, efficacy, and cost-effictveness of combined treatment of i.v. ferric carboxymaltose and erythropoietin (EPOFE arm) versus i.v. ferric carboxymaltose (FE arm) versus a placebo (PLACEBO arm) in reducing the percentage of patients who receive blood transfusions, as well as mortality in the perioperative period of hip fracture intervention. Multicentric, phase III, randomized, controlled, double blinded, parallel groups clinical trial. Patients > 65 years admitted to hospital with a hip fracture will be eligible to participate. Patients will be treated with either a single dosage of i.v. ferric carboxymaltose of 1 g and subcutaneous erythropoietin (40.000 IU), or i.v. ferric carboxymaltose and subcutaneous placebo, or i.v. placebo and subcutaneous placebo. Follow-up will be performed until 60 days after discharge, assessing transfusion needs, morbidity, mortality, safety, costs, and health-related quality of life. Intention to treat, as well as per protocol, and incremental cost-effectiveness analysis will be performed. The number of recruited patients per arm is set at 102, a total of 306 patients. We think that this trial will contribute to the knowledge about the safety and efficacy of ferric carboxymaltose with/without erythropoietin in preventing red-cell pack transfusions in patients with hip fracture. CLINICALTRIALS.GOV IDENTIFIER: NCT01154491.
Preparation and characterization of Fe3O4-Pt nanoparticles
NASA Astrophysics Data System (ADS)
Andrade, Ângela Leão; Cavalcante, Luis Carlos Duarte; Fabris, José Domingos; Pereira, Márcio César; Ardisson, José Domingos; Domingues, Rosana Zacarias
2017-11-01
Pt and Pt-based nanomaterials are active anticancer drugs for their ability to inhibit the division of living cells. Nanoparticles of magnetite containing variable proportions of platinum were prepared in the laboratory. The magnetite nanoparticles with platinum (Pt-Fe3O4) were obtained by reducing the Fe3+ of the maghemite ( γ Fe2O3) mixed with platinum (II) acetylacetonate and sucrose in two inversely coupled ceramic crucibles and heated in a furnace at 400 °C for 20 min. The formed carbon during this preparation acts to chemically reduce the ferric iron in maghemite. Moreover, its residual layer on the particle surface prevents the forming magnetite from oxidizing in air and helps retain the platinum in the solid mixture. The produced Pt-magnetite samples were characterized by 57Fe-Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, and magnetization measurements. Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposites, in aqueous solution, showed that they are suitable as a hyperthermia agent for biological applications.
Natić, Maja M; Dabić, Dragana Č; Papetti, Adele; Fotirić Akšić, Milica M; Ognjanov, Vladislav; Ljubojević, Mirjana; Tešić, Živoslav Lj
2015-03-15
In this study, the polyphenolic profile of 11 Morus alba fruits grown in the Vojvodina region was investigated. Ultra high performance liquid chromatography (UHPLC) coupled with Linear Trap Quadrupole and OrbiTrap mass analyzer, and UHPLC coupled with a diode array detector and a triple-quadrupole mass spectrometer were used for the identification and quantification of the polyphenols, respectively. A total of 14 hydroxycinnamic acid esters, 13 flavonol glycosides, and 14 anthocyanins were identified in the extracts with different distributions and contents according to the sampling. The total phenolic content ranged from 43.84 to 326.29 mg GAE/100g frozen fruit. The radical scavenging capacity (50.18-86.79%), metal chelating ability (0.21-8.15%), ferric ion reducing power (0.03-38.45 μM ascorbic acid) and superoxide anion radical scavenging activity (16.53-62.83%) were assessed. The findings indicated that mulberry polyphenolics may act as potent superoxide anion radical scavengers and reducing agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Olugbami, J O; Gbadegesin, M A; Odunola, O A
2014-09-01
Plant-derived antioxidants with free radical scavenging activities can be relevant as chemopreventive agents against the numerous diseases associated with free radicals and reactive oxygen species. Some phytoconstituents possess antioxidant activities in biological systems. On this basis, we evaluated the antioxidant potential, and determined the total phenolic and flavonoid contents of the e thanol e xtract of the s tem bark of A nogeissus l eiocarpus [ EESAL ]. Antioxidant assays carried out include: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phosphomolybdate, β-carotene bleaching, ferric reducing, and hydroxyl radical scavenging activities. Results of DPPH assay showed no significant difference ( p < 0.001) between EESAL and butylated hydroxyanisole [BHA], while EESAL exhibited a significantly ( p < 0.001) higher activity than BHT [butylated hydroxytoluene]. Phosphomolybdate method recorded a total antioxidant capacity of 190.00 ± 70.53 µg butylated hydroxytoluene equivalents [BHTE]/mg dry extract, while β-carotene bleaching assay gave percent antioxidant activities of both EESAL and BHT as 81.46±1.62 and 80.90±1.39 respectively. Ferric reducing abilities of both EESAL and ascorbic acid increased in a concentration-dependent manner with EESAL displaying a significantly ( p < 0.001) higher reductive activity than vitamin C. EESAL displayed a significantly higher hydroxyl radical scavenging activity as compared with BHT at the lowest concentration with no significant difference at the highest concentration. Total phenolic and flavonoid contents of EESAL were obtained as 608.10 ± 2.12 µg GAE/mg and 78.96 ± 3.37 µg QE/mg respectively. Taken together, the free radical scavenging and antioxidant activity of EESAL is likely due to its high phenolic content with complementary effects of the flavonoid components.
de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana
2016-04-01
To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Wang, Yu-Xin; Li, Yang; Sun, An-Min; Wang, Feng-Jiao; Yu, Guo-Ping
2014-01-01
Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. Result: AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. Conclusions: The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food. PMID:25230211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A
A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anodemore » of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.« less
Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Hou, Jun; Ao, Yanhui; Liu, Jingjing; Li, Kun
2017-02-01
Perfluorooctane sulfonate (PFOS) is an emerging contaminant, whose presence has been detected in different compartments of the environment in many countries. In this study, the effects of soil characteristics and phosphate competition on the adsorption of PFOS on soils were investigated. Results from batch sorption experiments showed that all the adsorption isotherms of PFOS on three tested soils were nonlinear. In experiments without the addition of phosphate (P) to the soil solution, the Freundlich sorption affinity (K f ) of PFOS on S (original soil), S1 (soil from which soil organic matter (SOM) had been removed), and S2 (soil from which both SOM and ferric oxides had been removed) were 23.13, 10.37 and 15.95, respectively. The results suggested that a high amount of SOM in soil can increase the sorption affinity of PFOS on soils and that a greater amount of ferric oxides can reduce it. The addition of P in the soil solution reduced the K f of PFOS on S, S1, and S2 by approximately 25%, 50%, and 15%, respectively. For the binary system of PFOS and P, soil with higher ferric oxide content showed greater K f reduction after P addition; whereas soil with higher SOM content showed less K f reduction. Our results suggest that for soils dominated by ferric oxides, P is a more effective competitor than PFOS for the adsorption sites in the binary system; whereas in soils containing more SOM, P is a weak competitor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, He; Cao, Dongdong; Yi, Jianyong; Cao, Jiankang; Jiang, Weibo
2012-12-15
Mung bean soup (MBS) has been traditionally taken as a kind of health food in China. To learn the mechanisms underlying its health benefits, antioxidant capacities of the soup prepared with three cultivars of mung bean were measured. The highest DPPH radical scavenging or ferric reducing activity was observed in soup of mung bean cv. Huang. The MBS of cv. Huang and Mao exhibited higher ABTS(+) reducing activities than MBS of cv. Ming. The two major flavonoids in the MBS were purified and identified as vitexin and isovitexin, respectively. Modeling samples containing vitexin and isovitexin at the same levels as them in the MBS were prepared to assess their antioxidant contributions in the MBS. Our results showed that antioxidant capacities of the MBS mainly derived from vitexin and isovitexin, these flavonoids accounted for the most of total DPPH radicals scavenging, ferric reducing and ABTS(+) reducing scavenging activities in MBS of all the three cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rana, Vikas; Das, Manuj K; Gogoi, Satyabrat; Kumar, Vineet
2014-02-15
Three water-soluble polysaccharides were isolated and purified from the leaves of Dalbergia sissoo Roxb. (DSLP), bark of Tectona grandis L. f (TGBP) and seeds of Mimosa diplotricha var. diplotricha Sauvalle (MDSP). Antioxidant and moisture preserving activities of these three polysaccharides were investigated using in vitro methods. The antioxidant activities studied include superoxide (O2(*-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH*), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(*+)), hydroxyl (OH(-)), nitric oxide (NO*), N,N-dimethyl-p-phenylenediamine (DMPD(+)) radical scavenging activities, ferric ion (Fe(3+)) reducing ability, ferrous ion (Fe(2+)) chelating and lipid peroxidation activities. The study revealed higher activity of TGBP in all antioxidant assays than DSLP and MDSP. Further, the three polysaccharides showed effective moisture retention properties in comparison with hyaluronic acid and glycerol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial Copper-binding Siderophores at the Host-Pathogen Interface*
Koh, Eun-Ik; Henderson, Jeffrey P.
2015-01-01
Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity and redox-based phagocyte defenses distinguishes it from other E. coli siderophores. Here we compare yersiniabactin to other extracellular copper-binding molecules and review how copper-binding siderophores may confer virulence-associated gains of function during infection pathogenesis. PMID:26055720
Protective ability against oxidative stress of brewers' spent grain protein hydrolysates.
Vieira, Elsa F; da Silva, Diana Dias; Carmo, Helena; Ferreira, Isabel M P L V O
2017-08-01
The protein fraction of Brewers' spent grain (BSG) was used as substrate to obtain hydrolysates with antioxidant activity. Three enzymatic approaches were applied: brewer's spent yeast (BSY) proteases, Neutrase® and Alcalase®, at the same proteolytic activity (1U/mL), using an enzyme/substrate ratio of 10:100 (v/v), at 50°C, 4h. Total Phenolic Content (TPC) and Ferric Ion Reducing Antioxidant Power (FRAP) of hydrolysates and fractions <10kDa and <3kDa were assayed. Additionally, the protective ability of <10kDa fractions against oxidative stress on Caco-2 and HepG2 cells was investigated. Alcalase® hydrolysate presented significantly (p<0.05) higher TPC and FRAP (0.083mgGAE/mgdw; 0.101mgTE/mgdw, respectively) than Neutrase® and BSY hydrolysates. The three BSG protein hydrolysates (fraction <10kDa) exerted protective effect against free-radical induced cytotoxicity in Caco-2 and HepG2 cell lines, but the strongest effect was observed for BSY hydrolysates, therefore, it presents greater potential as functional ingredient. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antioxidant tannins from stem bark and fine root of Casuarina equisetifolia.
Zhang, Shang-Ju; Lin, Yi-Ming; Zhou, Hai-Chao; Wei, Shu-Dong; Lin, Guang-Hui; Ye, Gong-Fu
2010-08-16
Structures of condensed tannins from the stem bark and fine root of Casuarina equisetifolia were identified using MALDI-TOF MS and HPLC analyses. The condensed tannins from stem bark and fine root consist predominantly of procyanidin combined with prodelphinidin and propelargonidin, and epicatechin is the main extension unit. The condensed tannins had different polymer chain lengths, varying from trimers to tridecamer for stem bark and to pentadecamer for fine root. The antioxidant activities were measured by two models: 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/ antioxidant power (FRAP). The condensed tannins extracted from C. equisetifolia showed very good DPPH radical scavenging activity and ferric reducing/ antioxidant power, suggesting that these extracts may be considered as new sources of natural antioxidants for food and nutraceutical products.
Mason, Anne B; Judson, Gregory L; Bravo, Maria Cristina; Edelstein, Andrew; Byrne, Shaina L; James, Nicholas G; Roush, Eric D; Fierke, Carol A; Bobst, Cedric E; Kaltashov, Igor A; Daughtery, Margaret A
2008-09-16
The murine inhibitor of carbonic anhydrase (mICA) is a member of the superfamily related to the bilobal iron transport protein transferrin (TF), which binds a ferric ion within a cleft in each lobe. Although the gene encoding ICA in humans is classified as a pseudogene, an apparently functional ICA gene has been annotated in mice, rats, cows, pigs, and dogs. All ICAs lack one (or more) of the amino acid ligands in each lobe essential for high-affinity coordination of iron and the requisite synergistic anion, carbonate. The reason why ICA family members have lost the ability to bind iron is potentially related to acquiring a new function(s), one of which is inhibition of certain carbonic anhydrase (CA) isoforms. A recombinant mutant of the mICA (W124R/S188Y) was created with the goal of restoring the ligands required for both anion (Arg124) and iron (Tyr188) binding in the N-lobe. Absorption and fluorescence spectra definitively show that the mutant binds ferric iron in the N-lobe. Electrospray ionization mass spectrometry confirms the presence of both ferric iron and carbonate. At the putative endosomal pH of 5.6, iron is released by two slow processes indicative of high-affinity coordination. Induction of specific iron binding implies that (1) the structure of mICA resembles those of other TF family members and (2) the N-lobe can adopt a conformation in which the cleft closes when iron binds. Because the conformational change in the N-lobe indicated by metal binding does not impact the inhibitory activity of mICA, inhibition of CA was tentatively assigned to the C-lobe. Proof of this assignment is provided by limited trypsin proteolysis of porcine ICA.
Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae
2017-10-01
In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina
2015-04-01
The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.
21 CFR 73.1299 - Ferric ferrocyanide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The color additive ferric ferrocyanide is a ferric hexacyanoferrate pigment characterized by the structual...
Tracing iron-carbon redox from surface to core
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.
2017-12-01
Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.
Fernández-Arroyo, Salvador; Herranz-López, María; Beltrán-Debón, Raúl; Borrás-Linares, Isabel; Barrajón-Catalán, Enrique; Joven, Jorge; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio; Micol, Vicente
2012-10-01
The aqueous extracts of Hibiscus sabdariffa have been commonly used in folk medicine. Nevertheless, the compounds or metabolites responsible for its healthy effects have not yet been identified. The major metabolites present in rat plasma after acute ingestion of a polyphenol-enriched Hibiscus sabdariffa extract were characterized and quantified in order to study their bioavailability. The antioxidant status of the plasma samples was also measured through several complementary antioxidant techniques. High-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) was used for the bioavailability study. The antioxidant status was measured by ferric reducing ability of plasma method, thiobarbituric acid reactive substances assay, and superoxide dismutase activity assay. Seventeen polyphenols and metabolites have been detected and quantified. Eleven of these compounds were metabolites. Although phenolic acids were found in plasma without any modification in their structures, most flavonols were found as quercetin or kaempferol glucuronide conjugates. Flavonol glucuronide conjugates, which show longer half-life elimination values, are proposed to contribute to the observed lipid peroxidation inhibitory activity in the cellular membranes. By contrast, phenolic acids appear to exert their antioxidant activity through ferric ion reduction and superoxide scavenging at shorter times. We propose that flavonol-conjugated forms (quercetin and kaempferol) may be the compounds responsible for the observed antioxidant effects and contribute to the healthy effects of H. sabdariffa polyphenolic extract. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ARSENIC MOBILIZATION BY THE DISSIMILATORY FE(III)-REDUCING BACTERIUM SHEWANELLA ALGA BRY. (R825399)
The mobility of arsenic commonly increases as reducing conditions are
established within sediments or flooded soils. Although the reduction of arsenic
increases its solubility at circumneutral pH, hydrous ferric oxides (HFO)
strongly sorb both As(V) (arsenate) and ...
Kopeć, W; Jamroz, D; Wiliczkiewicz, A; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M
2013-01-01
1. The objective of this study was to investigate how a diet containing spray-dried blood cells (SDBC) (4%) with or without zinc (Zn) would affect the concentration of two histidine heterodipeptides and the antioxidant status of broiler blood and breast muscles. 2. The study was carried out on 920 male Flex chickens randomly assigned to 4 dietary treatments: I - control, II - diet I with SDBC, III - diet I with SDBC and supplemented with Zn and IV - diet I supplemented with L-histidine. Birds were raised on floor littered with wood shavings, given free access to water and fed ad libitum. Performance indices were measured on d 1, 21 and 42. 3. The activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was analysed in plasma, erythrocytes and muscle tissue. The total antioxidant capacity of plasma and breast muscles was measured by 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, as well as by ferric reducing antioxidant power (FRAP). Carnosine/anserine content of meat and plasma were determined using HPLC. Diets and breast muscles were analysed for amino acid profile and selected microelement content. 4. Histidine supplementation of the diet increased glutathione peroxidase activity in plasma and superoxide dismutase activity in erythrocytes. Moreover, the addition of SDBC or pure histidine in the diet increased histidine dipeptide content and activated enzymatic and non-enzymatic antioxidant systems in chicken blood and muscles. However, it led to lower growth performance indices. 5. The enrichment of broiler diets with Zn increased the antioxidant potential and the activity of superoxide dismutase in plasma, which was independent of the histidine dipeptide concentration. Zn supplementation combined with SDBC in a broiler diet led to the increase of superoxide dismutase and glutathione peroxidase activity, but it did not affect the radical-scavenging or ferric iron reduction abilities of muscles.
21 CFR 184.1307 - Ferric sulfate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or...
21 CFR 184.1297 - Ferric chloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...
Iron binding to caseins in the presence of orthophosphate.
Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H
2016-01-01
As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu,S.; Jing, C.; Meng, X.
2008-01-01
The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an averagemore » As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.« less
Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy
2013-02-15
Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2%more » ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.« less
Ngamukote, Sathaporn; Khannongpho, Teerawat; Siriwatanapaiboon, Marent; Sirikwanpong, Sukrit; Dahlan, Winai; Adisakwattana, Sirichai
2016-12-29
To investigate the effect of Moringa Oleifera leaf extract (MOLE) on plasma glucose concentration and antioxidant status in healthy volunteers. A randomized crossover design was used in this study. Healthy volunteers were randomly assigned to receive either 200 mL of warm water (10 cases) or 200 mL of MOLE (500 mg dried extract, 10 cases). Blood samples were drawn at 0, 30, 60, 90, and 120 min for measuring fasting plasma glucose (FPG), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC) and malondialdehyde (MDA). FPG concentration was not signifificantly different between warm water and MOLE. The consumption of MOLE acutely improved both FRAP and TEAC, with increases after 30 min of 30 μmol/L FeSO 4 equivalents and 0.18 μmol/L Trolox equivalents, respectively. The change in MDA level from baseline was signifificantly lowered after the ingestion of MOLE at 30, 60, and 90 min. In addition, FRAP level was negatively correlated with plasma MDA level after an intake of MOLE. MOLE increased plasma antioxidant capacity without hypoglycemia in human. The consumption of MOLE may reduce the risk factors associated with chronic degenerative diseases.
Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.
Limpisophon, Kanokrat; Schleining, Gerhard
2017-01-01
This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.
Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea
Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai
2017-01-01
Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386
Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*
Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane
2014-01-01
Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170
Ascorbate efflux as a new strategy for iron reduction and transport in plants.
Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane
2014-01-31
Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.
Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease.
Rubio, C P; Martínez-Subiela, S; Hernández-Ruiz, J; Tvarijonaviciute, A; Cerón, J J; Allenspach, K
2017-03-01
The objective of this work was to study and compare a panel of various serum biomarkers evaluating both the antioxidant response and oxidative damage in dogs with idiopathic inflammatory bowel disease (IBD). Eighteen dogs with IBD and 20 healthy dogs were enrolled in the study. Trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of the plasma (FRAP), total thiol concentrations, and paraoxonase 1 (PON1) activity were evaluated in serum to determine antioxidant response. To evaluate oxidative status, ferrous oxidation-xylenol orange (FOX), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species production (ROS) concentrations in serum were determined. Mean concentrations of all antioxidant biomarkers analyzed, with exception of FRAP, were significantly lower (P < 0.0001) in the sera of dogs with IBD than in healthy dogs. The oxidant markers studied were significantly higher (P < 0.0001) in sera of dogs with IBD than in healthy dogs. These findings support the hypothesis that oxidative stress could play an important role in the pathogenesis of canine IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration
Richter, Katrin; Schicklberger, Marcus
2012-01-01
An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232
Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming
2010-06-15
The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.
Ruhland, Christopher T; Fogal, Mitchell J; Buyarski, Christopher R; Krna, Matthew A
2007-06-29
We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the maximum photochemical efficiency of photosystem II (F(v)/F(m)), bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP) and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B) or by 19% (near-ambient UV-B) over the 52 day experiment (04 July-25 August 2002). Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower F(v)/F(m) values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls).
Bhandari, Sunil
2011-01-01
Background The clinical need to be able to administer high doses of intravenous iron conveniently as a rapid infusion has been addressed by the recent introduction of ferric carboxymaltose and subsequently iron isomaltoside 1000. Neither requires a test dose. The maximum dose of ferric carboxymaltose is 1000 mg. The maximum dose of iron isomaltoside 1000 is based on 20 mg/kg body weight without a specified ceiling dose, thereby increasing the scope of being able to achieve total iron repletion with a single infusion. This ability to give high doses of iron is important in the context of managing iron deficiency anemia, which is associated with a number of clinical conditions where demands for iron are high. It is also an important component of the strategy as an alternative to blood transfusion. Affordability is a key issue for health services. Recent price changes affecting iron sucrose and ferric carboxymaltose, plus modifications to the manufacturers’ prescribing information, have provoked this update. Methods This study is a comparative analysis of the costs of acquiring and administering the newly available intravenous iron formulations against standard treatments in the hospital setting. The costs include the medication, nursing costs, equipment, and patient transportation. Three dosage levels (600 mg, 1000 mg, and 1600 mg) are considered. Results and conclusion The traditional standard treatments, blood and iron sucrose, cost more than the alternative intravenous iron preparations across the dose spectrum and sensitivities. Low molecular weight iron dextran is the least expensive option at the 1600 mg dose level but has the caveat of a prolonged administration time and requirement for a test dose. At 600 mg and 1000 mg dose levels, both iron isomaltoside 1000 and ferric carboxymaltose are more economical than low molecular weight iron dextran. Iron isomaltoside 1000 is less expensive than ferric carboxymaltose at all dose levels. Newly available iron preparations appear to be clinically promising, cost effective, and practical alternatives to current standards of iron repletion. PMID:22241947
Karajibani, Mansour; Hashemi, Mohammad; Montazerifar, Farzaneh; Bolouri, Ahmad; Dikshit, Madhurima
2009-08-01
Growing evidence has demonstrated that oxidative stress and increased altered oxygen utilization contribute to atherogenesis and cardiovascular disease (CVD) progression. Antioxidants protect the body from damage caused by free radicals. The objective of this study was to determine antioxidants status in CVD patients. This cross-sectional study was performed on 71 patients clinically diagnosed with CVD and 63 healthy individuals. Plasma malondialdehyde (MDA) level was measured for lipid peroxidation product and erythrocyte SOD and GPx activities as enzymatic antioxidants. The serum levels of vitamins A and E were assayed using HPLC and vitamin C by the photometric method. Total antioxidant capacity (TAC) was measured using the ferric reducing ability of plasma (FRAP) method. The results showed a significant reduction in antioxidant status (enzymatic and non-enzymatic) with a concomitant increase in the concentrations of lipid peroxidation products in CVD patients. There was a significant inverse correlation among TAC, SOD, GPx and vitamin C with MDA. It can be concluded that the antioxidant defense system plays an important role in preventing the development and progression of CVD with the ability to control oxidative stress.
40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric chloride production subcategory. The provisions of this subpart are applicable to discharges and to the...
Role of clay minerals in the transportation of iron
Carroll, D.
1958-01-01
The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity seems to be necessary for maintaining reducing conditions in the environments studied. ?? 1958.
Lucchesi, Cinzia; Baldacci, Filippo; Cafalli, Martina; Chico, Lucia; Lo Gerfo, Annalisa; Bonuccelli, Ubaldo; Siciliano, Gabriele; Gori, Sara
2015-01-01
Migraine is a complex multifactorial, neurobiological disorder, whose pathogenesis is not fully understood, nor are the mechanisms associated with migraine transformation from episodic to chronic pattern. A possible role of impaired oxidative mitochondrial metabolism in migraine pathogenesis has been hypothesized, and increased levels of peripheral markers of oxidative stress have been reported in migraine patients, although the literature data are limited and heterogeneous. The aim of this cross-sectional study was to determine plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power and total plasmatic thiol groups, all plasmatic markers related to oxidative stress, in a sample of chronic migraine patients and medication-overuse headache, compared to a control group of healthy subjects. Thirty-three patients with a diagnosis of both chronic migraine and medication-overuse headache (International Classification of Headache Disorders,3rd edition, beta version) and 33 healthy, headache-free subjects were enrolled. Patients with comorbid/coexisting conditions were excluded, as well as patients in treatment with migraine preventive drugs. Plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power, and total thiol groups were determined in migraine patients and controls; moreover, oxidative stress biomarkers were compared in migraine patients with triptan compared to non-steroidal anti-inflammatory drug overuse. The statistical analysis showed significantly lower levels of ferric-reducing antioxidant power and total plasmatic thiol groups, both expression of antioxidant power, in patients with chronic migraine and medication-overuse headache compared to controls (respectively, ferric antioxidant power median [interquartile range] 0.53 [0.22] vs 0.82 [0.11] mmol/L, P < .001; total thiol groups 0.25 [0.08] vs 0.51 [0.11] μmol/L, P < .001). Moreover, no statistically significant differences in oxidative stress biomarkers were detected between patients with triptan and nonsteroidal anti-inflammatory drug overuse. The data from the present study suggest that antioxidant capacity is lower in chronic migraine patients and medication-overuse headache compared to healthy headache-free subjects, with no differences between patients with triptan or nonsteroidal anti-inflammatory drug overuse. Further investigation is certainly necessary in order to define the causal or consequential role of an imbalance between pro-oxidants and antioxidant defenses in migraine pathogenesis and "chronification" and the possible therapeutic implications in clinical practice. © 2015 American Headache Society.
21 CFR 73.1298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing...
21 CFR 582.5306 - Ferric sodium pyrophosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5306 Ferric sodium pyrophosphate. (a) Product. Ferric sodium pyrophosphate. (b...
Exchangeability of N termini in the ligand-gated porins of Escherichia coli.
Scott, D C; Cao, Z; Qi, Z; Bauler, M; Igo, J D; Newton, S M; Klebba, P E
2001-04-20
The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization.
Lin, Juan; Zhong, Yufang; Fan, Hua; Song, Chaofeng; Yu, Chao; Gao, Yue; Xiong, Xiong; Wu, Chenxi; Liu, Jiantong
2017-01-01
In this work, sediments were treated with calcium nitrate, aluminum sulfate, ferric sulfate, and Phoslock®, respectively. The impact of treatments on internal phosphorus release, the abundance of nitrogen cycle-related functional genes, and the growth of submerged macrophytes were investigated. All treatments reduced total phosphorus (TP) and soluble reactive phosphorus (SRP) in interstitial water, and aluminum sulfate was most efficient. Aluminum sulfate also decreased TP and SRP in overlying water. Treatments significantly changed P speciations in the sediment. Phoslock® transformed other P species into calcium-bound P. Calcium nitrate, ferric sulfate, and Phoslock® had negative influence on ammonia oxidizers, while four chemicals had positive influence on denitrifies, indicating that chemical treatment could inhibit nitrification but enhance denitrification. Aluminum sulfate had decreased chlorophyll content of the leaves of submerged macrophytes, while ferric sulfate and Phoslock® treatment would inhibit the growth of the root. Based on the results that we obtained, we emphasized that before application of chemical treatment, the effects on submerged macrophyte revegetation should be taken into consideration.
NASA Astrophysics Data System (ADS)
Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.
A research project was commissioned to investigate the performance of Moringa oleifera compared with that of aluminium sulphate (Al 2(SO 4) 3) and ferric sulphate (Fe 2(SO 4) 3), termed alum and ferric respectively. A series of jar tests was undertaken using model water, different raw water sources and hybrid water containing a mixture of both of these types of water. The model water consisted of deionised water spiked with Escherichia coli (E. coli) at 10 4 per 100 ml and turbidity (146 NTU) artificially created by kaolin. Results showed that M. oleifera removed 84% turbidity and 88% E. coli, whereas alum removed greater than 99% turbidity and E. coli. Low turbidity river water (<5 NTU), with an E. coli count of 605 colony forming units (cfu)/100 ml was treated with M. oleifera and ferric. Results showed an 82% and 94% reduction in E. coli for M. oleifera and ferric respectively. Tests on turbid river water of 45 NTU, with an E. coli count of 2650 cfu/100 ml, showed a removal of turbidity of 76% and E. coli reduction of 93% with M. oleifera. The equivalent reductions for alum were 91% and 98% respectively. Highly coloured reservoir water was also spiked with E. coli (10 4 cfu/100 ml) and turbidity (160 NTU) artificially created by kaolin; termed hybrid water. Under these conditions M. oleifera removed 83% colour, 97% turbidity and reduced E. coli by 66%. Corresponding removal values for alum were 88% colour, 99% turbidity and 89% E. coli, and for ferric were 93% colour, 98% turbidity and 86% E. coli. Tests on model water, using a secondary treatment stage sand filter showed maximum turbidity removal of 97% and maximum E. coli reduction of 98% using M. oleifera, compared with 100% turbidity and 97% E. coli for alum. Although not as effective as alum or ferric, M. oleifera showed sufficient removal capability to encourage its use for treatment of turbid waters in developing countries.
Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins
Gokhale, Aditya S.; Mahoney, Raymond R.
2014-01-01
The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron. PMID:26904627
Shukla, Abha; Vats, Swati; Shukla, R K
2015-01-01
In the present study, the antioxidant activity of successive leaf extracts of Dracaena reflexa was investigated using the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl and reducing power by ferric reducing antioxidant power assay. Methanol extract was found potent in both the assays. IC50 values of 1,1-diphenyl-2-picrylhydrazyl assay for methanol extract was 0.97 mg/ml and ferric reducing antioxidant power value for the same is 1.19. Phytochemical screening, proximate analysis and total phenolic content were also determined. Qualitative screening for phytochemical showed the presence of alkaloids, flavonoids, terpenoids, glycosides and saponins. Highest phenolic content was shown by methanol extract (49.69 mg gallic acid equivalent/g dry weight). Proximate analysis showed moisture content (3.31%), ash content (8.02%), crude fibre (1.31%), crude fat (0.97%), total protein (3.70%), total carbohydrate (86.01) and nutritive value (367.56 kcal/100 g), which would make it a potential nutraceutical. This study suggested that Dracaena reflexa, a potential natural free radical scavenger, which could find use as an antioxidative.
Sharma, Sonia; Vig, Adarsh Pal
2013-01-01
In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts.
Vig, Adarsh Pal
2013-01-01
In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts. PMID:24348173
Phytochemical Screening, Proximate Analysis and Antioxidant Activity of Dracaena reflexa Lam. Leaves
Shukla, Abha; Vats, Swati; Shukla, R. K.
2015-01-01
In the present study, the antioxidant activity of successive leaf extracts of Dracaena reflexa was investigated using the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl and reducing power by ferric reducing antioxidant power assay. Methanol extract was found potent in both the assays. IC50 values of 1,1-diphenyl-2-picrylhydrazyl assay for methanol extract was 0.97 mg/ml and ferric reducing antioxidant power value for the same is 1.19. Phytochemical screening, proximate analysis and total phenolic content were also determined. Qualitative screening for phytochemical showed the presence of alkaloids, flavonoids, terpenoids, glycosides and saponins. Highest phenolic content was shown by methanol extract (49.69 mg gallic acid equivalent/g dry weight). Proximate analysis showed moisture content (3.31%), ash content (8.02%), crude fibre (1.31%), crude fat (0.97%), total protein (3.70%), total carbohydrate (86.01) and nutritive value (367.56 kcal/100 g), which would make it a potential nutraceutical. This study suggested that Dracaena reflexa, a potential natural free radical scavenger, which could find use as an antioxidative. PMID:26798184
Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins.
Gokhale, Aditya S; Mahoney, Raymond R
2014-01-01
The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.
Stormo, Svein Kristian; Jensen, Ida-Johanne; Østerud, Bjarne; Eilertsen, Karl-Erik
2017-01-01
Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-PUFA) is commonly recognized to reduce cardiovascular disease (CVD). In previous studies, cold-pressed whale oil (CWO) and cod liver oil (CLO) were given as a dietary supplement to healthy volunteers. Even though CWO contains less than half the amount of LC-n3-PUFA of CLO, CWO supplement resulted in beneficial effects on anti-inflammatory and CVD risk markers compared to CLO. In the present study, we prepared virtually lipid-free extracts from CWO and CLO and evaluated the antioxidative capacity (AOC) and anti-inflammatory effects. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays were used to test the AOC, and the results indicated high levels of antioxidants present in all extracts. The anti-inflammatory effects of the extracts were tested with lipopolysaccharide- (LPS-) treated THP-1 cells, measuring its ability to reduce cytokine and chemokine secretion. Several CWO extracts displayed anti-inflammatory activity, and a butyl alcohol extract of CWO most effectively reduced TNF-α (50%, p < 0.05) and MCP-1 (85%, p < 0.001) secretion. This extract maintained a stable effect of reducing MCP-1 secretion (60%, p < 0.05) even after long-term storage. In conclusion, CWO has antioxidant and anti-inflammatory activities that may act in addition to its well-known LC-n3-PUFA effects. PMID:29118465
Shen, Jiang-Sheng; Geoffroy, Valérie; Neshat, Shadi; Jia, Zongchao; Meldrum, Allison; Meyer, Jean-Marie; Poole, Keith
2005-12-01
A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.
Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski
2006-01-01
Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less
Chen, Rongzhi; Zhang, Zhenya; Yang, Yingnan; Lei, Zhongfang; Chen, Nan; Guo, Xu; Zhao, Chao; Sugiura, Norio
2011-01-15
Ferric-impregnated volcanic ash (FVA) which consisted mainly of different forms of iron and aluminum oxide minerals was developed for arsenate (V) removal from an aqueous medium. The adsorption experiments were conducted in both DI water samples and actual water (Lake Kasumigaura, Japan) to investigate the effects of solution mineralization degree on the As(V) removal. Kinetic and equilibrium studies conducted in actual water revealed that the mineralization of water greatly elevated the As(V) adsorption on FVA. The experiment performed in DI water indicated that the existence of multivalence metallic cations significantly enhanced the As(V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As(V) adsorption. It is suggested that FVA is a cost-effective adsorbent for As(V) removal in low-level phosphate and fluoride solution. It was important to conduct the batch experiment using the actual water to investigate the arsenic removal on adsorbents. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou
2015-07-01
Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.
21 CFR 184.1307 - Ferric sulfate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...
21 CFR 184.1307 - Ferric sulfate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...
21 CFR 184.1307 - Ferric sulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...
21 CFR 184.1307 - Ferric sulfate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...
Li, Yi-Liang
2012-12-01
Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.
Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda
2008-09-19
It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.
21 CFR 582.5301 - Ferric phosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...
21 CFR 582.5304 - Ferric pyrophosphate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...
21 CFR 582.5301 - Ferric phosphate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...
21 CFR 582.5304 - Ferric pyrophosphate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...
21 CFR 582.5304 - Ferric pyrophosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...
21 CFR 582.5304 - Ferric pyrophosphate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...
21 CFR 582.5301 - Ferric phosphate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...
21 CFR 582.5301 - Ferric phosphate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...
21 CFR 582.5301 - Ferric phosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...
21 CFR 582.5304 - Ferric pyrophosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...
Richardson, D R
2001-04-30
Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).
Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.
Hearn, P.P.; Parkhurst, D.L.; Callender, E.
1983-01-01
Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.
Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.
2016-01-01
Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079
Wang, Yue; Qian, Jing; Cao, Jinping; Wang, Dengliang; Liu, Chunrong; Yang, Rongxi; Li, Xian; Sun, Chongde
2017-07-05
Citrus ( Citrus reticulate Blanco) is one of the most commonly consumed and widely distributed fruit in the world, which is possessing extensive bioactivities. Present study aimed to fully understand the flavonoids compositions, antioxidant capacities and in vitro anticancer abilities of different citrus resources. Citrus fruits of 35 varieties belonging to 5 types (pummelos, oranges, tangerines, mandarins and hybrids) were collected. Combining li quid chromatography combined with electrospray ionization mass spectrometry (LC-ESI-MS/MS) and ultra-performance liquid chromatography combined with diode array detector (UPLC-DAD), a total of 39 flavonoid compounds were identified, including 4 flavones, 9 flavanones and 26 polymethoxylated flavonoids (PMFs). Each citrus fruit was examined and compared by 4 parts, flavedo, albedo, segment membrane and juice sacs. The juice sacs had the lowest total phenolics, following by the segment membrane. Four antioxidant traits including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and cupric reducing antioxidant capacity (CUPRAC) were applied for the antioxidant capacities evaluation. Three gastric cancer cell lines, SGC-7901, BGC-823 and AGS were applied for the cytotoxicity evaluation. According to the results of correlation analysis, phenolics compounds might be the main contributor to the antioxidant activity of citrus extracts, while PMFs existing only in the flavedo might be closely related to the gastric cancer cell line cytotoxicity of citrus extracts. The results of present study might provide a theoretical guidance for the utilization of citrus resources.
Sodium Ferric Gluconate Injection
Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...
Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD.
Yokoyama, Keitaro; Hirakata, Hideki; Akiba, Takashi; Fukagawa, Masafumi; Nakayama, Masaaki; Sawada, Kenichi; Kumagai, Yuji; Block, Geoffrey A
2014-03-01
Ferric citrate hydrate is a novel iron-based phosphate binder being developed for hyperphosphatemia in patients with CKD. A phase 3, multicenter, randomized, double blind, placebo-controlled study investigated the efficacy and safety of ferric citrate hydrate in nondialysis-dependent patients with CKD. Starting in April of 2011, 90 CKD patients (eGFR=9.21±5.72 ml/min per 1.73 m(2)) with a serum phosphate≥5.0 mg/dl were randomized 2:1 to ferric citrate hydrate or placebo for 12 weeks. The primary end point was change in serum phosphate from baseline to the end of treatment. Secondary end points included the percentage of patients achieving target serum phosphate levels (2.5-4.5 mg/dl) and change in fibroblast growth factor-23 at the end of treatment. The mean change in serum phosphate was -1.29 mg/dl (95% confidence interval, -1.63 to -0.96 mg/dl) in the ferric citrate hydrate group and 0.06 mg/dl (95% confidence interval, -0.20 to 0.31 mg/dl) in the placebo group (P<0.001 for difference between groups). The percentage of patients achieving target serum phosphate levels was 64.9% in the ferric citrate hydrate group and 6.9% in the placebo group (P<0.001). Fibroblast growth factor-23 concentrations were significantly lower in patients treated with ferric citrate hydrate versus placebo (change from baseline [median], -142.0 versus 67.0 pg/ml; P<0.001). Ferric citrate hydrate significantly increased serum iron, ferritin, and transferrin saturation compared with placebo (P=0.001 or P<0.001). Five patients discontinued active treatment because of treatment-emergent adverse events with ferric citrate hydrate treatment versus one patient with placebo. Overall, adverse drug reactions were similar in patients receiving ferric citrate hydrate or placebo, with gastrointestinal disorders occurring in 30.0% of ferric citrate hydrate patients and 26.7% of patients receiving placebo. In patients with nondialysis-dependent CKD, 12-week treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and fibroblast growth factor-23 while simultaneously increasing serum iron parameters.
Jan, Shumaila; Khan, Muhammad Rashid; Rashid, Umbreen; Bokhari, Jasia
2013-10-01
This study was conducted to investigate the antioxidant potential of methanol extract and its derived fractions (hexane, ethyl acetate, butanol, and aqueous) of fruits of Monotheca buxifolia (Falc.) Dc., a locally used fruit in Pakistan. Dried powder of the fruit of M. buxifolia was extracted with methanol and the resultant was fractionated with solvents having escalating polarity; n-hexane, chloroform, ethyl acetate, n-butanol and the residual soluble aqueous fraction. Total phenolic and total flavonoid contents were estimated for the methanol and various fractions. These fractions were also subjected to various in vitro assays to estimate the scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide, hydroxyl, hydrogen peroxide and reductive ability for ferric ions and phosphomolybdate assay. The n-butanol, aqueous and methanol fractions possessed high amount of phenolics and flavonoids compared with other fractions, and subsequently showed a pronounced scavenging activity on DPPH, ABTS, superoxide, hydroxyl and hydrogen peroxide radicals and had a potent reductive ability on ferric ion and phosphomolybdate assay. There was a found significant correlation between total phenolic and flavonoid contents and EC50 of DPPH, superoxide, hydrogen peroxide radical and phosphomolybdate assays, whereas a nonsignificant correlation was found with the hydroxyl radical and ABTS radical assay. M. buxifolia fruit can be used as natural antioxidant source to prevent damage associated with free radicals.
Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.
2009-01-01
Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.
Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism
Lovley, D.R.; Stolz, J.F.; Nord, G.L.; Phillips, E.J.P.
1987-01-01
The potential contribution of microbial metabolism to the magnetization of sediments has only recently been recognized. In the presence of oxygen, magnetotactic bacteria can form intracellular chains of magnetite while using oxygen or nitrate as the terminal electron acceptor for metabolism1. The production of ultrafine-grained magnetite by magnetotactic bacteria in surficial aerobic sediments may contribute significantly to the natural remanent magnetism of sediments2-4. However, recent studies on iron reduction in anaerobic sediments suggested that bacteria can also generate magnetite in the absence of oxygen5. We report here on a sediment organism, designated GS-15, which produces copious quantities of ultrafine-grained magnetite under anaerobic conditions. GS-15 is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation. This novel metabolism may be the mechanism for the formation of ultrafine-grained magnetite in anaerobic sediments, and couldaccount for the accumulation of magnetite in ancient iron formations and hydrocarbon deposits. ?? 1987 Nature Publishing Group.
Maruyama, Noriaki; Otsuki, Tomoyasu; Yoshida, Yoshinori; Nagura, Chinami; Kitai, Maki; Shibahara, Nami; Tomita, Hyoe; Maruyama, Takashi; Abe, Masanori
2018-06-06
Serum phosphate and vitamin D receptor activator regulate fibroblast growth factor 23 (FGF23), and iron may modulate FGF23 metabolism. The aim of the present study was to elucidate the effects of ferric citrate hydrate and lanthanum carbohydrate on serum FGF23 levels in hemodialysis patients. This prospective, open-label, multicenter study enrolled 60 patients on hemodialysis treated with lanthanum carbonate. Patients were randomly assigned to 2 groups: those switching from lanthanum carbonate to ferric citrate hydrate (ferric citrate group, n = 30) or those continuing lanthanum carbonate (control group, n = 30). Patients were monitored for 24 weeks. Endpoints included changes in FGF23, phosphate, and the dose of erythropoiesis stimulating agent (ESA), erythropoietin responsiveness index (ERI), and adverse events. FGF-23 levels were significantly lower in the ferric citrate group compared with the levels in the control group (change from baseline -6,160 vs. -1,118 pg/mL; p = 0.026). There were no significant changes in serum calcium, phosphate, and intact parathyroid hormone levels in either group. The ferric citrate group had significantly increased serum iron, ferritin, and transferrin saturation. Hemoglobin levels were significantly elevated, and the dose of ESA was significantly decreased in the ferric citrate group but not in the control group. ERI and the dose of intravenous saccharated ferric oxide were significantly lower in the ferric citrate group compared with those of the control group (p = 0.015 and p = 0.002). In patients on hemodialysis, 24-week treatment with ferric citrate hydrate resulted in significant reduction in FGF23 and ERI independently of serum phosphate level. © 2018 S. Karger AG, Basel.
Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation
Lanigan, Noreen; Bottacini, Francesca; Casey, Pat G.; O'Connell Motherway, Mary; van Sinderen, Douwe
2017-01-01
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model. PMID:28620359
Oxidative stress equilibrium during obstetric event in normal pregnancy.
Salas-Pacheco, Jose Manuel; Lourenco-Jaramillo, Diana Lelidett; Mendez-Hernandez, Edna Madai; Sandoval-Carrillo, Ada Agustina; Hernandez Rayon, Yessica Ivonne; Llave-Leon, Osmel La; Aguilar-Duran, Marisela; Lopez-Terrones, Marcos Alonso; Barraza-Salas, Marcelo; Vazquez-Alaniz, Fernando
2017-08-01
The aim of this study was to determine malondialdehyde (MDA) concentration as an oxidative stress marker and total antioxidant capacity (TAC) in pregnancy before and after perinatal event. This study was performed on 200 healthy full-term pregnant women admitted to pregnancy resolution in Maternal-Child Hospital of Durango, Mexico. Oxidative stress and TAC were assessed through detection of lipid peroxidation by quantitation of thiobarbituric acid-reactive substances (TBARS) and TAC through ferric reducing ability of the plasma (FRAP). Our results showed increased levels of MDA after vaginal delivery (VD). TAC was also increased after obstetric event, but it did not differ between VD and caesarean section. We demonstrated that MDA concentrations are increased two hours after obstetric event, and this increase correlates with VD. The TAC was increased as a compensatory mechanism during obstetric event. Another important finding is that women receiving analgesia administration in VD, as well as dexamethasone administration in caesarean section, experienced a protector effect that decreased MDA levels.
Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta
2015-01-01
The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity. PMID:26694354
Shelf life extension of minimally processed ready-to-cook (RTC) cabbage by gamma irradiation.
Banerjee, Aparajita; Chatterjee, Suchandra; Variyar, Prasad S; Sharma, Arun
2016-01-01
Gamma irradiation (0.5-2.5 kGy) in combination with low temperature (4-15 °C) storage was attempted to increase shelf life of ready-to-cook shredded cabbage wrapped in cling films. A maximum extension in shelf life of 8 days, while retaining the microbial and sensory quality, was obtained with an irradiation dose of 2 kGy and storage at 10 °C. Gamma irradiation also inhibited browning of shredded cabbage at their cut edges resulting in enhanced visual appeal. An increase in total antioxidant activity was observed with respect to DPPH and hydroxyl radical scavenging ability while the nitric oxide radical scavenging activity and ferric reducing property remained unaffected with irradiation. Total phenolic, flavonoid and vitamin C content remained unchanged due to irradiation. No significant migration of additives from cling films into stimulant water was observed up to a radiation dose of 2 kGy thus demonstrating the feasibility of such films for above applications.
Sudheer, Surya; Alzorqi, Ibrahim; Ali, Asgar; Cheng, Poh Guat; Siddiqui, Yasmeen; Manickam, Sivakumar
2018-01-01
This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits
Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof
2015-01-01
Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562
Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.
Kappus, Rebecca M.; Curry, Chelsea D.; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C.; Soukup, Jeffrey; Collier, Scott R.
2011-01-01
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index. PMID:22191012
In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics.
Contreras, Rodrigo A; Köhler, Hans; Pizarro, Marisol; Zúiga, Gustavo E
2015-04-09
The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH•) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.
Salak plum peel extract as a safe and efficient antioxidant appraisal for cosmetics.
Kanlayavattanakul, Mayuree; Lourith, Nattaya; Ospondpant, Dusadee; Ruktanonchai, Uracha; Pongpunyayuen, Siriluck; Chansriniyom, Chaisak
2013-01-01
The antioxidant activities of Salak plum (Salacca edulis) peel extracts were assessed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid (ABTS), and ferric reducing ability of plasma (FRAP) assays. The ethyl acetate (EtOAc) fraction was the most potent (DPPHIC50=2.932 ± 0.030 µg/mL, ABTSIC50=7.933 ± 0.049 µg/mL, FRAPEC=7,844.44 ± 40.734). Chlorogenic acid was detected as the marker (1.400 ± 0.102 g/kg). The EtOAc fraction was non-cytotoxic in vero and normal human fibroblast (NHF) cells. It exhibited cellular oxidative prevention and damage treatment at 5-40 µg/mL in NHF cells. Salak plum peel loaded liposome consisting of lecithin and hydrophobically modified hydroxyethylcellulose (HMHEC) was developed and found stable with adequate entrapment efficacy. Thus Salak plum peel was highlighted as a potential ecological antioxidant for health promotion aspects, and for cosmetics.
Rodríguez, Elisa Jorge; Saucedo-Hernández, Yanelis; Vander Heyden, Yvan; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo; Lerma-García, María Jesús; Monteagudo, Urbano; Bravo, Luis; Medinilla, Mildred; de Armas, Yuriam; Herrero-Martínez, José Manuel
2013-09-01
The present study describes the phytochemical profile and antioxidant activity of the essential oils of three Piperaceae species collected in the central region of Cuba. The essential oils of Piper aduncum, P. auritum and P. umbellatum leaves, obtained by hydrodistillation, were analyzed by gas chromatography-mass spectrometry. The main components of P. aduncum oil were piperitone (34%), camphor (17.1%), camphene (10.9%), 1,8-cineol (8.7%) and viridiflorol (7.4%), whereas that of P. auritum and P. umbellatum was safrole (71.8 and 26.4%, respectively). The antioxidant properties of the essential oils were also evaluated using several assays for radical scavenging ability (DPPH test and reducing power) and inhibition of lipid oxidation (ferric thiocyanate method and evaluation against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods). P. auritum showed the strongest antioxidant activity among the Piper species investigated, but lower than those of butylated hydroxyanisol and propyl gallate.
de Oliveira Neto, Jerônimo Raimundo; Rezende, Stefani Garcia; Lobón, Gérman Sanz; Garcia, Telma Alves; Macedo, Isaac Yves Lopes; Garcia, Luane Ferreira; Alves, Virgínia Farias; Torres, Ieda Maria Sapateiro; Santiago, Mariângela Fontes; Schmidt, Fernando; de Souza Gil, Eric
2017-12-15
Honey is a functional food widely consumed. Thus, the evaluation of honey samples to determine its phenolic content and antioxidant capacity (AOC) is relevant to determine its quality. Usually AOC is performed by spectrophotometric methods, which lacks reproducibility and practicality. In this context, the electroanalytical methods offer higher simplicity and accuracy. Hence, the aim of this work was to use of electroanalytical tools and laccase based biosensor on the evaluation of AOC and total phenol content (TPC) of honey samples from different countries. The antioxidant power established by electrochemical index presented good correlation with the spectrophotometric FRAP (Ferric Reducing Ability of Plasma) and DPPH (2,2-Diphenyl-1-Picrylhydrazyl) radical scavenging assays. Also, TPC results obtained by the biosensor agreed with the Folin-Ciocalteu (FC) assay. In addition to the semi quantitative results, the electroanalysis offered qualitative parameters, which were useful to indicate the nature of major phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Mei-Jia; Wei, Xiaoyi; Xu, Jie; Chen, Bing-Jie; Zhao, De-Yin; Cui, Shuai; Zhou, Tao
2017-01-15
In order to improve the bioactivities of the polysaccharide from Enteromorpha prolifera (PE), crude PE (Mw 1400kDa) was degraded to low molecular weight polysaccharide (44kDa) in the presence of hydrogen peroxide/ascorbic acid, followed by carboxymethylation. The reaction conditions for carboxymethylation of degraded polysaccharide (DPE) were optimized by Response Surface Methodology. The carboxymethyled degraded polysaccharide (CDPE) obtained under optimized conditions, with a degree of carboxymethylation of 0.849, was characterized by FT-IR and (13)C NMR. The molecular weight of CDPE was measured to be 53.7kDa. CDPE was evaluated for its antioxidant activity by determining the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals, and by determining the ferric reducing power. The antioxidant activity of CDPE was found to be greatly improved in comparison with degraded polysaccharide (DPE) and crude polysaccharide from Enteromorpha prolifera (PE). Copyright © 2016 Elsevier Ltd. All rights reserved.
In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics
Contreras, Rodrigo A.; Köhler, Hans; Pizarro, Marisol; Zúñiga, Gustavo E.
2015-01-01
The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH•) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds. PMID:26783705
Intuyod, Kitti; Priprem, Aroonsri; Limphirat, Wanwisa; Charoensuk, Lakhanawan; Pinlaor, Porntip; Pairojkul, Chawalit; Lertrat, Kamol; Pinlaor, Somchai
2014-12-01
The pharmacological activities of herbal extracts can be enhanced by complex formation. In this study, we manipulated cyanidin and delphinidin-rich extracts to form an anthocyanin complex (AC) with turmeric and evaluated activity against inflammation and periductal fibrosis in Opisthorchis viverrini-infected hamsters. The AC was prepared from anthocyanins extracted from cobs of purple waxy corn (70%), petals of blue butterfly pea (20%) and turmeric extract (10%), resulting in an enhanced free-radical scavenging capacity. Oral administration of AC (175 and 700 mg/kg body weight) every day for 1 month to O. viverrini-infected hamsters resulted in reduced inflammatory cells and periductal fibrosis. Fourier transform infrared spectroscopy and partial least square discriminant analysis suggested nucleic acid changes in the O. viverrini-infected liver samples, which were partially prevented by the AC treatment. AC reduced 8-oxodG formation, an oxidative DNA damage marker, significantly decreased levels of nitrite in the plasma and alanine aminotransferase activity and increased the ferric reducing ability of plasma. AC also decreased the expression of oxidant-related genes (NF-κB and iNOS) and increased the expression of antioxidant-related genes (CAT, SOD, and GPx). Thus, AC increases free-radical scavenging capacity, decreases inflammation, suppresses oxidative/nitrative stress, and reduces liver injury and periductal fibrosis in O. viverrini-infected hamsters.
Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J
2008-08-27
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.
Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.
Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S
2012-11-01
Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.
Two Kinds of Ferritin Protect Ixodid Ticks from Iron Overload and Consequent Oxidative Stress
Galay, Remil Linggatong; Umemiya-Shirafuji, Rika; Bacolod, Eugene T.; Maeda, Hiroki; Kusakisako, Kodai; Koyama, Jiro; Tsuji, Naotoshi; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya
2014-01-01
Ticks are obligate hematophagous parasites that have successfully developed counteractive means against their hosts' immune and hemostatic mechanisms, but their ability to cope with potentially toxic molecules in the blood remains unclear. Iron is important in various physiological processes but can be toxic to living cells when in excess. We previously reported that the hard tick Haemaphysalis longicornis has an intracellular (HlFER1) and a secretory (HlFER2) ferritin, and both are crucial in successful blood feeding and reproduction. Ferritin gene silencing by RNA interference caused reduced feeding capacity, low body weight and high mortality after blood meal, decreased fecundity and morphological abnormalities in the midgut cells. Similar findings were also previously reported after silencing of ferritin genes in another hard tick, Ixodes ricinus. Here we demonstrated the role of ferritin in protecting the hard ticks from oxidative stress. Evaluation of oxidative stress in Hlfer-silenced ticks was performed after blood feeding or injection of ferric ammonium citrate (FAC) through detection of the lipid peroxidation product, malondialdehyde (MDA) and protein oxidation product, protein carbonyl. FAC injection in Hlfer-silenced ticks resulted in high mortality. Higher levels of MDA and protein carbonyl were detected in Hlfer-silenced ticks compared to Luciferase-injected (control) ticks both after blood feeding and FAC injection. Ferric iron accumulation demonstrated by increased staining on native HlFER was observed from 72 h after iron injection in both the whole tick and the midgut. Furthermore, weak iron staining was observed after Hlfer knockdown. Taken together, these results show that tick ferritins are crucial antioxidant molecules that protect the hard tick from iron-mediated oxidative stress during blood feeding. PMID:24594832
DNA Damage Protecting Activity and Antioxidant Potential of Launaea taraxacifolia Leaves Extract.
Adinortey, Michael Buenor; Ansah, Charles; Weremfo, Alexander; Adinortey, Cynthia Ayefoumi; Adukpo, Genevieve Etornam; Ameyaw, Elvis Ofori; Nyarko, Alexander Kwadwo
2018-01-01
The leaf extract of Launaea taraxacifolia commonly known as African Lettuce is used locally to treat dyslipidemia and liver diseases, which are associated with oxidative stress. Methanol extract from L. taraxacifolia leaves was tested for its antioxidant activity and its ability to protect DNA from oxidative damage. In vitro antioxidant potential of the leaf extract was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays. Ferric reducing power, total antioxidant capacity (TAC), metal chelating, and anti-lipid peroxidation ability of the extract were also examined using gallic acid, ascorbic acid, citric acid, and ethylenediaminetetraacetic acid as standards. L. taraxacifolia leaves extract showed antioxidant activity with IC 50 values of 16.18 μg/ml (DPPH), 123.3 μg/ml (NO), 128.2 μg/ml (OH radical), 97.94 μg/ml (metal chelating), 80.28 μg/ml (TAC), and 23 μg/ml (anti-lipid peroxidation activity). L. taraxacifolia leaves extract exhibited a strong capability for DNA damage protection at 20 mg/ml concentration. These findings suggest that the methanolic leaf extract of L. taraxacifolia could be used as a natural antioxidant and also as a preventive therapy against diseases such as arteriosclerosis associated with DNA damage.
NASA Astrophysics Data System (ADS)
Fezai, Ramzi; Mezni, Ali; Rzaigui, Mohamed
2018-02-01
The new hybrid [4-Cl-2-(CH3)C6H3NH3]6P6O18·2H2O was synthesized under normal conditions of temperature and pressure. Single crystal X-ray diffraction study was used to identify its structure. It revealed that this organic cyclohexaphosphate crystallized in the P 1 bar triclinic space group with a = 10.41 (10) Å b = 10.94 (7) Å, c = 15.45 (10) Å, α = 77.37 (8), β = 89.75 (8)°, γ = 61.69 (7)°, V = 1501 (2) Å3 and Z = 1. In the crystal framework, the assembling of the three dimensional (3D) structure is formed by intermolecular hydrogen bonds and Van Der Waals interactions. A spectroscopic characterization was carried out to elucidate the structure (UV-Vis, FTIR, 31P MAS-NMR and fluorescent properties). The thermal stability was studied by TG-DTA diagrams under argon atmosphere. Furthermore, 3-D Hirshfeld surfaces in combination with 2-D fingerprint plots were carried out. This compound was also evaluated for its antioxidant activity; four tests were done, in vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH•), hydroxyl scavenging ability (OH•), ferric reducing power (FRP) and ferrous ion chelating (FIC) ability, using ascorbic acid as a control.
Vitamin E provides protection for bone in mature hindlimb unloaded male rats
NASA Technical Reports Server (NTRS)
Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.
2005-01-01
The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.
Osorio, Héctor; Mangold, Stefanie; Denis, Yann; Ñancucheo, Ivan; Esparza, Mario; Johnson, D. Barrie; Bonnefoy, Violaine; Dopson, Mark
2013-01-01
Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu2+ included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H2S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S0 to Fe3+ via a respiratory chain that includes a bc1 complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations. PMID:23354702
Clay, Michael D.; Yang, Tran-Chin; Jenney, Francis E.; Kung, Irene Y.; Cosper, Christopher A.; Krishnan, Rangan; Kurtz, Donald M.; Adams, Michael W.W.; Hoffman, Brian M.; Johnson, Michael K.
2008-01-01
We have added cyanide to oxidized 1Fe and 2Fe superoxide reductase (SOR) as a surrogate for the putative ferric-(hydro)peroxo intermediate in the reaction of the enzymes with superoxide, and have used vibrational and ENDOR spectroscopies to study the properties of the active-site paramagnetic iron center. Addition of cyanide changes the active-site iron center in oxidized SOR from rhombic high-spin ferric (S = 5/2) to axial-like low-spin ferric (S = 1/2). Low-temperature resonance Raman and ENDOR data show that the bound cyanide adopts three distinct conformations in Fe(III)-CN SOR. On the basis of 13CN, C15N, and 13C15N isotope shifts of the Fe–CN stretching/Fe–C–N bending modes, resonance Raman studies of 1Fe-SOR indicate one near-linear conformation (Fe–C–N angle ∼175°) and two distinct bent conformations (Fe–C–N angles < 140°). FTIR studies of 1Fe-SOR at ambient temperatures reveals three bound C–N stretching frequencies in the oxidized (ferric) state and one in the reduced (ferrous) state indicating that the conformational heterogeneity in cyanide binding is a characteristic of the ferric state and is not caused by freezing-in of conformational substates at low temperature. 13C-ENDOR spectra for the 13CN-bound ferric active sites in both 1Fe- and 2Fe-SORs also show three well-resolved Fe–C–N conformations. Analysis of the 13C hyperfine tensors for the three substates of the 2Fe-SOR within a simple heuristic model for the Fe-C bonding gives values for the Fe–C–N angles in the three substates of ca. 123° (C3), 133° (C2), taking a reference value from vibrational studies of 175° (C1 species). Resonance Raman and ENDOR studies of SOR variants, in which the conserved glutamate and lysine residues in a flexible loop above the substrate binding pocket have been individually replaced by alanine, indicate that the side chains of these two residues are not involved in direct interaction with bound cyanide. The implications of these results for understanding the mechanism of SOR are discussed. PMID:16401073
Biodegradation of vegetable oil in freshwater sediments exhibits self-inhibitory characteristics when it occurs under methanogenic conditions but not under iron-reducing conditions. The basis of the protective effect of iron was investigated by comparing its effects on oil biodeg...
A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...
Checking Studies on Zones of Siting Feasibility for Dredged Material in Puget Sound.
1986-01-01
priority pollutants in the ZSFs including copper, lead, mercury , HPAH, LPAH, PCBs and DDT. The area around Fourmile Rock dump site was classified in a...sediment contains ferric hydroxide (an olive color when associated with organic particles), while the reduced hydrogen sulphide sediments below this
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Schmidt, C; Ahmad, T; Tulassay, Z; Baumgart, D C; Bokemeyer, B; Howaldt, S; Stallmach, A; Büning, C
2016-08-01
Ferric maltol was effective and well-tolerated in iron deficiency anaemia patients with inflammatory bowel disease during a 12-week placebo-controlled trial. To perform a Phase 3 extension study evaluating long-term efficacy and safety with ferric maltol in inflammatory bowel disease patients in whom oral ferrous therapies had failed to correct iron deficiency anaemia. After 12 weeks of randomised, double-blind treatment, patients with iron deficiency anaemia and mild-to-moderate ulcerative colitis or Crohn's disease received open-label ferric maltol 30 mg b.d. for 52 weeks. 111 patients completed randomised treatment and 97 entered the open-label ferric maltol extension. In patients randomised to ferric maltol ('continued'; n = 50), mean ± s.d. haemoglobin increased by 3.07 ± 1.46 g/dL between baseline and Week 64. In patients randomised to placebo ('switch'; n = 47), haemoglobin increased by 2.19 ± 1.61 g/dL. Normal haemoglobin was achieved in high proportions of both continued and switch patients (89% and 83% at Week 64, respectively). Serum ferritin increased from 8.9 μg/L (baseline) to 26.0 μg/L (Week 12) in ferric maltol-treated patients, and to 57.4 μg/L amongst all patients at Week 64. In total, 80% of patients reported ≥1 adverse event by Week 64. Adverse events considered related to ferric maltol were recorded in 27/111 (24%) patients: 8/18 discontinuations due to adverse events were treatment-related. One patient was withdrawn due to increased ulcerative colitis activity. Normal haemoglobin was observed in ≥80% of patients from weeks 20-64 of long-term ferric maltol treatment, with concomitant increases in iron storage parameters. Ferric maltol was well-tolerated throughout this 64-week study. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.
Gyuraszova, Marianna; Kovalcikova, Alexandra; Gardlik, Roman
2017-06-01
Studies have shown that the microbiota along the gastrointestinal tract (GIT) plays an important role when it comes to the maintenance of its proper functions. Many studies exist that have analyzed the composition of the bacterial community in the different regions of the GIT of humans and model animals. Microbial imbalance leads to several systemic disorders, including cardiovascular and renal disease. The imbalance between the production of reactive oxygen species (ROS) and their elimination by antioxidants leads to oxidative stress. Oxidative stress plays an important role in a variety of physiological processes, as well as disease. The continuous formation of ROS in the GIT is the result of the interaction between intestinal mucosa, symbiotic bacteria and dietary factors. It has also been proven that ROS play a role in the pathogenesis of several GI disorders, including IBD. We hypothesized that the levels of advanced glycation end products (AGEs) would be the highest in the ileum, caecum or colon, where the microbiota mostly consist of butyrate producing bacteria, Bacterioides, Clostridium, Ruminococcus or Bifidobacterium, which derive energy through carbohydrate fermentation. We also assumed that advanced oxidation protein products (AOPP) mostly act in the segments, where bacteria reside and which are responsible for the amino acid fermentation, such as caecum or colon. Lipid hydroxyperoxides are generated during digestion in the stomach, which contains absorbed oxygen and has a low pH. According to this we hypothesized that the highest concentration of thiobarbituric acid reacting substances (TBARS) could be in the stomach, which, however, has not been confirmed. Because Lactobacilli are able to produce catalase, an endogenous antioxidant, and are abundant in the small intestine, we hypothesized that antioxidant capacity (measured by ferric reducing ability) would be the highest here. The highest levels of AGEs were found in the caecum. The highest level of TBARS was found in the jejunum of the rats. The assessment of our hypothesis also revealed high levels of AOPP in the caecum. It has been shown that AOPP contributes to the progression of IBD. The ferric reducing ability of tissue was the lowest in the colon of the experimental animals, which is in accordance with previous studies that show that rat colon has a lower total antioxidant capacity than the small bowel. In summary, we offer some insight into the differences between the oxidative status along the GIT of rats and some advice concerning supportive antioxidant therapy of gastrointestinal diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION
Clark, H.M.; Duffey, D.
1958-06-10
An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.
Jalal, Diana; McFadden, Molly; Dwyer, Jamie P; Umanath, Kausik; Aguilar, Erwin; Yagil, Yoram; Greco, Barbara; Sika, Mohammed; Lewis, Julia B; Greene, Tom; Goral, Simin
2017-04-01
Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. We conducted a post-hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence. © 2016 International Society for Hemodialysis.
Härle, C; Kim, I; Angerer, A; Braun, V
1995-04-03
Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)
Characterization of a New Ferritin Protein from the Polychaete Chaetopterus Sp.
NASA Astrophysics Data System (ADS)
Hamlish, N.; Deheyn, D.; De Meulenaere, E.
2016-02-01
The marine polychaete worm Chaetopterus sp. secretes a sticky mucus that exhibits a soft blue long-lasting bioluminescence. Iron (both ferrous and ferric) and riboflavin have been found abundant in the mucus and identified as potential cofactors involved in the control of the light production. The Deheyn lab has recently identified a novel ferritin protein (ChF) from fractions of the worm mucus still able to produce bioluminescence after purification by chromatography. Ferritin proteins are ubiquitous across the animal kingdom and exhibit ferroxidase activity, converting ferrous iron into a ferric form that is stably stored and soluble in the ferritin. Here, ferritin may serve as a source of biological iron for the worm through a process of iron acquisition, storage, and release during the light production process. This study addresses these options by assessing foundational data that characterize the ferroxidase activity of recombinant ChF with respect to human heavy-chain ferritin (HuHF). ChF exhibits faster initial rates of iron oxidation than HuHF, but reaches an equilibrium state with detectable levels of ferrous iron still in solution; in contrast this was was not observed for HuHF that oxidizes all available iron in solution. This may support the hypothesis that ChF has a reducing activity. This could involve the release of ferric iron, which may be reduced by flavin molecules found in the mucus; the resulting ferrous iron could then subsequently undergo a Fenton reaction, acting as a source of electrons for long-lasting mucus bioluminescence. Word Count: 240
Pieme, Constant Anatole; Ngoupayo, Joseph; Khou-Kouz Nkoulou, Claude Herve; Moukette Moukette, Bruno; Njinkio Nono, Borgia Legrand; Ama Moor, Vicky Jocelyne; Ze Minkande, Jacqueline; Yonkeu Ngogang, Jeanne
2014-01-01
The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. PMID:26785075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against itmore » in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.« less
[Mechanism and promotion effect of K+ on yield of Fe(VI)].
Zhang, Yan-Ping; Xu, Guo-Ren; Li, Gui-Bai
2008-03-01
The mechanism and promotion effects of K+ on the yield of Fe(VI) were studied during the reaction of forming ferrate. The experiment results showed that K+ is far better than Na+ for the preparation of Fe(VI) at temperatures higher than 50 degrees C. The optimal temperature for the preparation of Fe(VI) with K+ is 65 degrees C. During the reaction, the yield of ferrate increases with the concentration of K+, and the promotion effect of K+ is obviously with ferric nitrate dosage increase. The Fe(VI) concentration prepared with 4.4 mol/L KOH is 0.05 mol/L at 85 g/L ferric nitrate; and which achieves 0.15 mol/L when added 2 mol/L K+. The promotion effect of K+ on the yield of ferrate is remarkable when ferric nitrate dosage is higher than 75 g/L, reaction temperature is below 55 degrees C and ClO(-) concentration is lower than 1.16 mol/L. The K+ can substitute for partly alkalinity and reduce the concentration of OH(-) in the reaction solution. During the reaction, the K+ can enwrap around FeO4(2-) that can reduce the contact between Fe(3+) and FeO4(2-), and decrease the catalysis effect of Fe(3+) on FeO4(2-). At the same time, K+ can react with FeO4(2-) to form solid K4FeO4, whichwill lower the Fe(VI) concentration, decrease the decomposition rate of Fe(VI), enhance the stability and improve the yield of Fe(VI).
Johnstone, Timothy C; Nolan, Elizabeth M
2017-10-25
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
Silaghi-Dumitrescu, Radu; Cooper, Chris E
2005-11-07
Interaction of hemoproteins with peroxide leads in several cases to transient formation of ferric peroxo, ferric hydroperoxo, and "high-valent", formally Fev, oxo or hydroxo Compound species. Here, density functional calculations on ferric peroxo, ferric hydroperoxo, Compound and protonated Compound heme active site models are reported. The theoretical results, including calculated isotropic Fermi contact couplings and anisotropic spin dipole couplings, are found to generally correlate well with experimental EPR/ENDOR data. Hydrogen bonding and solvation affect the ferric-peroxo/ferrous-superoxo electromerism. The transition between the two electromers appears smooth, but neither hydrogen bonding to up to two water molecules, nor solvation appear able to dramatically alter the redox state of the superoxo ligand or of the iron. The presence of almost one full unpaired electron on the iron and of one full unpaired electron on the dioxygenic ligand in the "ferric-peroxo" state suggests a possible description of non-protonated "ferric-peroxo" as {ferric-superoxo+porphyrin radical}. Emerging from the DFT data is the possibility that a protonated Compound has already been detected in ENDOR experiments on cytochrome P450. The general feasibility of a protonated Compound in P450 monooxygenases is probed in light of these findings. To encompass the multiple mechanisms available in P450 for substrate oxidation, we define "mechanistic promiscuity" as the feature allowing an enzyme to perform the same reaction, with the same product, using more than one mechanism.
Iron restriction and the growth of Salmonella enteritidis.
Chart, H.; Rowe, B.
1993-01-01
Strains of Salmonella enteritidis were examined for their ability to remove ferric-ions from the iron chelating agents ovotransferrin, Desferal and EDDA. Growth of S. enteritidis phage type (PT) 4 (SE4) in trypticase soy broth containing ovotransferrin resulted in the expression of iron regulated outer membrane proteins (OMPs) of 74, 78 and 81 kDa, and unexpectedly the repression of expression of OMP C. The 38 MDa 'mouse virulence' plasmid was not required for the expression of the iron-regulated OMPs (IROMPs). SE4 was able to obtain iron bound to the iron chelator Desferal and EDDA without expressing a high-affinity iron uptake system. Strains of S. enteritidis belonging to PTs 7, 8, 13a, 23, 24 and 30 were also able to remove ferric ions from Desferal and EDDA without expressing a high-affinity iron uptake system. We conclude that strains of SE4 possess a high-affinity iron sequestering mechanism that can readily remove iron from ovotransferrin. It is likely that iron limitation, and not iron restriction, is responsible for the bacteriostatic properties of fresh egg whites. Images Fig. 2 PMID:8432322
Mosha, Theobald C E; Laswai, Henry H; Assey, John; Bennink, Maurice R
2014-04-01
Iron deficiency anaemia is a public health problem in Tanzania especially among children under the age of five years. In malaria holoendemic areas, control of anaemia by supplementation with iron has been reported to increase serious adverse events. The World Health Organization recommends that, programs to control anaemia in such areas should go concurrently with malaria control programmes. The objectives of the study were to: (i) to determine if a supplement providing 2.5 mg of iron as ferric EDTA and 2.5 mg of iron as ferrous lactate (low dose) is as effective in correcting anaemia as a supplement providing the standard 10 mg of iron as ferrous lactate (high dose); and ii) determine if iron supplementation increased the risk of malaria. This study was carried out in Mvomero District of east-central Tanzania. Two groups (69 and 70 subjects per treatment) of moderately anaemic children (7.0-9.1 g of Hb/dl), received one of the two micronutrient supplements differing only in iron content for a period of 60 days. Results showed that, the average haemoglobin (Hb) concentration improved from 8.30 ± 0.60 g/dl to 11.08 ± 1.25 g/dl. The average weight-for-age for all children increased from 16.0 to 20.6% while their weight-for-height increased from 4.0 to 13.3%. The incidence of asymptomatic and symptomatic malaria ranged from 10.0 to 10.4% at all time points with no apparent increase in malaria severity due to iron supplementation. Overall, there was a significant reduction in anaemia during the 60 day supplementation period. This study demonstrated that, micronutrient supplements containing low-dose ferric-EDTA is just as effective as the high dose iron in reducing anaemia and can be safely utilized in malaria holoendemic areas to control iron deficiency anaemia. It is recommended that, a large study should be conducted to affirm the effectiveness of the low-dose ferric-EDTA in controlling iron deficiency anaemia among underfive children.
21 CFR 73.1298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...
21 CFR 73.1025 - Ferric ammonium citrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...
21 CFR 73.1298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...
21 CFR 73.1299 - Ferric ferrocyanide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...
21 CFR 73.1299 - Ferric ferrocyanide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...
21 CFR 73.1025 - Ferric ammonium citrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...
21 CFR 73.1025 - Ferric ammonium citrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...
21 CFR 73.1298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...
21 CFR 73.1298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73.1298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a...
21 CFR 73.1299 - Ferric ferrocyanide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...
21 CFR 73.1299 - Ferric ferrocyanide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ferrocyanide. 73.1299 Section 73.1299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1299 Ferric ferrocyanide. (a) Identity. (1) The...
46 CFR 151.50-75 - Ferric chloride solution.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution...
21 CFR 73.1025 - Ferric ammonium citrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...
21 CFR 73.1025 - Ferric ammonium citrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The...
QTL analysis of ferric reductase activity in the model legume lotus japonicus
USDA-ARS?s Scientific Manuscript database
Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...
NASA Technical Reports Server (NTRS)
Bell, James F., III; Roush, Ted L.; Morris, Richard V.
1995-01-01
Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review existing data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestrial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+)-O(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
NASA Technical Reports Server (NTRS)
Bell, James F., III; Roush, Ted L.; Morris, Richard V.
1995-01-01
Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review exisiting data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+) - 0(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
Using magnetic beads to reduce reanut allergens from peanut extracts.
USDA-ARS?s Scientific Manuscript database
Ferric irons (Fe3+) and phenolic compounds have been shown to bind to peanut allergens. An easy way to isolate peanut allergens is by use of magnetic beads attached with or without phenolics to capture peanut allergens or allergen-Fe3+ complexes, thus, achieving the goal of producing peanut extracts...
Nitrosobenzenes, the first intermediates in the reduction of nitrobenzenes, were reduced by Fe(II) solutions as well as by Fe(II)-treated goethite suspensions (Fe(II)/G). Results indicate a reactivity trend in which electron-withdrawing groups in the para position increased the ...
Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.
Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma
2011-09-01
In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ou, Boxin; Huang, Dejian; Hampsch-Woodill, Maureen; Flanagan, Judith A; Deemer, Elizabeth K
2002-05-22
A total of 927 freeze-dried vegetable samples, including 111 white cabbages, 59 carrots, 51 snap beans, 57 cauliflower, 33 white onions, 48 purple onions, 130 broccoli, 169 tomatoes, 25 beets, 88 peas, 88 spinach, 18 red peppers, and 50 green peppers, were analyzed using the oxygen radical absorption capacity (ORAC) and ferric reducing antioxidant capacity (FRAP) methods. The data show that the ORAC and FRAP values of vegetable are not only dependent on species, but also highly dependent on geographical origin and harvest time. The two antioxidant assay methods, ORAC and FRAP, also give different antioxidant activity trends. The discrepancy is extensively discussed based on the chemistry principles upon which these methods are built, and it is concluded that the ORAC method is chemically more relevant to chain-breaking antioxidants activity, while the FRAP has some drawbacks such as interference, reaction kinetics, and quantitation methods. On the basis of the ORAC results, green pepper, spinach, purple onion, broccoli, beet, and cauliflower are the leading sources of antioxidant activities against the peroxyl radicals.
Calvet, Xavier; Gené, Emili; ÀngelRuíz, Miquel; Figuerola, Ariadna; Villoria, Albert; Cucala, Mercedes; Mearin, Fermín; Delgado, Salvadora; Calleja, Jose Luis
2016-01-01
Ferric Carboxymaltose (FCM), Iron Sucrose (IS) and Oral Iron (OI) are alternative treatments for preoperative anaemia. To compare the cost implications, using a cost-minimization analysis, of three alternatives: FCM vs. IS vs. OI for treating iron-deficient anaemia before surgery in patients with colon cancer. Data from 282 patients with colorectal cancer and anaemia were obtained from a previous study. One hundred and eleven received FCS, 16 IS and 155 OI. Costs of intravenous iron drugs were obtained from the Spanish Regulatory Agency. Direct and indirect costs were obtained from the analytical accounting unit of the Hospital. In the base case mean costs per patient were calculated. Sensitivity analysis and probabilistic Monte Carlo simulation were performed. Total costs per patient were 1827® in the FCM group, 2312® in the IS group and 2101® in the OI group. Cost savings per patient for FCM treatment were 485® compared to IS and 274® compared to OI. A Monte Carlo simulation favoured the use of FCM in 84.7% and 84.4% of simulations when compared to IS and OI, respectively. FCM infusion before surgery reduced costs in patients with colon cancer and iron-deficiency anaemia when compared with OI and IS.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Effect of ferric hydroxide suspension on blood chemstry in the common shiner, Notropus cornutus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenner, F.J.; Corbett, S.; Shertzer, R.
1976-05-01
Common shiners, Notropus cornutus, were exposed to 3 ppM ferric hydroxide for periods from two to eight weeks. Ferric hydroxide resulted in initial changes in serum protein, glucose, Na and K ions, but these changes did not adversely affect the internal dynamics of the fish.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... Document provided as references in Unit IX. (Refs. 5 and 6). B. Biochemical Pesticide Human Health... snails. EPA assessed the risks to human health and concluded that, when sodium ferric EDTA was used in... human health from residues of sodium ferric EDTA in food crops. Furthermore, residues from the...
High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides
NASA Technical Reports Server (NTRS)
Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.
1994-01-01
Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).
Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya
2017-09-01
Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. These treatments were able to normalize her serum mineral levels and increase her bone mineral density. This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome.
Antioxidant and Anti-Fatigue Constituents of Okra
Xia, Fangbo; Zhong, Yu; Li, Mengqiu; Chang, Qi; Liao, Yonghong; Liu, Xinmin; Pan, Ruile
2015-01-01
Okra (Abelmoschus esculentus (L.) Moench), a healthy vegetable, is widely spread in tropical and subtropical areas. Previous studies have proven that okra pods possess anti-fatigue activity, and the aim of this research is to clarify the anti-fatigue constituents. To achieve this, we divided okra pods (OPD) into seeds (OSD) and skins (OSK), and compared the contents of total polysaccharides, total polyphenols, total flavonoids, isoquercitrin, and quercetin-3-O-gentiobiose and the antioxidant activity in vitro and anti-fatigue activity in vivo between OSD and OSK. The contents of total polyphenols and total polysaccharides were 29.5% and 14.8% in OSD and 1.25% and 43.1% in OSK, respectively. Total flavonoids, isoquercitrin and quercetin-3-O-gentiobiose (5.35%, 2.067% and 2.741%, respectively) were only detected in OSD. Antioxidant assays, including 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant power (FRAP) and reducing power test, and weight-loaded swimming test showed OSD possessed significant antioxidant and anti-fatigue effects. Moreover, biochemical determination revealed that that anti-fatigue activity of OSD is caused by reducing the levels of blood lactic acid (BLA) and urea nitrogen (BUN), enhancing hepatic glycogen storage and promoting antioxidant ability by lowering malondialdehyde (MDA) level and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels. These results proved okra seeds were the anti-fatigue part of okra pods and polyphenols and flavonoids were active constituents. PMID:26516905
Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.
Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat
2016-08-12
Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.
Kong, W.G.; Wang, A.; Chou, I.-Ming
2011-01-01
Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.
Ren, Jing; Li, Nan; Li, Lei; An, Jing-Kun; Zhao, Lin; Ren, Nan-Qi
2015-02-01
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gasche, Christoph; Ahmad, Tariq; Tulassay, Zsolt; Baumgart, Daniel C; Bokemeyer, Bernd; Büning, Carsten; Howaldt, Stefanie; Stallmach, Andreas
2015-03-01
Iron deficiency anemia (IDA) is frequently seen in inflammatory bowel disease. Traditionally, oral iron supplementation is linked to extensive gastrointestinal side effects and possible disease exacerbation. This multicenter phase-3 study tested the efficacy and safety of ferric maltol, a complex of ferric (Fe) iron with maltol (3-hydroxy-2-methyl-4-pyrone), as a novel oral iron therapy for IDA. Adult patients with quiescent or mild-to-moderate ulcerative colitis or Crohn's disease, mild-to-moderate IDA (9.5-12.0 g/dL and 9.5-13.0 g/dL in females and males, respectively), and documented failure on previous oral ferrous products received oral ferric maltol capsules (30 mg twice a day) or identical placebo for 12 weeks according to a randomized, double-blind, placebo-controlled study design. The primary efficacy endpoint was change in hemoglobin (Hb) from baseline to week 12. Safety and tolerability were assessed. Of 329 patients screened, 128 received randomized therapy (64 ferric maltol-treated and 64 placebo-treated patients) and comprised the intent-to-treat efficacy analysis: 55 ferric maltol patients (86%) and 53 placebo patients (83%) completed the trial. Significant improvements in Hb were observed with ferric maltol versus placebo at weeks 4, 8, and 12: mean (SE) 1.04 (0.11) g/dL, 1.76 (0.15) g/dL, and 2.25 (0.19) g/dL, respectively (P < 0.0001 at all time-points; analysis of covariance). Hb was normalized in two-thirds of patients by week 12. The safety profile of ferric maltol was comparable with placebo, with no impact on inflammatory bowel disease severity. Ferric maltol provided rapid clinically meaningful improvements in Hb and showed a favorable safety profile, suggesting its possible use as an alternative to intravenous iron in IDA inflammatory bowel disease.
Sun, Shengfang; Sono, Masanori; Du, Jing; Dawson, John H
2014-08-05
The coelomic O2-binding hemoglobin dehaloperoxidase (DHP) from the sea worm Amphitrite ornata is a dual-function heme protein that also possesses a peroxidase activity. Two different starting oxidation states are required for reversible O2 binding (ferrous) and peroxidase (ferric) activity, bringing into question how DHP manages the two functions. In our previous study, the copresence of substrate 2,4,6-trichlorophenol (TCP) and H2O2 was found to be essential for the conversion of oxy-DHP to enzymatically active ferric DHP. On the basis of that study, a functional switching mechanism involving substrate radicals (TCP(•)) was proposed. To further support this mechanism, herein we report details of our investigations into the H2O2-mediated conversion of oxy-DHP to the ferric or ferryl ([TCP] < [H2O2]) state triggered by both biologically relevant [TCP and 4-bromophenol (4-BP)] and nonrelevant (ferrocyanide) compounds. At <50 μM H2O2, all of these conversion reactions are completely inhibited by ferric heme ligands (KCN and imidazole), indicating the involvement of ferric DHP. Furthermore, the spin-trapping reagent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) effectively inhibits the TCP/4-BP (but not ferrocyanide)-triggered conversion of oxy-DHP to ferric DHP. These results and O2 concentration-dependent conversion rates observed in this study demonstrate that substrate TCP triggers the conversion of oxy-DHP to a peroxidase by TCP(•) oxidation of the deoxyferrous state. TCP(•) is progressively generated, by increasingly produced amounts of ferric DHP, upon H2O2 oxidation of TCP catalyzed initially by trace amounts of ferric enzyme present in the oxy-DHP sample. The data presented herein further address the mechanism of how the halophenolic substrate triggers the conversion of hemoglobin DHP into a peroxidase.
Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W
2017-01-03
Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe 2 O 3 ), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.
Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates
NASA Astrophysics Data System (ADS)
Jaén, Juan A.; Navarro, César
2009-07-01
Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.
Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.
1958-11-18
The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.
Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O
2016-05-18
In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin
2017-12-01
To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.
NASA Astrophysics Data System (ADS)
Chen, Yu Dao; Barker, James F.; Gui, Lai
2008-02-01
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.
Karava, Nilesh B; Mahoney, Raymond R
2011-06-01
We studied the effect of lyophilization of chicken breast muscle on the formation of dialyzable iron from ferric iron. Chicken breast muscle was used chilled, frozen or lyophilized and was analyzed for sulfhydryl and histidine content. It was then homogenized and mixed with ferric iron. The mixture was extracted with acid or digested with pepsin and pancreatin. The extracts and digests were analyzed for dialyzable ferrous and dialyzable total iron and also for protein. In the chilled muscle, similar amounts of dialyzable iron were formed after acid extraction and after proteolytic digestion; however, digestion led to more dialyzable ferrous iron. Freezing had no effect but lyophilization of the homogenized muscle caused large decreases in dialyzable iron and dialyzable ferrous iron for both extraction and digestion processes. Lyophilization also resulted in decreased extraction of peptides, decreased digestion of muscle proteins and reduced levels of sulfhydryl and histidine residues. Our results demonstrate that dialyzable iron is produced both by acid-soluble low molecular weight muscle component(s) and also by peptides resulting from digestion of muscle proteins: both of which reduce and chelate iron. Reduced formation of dialyzable iron by both mechanisms following lyophilization could be explained by sulfhydryl oxidation and impaired digestion due to protein crosslinking.
Palandri, J.L.; Kharaka, Y.K.
2005-01-01
We present a novel method for geologic sequestration of anthropogenic CO2 in ferrous carbonate, using ferric iron present in widespread redbeds and other sediments. Iron can be reduced by SO2 that is commonly a component of flue gas produced by combustion of fossil fuel, or by adding SO2 or H2S derived from other industrial processes to the injected waste gas stream. Equilibrium and kinetically controlled geochemical simulations at 120 bar and 50 and 100 ??C with SO2 or H2S show that iron can be transformed almost entirely to siderite thereby trapping CO2, and simultaneously, that sulfur can be converted predominantly to dissolved sulfate. If there is an insufficient amount of sulfur-bearing gas relative to CO2 as for typical flue gas, then some of the iron is not reduced, and some of the CO2 is not sequestered. If there is an excess of sulfur-bearing gas, then complete iron reduction is ensured, and some of the iron precipitates as pyrite or other solid iron sulfide, depending on their relative precipitation kinetics. Gas mixtures with insufficient sulfur relative to CO2 can be used in sediments containing Ca, Mg, or other divalent metals capable of precipitating carbonate minerals. For quartz arenite with an initial porosity of 21% and containing 0.25 wt.% Fe2O3, approximately 0.7 g of CO2 is sequestered per kg of rock, and the porosity decrease is less than 0.03%. Sequestration of CO2 using ferric iron has the advantage of disposing of SO2 that may already be present in the combustion gas. ?? 2005 Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combes, J.M.; Manceau, A.; Calas, G.
1989-03-01
X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond tomore » the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.« less
Comín-Colet, Josep; Rubio-Rodríguez, Darío; Rubio-Terrés, Carlos; Enjuanes-Grau, Cristina; Gutzwiller, Florian S; Anker, Stefan D; Ponikowski, Piotr
2015-10-01
Treatment with ferric carboxymaltose improves symptoms, functional capacity, and quality of life in patients with chronic heart failure and iron deficiency. The aim of this study was to assess the cost-effectiveness of ferric carboxymaltose treatment vs no treatment in these patients. We used an economic model based on the Spanish National Health System, with a time horizon of 24 weeks. Patient characteristics and ferric carboxymaltose effectiveness (quality-adjusted life years) were taken from the Ferinject® Assessment in patients with IRon deficiency and chronic Heart Failure trial. Health care resource use and unit costs were taken either from Spanish sources, or from the above mentioned trial. In the base case analysis, patients treated with and without ferric carboxymaltose treatment acquired 0.335 and 0.298 quality-adjusted life years, respectively, representing a gain of 0.037 quality-adjusted life years for each treated patient. The cost per patient was €824.17 and €597.59, respectively, resulting in an additional cost of €226.58 for each treated patient. The cost of gaining 1 quality adjusted life year with ferric carboxymaltose was €6123.78. Sensitivity analyses confirmed the robustness of the model. The probability of ferric carboxymaltose being cost-effective (< €30 000 per quality-adjusted life year) and dominant (more effective and lower cost than no treatment) was 93.0% and 6.6%, respectively. Treatment with ferric carboxymaltose in patients with chronic heart failure and iron deficiency, with or without anemia, is cost-effective in Spain. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Barcena, Homar; Chen, Peishan
2016-01-01
Students are introduced to spectrophotometry in comparing the antioxidant activity of pure eugenol and oil of cloves from a commercial source using a modified ferric reducing antioxidant power (FRAP) assay. The extraction of the essential oil from dried cloves is demonstrated to facilitate discussions on green chemistry. The anesthetic properties…
Grzeszczuk, Monika; Salachna, Piotr; Meller, Edward
2018-05-29
Salvia coccinea (Lamiaceae) is a promising source of potential antioxidants, and its extracts can be used in pharmaceutical industry, as well as in food products and cosmetics. Salicylic acid (SA) affects many physiological and metabolic processes in vascular plants under salinity stress. The aim of this study was to investigate the response of S. coccinea to either SA, or sodium chloride (NaCl), or a combination of both. The plants were sprayed with a solution of 0.5 or 1.0 mM SA and watered with 0, 100, 200, or 300 mM NaCl. Exogenous application of SA increased the number of branches, fresh herbal weight, and total chlorophyll content vs control plants. Salinity-exposed plants showed reduced growth, content of photosynthetic pigments total polyphenols, and antioxidant activity. However, foliar application of SA relieved the adverse effects of 100 mM NaCl, as demonstrated by increased number of branches, greater fresh herbal weight, higher content of total chlorophyll, total carotenoids, and total polyphenols, as well as antioxidant potential, detected using ferric-reducing ability of plasma (FRAP) and 2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), compared with untreated plants.
Heart failure in patients with kidney disease and iron deficiency; the role of iron therapy.
Cases Amenós, Aleix; Ojeda López, Raquel; Portolés Pérez, José María
Chronic kidney disease and anaemia are common in heart failure (HF) and are associated with a worse prognosis in these patients. Iron deficiency is also common in patients with HF and increases the risk of morbidity and mortality, regardless of the presence or absence of anaemia. While the treatment of anaemia with erythropoiesis-stimulating agents in patients with HF have failed to show a benefit in terms of morbidity and mortality, treatment with IV iron in patients with HF and reduced ejection fraction and iron deficiency is associated with clinical improvement. In a posthoc analysis of a clinical trial, iron therapy improved kidney function in patients with HF and iron deficiency. In fact, the European Society of Cardiology's recent clinical guidelines on HF suggest that in symptomatic patients with reduced ejection fraction and iron deficiency, treatment with IV ferric carboxymaltose should be considered to improve symptoms, the ability to exercise and quality of life. Iron plays a key role in oxygen storage (myoglobin) and in energy metabolism, and there are pathophysiological bases that explain the beneficial effect of IV iron therapy in patients with HF. All these aspects are reviewed in this article. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail
2013-01-01
Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054
Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail
2013-11-01
Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied.
Esparza-Martínez, Francisco J; Miranda-López, Rita; Mata-Sánchez, Sara M; Guzmán-Maldonado, Salvador H
2016-09-01
The mandarin industry is generating more waste due to the increasing demand for juice. In this study, extractable and non-extractable phenolics as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC) antioxidant activities in Satsuma mandarin waste dried at different temperatures were determined. The amounts of non-extractable total phenols, total flavonoids, and condensed tannins measured in mandarin waste dried at 120 °C were 39.4, 44.3, and 45.6 %, respectively, which were higher than those of fresh-mandarin waste. Dried mandarin waste is rich in extractable and non-extractable hesperidin (259.86 and 182.52 mg/g, respectively) and eriocitrin (85.12 and 197.24 mg/g, respectively), as well as non-extractable gallic acid (36.08 μg/g). The antioxidant capacities of extractable and non-extractable phenolics, from the highest to the lowest, were ABTS > ORAC > DPPH > FRAP and ORAC > ABTS > DPPH > FRAP, respectively. The information reported here may encourage mandarin industry operators to re-evaluate their by-products, extending the application of mandarin fruits and reducing waste.
Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes.
Singh, Abhishek Kumar; Singh, Sandeep; Garg, Geetika; Rizvi, Syed Ibrahim
2016-10-01
An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl 2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca 2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl 2 . Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl 2 -induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca 2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.
Okolie, Ngozi Paulinus; Falodun, Abiodun; Davids, Oluseyi
2014-01-01
The antioxidant properties of ethanolic root extract of pepper fruit (Donnetia tripetala), and its effect on lipid peroxidation of some fresh beef tissues during frozen storage were investigated. The antioxidant parameters were assessed using standard methods, while malondialdehyde levels of different fresh beef tissue sections treated with the extract prior to freezing, were estimated in a colorimetric reaction with thiobarbituric acid. The H2O2-scavenging ability of the extract was similar to that of ascorbic acid, with a maximum scavenging power of 55.61 ±4.98%, and an IC50 value of 86µg/ml. The extract exhibited a concentration-dependent ferric ion-reducing power, although this was significantly lower relative to that of the ascorbic acid (p < 0.05). The total phenolic content was 212.5 ± 0.002 mg/g, while the nitric oxide-scavenging ability was 64.33 ± 0.2% after 150 min. The capacity of the extract to inhibit lipid peroxidation in frozen heart muscle slices was significantly higher than that of vitamin C (p < 0 .05), but comparable to vitamins C and E in frozen testes and kidney slices. These results suggest that the root extract of D. tripetala is rich in antioxidants which can be applied to meat preservation during refrigerated storage.
Taukoorah, Urmeela; Mahomoodally, M. Fawzi
2016-01-01
Aloe vera gel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG against α-amylase, α-glucosidase, and pancreatic lipase activity in vitro. Enzyme kinetic studies using Michaelis-Menten (K m) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56 ± 0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (V max) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were 66.06 ± 1.14 (GAE)/mg and 60.95 ± 0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food. PMID:26880905
The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.
Basibuyuk, M; Kalat, D G
2004-03-01
Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.
Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya
2017-01-01
Abstract Rationale: Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. Patient concerns: A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). Diagnoses: We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Interventions: Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. Outcomes: These treatments were able to normalize her serum mineral levels and increase her bone mineral density. Lessons: This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome. PMID:28953654
Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro
2016-01-01
The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health. PMID:27352306
Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong
2012-01-01
Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.
Effect of reuse of polysulfone membrane on oxidative stress during hemodialysis
Ramakrishna, P.; Reddy, E. Prabhakar; Suchitra, M. M.; Bitla, A. R.; Rao, P. V. Srinivasa; Sivakumar, V.
2012-01-01
Patients with chronic renal failure, especially those on long-term hemodialysis (HD), have a high incidence of premature cardiovascular disease. Oxidative stress, which occurs when there is an excessive free radical production or low antioxidant level, has recently been implicated as a causative factor in atherogenesis. Hourly changes in malondialdehyde (MDA) and antioxidant enzymes, vitamins, lipid profile and ferric reducing ability of plasma (FRAP) were studied with the first use and immediate subsequent reuse of polysulfone dialysis membrane in 27 patients on regular HD treatment. Data were corrected for hemoconcentration and standardized to measure the rate of change. Increase in MDA and erythrocyte catalase along with decrease in plasma vitamin E and FRAP levels and no change in glutathione peroxidase levels were observed as a result of both fresh and reuse dialysis. These findings indicate a net oxidative stress in both fresh as well as dialyzer reuse sessions. There was no significant change in oxidative stress in both fresh and reuse sessions. The oxidative stress with reuse dialysis was less when compared to first use dialysis, but the difference was not statistically significant. PMID:23087556
Kleniewska, Paulina; Hoffmann, Arkadiusz; Pniewska, Ewa
2016-01-01
The aim of the present study was to assess whether probiotic bacteria Lactobacillus casei (4 × 108 CFU) influences the antioxidant properties of human plasma when combined with prebiotic Inulin (400 mg). Experiments were carried out on healthy volunteers (n = 32). Volunteers were divided according to sex (16 male and 16 female) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 weeks, at the end of the study. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, and the ferric reducing ability of plasma (FRAP) in human plasma were examined. The administration of synbiotics containing L. casei plus Inulin resulted in a significant increase in FRAP values (p = 0.00008) and CAT activity (p = 0.02) and an insignificant increase in SOD and GPx activity compared to controls. Synbiotics containing L. casei (4 × 108 CFU) with prebiotic Inulin (400 mg) may have a positive influence on human plasma antioxidant capacity and the activity of selected antioxidant enzymes. PMID:27066188
Koutroumani, Nikolitsa; Partsalaki, Ioanna; Lamari, Fotini; Dettoraki, Athina; Gil, Andrea Paola Rojas; Karvela, Alexia; Kostopoulou, Eirini; Spiliotis, Bessie E
2013-01-01
Advanced glycation end-products (AGEs) via their receptor, RAGE, are involved in diabetic angiopathy. Soluble RAGE, an inhibitor of this axis, is formed by enzymatic catalysis (sRAGE) or alternative splicing (esRAGE). Malondialdehyde (MDA) is an oxidative stress marker, and ferric reducing ability of plasma (FRAP) is an anti-oxidant capacity marker. In isolated mononuclear blood cells from 110 DM1-patients (P) and 124 controls (C) (4-29 years) RAGE mRNA (g) and protein expression (pe) were measured by RT-PCR and Western immunoblotting, respectively. Plasma levels of CML (AGEs) and sRAGE were measured by ELISA, MDA by flurometry and FRAP according to 'Benzie and Strain'. P showed: (i) higher g of RAGE, especially in p>13 years of age and >5 years DM1, (ii) increased pe of esRAGE in DM1>5 years and (iii) increased FRAP and MDA. The increased esRAGE and FRAP with increased levels of CML and MDA possibly reflects a protective response against the formation of diabetic complications in these young diabetic patients.
Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong
2012-01-01
Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851
Park, Jin Hwa; Lee, Yun Jin; Kim, Yeon Ho; Yoon, Ki Sun
2017-01-01
The objective of this study was to investigate the antioxidant and antimicrobial properties of quinoa cultivated in Korea and to compare it with imported quinoa from the USA and Peru. The highest amount of total flavonoid contents (TFC) with 20.91 mg quercetin equivalents/100 g was measured in quinoa seed extract cultivated in Korea, while the total phenolic contents (TPC) were significantly higher in quinoa from the USA (16.28 mg gallic acid equivalents/100 g). In addition, quinoa extracts cultivated in Korea displayed a superior antioxidant ability in both, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl values. There was a high correlation between TFC and antioxidant activity and a low correlation between TPC and antioxidant activity. The antimicrobial activity of the quinoa extracts was determined using a disc diffusion assay and optical density method. In both assays, the quinoa seed extracts did not have strong antimicrobial activity against foodborne bacteria, including Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Salmonella Typhimurium, and Campylobacter jejuni. PMID:29043217
Trigueros, Lorena; Wojdyło, Aneta; Sendra, Esther
2014-07-09
Pomegranate juice (PGJ) is rich in phenolics which are potent antioxidants but also prone to interact with proteins. A yogurt rich in PGJ (40%) made from arils was elaborated (PGY) to determine the antioxidant activity and to estimate the phenolics-proteins interaction during 28 days of cold storage. Juice, yogurts, and protein-free permeates were analyzed for phenolic composition. Yogurt fermentation modified the anthocyanin profile of the initial PGJ, especially the content in cyanidin-3-O-glucoside. During storage, individual anthocyanin content in PGY decreased but it did not modify yogurt color. The analysis of permeates revealed that the degree of phenol-protein interaction depends on the type of phenolic, ellagic acid and dephinidin-3,5-O-diglucoside being the least bound phenolic compounds. The presence of PGJ in yogurt enhanced radical scavenging performance, whereas all the observed ferric reducing power ability of PGY was strictly due to the PGJ present. The 84.73% of total anthocyanins remained bound to proteins at the first day of storage and 90.06% after 28 days of cold storage, revealing the high affinity of anthocyanins for milk proteins.
Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa
2016-05-01
Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bligh, Mark W.; Waite, T. David
2010-10-01
While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.
Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J
2016-01-01
The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.
40 CFR 117.3 - Determination of reportable quantities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluoride X 1 (0.454) Beryllium nitrate X 1 (0.454) Butyl acetate D 5,000 (2,270) Butylamine C 1,000 (454) n... B 100 (45.4) Cupric acetoarsenite X 1 (0.454) Cupric chloride A 10 (4.54) Cupric nitrate B 100 (45.4... 1,000 (454) Ferric chloride C 1,000 (454) Ferric fluoride B 100 (45.4) Ferric nitrate C 1,000 (454...
40 CFR 117.3 - Determination of reportable quantities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluoride X 1 (0.454) Beryllium nitrate X 1 (0.454) Butyl acetate D 5,000 (2,270) Butylamine C 1,000 (454) n... B 100 (45.4) Cupric acetoarsenite X 1 (0.454) Cupric chloride A 10 (4.54) Cupric nitrate B 100 (45.4... 1,000 (454) Ferric chloride C 1,000 (454) Ferric fluoride B 100 (45.4) Ferric nitrate C 1,000 (454...
Stabilized gold nanoparticles by laser ablation in ferric chloride solutions
NASA Astrophysics Data System (ADS)
Nouraddini, M. I.; Ranjbar, M.; Dobson, P. J.; Farrokhpour, H.; Johnston, C.; Jurkschat, K.
2017-12-01
In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.
Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie
2014-01-01
An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.
Della Lucia, Ceres M; Vaz Tostes, Maria das Graças; Silveira, Carlos Mário M; Bordalo, Lívia A; Rodrigues, Fabiana C; Pinheiro-Sant'Ana, Helena Maria; Martino, Hércia S D; Costa, Neuza Maria B
2013-03-01
This study aimed to evaluate iron (Fe) bioavailability in Wistar rats fed with rice fortified with micronized ferric pyrophosphate (FP) by Ultra Rice (UR) technology with or without addition of yacon flour as a source of 7.5% of fructooligosaccharides (FOS). Diets were supplied with 12 mg iron/kg from the following sources: ferrous sulfate (FS - control diet), fortified rice with micronized ferric pyrophosphate (Ultra Rice) (UR diet), ferrous sulfate + yacon flour (FS + Y diet) or Ultra Rice + yacon flour (UR + Y diet). Blood samples were collected at the end of depletion and repletion stages for determination of hemoglobin concentration and calculation of the relative biological value (RBV). Also, the content of short chain fatty acids (SCFA) (acetic, propionic and butyric acids) from animals' stools and caecum weight were determined. The UR diet showed high iron bioavailability (RBV = 84.7%). However, the addition of yacon flour in the diet containing fortified rice (UR + Y diet) decreased RBV (63.1%) significantly below the other three groups (p < 0.05). Groups that received yacon flour showed higher acetic acid values compared to those who did not. In conclusion, fortified UR with micronized ferric pyrophosphate showed high iron bioavailability but the addition of yacon flour at 7.5% FOS reduced iron bioavailability despite increased caecum weight and SCFA concentration.
Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis.
Millar, A D; Rampton, D S; Blake, D R
2000-09-01
Reactive oxygen species may be pathogenic in ulcerative colitis. Oral iron supplements anecdotally exacerbate inflammatory bowel disease and iron levels are elevated in the inflamed mucosa. Mucosal iron may enhance hydroxyl ion production via Fenton chemistry. Conversely, the iron chelator, desferrioxamine, is reportedly beneficial in Crohn's disease. To assess the in vitro effects of exogenous iron and of iron chelators on the production of reactive oxygen species by colonic biopsies from normal control subjects and patients with ulcerative colitis. Luminol-amplified chemiluminescence was used to measure mucosal reactive oxygen species production both before and after addition in vitro of ferric citrate (100 microM), desferrioxamine (1 mM) and 1,10-phenanthroline (1 mM). Ferric citrate had no effect on the chemiluminescence produced by human colonic mucosa. However, desferrioxamine and phenanthroline reduced chemiluminescence by 47% (n=7, P=0.018) and by 26% (n=10, P=0.005), respectively, in inactive ulcerative colitis, and by 44% (n=9, P=0. 008) and 42% (n=11, P=0.006) in active disease. The lack of effect of ferric citrate suggests that sufficient free iron is already present in inflamed biopsies to drive the Fenton reaction maximally. The effects of desferrioxamine and 1,10-phenanthroline on the chemiluminescence of biopsies from patients with ulcerative colitis suggest that a clinical trial of topical iron chelation in active disease is indicated.
Hernández, Cristian; Ascacio-Valdés, Juan; De la Garza, Heliodoro; Wong-Paz, Jorge; Aguilar, Cristóbal Noé; Martínez-Ávila, Guillermo Cristian; Castro-López, Cecilia; Aguilera-Carbó, Antonio
2017-12-01
To determinate the recovery of total polyphenolic compounds content, in vitro antioxidant activity and HPLC/ESI/MS characterization of extract from Nephelium lappaceum L. (Mexican rambutan). The rambutan husk extract was obtained by aqueous extraction and a polyphenolic fraction was recovered using Amberlite XAD-16. The total polyphenolic compounds content was determined by the Folin Ciocalteu and butanol-HCI methods. In vitro antioxidant activity was performed using ABTS and ferric reducing antioxidant power methods. Mexican rambutan husk showed a total polyphenolic content of 582 mg/g and an evident antioxidant activity by ABTS and ferric reducing antioxidant power analysis. The HPLC/ESI/MS assay allowed the identification of 13 compounds, most of which belong to ellagitannins. Geraniin, corilagin and ellagic acid were present in the sample; the mineral composition was also evaluated. Rambutan husk cultivated in Mexico is a promising source for the recovery of added value bioactive compounds with antioxidant activity, which have potential applications as bioactive antioxidant agents for the treatment of diseases. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.
Smith, Sarah L; Johnson, D Barrie
2018-03-01
Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.
Valence tautomerism in synthetic models of cytochrome P450
Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai
2016-01-01
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948
Buyer, Jeffrey S.; Sikora, Lawrence J.; Kratzke, Marian G.
1990-01-01
Monoclonal antibodies to ferric pseudobactin, the siderophore (microbial iron transport agent) of plant growth-promoting Pseudomonas putida B10, have been developed. Three immunoglobulin G subclass 1-type monoclonal antibodies have been characterized. Each antibody appears to be unique on the basis of their reactions with ferric pseudobactin and with culture supernatants from other pseudomonads. None of the three cross-reacts with ferric pseudobactin-type siderophores produced by seven other pseudomonads. However, P. aeruginosa ATCC 15692 and P. fluorescens ATCC 17400 produced relatively high-molecular-mass compounds (mass greater than approximately 30,000 daltons) that did react with the antibodies. The compound from P. aeruginosa was not iron regulated, while the compound from P. fluorescens was produced only under iron-limiting conditions. A competitive assay using these antibodies has a detection limit of 5 × 10−12 mol of ferric pseudobactin. This is, to our knowledge, the first report of monoclonal antibodies reactive with siderophores. PMID:16348116
Oboh, Ganiyu; Agunloye, Odunayo M; Adefegha, Stephen A; Akinyemi, Ayodele J; Ademiluyi, Adedayo O
2015-03-01
Chlorogenic acid is a major phenolic compound that forms a substantial part of plant foods and is an ester of caffeic acid and quinic acid. However, the effect of the structures of both chlorogenic and caffeic acids on their antioxidant and antidiabetic potentials have not been fully understood. Thus, this study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid with α-amylase and α-glucosidase (key enzymes linked to type 2 diabetes) activities in vitro. The inhibitory effect of the phenolic acids on α-amylase and α-glucosidase activities was evaluated. Thereafter, their antioxidant activities as typified by their 1,1-diphenyl-2 picrylhydrazyl radical scavenging ability and ferric reducing antioxidant properties were determined. The results revealed that both phenolic acids inhibited α-amylase and α-glucosidase activities in a dose-dependent manner (2-8 μg/mL). However, caffeic acid had a significantly (p<0.05) higher inhibitory effect on α-amylase [IC50 (concentration of sample causing 50% enzyme inhibition)=3.68 μg/mL] and α-glucosidase (IC50=4.98 μg/mL) activities than chlorogenic acid (α-amylase IC50=9.10 μg/mL and α-glucosidase IC50=9.24 μg/mL). Furthermore, both phenolic acids exhibited high antioxidant properties, with caffeic acid showing higher effects. The esterification of caffeic acid with quinic acid, producing chlorogenic acid, reduces their ability to inhibit α-amylase and α-glucosidase activities. Thus, the inhibition of α-amylase and α-glucosidase activities by the phenolic acids could be part of the possible mechanism by which the phenolic acids exert their antidiabetic effects.
Legendre, Claire; Avril, Sylvie; Guillet, Catherine; Garcion, Emmanuel
2016-02-01
Overcoming resistance to treatment is an essential issue in many cancers including glioblastoma (GBM), the deadliest primary tumor of the central nervous system. As dependence on iron is a key feature of tumor cells, using chelators to reduce iron represents an opportunity to improve conventional GBM therapies. The aim of the present study was, therefore, to investigate the cytostatic and cytotoxic impact of the new iron chelator deferasirox (DFX) on human GBM cells in well-defined clinical situations represented by radiation therapy and mild-hypoxia. Under experimental normoxic condition (21% O2), deferasirox (DFX) used at 10 μM for 3 days reduced proliferation, led cell cycle arrest in S and G2-M phases and induced cytotoxicity and apoptosis in U251 and U87 GBM cells. The abolition of the antineoplastic DFX effects when cells were co-treated with ferric ammonium sulfate supports the hypothesis that its effects result from its ability to chelate iron. As radiotherapy is the main treatment for GBM, the combination of DFX and X-ray beam irradiation was also investigated. Irradiation at a dose of 16 Gy repressed proliferation, cytotoxicity and apoptosis, but only in U251 cells, while no synergy with DFX was observed in either cell line. Importantly, when the same experiment was conducted in mild-hypoxic conditions (3% O2), the antiproliferative and cytotoxic effects of DFX were abolished, and its ability to deplete iron was also impaired. Taken together, these in vitro results could raise the question of the benefit of using iron chelators in their native forms under the hypoxic conditions often encountered in solid tumors such as GBM. Developing new chemistry or a new drug delivery system that would keep DFX active in hypoxic cells may be the next step toward their application.
Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare
2018-05-01
The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50 = 28.5 µg/mL) than the bound phenolic extract (IC 50 = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50 = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50 = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H
2013-08-01
The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, Lee L.
2010-01-01
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.
Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan
2008-05-21
An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.
Folding process of silk fibroin induced by ferric and ferrous ions
NASA Astrophysics Data System (ADS)
Ji, Dan; Deng, Yi-Bin; Zhou, Ping
2009-12-01
Bombyx mori silk fiber has useful mechanical properties largely due to a high content of ordered β-sheet crystallites separated by non-crystalline spacers. Metallic ions present in the silk dope in nature could affect the β-sheet content. In this work, we used solid-state 13C NMR, EPR and Raman spectroscopy to investigate how the ferric/ferrous ions affect the folding process of the silk fibroin. NMR and Raman results indicate that ferric and ferrous ions have different effects on the secondary structure of silk fibroin. Ferric ions can induce a conformation change from helix to β-sheet form in silk fibroin when their concentration exceeds a critical value, while ferrous ions cannot. EPR results indicate that the ferric ions bound with silk fibroin have a high-spin state ( S = 5/2) with g-value of g1 = 1.950, g2 = 1.990 and g3 = 1.995, zero-field splitting interaction D of 1.2-2 cm -1, and symmetric character of E/ D = 1/3, resulting in an effective g-value of g' = 4.25. The hydrophilic spacer GTGSSGFGPYVAN(H)GGYSGYEYAWSSESDFGT in the heavy chain of silk fibroin is likely to be involved in the binding of ferric ions, and His, Asn and Tyr residues are considered as the potential binding sites.
Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R
2013-06-01
The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu
2016-12-01
The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.
Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments
NASA Astrophysics Data System (ADS)
Wang, A.; Ling, Z.; Freeman, J. J.
2008-12-01
Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest hydration state (epsomite, at mid-low temperature), which would dehydrate readily at low relative humidity, ferricopiapite remains unchanged over ten months under extremely dry conditions. On the other hand, amorphous ferric sulfate which forms easily from solutions at dry conditions, is similar to the amorphous magnesium sulfate in stability field, thus can potentially be a very important phase in the phase transition pathways of ferric sulfates on Mars.
NASA Astrophysics Data System (ADS)
Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica
2015-06-01
In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Qian; Du Piyi; Huang Wenyan
2007-03-26
Nickel-zinc ferrites (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with extraordinary electric and dielectric properties were prepared by self-combustion technique. The resistivity of ferrite in the ferric citrate system is on the order of 10{sup 10} {omega} cm, which is about four orders higher than that of ferrite in the ferric nitrate system as well as that of ferrite prepared by the conventional method. The dielectric loss of sample in the ferric citrate system is only 0.008. The amorphous phase and its encapsulation well around the grains have played most important roles in both high resistivity and low dielectric loss of ferritemore » in the ferric citrate system.« less
Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins
Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat
2016-01-01
Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232
NASA Astrophysics Data System (ADS)
Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.
2014-12-01
Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.
Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki
2008-12-01
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.
Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.
Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J
2012-10-30
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.
THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.
2012-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700
Barrand, M. A.; Callingham, B. A.; Dobbin, P.; Hider, R. C.
1991-01-01
1. The fate and disposition of [59Fe]-ferric [3H]-maltol after intravenous administration were investigated in anaesthetized rats. Immediate dissociation of ferric iron from maltol took place in the circulation even with high doses of ferric maltol (containing 1 mg elemental iron). In plasma samples withdrawn within 1 min of injection and subjected to gel filtration, 59Fe eluted with the high molecular weight proteins whilst the tritium was associated with low molecular weight material. 2. The rates of elimination of 59Fe and of tritium from the plasma and their ultimate fate were very different. The half life for 59Fe in the plasma was around 70 min and 59Fe appeared mainly in the bone marrow and liver. There was an initial rapid exit of tritium from the plasma with a half life of around 12 min. This was followed either by a plateau or by a rise in tritium levels, involving entry of maltol metabolites into the circulation. These metabolites could be recovered in the urine. 3. Entry of 59Fe and of tritium into the blood plasma after intraduodenal administration of [59Fe]-ferric [3H]-maltol was also very different. At low doses of ferric maltol (containing 100 micrograms elemental iron), the tritium appeared in the plasma in highest amounts within seconds and then decreased whilst there was a slow rise in 59Fe levels. At higher doses of ferric maltol (containing 7 mg elemental iron), levels of 59Fe in the plasma were highest at 5 min and then fell whereas tritium levels rose steadily. Mucosal processing of 59Fe prevented further entry of iron at high dose into the circulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1364845
Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia
Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan
2014-01-01
Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339
21 CFR 73.2299 - Ferric ferrocyanide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in amounts...
21 CFR 73.2299 - Ferric ferrocyanide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in amounts...
21 CFR 73.2299 - Ferric ferrocyanide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in amounts...
Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria
Steiner, Michael; Lazaroff, Norman
1974-01-01
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066
Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
Bolobajev, Juri; Trapido, Marina; Goi, Anna
2016-06-01
Doxycycline plays a key role in Fe(III)-to-Fe(II) redox cycling and therefore in controlling the overall reaction rate of the Fenton-based process (H2O2/Fe(III)). This highlights the autocatalytic profile of doxycycline degradation. Ferric iron reduction in the presence of doxycycline relied on doxycycline-to-Fe(III) complex formation with an ensuing reductive release of Fe(II). The lower ratio of OH-to-contaminant in an initial H2O2/Fe(III) oxidation step than in that of classical Fenton (H2O2/Fe(II)) decreased the doxycycline degradation rate. The quantum yield of doxycycline in direct UV-C photolysis was 3.1 × 10(-3) M E(-1). In spite of doxycycline-Fe(III) complexes could produce the adverse effect on the doxycycline degradation in the UV/Fe(III) system some acceleration of the rate was observed upon irradiation of the Fe(III)-hydroxy complex. Acidic reaction media (pH 3.0) and the molar ratio of DC/Fe(III) = 2/1 favored the complex formation. Doxycycline close degradation rates and complete mineralization achieved for 120 min (Table 1) with both UV/H2O2 and UV/H2O2/Fe(III) indicated the unsubstantial role of the reduction of Fe(III) to Fe(II) in UV/H2O2/Fe(III) system efficacy. Thus, factors such as doxycycline's ability to form complexes with ferric iron and the ability of complexes to participate in a reductive pathway should be considered at a technological level in process optimization, with chemistry based on iron ion catalysis to enhance the doxycycline oxidative pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid
Atcher, Robert W.; Hines, John J.
1992-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
21 CFR 73.2298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the area...
21 CFR 73.2298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the area...
21 CFR 73.2298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the area...
Maddock, A.G.; Smith, F.
1959-08-25
A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.
2013-01-01
Background Chalcone Panduratin A (PA) has been known for its antioxidant property, but its merits against oxidative damage in liver cells has yet to be investigated. Hence, the paper aimed at accomplishing this task with normal embryonic cell line WRL-68. Methods PA was isolated from Boesenbergia rotunda rhizomes and its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing power (FRAP) activities were measured in comparison with that of the standard reference drug Silymarin (SI). Oxidative damage was induced by treating the cells with 0.04 g/ml of toxic thioacetamide for 60 minutes followed by treatment with 1, 10 and 100 μg/ml concentrations of either PA or SI. The severities of oxidative stress in the control and experimental groups of cells were measured by Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Results PA exhibited an acceptable DPPH scavenging and FRAP activities close to that of Silymarin. Treating the injured cells with PA significantly reduced the MDA level and increased the cell viability, comparable to SI. The activities of SOD, CAT and GPx were significantly elevated in the PA-treated cells in a dose dependent manner and again similar to SI. Conclusion Collectively, data suggested that PA has capacity to protect normal liver cells from oxidative damage, most likely via its antioxidant scavenging ability. PMID:24156366
Arsenic removal from acidic solutions with biogenic ferric precipitates.
Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A
2016-04-05
Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Kopeć, W; Jamroz, D; Wiliczkiewicz, A; Biazik, E; Hikawczuk, T; Skiba, T; Pudło, A; Orda, J
2013-06-01
One-day-old chickens were fed mixtures containing different raw materials (fish by-products meal, porcine blood cells meal, blood meal, wheat gluten, fodder yeast), as a source of histidine and β-alanine - components of carnosine. Control birds were administered a feed mixture, in which soy bean meal was the main protein source. The bodyweight, feed consumption and conversion, antioxidant characteristics and histidine dipeptides content in blood and muscles, and also amino acid composition of chicken meat on day 34 post-hatch were recorded. The best (p < 0.05) performance and feed conversion were observed in chickens fed mixture containing porcine blood cells meal. In blood plasma of control chickens, a significantly (p < 0.01) higher ability to scavenge DPPH radicals was found. However, the highest catalase activity in erythrocytes was determined in chickens fed mixtures with blood by-products. Insignificant differences in both carnosine and anserine levels in plasma between treatments were noted. Breast muscles from control birds were characterized by lower activity of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) (p < 0.05; p < 0.01), than those from chickens fed blood by-products. Improved ability to reduce ferric ions (FRAP) (p < 0.01) and carnosine content in meat from chickens fed blood cell meal were recorded. No direct relations between amino acids content in feed mixtures and in meat were observed. © 2012 Blackwell Verlag GmbH.
SEPARATION OF RADIOACTIVE COLUMBIUM TRACER
Glendenin, L.E.; Gest, H.
1958-08-26
A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.
Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun
2017-05-15
In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural and magnetic properties of Fe and carbon nanotubes derived from coconut shells
NASA Astrophysics Data System (ADS)
Qadri, S. B.; Gorzkowski, E. P.; Bussmann, K.; Rath, B. B.; Feng, J.
2018-05-01
Ferric oxide (Fe2O3) was directly reduced to metallic Fe using the carbon source from the coconut shells at temperatures above 1400 °C in argon gas atmospheres. X-ray diffraction analysis showed the presence of α-, γ- phases of Fe in addition to the presence of carbon nanotubes (CNTs). By selecting the appropriate ratios of coconut shell powder to Fe2O3, it is demonstrated that pure Fe is produced without any residual ferric oxide. The quantitative analysis of each of the Fe phases and carbon nanotubes was dependent on the temperature and the duration of processing at high temperature. Transmission electron microcopy results showed copious amount of carbon nanotubes in the samples. Magnetic property measurements suggested that, the average magnetic moment is consistent with presence of α-phase and the ferromagnetic γ-phase of Fe. This novel method of producing pure α- and γ-Fe in the presence of carbon nanotubes using coconut shells has potential applications as nanocomposites.
Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.
2012-01-01
Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372
Electrical conduction studies in ferric-doped KHSO 4 single crystals
NASA Astrophysics Data System (ADS)
Sharon, M.; Kalia, A. K.
1980-03-01
Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.
Abudalo, R.A.; Bogatsu, Y.G.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Elimelech, M.
2005-01-01
To test the effect of geochemical heterogeneity on microorganism transport in saturated porous media, we measured the removal of two microorganisms, the bacteriophage PRD1 and oocysts of the protozoan parasite Cryptosporidium parvum, in flow-through columns of quartz sand coated by different amounts of a ferric oxyhydroxide. The experiments were conducted over ranges of ferric oxyhydroxide coating fraction of ?? = 0-0.12 for PRD1 and from ?? = 0-0.32 for the oocysts at pH 5.6-5.8 and 10-4 M ionic strength. To determine the effect of pH on the transport of the oocysts, experiments were also conducted over a pH range of 5.7-10.0 at a coating fraction of ?? = 0.04. Collision (attachment) efficiencies increased as the fraction of ferric oxyhydroxide coated quartz sand increased, from ?? = 0.0071 to 0.13 over ?? = 0-0.12 for PRD1 and from ?? = 0.059 to 0.75 over ?? = 0-0.32 for the oocysts. Increasing the pH from 5.7 to 10.0 resulted in a decrease in the oocyst collision efficiency as the pH exceeded the expected point of zero charge of the ferric oxyhydroxide coatings. The collision efficiencies correlated very well with the fraction of quartz sand coated by the ferric oxyhydroxide for PRD1 but not as well for the oocysts. ?? 2005 American Chemical Society.
Role of Intravenous Ferric Carboxy-maltose in Pregnant Women with Iron Deficiency Anaemia.
Mishra, Vineet; Gandhi, Khusaili; Roy, Priyankur; Hokabaj, Shaheen; Shah, Kunur N
2017-09-08
Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia is associated with significant maternal, foetal and infant morbidity. Current options for treatment include oral iron, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a modern treatment option. The study was designed to assess the safety and efficacy of intravenous ferric carboxymaltose for correction of iron deficiency anaemia in pregnant women. A prospective study was conducted at Institute of Kidney Disease and Research Centre, Ahmedabad from January 2014 to December 2016. Antenatal women (108) with iron deficiency anaemia were the study subjects. Socio-demographic profile was recorded and anaemia was assessed based on recent haemoglobin reports. Iron deficiency was diagnosed on basis of serum ferritin value. Intravenous ferric carboxymaltose as per total correction dose (maximum 1500mg) was administered to all women; the improvement in haemoglobin levels were assessed after 3 weeks of total dose infusion. Most of the women(n= 45, 41.7%), were in the age group of 27-30 years. Most of the women (n = 64, 59.3%) had moderate anaemia as per WHO guidelines. Mean haemoglobin levels significantly increased over a period of 3 weeks after Ferric carboxymaltose administrationand no serious life threatening adverse events were observed. Intravenous ferric carboxymaltose was safe and effective in pregnent women with iron deficiency anaemia.
Process for the synthesis of iron powder
Not Available
1982-03-06
A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.
Process for the synthesis of iron powder
Welbon, William W.
1983-01-01
A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.
Koutrotsios, Georgios; Kalogeropoulos, Nick; Stathopoulos, Pantelis; Kaliora, Andriana C; Zervakis, Georgios I
2017-05-01
Experimental data related with oyster mushroom production and nutritional properties usually derive from the examination of only one strain, and hence their representativeness/usefulness is questionable. This work aims at assessing intraspecific variability in Pleurotus ostreatus by studying 16 strains, under the same conditions, in respect to essential cultivation and mushroom quality aspects, and by defining the impact of intrinsic/genetic factors on such parameters. Hence, mushroom yield, earliness, crop length, biological efficiency, productivity, and their content in selected macro and microconstituents (e.g. fatty acids, sterols, individual phenolic compounds, terpenic acids, glucans) as well as their antioxidant properties (i.e., antiradical activity, ferric reducing potential, inhibition of serum oxidation) were assayed. The effect of intrinsic/genetic factors was evident, especially as regards earliness, yield of each production flush and mushroom weight, whereas biological efficiency was not particularly influenced by the cultivated strain. Moreover, phenolics, ergosterol and antiradical activity demonstrated significant variability among strains in contrast to what was observed for fatty acids, β-glucans and ferric reducing potential. The observed heterogeneity reveals the limitations of using a low number of strains for evaluating mushroom production and/or their content in bioactive compounds, and as evidenced, it is valuable for breeding and commercial purposes.
Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.
Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M
2011-09-15
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.
Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang
2015-06-01
Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei.
Lee, Choong H; Bengtsson, Niclas; Chrzanowski, Stephen M; Flint, Jeremy J; Walter, Glenn A; Blackband, Stephen J
2017-01-03
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies.
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei
Lee, Choong H.; Bengtsson, Niclas; Chrzanowski, Stephen M.; Flint, Jeremy J.; Walter, Glenn A.; Blackband, Stephen J.
2017-01-01
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies. PMID:28045071
Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S
2016-01-01
Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM < 0.1 μm. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the Bodélé Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1 μm). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems.
Iron uptake in Mycelia sterilia EP-76.
Adjimani, J P; Emery, T
1987-01-01
The cyclic trihydroxamic acid, N,N',N''-triacetylfusarinine C, produced by Mycelia sterilia EP-76, was shown to be a ferric ionophore for this organism. The logarithm of the association constant k for the ferric triacetylfusarinine C chelate was determined to be 31.8. Other iron-chelating agents, such as rhodotorulic acid, citric acid, and the monomeric subunit of triacetylfusarinine C, N-acetylfusarinine, delivered iron to the cells by an indirect mechanism involving iron exchange into triacetylfusarinine C. In vitro ferric ion exchange was found to be rapid with triacetylfusarinine C. Gallium uptake rates comparable to those of iron were observed with the chelating agents that transport iron into the cell. Ferrichrome, but not ferrichrome A, was also capable of delivering iron and gallium to this organism, but not by an exchange mechanism. Unlike triacetylfusarinine C, the 14C-ligand of ferrichrome was retained by the cell. A midpoint potential of -690 mV with respect to the saturated silver chloride electrode was obtained for the ferric triacetylfusarinine C complex, indicating that an unfavorable reduction potential was not the reason for the use of a hydrolytic mechanism of intracellular iron release from the ferric triacetylfusarinine C chelate. PMID:3611025
NASA Astrophysics Data System (ADS)
Olkhov, A.; Lobanov, A.; Staroverova, O.; Tyubaeva, P.; Zykova, A.; Pantyukhov, P.; Popov, A.; Iordanskii, A.
2017-02-01
Ferric iron (III)-based complexes with porphyrins are the homogenous catalysts of auto-oxidation of several biogenic substances. The most perspective carrier for functional low-molecular substances is the polymer fibers with nano-dimensional parameters. Application of natural polymers, poly-(3-hydroxybutyrate) or polylactic acid for instance, makes possible to develop fiber and matrice systems to solve ecological problem in biomedicine The aim of the article is to obtain fibrous material on poly-(3-hydroxybutyrate) and ferric iron (III)-based porphyrins basis and to examine its physical-chemical and antibacterial properties. The work is focused on possibility to apply such material to biomedical purposes. Microphotographs of obtained material showed that addition of 1% wt. ferric iron (III)-based porphyrins to PHB led to increased average diameter and disappeared spindly structures in comparison with initial PHB. Biological tests of nonwoven fabrics showed that fibers, containing ferric iron (III)-based tetraphenylporphyrins, were active in relation to bacterial test-cultures. It was found that materials on polymer and metal complexes with porphyrins basis can be applied to production of decontamination equipment in relation to pathogenic and opportunistic microorganisms.
21 CFR 184.1298 - Ferric citrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance...
Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation.
Sekhon-Loodu, Satvir; Warnakulasuriya, Sumudu N; Rupasinghe, H P Vasantha; Shahidi, Fereidoon
2013-09-01
Polyphenols isolated from frozen and dried apple peels were studied as potential natural antioxidants to stabilize omega-3 polyunsaturated fatty acid (ω3 PUFA) enriched fish oil. The ethanolic extracts of apple peels were fractionated by reversed phase chromatography using gradient elution of 20-100% aqueous ethanol. The collected fractions were analyzed by ultra pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The total phenolic content and antioxidant capacity of each fraction were evaluated by Folin-Ciocalteu (FC), ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assays. Inhibition of fish oil oxidation was studied using the thiobarbituric acid reactive substances (TBARS) assay. Polyphenols fractionated using frozen apple peel extract had significantly higher FC, FRAP and DPPH(·) scavenging values than those of dried apple peel (p<0.05). The flavonol-rich fractions inhibited fish oil oxidation by 40-62% at a total phenolic concentration of 200 μg/ml. The fractionated polyphenols from both dried and frozen apple peel showed higher inhibition of lipid oxidation compared to α-tocopherol, butylated hydroxytoluene and crude apple peel extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oenocarpus bacaba and Oenocarpus bataua Leaflets and Roots: A New Source of Antioxidant Compounds
Leba, Louis-Jérôme; Brunschwig, Christel; Saout, Mona; Martial, Karine; Bereau, Didier; Robinson, Jean-Charles
2016-01-01
Native palm trees fruit from the Amazonian rainforest, Oenocarpus bacaba and Oenocarpus bataua, are very often used in the diet of local communities, but the biological activities of their roots and leaflets remain poorly known. Total phenolic content (TPC) and antioxidant activity of root and leaflet extracts from Oenocarpus bacaba and Oenocarpus bataua were assessed by using different chemical assays, the oxygèn radical absorbance capacity (ORAC), the 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical-scavenging capacity and the ferric-reducing ability of plasma (FRAP). Cellular antioxidant activity and cytotoxicity were also measured in Normal Human Dermal Fibroblasts. The polyphenolic composition of Oenocarpus extracts was investigated by LC-MSn. Oenocarpus leaflet extracts were more antioxidant than root extracts, being at least as potent as Euterpe oleracea berries known as superfruit. Oenocarpus root extracts were characterized by hydroxycinnamic acids (caffeoylquinic and caffeoylshikimic acids), while leaflet extracts contained mainly caffeoylquinic acids and C-glycosyl flavones. These results suggest that leaflets of both Oenocarpus species could be valorized as a new non-cytotoxic source of antioxidants from Amazonia, containing hydroxycinnamic acids and flavonoids, in the pharmaceutical, cosmetic or agri-food industry. PMID:27355943
Wu, Jian-Yong; Chen, Xia; Siu, Ka-Chai
2014-01-01
A novel glycopeptide (Cs-GP1) with an average molecular weight (Mw) of 6.0 kDa was isolated and purified by column chromatography from the lower Mw fraction of exopolysaccharide (EPS) produced by a medicinal fungus Cordyceps sinensis Cs-HK1. Its carbohydrate moiety was mainly composed of glucose and mannose at 3.2:1.0 mole ratio, indicating an O-linked glycopeptide. The peptide chain contained relatively high mole ratios of aspartic acid, glutamic acid and glycine (3.3–3.5 relative to arginine) but relatively low ratios of tyrosine and histidine. The peptide chain sequence analyzed after trypsin digestion by LC-MS was KNGIFQFGEDCAAGSISHELGGFREFREFLKQAGLE. Cs-GP1 exhibited remarkable antioxidant capacity with a Trolox equivalent antioxidant capacity of 1183.8 μmol/g and a ferric reducing ability of 611.1 μmol Fe(II)/g, and significant protective effect against H2O2-induced PC12 cell injury at a minimum dose of 10 μg/mL. This is the first report on the structure and bioactivity of an extracellular glycopeptide from the Cordyceps species. PMID:25268609
Kumar, C S Chidan; Then, Li Yee; Chia, Tze Shyang; Chandraju, Siddegowda; Win, Yip-Foo; Sulaiman, Shaida Fariza; Hashim, Nurul Shafiqah; Ooi, Kheng Leong; Quah, Ching Kheng; Fun, Hoong-Kun
2015-09-11
A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.
Serrano Mujica, Lady; Bridi, Alessandra; Della Méa, Ricardo; Rissi, Vitor Braga; Guarda, Naiara; Moresco, Rafael Noal; Premaor, Melissa Orlandin; Antoniazzi, Alfredo Quites; Gonçalves, Paulo Bayard Dias; Comim, Fabio Vasconcellos
2018-01-01
Several studies have described an enhanced inflammatory status and oxidative stress balance disruption in women with polycystic ovary syndrome (PCOS). However, there is scarce information about redox markers in the blood of androgenized animal models. Here, we evaluated the serum/plasma oxidative stress marker and metabolic parameter characteristics of prenatal (PreN) and postnatal (PostN) androgenized rat models of PCOS. For PreN androgenization (n=8), 2.5 mg of testosterone propionate was subcutaneously administered to dams at embryonic days 16, 17, and 18, whereas PostN androgenization (n=7) was accomplished by subcutaneously injecting 1.25 mg of testosterone propionate to animals at PostN day 5. A unique control group (n=8) was constituted for comparison. Our results indicate that PostN group rats exhibited particular modifications in the oxidative stress marker, an increased plasma ferric-reducing ability of plasma, and an increased antioxidant capacity reflected by higher albumin serum levels. PostN animals also presented increased total cholesterol and triglyceride-glucose levels, suggesting severe metabolic disarrangement. Study findings indicate that changes in oxidative stress could be promoted by testosterone propionate exposure after birth, which is likely associated with anovulation and/or lipid disarrangement.
Saeidi, Keramatollah; Alirezalu, Abolfazl; Akbari, Zahra
2016-01-01
In this investigation, the chemical compositions of berries from sea buckthorn were studied. The amount of ascorbic acid and β-carotene determined by HPLC was 170 mg/100 g FW and 0.20 mg/g FW, respectively. Total phenols, anthocyanins, acidity and total soluble solids (TSS) contents were 247 mg GAE/100 g FW, 3 mg/L (cyanidin-3-glucoside), 5.32% and 13.8%, respectively. Fruit antioxidant activity determined by the ferric reducing ability of plasma (FRAP) method was 24.85 mM Fe/100 g FW. Results confirmed the presence of six dominant fatty acids (determined by GC) in fruit including linoleic (34.2%), palmitoleic (21.37%), palmitic (17.2%), oleic (12.8%), linolenic (5.37%) and stearic acid (1.67%). Five dominant fatty acids of the seeds were linoleic (42.36%), linolenic (21.27%), oleic (21.34%), palmitic (6.54%) and stearic acid (2.54%). The nitrogen content was 3.96%. The P, K, Ca, Mg, Fe, Zn, Mn, Cu, Cd and Cl contents of fruit were 491, 1674, 1290, 990, 291, 29.77, 108.37, 17.87, 0.021 and 2.18 mg/kg DW, respectively.
Loizzo, Monica R; Marrelli, Mariangela; Pugliese, Alessandro; Conforti, Filomena; Nadjafi, Farsad; Menichini, Francesco; Tundis, Rosa
2016-01-01
Spices are appreciated for their medicinal properties besides their use as food adjuncts to enhance the sensory quality of food. In this study, Crocus cancellatus subsp. damascenus was investigated for its antioxidant activities employing different in vitro systems. Stigma extract demonstrated a radical scavenging activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals with IC50 values of 34.6 and 21.6 µg/mL and a good ferric reducing ability (53.9 µM Fe(II)/g). In order to clarify the potential functional properties of this spice, the carbohydrate-hydrolysing enzymes and pancreatic lipase inhibitory properties were investigated. Crocus cancellatus subsp. damascenus extract inhibited α-amylase and α-glucosidase with IC50 values of 57.1 and 68.6 µg/mL, respectively. The bioactivity was discussed in terms of phytochemicals content. The obtained results may be of interest from a functional point of view or as food additive and to promote the revalorization of this species.
Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis.
Siciliano, G; Piazza, S; Carlesi, C; Del Corona, A; Franzini, M; Pompella, A; Malvaldi, G; Mancuso, M; Paolicchi, A; Murri, L
2007-05-01
The causes of Amyotrophic Lateral Sclerosis (ALS) are unknown. A bulk of evidence supports the hypothesis that oxidative stress and mitochondrial dysfunction can be implicated in ALS pathogenesis. METHODS =: We assessed, in cerebrospinal fluid (CSF) and in plasma of 49 ALS patients and 8 controls, the amount of oxidized proteins (AOPP, advanced oxidation protein products), the total antioxidant capacity (FRA, the ferric reducing ability), and, in CSF, two oxidation products, the 4-hydroxynonenal and the sum of nitrites plus nitrates. The FRA was decreased (p = 0.003) in CSF, and AOPP were increased in both CSF (p = 0.0039) and plasma (p = 0.001) of ALS patients. The content of AOPP was differently represented in CSF of ALS clinical subsets, resulting in increase in the common and pseudopolyneuropathic forms (p < 0.001) and nearly undetectable in the bulbar form, as in controls. The sum of nitrites plus nitrates and 4-hydroxynonenal were unchanged in ALS patients compared with controls. Our results, while confirming the occurrence of oxidative stress in ALS, indicate how its effects can be stratified and therefore implicated differently in the pathogenesis of different clinical forms of ALS.
Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids.
Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir
2010-12-01
Dietary polyphenols are beneficial to human health by exerting various biological effects. Ferulic and caffeic acids are hydroxycinnamic acid derivatives widely distributed in plant-derived food products. Studies indicate that some dietary compounds may have concentration-dependent antioxidant or prooxidant activities. The present study concerns such activities of ferulic and caffeic acids. They have concentration-dependent antioxidant effects in terms of inhibition of lipid peroxidation and reactive oxygen species-scavenging after 2,2'-azobis-amidinopropane dihydrochloride-induced damage in mouse liver microsomes and splenic lymphocytes respectively. They also show differential scavenging of nitric oxide, superoxide and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid radical (ABTS*(+)). In DPPH (1,1-diphenyl picrylhydrazyl) assay above 20 μM the absorbance start increasing due to the formation of an unknown adduct which has a shoulder at 517 nm. However, in Fenton reaction, above 5 μM, they behave as prooxidants and the possible mechanisms responsible for their prooxidant property may be related to their ferric reducing ability. These findings may have significant health implications where these natural compounds are being used/consumed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Aliboudhar, Hamza; Tigrine-Kordjani, Nacéra
2014-01-01
Anacyclus clavatus is a plant used as food and remedy. The objective of this work was to study the effect of extraction technique on the antioxidant property, total phenol and flavonoid contents of crude extracts from A. clavatus flowers and their essential oil composition. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing power, β-carotene and total antioxidant capacity assays have demonstrated the significant antioxidant ability of different crude extracts obtained by using the following extraction methods: Soxhlet, microwave heating, heat reflux (HRE) and maceration. The activity of the extract obtained by HRE was the highest (112.06 ± 2.89 μg/mL) evaluated by the DPPH assay. Extraction of essential oil was performed by microwave-assisted hydro-distillation (MAHD) and by hydro-distillation (HD). A significant difference was observed in both essential oils, despite the common main family and major constituents, such as artemisia ketone (10.0 ± 0.8% for MAHD vs. 6.5 ± 0.5 for HD) and pinocarvone (4.1 ± 0.4% for MAHD vs. 1.1 ± 0.1% for HD).
Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai
2006-05-01
Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.
Removal of iron ore slimes from a highly turbid water by DAF.
Faustino, L M; Braga, A S; Sacchi, G D; Whitaker, W; Reali, M A P; Leal Filho, L S; Daniel, L A
2018-05-30
This paper addresses Dissolved Air Flotation (DAF) process variables, such as the flocculation parameters and the recycle water addition, as well as the pretreatment chemical variables (coagulation conditions), to determine the optimal values for the flotation of iron ore slimes found in a highly turbid water sample from the Gualaxo do Norte River, a tributary of the Doce River Basin in Minas Gerais, Brazil. This work was conducted using a flotatest batch laboratory-scale device to evaluate the effectiveness of DAF for cleaning the water polluted by the Samarco tailings dam leakage and determine the ability of DAF to reduce the water turbidity from 358 NTU to values below 100 NTU, aiming to comply with current legislation. The results showed that the four types of tested coagulants (PAC, ferric chloride, Tanfloc SG and Tanfloc SL) provided adequate conditions for coagulation, flocculation and flotation (in the range of 90-99.6% turbidity reduction). Although the process variables were optimized and low residual turbidity vales were achieved, results revealed that a portion of the flocs settled at the bottom of the flotatest columns, which indicated that the turbidity results represented removal caused by a combination of flotation and sedimentation processes simultaneously.
Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping
2015-07-01
Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property.
Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah
2015-01-01
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.
21 CFR 184.1298 - Ferric citrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...
21 CFR 184.1298 - Ferric citrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...
21 CFR 184.1298 - Ferric citrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...
21 CFR 184.1298 - Ferric citrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its...
Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien
2013-09-10
The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms.
The fate of iron on Mars: Mechanism of oxidation of basaltic minerals to ferric-bearing assemblages
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1992-01-01
Perhaps the most conspicuous indication that chemical weathering has occurred on the surface of Mars is the overall color of the red planet and the spectroscopic features that identify ferric-bearing assemblages in the martian regolith. Apparently, Fe(2+) ions in primary minerals in parent igneous rocks on the martian surface have been oxidized to ferric iron, which occurs in degradation products that now constitute the regolith. The mineralogy of the unweathered igneous rocks prior to weathering on the martian surface is reasonably well constrained, mainly as a result of petrographic studies of the SNC meteorites. However, the alteration products resulting from oxidative weathering of these rocks are less well-constrained. The topics covered include the following: primary rocks subjected to chemical weathering; dissolution processes; oxidation of dissolved Fe(2+); mechanism of polymerization of hydrous ferric oxides; terrestrial occurrences of ferromagnesian smectites; and dehydroxylated Mg-Fe smectites on Mars.
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Pieters, C. M.
1993-04-01
Two primary causes of near-IR continuum slope variations have been observed in an investigation of the bidirectional reflectance characteristics of ferric coatings on the continuum slope of Mars. First, the presence of a thin ferric coating on a dark substrate produces a negative continuum slope due to the wavelength-dependent transparency of the ferric coating. Second, wavelength-dependent directional reflectance occurs when the surface particles are tightly packed, particle sizes are on the order of or smaller than the wavelength of light, or the surface is otherwise smooth on the order of the wavelength of light. Based on these results, the annuli on the flanks of Olympus Mons which are defined by reflectance and continuum slope are consistent with spatial variations in surface texture and possibly with spatial variations in the thickness of a ferric dust coating or rind.
Jahn, Michael K.; Haderlein, Stefan B.; Meckenstock, Rainer U.
2005-01-01
Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene (BTEX) are widespread contaminants in groundwater. We examined the anaerobic degradation of BTEX compounds with amorphous ferric oxide as electron acceptor. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electron balances showed a complete anaerobic oxidation of the aromatic compounds to CO2. This is the first report on the anaerobic degradation of o-xylene and ethylbenzene in sediment-free iron-reducing enrichment cultures. PMID:15933041
Ferric Iron Production in Magma Oceans and Evolution of Mantle Oxidation State
NASA Astrophysics Data System (ADS)
Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.
2018-05-01
Self-oxidation of the magma ocean by ferric iron production at high pressure may explain the mantle oxidation state of the Earth. Partitioning during fractional crystallization can further increase the mantle oxygen fugacity during solidification.
Process for the synthesis of iron powder
Welbon, W.W.
1983-11-08
A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.
Kumar, Prabhanshu; Maurya, Pawan Kumar
2013-06-01
Thiol compounds such as cysteine (Cys) and reduced glutathione (GSH) play an important role in human aging and age-related diseases. In erythrocytes, GSH is synthesized by glutamic acid, cysteine, and glycine, but the rate of GSH synthesis is determined only by the availability of L-cysteine. Cysteine supplementation has been shown to ameliorate several parameters that are known to degenerate during human aging. We have studied L-cysteine efflux in vitro in human erythrocytes as a function of age by suspending cells in solution containing 10 mM L-cysteine for uptake; later cells were re-suspended in phosphate-buffered saline (PBS)-glucose to allow efflux. Change in the free sulfhydryl (-SH) concentration was then measured to calculate the rate of efflux. The GSH/oxidized glutathione (GSSG) ratio was taken as a control to study the oxidation/reduction state of the erythrocyte. The total anti-oxidant potential of plasma was measured in terms of ferric reducing ability of plasma (FRAP) values. We have shown a significant (p<0.0001) decline in the efflux of L-cysteine in erythrocytes during human aging, and the GSH/GSSG ratio decreases as a function of human age. The decline in L-cysteine efflux during aging correlates with the decrease in GSH and the FRAP value. This finding may help to explain the shift in the redox status and low GSH concentration that might determine the rate of L-cysteine efflux observed in erythrocytes and an important factor in the development of oxidative stress in erythrocytes during aging.
Protective effects of a cream containing Dead Sea minerals against UVB-induced stress in human skin.
Portugal-Cohen, Meital; Soroka, Yoram; Ma'or, Zeevi; Oron, Miriam; Zioni, Tamar; Brégégère, François Menahem; Neuman, Rami; Kohen, Ron; Milner, Yoram
2009-09-01
Dead Sea (DS) mud and water are known for their unique composition of minerals, and for their therapeutic properties on psoriasis and other inflammatory skin diseases. Their mode of action, however, remains poorly known. To analyse the ability of Dermud, a leave-on skin preparation containing DS mud and other ingredients like DS water, zinc oxide, aloe-vera extract, pro-vitamin B5 and vitamin E, to antagonize biological effects induced by UVB irradiation in skin when topically applied in organ cultures. We have used human skin organ cultures as a model to assess the biological effects of UVB irradiation and of Dermud cream topical application. Skin pieces were analysed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, for cytokine secretion by solid phase ELISA, for overall antioxidant capacity by ferric reducing antioxidant power and Oxygen radical absorbance capacity assays (epidermis) or by cyclic voltammetry (external medium), and for uric acid (UA) content by HPLC. We report that UVB irradiation decreases cell viability, total antioxidant capacity and UA contents in the epidermis of skin organ cultures, while increasing the levels of apoptosis in cells and their cytokine secretion. Topical application of Dermud decreased all these effects significantly. Our results clearly show that Dermud has protective, anti-oxidant and anti-inflammatory properties that can antagonize biological effects of UVB irradiation in skin. It may therefore be able to reduce skin photodamage and photoaging, and more generally to reduce oxidative stress and inflammation in skin pathologies.
Blum, Shlomo E; Goldstone, Robert J; Connolly, James P R; Répérant-Ferter, Maryline; Germon, Pierre; Inglis, Neil F; Krifucks, Oleg; Mathur, Shubham; Manson, Erin; Mclean, Kevin; Rainard, Pascal; Roe, Andrew J; Leitner, Gabriel; Smith, David G E
2018-04-03
Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus ( fecIRABCDE ) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes ( P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec -positive ( fec + ) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec -transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec + DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. IMPORTANCE Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system. Copyright © 2018 Blum et al.
Politis, I; Theodorou, G; Lampidonis, A D; Kominakis, A; Baldi, A
2012-12-01
Vitamin E supplementation, when combined with high blood α-tocopherol (>6.25 μg/mL) at dry off, has been reported to unexpectedly increased the risk for clinical mastitis in dairy cows. Furthermore, higher levels of oxidative stress in the postpartum period were related to higher risk of mastitis. The objective of the present study was to determine the relationship between various serum biomarkers of oxidative status, incidence of mastitis, and blood α-tocopherol concentrations at dry off and at calving. A total of 146 dairy cows from a commercial farm were used in an observational field study. All cows were supplemented with 3,000 and 50 IU/cow per day of all-rac-α-tocopherol during the dry period and lactation, respectively. Blood samples were collected at dry off and at calving. Serum was analyzed for α-tocopherol, levels of reactive oxygen metabolites (ROM), thiol groups (SH), and ferric-reducing ability. Three α-tocopherol groups at calving were created: high (>3 μg/mL), medium (2-3 μg/mL), and low (<2 μg/mL). Three α-tocopherol groups at dry off were created: high (>6.25 μg/mL), medium (4.25-6.25 μg/mL), and low (<4.25 μg/mL). All cases of clinical mastitis that occurred during the dry period and the entire subsequent lactation were verified by a veterinarian. No differences were observed in the incidence of mastitis between the 3 α-tocopherol groups based on the serum levels at dry off. Incidence of mastitis was 4 times lower in the high and medium groups when compared with the corresponding value for the low-α-tocopherol group based on the serum levels at calving. Lower levels of ROM and SH at dry off and at calving were found in the group of cows with the highest α-tocopherol values at dry off when compared with the corresponding values in the low-α-tocopherol group. The ROM values at dry off but not at calving were lower in the group of cows with the highest α-tocopherol values at calving when compared with the corresponding values in the low-α-tocopherol group. No differences were observed in ferric-reducing ability values between the 3 α-tocopherol groups at dry off or calving. No differences were observed in all biomarkers of oxidative status between healthy cows and those with mastitis. Thus, blood α-tocopherol is inversely related to certain biomarkers of oxidative stress in the postpartum period and incidence of mastitis. However, reduction in the incidence of mastitis is not mediated through a reduction in the levels of various biomarkers of oxidative stress. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Eshghi, Hossein; Seyedi, Seyed Mohammad; Zarei, Elaheh Rahimi
2011-01-01
Ferric hydrogensulfate catalyzed the synthesis of 5-substituted 1H-tetrazoles via [2 + 3] cycloaddition of nitriles and sodium azide. This method has the advantages of high yields, simple methodology, and easy workup. The catalyst can be recovered by simple filtration and reused delivering good yields. Also, ferric hydrogensulfate catalyzed the hydrolysis of nitriles to primary amides under aqueous conditions. Various aliphatic and aromatic nitriles converted to the corresponding amides in good yields without any contamination with carboxylic acids. PMID:24052817
Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate
NASA Technical Reports Server (NTRS)
Schieler, Leroy
1961-01-01
The rate and temperature dependence of reaction for the ferric acetylacetonate catalyzed reaction between a-naphthyl, ortho-tolyl, and para-tolyl isocyanates and n-butyl alcohol are investigated. The effect of substituents on the reactivity of isocyanate and hydroxyl group are reported and for substituted isocyanates are correlated by means of the Hammett equation. Several metal chelates were studied and their catalytic activity was compared to that of ferric acetylacetonate. All rate data are interpreted in terms of a mechanism involving simultaneous second-order uncatalyzed and catalyzed reactions between alcohol and isocyanate.
Allen, James W A; Higham, Christopher W; Zajicek, Richard S; Watmough, Nicholas J; Ferguson, Stuart J
2002-01-01
The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling. PMID:12086580
NASA Technical Reports Server (NTRS)
Sadowski, R. M.; Abrams, M. J.
1983-01-01
Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.
Lescure, A M; Massenet, O; Briat, J F
1990-01-01
Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron. Images Fig. 2. Fig. 3. PMID:2264818
Lescure, A M; Massenet, O; Briat, J F
1990-11-15
Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.
NASA Astrophysics Data System (ADS)
Gultom, G.; Wirjosentono, B.; Ginting, M.; Sebayang, K.
2017-07-01
Microwave-absorptive polymeric composite materials are becoming important to protect interference of any communication systems due to increasing use of microwave-inducing devices. In this work, the microwave-absorptive polyurethane nanocomposites were prepared using natural zeolites of Sarulla North Sumatra and commercial ferric oxide as fillers. Weight ratios of the polyurethane to natural zeolite and ferric oxide were varied (90%:6%:4%; 80%:12%:8%; 70%:24%:6%) by weight. The fillers were prepared using ball milling technique and characterized for their particle size distributions using Particle Size Analyzer. The nanocomposites, prepared using in-situ reaction of polyethylene glycol, toluene diisocyanate and fillers. The complex permittivity (ε’and ε”) and complex permeability (μ’ and μ”) as electromagnetic properties were calculated using NRW method after collecting real and imaginary S parameter using Vector Network Analyzer measurement at X band frequency. Results show ratio of the fillers will affect the permeability, permittivity and reflection loss of the materials. The best reflection loss was shown -40.588 dB (>99 % absorption) at ratio for polyurethane : nanozeolite : ferric oxide (80%:12%:8%) by weight observed at 10.92 GHz. According to the measurement and calculation was shown the polyurethane filled with natural nanozeolite and ferric oxide is a good electromagnetic wave attenuation material.
Evaluation of different iron compounds in chlorotic Italian lemon trees (Citrus lemon).
Ortiz, Patricio Rivera; Castro Meza, Blanca I; de la Garza Requena, Francisco R; Flores, Guillermo Mendoza; Etchevers Barra, Jorge D
2007-05-01
The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.
Oxidation and coagulation of humic substances by potassium ferrate.
Graham, N J D; Khoi, T T; Jiang, J-Q
2010-01-01
Ferrate (FeO₄²⁻) is believed to have a dual role in water treatment, both as oxidant and coagulant. Few studies have considered the coagulation effect in detail, mainly because of the difficulty of separating the oxidation and coagulation effects. This paper summarises some preliminary results from laboratory-based experiments that are investigating the coagulation reaction dynamically via a PDA instrument, between ferrate and humic acid (HA) at different doses and pH values, and comparing the observations with the use of ferric chloride. The PDA output gives a comparative measure of the rate of floc growth and the magnitude of floc formation. The results of the tests show some significant differences in the pattern of behaviour between ferrate and ferric chloride. At pH 5 the chemical dose range (as Fe) corresponding to HA coagulation was much broader for ferrate than ferric chloride, and the optimal Fe dose was greater. Ferrate oxidation appears to increase the hydrophilic and electronegative nature of the HA leading to an extended region of charge neutralisation. A consequence of the ferrate oxidation is that the extent of HA removal was slightly lower ( approximately 5%) than with ferric chloride. At pH 7, in the sweep flocculation domain, ferrate achieved much greater floc formation than ferric chloride, but a substantially lower degree of HA removal.
Iron crystallization in a fluidized-bed Fenton process.
Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin
2011-05-01
The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.
Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type ( ArL)FeX 2 [ ArL = 1,9-(2,4,6-Ph 3C 6H 2) 2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution resultsmore » in a nearly 600 mV cathodic shift of the Fe III/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in ( ArL)FeCl(O tBu) is evidenced by hydrogen atom abstraction to yield ( ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride ( ArL)FeCl 2 analogue does not react under these conditions.« less
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Bell, J. F., III; Morris, Richard V.
2000-01-01
The mineralogic signatures of past aqueous alteration of a basaltic Martian crust may include iron oxides and oxyhydroxides, zeolites, carbonates, phyllosilicates, and silica. The identities, relative abundances, and crystallinities of the phases formed in a particular environment depend on physicochemical conditions. At one extreme, hot spring environments may be characterized by smectite-chlorite to talc-kaolinite silicate assemblages, plus crystalline ferric oxides dominated by hematite. However, most environments, including cold springs, pedogenic layers, and ponded surface water, are expected to deposit iron oxides and oxyhydroxides, carbonates, and smectite-dominated phyllosilicates. A substantial fraction of the ferric iron is expected to occur in nanophase form, with the exact mineralogy strongly influenced by Eh-pH conditions. Detection of these phases has been an objective of a large body of terrestrial telescopic, Mars orbital, and landed spectral investigations and in situ compositional measurements. However, clear identifications of many of these phases is lacking. Neither carbonate nor silica has been unequivocally detected by any method. Although phyllosilicates may occur near the limit of detection by remote sensing, in general they appear to occur in only poorly crystalline form. In contrast, compelling evidence for ferric iron minerals has been gathered by recent telescopic investigations, the Imager for Mars Pathfinder (IMP), and the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor (MGS). These data yield two crucial findings: (1) In the global, high spatial resolution TES data set, highly crystalline ferric iron (as coarse-grained 'gray' hematite) has been recognized but with only very limited spatial occurrence and (2) Low-resolution telescopic reflectance spectroscopy, very limited orbital reflectance spectroscopy, and landed multispectral imaging provide strong indications that at least two broad classes of ferric iron minerals are commonplace in non-dust covered regions.
Sulfide mineralization: Its role in chemical weathering of Mars
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1988-01-01
Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.
Weathering of sulfides on Mars
NASA Technical Reports Server (NTRS)
Burns, Roger G.; Fisher, Duncan S.
1987-01-01
Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.
Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.
Jadhav, Umesh U; Hocheng, Hong
2014-01-01
The removal of nickel (Ni) and cadmium (Cd) from spent batteries was studied by the chemical method. A novel leaching system using ferric sulphate hydrate was introduced to dissolve heavy metals in batteries. Ni-Cd batteries are classified as hazardous waste because Ni and Cd are suspected carcinogens. More efficient technologies are required to recover metals from spent batteries to minimize capital outlay, environmental impact and to respond to increased demand. The results obtained demonstrate that optimal conditions, including pH, concentration of ferric sulphate, shaking speed and temperature for the metal removal, were 2.5, 60 g/L, 150 rpm and 30 degrees C, respectively. More than 88 (+/- 0.9) and 84 (+/- 2.8)% of nickel and cadmium were recovered, respectively. These results suggest that ferric ion oxidized Ni and Cd present in battery waste. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.
Gu, Baohua; Cole, David R.; Brown, Gilbert M.
2004-10-05
A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.
Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P
2015-12-01
This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.
2017-12-01
As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.
Morales, Noppawan Phumala; Yamaguchi, Yumiko; Murakami, Kimiyo; Kosem, Nuttavut; Utsumi, Hideo
2012-01-01
Reduction of a nitroxyl radical, carbamoyl-PROXYL in association of free radical production and hepatic glutathione (GSH) was investigated in iron overloaded mice using an in vivo L-band electron spin resonance (ESR) spectrometer. Significant increases in hepatic iron, lipid peroxidation and decrease in hepatic GSH were observed in mice intraperitoneally (i.p.) administrated with ferric nitrilotriacetate (Fe(III)-NTA, a total 45 µmol/mouse over a period of 3 weeks). Free radical production in iron overloaded mice was evidenced by significantly enhanced rate constant of ESR signal decay of carbamoyl-PROXYL, which was slightly reduced by treatment with iron chelator, deferoxamine. Moreover, the rate constant of ESR signal decay was negatively correlated with hepatic GSH level (r=-0.586, p<0.001). On the other hand, hepatic GSH-depletion (>80%) in mice through daily i.p. injection and drinking water supplementation of L-buthionine-[S,R]-sulfoximine (BSO) significantly retarded ESR signal decay, while there were no changes in serum aspartate aminotransferase and liver thiobarbituric acid-reactive substances levels. In conclusion, GSH plays two distinguish roles on ESR signal decay of carbamoyl-PROXYL, as an antioxidant and as a reducing agent, dependently on its concentration. Therefore, it should be taken into account in the interpretation of free radical production in each specific experimental setting.
Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène
2017-03-01
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of several essential oils extracted from lemon-scented herbal plants. The present study was designed to investigate the antioxidant activities of citral and assess its possible protective effects against aspirin-induced toxicity in vitro. We used IEC-6 cells (rat small intestine epithelial cells). The antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), β-carotene/linoleic acid and Ferric reducing antioxidant power (FRAP). Cytotoxicity was evaluated by cell viability, anti-oxidant enzyme activities, malondialdehyde (MDA) production and by the expression of MAPKs (Mitogen-Activated Protein Kinases) pathways. According to results, citral showed an important antioxidant activity. It inhibited the oxidation of linoleic acid, a moderate DPPH was found and it showed a Ferric reducing antioxidant potential with an EC 50 value of 125±28.86μg/mL. Then, the co-treatment of aspirin with citral significantly decreased the aspirin-induced cell death, and the MDA level. It modulated the superoxide dismutase (SOD) and glutathione (GSH) activities. Also, the activation of MAPKs was attenuated by citral. These findings suggest that citral can protect IEC-6 cells against aspirin-induced oxidative stress that may help to discover new chemicals out of natural antioxidant substances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H
2008-10-01
The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.
Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction
NASA Astrophysics Data System (ADS)
Iheagwam, Franklyn Nonso; Nsedu, Emmanuel Israel; Kayode, Kazeem Oyindamola; Emiloju, Opeyemi Christianah; Ogunlana, Olubanke Olujoke; Chinedu, Shalom Nwodo
2018-04-01
The phytochemical constituents and antioxidant properties of Nauclea latifolia leaf decoction were investigated. Dried leaves were extracted in ethanol. Qualitative and quantitative phytochemical analysis was determined spectrometrically. The antioxidant activities were examined in vitro using 2,2-diphenyl-1-picrylhydrazyl radical, total antioxidant capacity and ferric reducing antioxidant power assays. Phytochemical screening confirmed the presence of flavonoids, alkaloids, anthocyanins, betacyanins, phenols, saponins, terpenoids, cardiac glycosides and quinones. The total lycopene, β-carotene, phenolics, flavonoid and alkaloid content were found to be 0.038 ± 0.01 mg CAE/g, 0.120 ± 0.04 mg CAE/g, 58.08 ± 0.58 mg GAE/g, 10.75 ± 0.17 mg RE/g and 0.32 ± 0.08% respectively. N. latifolia ethanol leaf extract demonstrated effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl with an IC50 of 2.58 ± 0.08 mg/mL compared to 0.86 ± 0.02 mg/mL and < 0.01 ± 0.01 mg/mL for butylated hydroxytoluene and ascorbic acid respectively. Total antioxidant capacity and ferric reducing antioxidant power of the extract were 73.81 ± 2.27 and 1314.45 ± 197.64 mg AAE/g respectively. Excellent positive correlations between the phenolic content and antioxidant activities of the extract were observed. The leaf of N. latifolia is of therapeutic value and may be exploited for its rich antioxidant components.
Lee, Jerry Y; Iglesias, Brenda; Chu, Caleb E; Lawrence, Daniel J P; Crane, Edward Jerome
2017-06-01
A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 °C, at pH 5.5-7.3 and with 0-2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 µm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA-DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T).
Evaluation of Antioxidant Activity of Tetracarpidium conophorum (Müll. Arg) Hutch & Dalziel Leaves
Amaeze, O. U.; Ayoola, G. A.; Sofidiya, M. O.; Adepoju-Bello, A. A.; Adegoke, A. O.; Coker, H. A. B.
2011-01-01
This study evaluated the antioxidant activity as well as bioflavonoid content of the methanol and ethanol-water extracts of the fresh and dried leaves of Tetracarpidium conophorum. Antioxidant activity was determined by spectrophotometric methods using DPPH free radical, nitric oxide radical inhibition and ferric reducing antioxidant power assays. In addition, total phenolics, flavonoids and proanthocyanidin content were also determined. The ethanol: water extract of the dried leaves had the highest antioxidant activity with a 50% inhibition of DPPH at a concentration of 0.017 mg/mL compared to the standards, Vitamin C and Vitamin E with inhibition of 0.019 and 0.011 mg/mL, respectively. This extract also showed nitric oxide radical inhibition activity comparable to that of rutin, 54.45% and 55.03% for extract and rutin, respectively, at 0.1 mg/mL. Ferric reducing power was also comparable to that of ascorbic acid (281 and 287 μM Fe (11)/g, resp.) at a concentration of 1 mg/mL. The methanol extract of both the dried and the fresh leaves had higher phenolic, flavonoids and proanthocyanidin content than the ethanol : water extract. The study reveals that T. conophorum can be an interesting source of antioxidants with their potential use in different fields namely food, cosmetics and pharmaceuticals. PMID:21912723
Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala
2011-11-01
Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong
2015-06-01
An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Metabolic and Physiological Characteristics of Novel Cultivars from Serpentinite Seep Fluids
NASA Astrophysics Data System (ADS)
Nelson, B.; Chowdhury, S.; Brazelton, W. J.; Schrenk, M. O.
2011-12-01
Subsurface waters associated with the alteration of ultramafic rocks become highly reducing and alkaline through a process known as serpentinization. As habitat, these fluids are in many ways metabolically constraining but can provide sufficient energy for chemolithotrophy. As part of an ongoing effort to characterize these communities, heterotrophic enrichment cultures and anaerobic microcosms were initiated with alkaline waters found at three geographically and geochemically distinct sites of active serpentinization. These include the Northern Apennine ophiolite in the Ligurian region of Italy, the Tablelands ophiolite at Gros Morne National Park, Canada and the Coast Range ophiolite at McLaughlin Natural Reserve, California. Enrichment cultures at pH 11 yielded numerous isolates related to Proteobacteria and Firmicutes, some of which are closely related to other cultivars from high pH and subsurface environments. Anaerobic water samples were amended with combinations of electron donors (hydrogen, complex organics, acetate) and acceptors (ferric iron, sulfate) in a block design. After several weeks of incubation, DNA was extracted from cell concentrations and community differences were compared by TRFLP. Of particular interest is the isolation of a putative iron reducing Firmicute from samples enriched with complex organic compounds and ferric citrate. Ongoing studies are aimed at characterizing the physiology of these isolates. These data provide important insights into the metabolic potential of serpentinite subsurface ecosystems, and are a complement to culture-independent genomic analyses.
Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan
2015-01-01
Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). Copyright © 2014 Elsevier B.V. All rights reserved.
Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.
Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon
2008-04-15
Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.
Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†
Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.
2011-01-01
The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable. PMID:21602354
Modification of an Existing In vitro Method to Predict Relative ...
The soil matrix can sequester arsenic (As) and reduces its exposure by soil ingestion. In vivo dosing studies and in vitro gastrointestinal (IVG) methods have been used to predict relative bioavailable (RBA) As. Originally, the Ohio State University (OSU-IVG) method predicted RBA As for soils exclusively from mining and smelting sites with a median of 5,636 mg As kg-1. The objectives of the current study were to (i) evaluate the ability of the OSU-IVG method to predict RBA As for As contaminated soils with a wider range of As content and As contaminant sources, and (ii) evaluate a modified extraction procedure's ability to improve prediction of RBA As. In vitro bioaccessible (IVBA) by OSU-IVG and California Bioaccessibility Method (CAB) methods, RBA As, speciation, and properties of 33 As contaminated soils were determined. Total As ranged from 162 to 12,483 mg kg-1 with a median of 731 mg kg-1. RBA As ranged from 1.30 to 60.0% and OSU-IVG IVBA As ranged from 0.80 to 52.3%. Arsenic speciation was predominantly As(V) adsorbed to hydrous ferric oxide (HFO) or iron (Fe), manganese (Mn), and aluminum (Al) oxides. The OSU-IVG often extracted significantly less As in vitro than in vivo RBA As, in particularly for soils from historical gold mining. The CAB method, which is a modified OSU-IVG method extracted more As than OSU-IVG for most soils, resulting in a more accurate predictor than OSU-IVG, especially for low to moderately contaminated soils (<1,500 mg As
Mirzaee, Ramazan; Allameh, Abdolamir; Mortazavi, Seyed Bagher; Khavanin, Ali; Kazemnejad, Anoshirvan; Akbary, Mehdi
2007-06-01
To investigate the interaction between welding fumes and noise in causation of hearing impairment. Groups of rabbits (n=6) were exposed to noise, welding fumes or combination of both prior to Distortion Product Otoacoustic-Emissions (DPOAEs) analysis. The function of outer hair cells (OHCs) was examined by DPOAE assessment over a broad range of frequencies. Variations in DPOAE amplitude were compared between control (n=6) and exposed (n=18) groups. The DPOAEs levels measured at different frequencies (1379-6299 Hz) were found to decrease significantly (P<0.05) in rabbits exposed to 110 dB sound pressure level (SPL) broadband noise (8h/day, 12 days). In rabbits, exposed to carbon-steel welding fumes alone (157 mg/m(3)), the threshold shift was limited to the high frequencies (2759-6299 Hz), whereas, mixed exposure to noise and fumes resulted in reduction of DPOAEs at all the frequencies. Changes in DPOAEs were associated with increased susceptibility of erythrocytes to oxidation (P<0.05). Exposure to noise or fumes alone or simultaneously, suppressed total antioxidant ability of plasma as measured by ferric reducing ability of plasma (FRAP). Noise alone or in combination with fumes resulted in depletion of blood glutathione (GSH). Despite suppression of FRAP in the exposed groups, GSH was found to remain unchanged due to welding fumes suggesting that antioxidants other than GSH are affected by toxicants present in metal welding fumes. Exposure to very high levels of welding fumes can increase noise-related effects on OHC function by extending hearing threshold shift to wide band frequencies.
Lactoferrin and oral diseases: current status and perspective in periodontitis
Berlutti, Francesca; Pilloni, Andrea; Pietropaoli, Miriam; Polimeni, Antonella; Valenti, Piera
2012-01-01
Summary Lactoferrin (Lf), an iron-binding glycoprotein able to chelate two ferric ions per molecule, is a component of human secretions synthesized by exocrine glands and neutrophils in infection/inflammation sites. Lactoferrin in saliva represents an important defence factor against bacterial injuries including those related to Streptococcus mutans and periodontopathic bacteria through its ability to decrease bacterial growth, biofilm development, iron overload, reactive oxygen formation and inflammatory processes. A growing body of research suggests that inflammatory periodontal disease involves a failure of resolution pathways to restore tissue homeostasis. There is an important distinction between anti-inflammation and resolution; anti-inflammation is pharmacologic intervention in inflammatory pathways, whereas resolution involves biologic pathways restoring inflammatory homeostasis. An appropriate regulation of pro-inflammatory cytokine synthesis might be useful in reducing periodontal tissue destruction. Recently, the multi-functional IL-6 is emerging as an important factor able to modulate bone, iron and inflammatory homeostasis. Here, we report an overview of Lf functions as well as for the first time Lf anti-inflammatory ability against periodontitis in in vitro model and observational clinical study. In in vitro model, represented by gingival fibroblasts infected with Prevotella intermedia, Lf exerted a potent anti-inflammatory activity. In the observational clinical trial performed through bovine Lf (bLf) topically administered to volunteers suffering from periodontitis, bLf decreased cytokines, including IL-6 in crevicular fluid, edema, bleeding, pocket depth, gingival and plaque index, thus improving clinical attachment levels. Even if other clinical trials are required, these results provide strong evidence for a instead of an therapeutic potential of this multifunctional natural protein. PMID:22545184
Walling, Cheves; Partch, Richard E.; Weil, Tomas
1975-01-01
Added substrates, acetone and t-butyl alcohol, strongly retard the decomposition of H2O2 brought about by ferric ethylenediaminetetraacetate (EDTA) at pH 8-9.5. Their relative effectiveness and the kinetic form of the retardation are consistent with their interruption of a hydroxyl radical chain that is propagated by HO· attack both upon H2O2 and on complexed and uncomplexed EDTA. Similar retardation is observed with decompositions catalyzed by ferric nitrilotriacetate and hemin, and it is proposed that such redox chains may be quite a general path for transition metal ion catalysis of H2O2 decomposition. PMID:16592209
Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu
2016-06-01
The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants.
Barapatre, Anand; Meena, Avtar Singh; Mekala, Sowmya; Das, Amitava; Jha, Harit
2016-05-01
Lignin is one of the most important phytomacromolecule with diverse therapeutic properties such as anticancer, antimicrobial, anti-inflammatory and immune-stimulatory. The present study was carried out to evaluate the in vitro antioxidant, free radical scavenging and anti-proliferative/cytotoxic activities of eleven different lignin fractions, extracted from the wood of Acacia nilotica by pressurized solvent extraction (PSE) and successive solvent extraction (SSE) methods. Results indicate that the PSE fractions have high polyphenolic content and reducing power. However, the antioxidant efficiency examined by DPPH and ABTS radical scavenging assay was higher in SSE fractions. All lignin fractions revealed a significant ability to scavenge nitric oxide, hydroxyl and superoxide radicals. The extracted lignin fractions display high ferric ion reducing capacity and also possess excellent antioxidant potential in the hydrophobic (linoleic acid) system. Fractions extracted by polar solvent has the highest iron (Fe(2+)) chelating activity as compared to other factions, indicating their effect on the redox cycling of iron. Four lignin fractions depicted higher cytotoxic potential (IC50: 2-15 μg/mL) towards breast cancer cell line (MCF-7) but were ineffective (IC50: ≥ 100 μg/mL) against normal primary human hepatic stellate cells (HHSteCs). These findings suggest that the lignin extracts of A. nilotica wood has a remarkable potential to prevent disease caused by the overproduction of radicals and also seem to be a promising candidate as natural antioxidant and anti-cancer agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Tvarijonaviciute, Asta; Aznar-Cayuela, Cristina; Rubio, Camila P; Ceron, José J; López-Jornet, Pia
2017-05-01
The aim of this study was to evaluate oxidative stress factors and C-reactive protein in the saliva of patients with oral lichen planus (OLP) and burning mouth syndrome (BMS). This consecutive, cross-sectional study included 20 patients with OLP, 19 with burning mouth syndrome (BMS), and 31 control subjects. The oral cavity of each patient was examined and patients responded to a quality of life questionnaire (OHIP-14) and the xerostomia inventory. The following parameters were measured in whole non-stimulated saliva: trolox equivalent antioxidant capacity (TEAC); total antioxidant capacity (TAC); cupric reducing antioxidant capacity (CUPRAC); ferric reducing ability of plasma (FRAP); C-reactive protein (CRP); nitric oxide; nitrates; and nitrites. The OLP group presented statistically significant differences in reactive oxygen species (ROS) (29 600 cps) in comparison with the control group (39 679 cps) (P < 0.05). In the BMS group, ROS was 29 707 cps with significant difference in comparison with the control group (P < 0.05). Significantly higher salivary nitric oxide (145.7 μmol) and nitrite (141.0 μmol) levels were found in OLP patients in comparison with control group (P < 0.05). Increases in nitric oxide and C-reactive protein were found in the saliva of OLP patients in comparison with BMS and control patients. Further studies are required to confirm these findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Almela, Ramón M; Rubio, Camila P; Cerón, José J; Ansón, Agustina; Tichy, Alexander; Mayer, Ursula
2018-06-01
Oxidative stress (OS) has been shown to be involved in the pathogenesis of human and canine atopic dermatitis (AD) through several distinct mechanisms. Selected serum biomarkers of OS (sbOS) have been validated in normal dogs and studied in several canine diseases. To the best of the authors' knowledge, the sbOS evaluated in this study have not previously been described in canine AD. The aims of the study were to evaluate a panel of sbOS in dogs with food-induced (FIAD) and non-food-induced (NFIAD) AD: cupric reducing antioxidant capacity (CUPRAC), ferrous oxidation-xylenol orange (FOX), ferric reducing ability of the plasma (FRAP), paraoxonase-1 (PON1), trolox equivalent antioxidant capacity (TEAC) and serum total thiol (THIOL). The aim was to compare these metabolites with those in healthy control dogs, and to correlate sbOS with validated pruritus and CADESI-04 severity scales in dogs with AD. Forty six healthy, nine NFIAD and three FIAD client-owned dogs were included. The study was designed as a cohort study. There were significant differences in atopic dogs when compared to healthy dogs for all of the sbOS analysed. These findings suggest that OS could play a role in the pathogenesis of canine NFIAD and FIAD. In addition, the evaluation of sbOS could be useful for precision medicine to help to detect atopic dogs that might benefit from antioxidant-targeted therapies. © 2018 ESVD and ACVD.
Fardet, Anthony; Canlet, Cécile; Gottardi, Gaëlle; Lyan, Bernard; Llorach, Rafaël; Rémésy, Christian; Mazur, André; Paris, Alain; Scalbert, Augustin
2007-04-01
The protection against diabetes and cardiovascular disease provided by whole-grain cereal consumption has been attributed to the fiber and micronutrients present in the bran. But exactly how this occurs remains unclear due to both diversity of bran constituents and the complexity of the metabolic responses to each of these constituents. We investigated the metabolic responses of 2 groups of rats (n = 10/group) fed 2 diets, for 2 wk each, in a crossover design. One diet contained 60 g/100 g whole-grain wheat flour (WGF) and the other contained 60 g/100 g refined wheat flour (RF). Markers of oxidative stress [urinary isoprostanes and malondialdehydes (MDA), plasma ferric-reducing ability of plasma, MDA, and vitamins E and C] and lipid status (liver and plasma triglycerides and cholesterol) were measured. Urine samples collected during the feeding periods and plasma and liver samples collected at the end of experiment were analyzed by (1)H NMR spectroscopy. Metabonomic analyses showed that each group reached a new metabolic balance within 48 h of changing the diet. Urinary excretion of some tricarboxylic acid cycle intermediates, aromatic amino acids, and hippurate was significantly greater in rats fed the WGF diet. Although the diets did not affect conventional lipid and oxidative stress markers, there were decreases in some liver lipids and increases in liver reduced glutathione and betaine as shown by metabonomic analyses. These suggest that the WGF diet improved the redox and lipid status.
Sati, Prakash Chandra; Khaliq, Farah; Vaney, Neelam; Ahmed, Tanzeel; Tripathi, Ashok K; Banerjee, Basu Dev
2011-11-01
Styrene is a volatile organic compound used in factories for synthesis of plastic products. The pneumotoxicity of styrene in experimental animals is known. The aim of the present study was to study the effect of styrene on lung function and oxidative stress in occupationally exposed workers in plastic factory. Thirty-four male workers, between 18 and 40 years of age, exposed to styrene for atleast 8 hours a day for more than a year were studied, while 30 age- and sex-matched healthy subjects not exposed to styrene served as controls. Assessment of lung functions showed a statistically significant reduction (p < 0.05) in most of the lung volumes, capacities (FVC, FEV(1), VC, ERV, IRV, and IC) and flow rates (PEFR, MEF(75%), and MVV) in the study group (workers) as compared to controls. Malondialdehyde (MDA) was observed to be significantly high (p < 0.05) while ferric-reducing ability of plasma (FRAP) was significantly low (p < 0.05) in styrene-exposed subjects. Reduced glutathione (GSH) level was significantly depleted in exposed subjects as compared to control group. The mean value of serum cytochrome c in styrene-exposed subjects was found to be 1.1 ng/ml (0.89-1.89) while in control its levels were under detection limit (0.05 ng/ml). It shows that styrene inhalation by workers leads to increased level of oxidative stress, which is supposed to be the cause of lung damage.
RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE
Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...
21 CFR 582.5306 - Ferric sodium pyrophosphate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...
21 CFR 582.5306 - Ferric sodium pyrophosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...
21 CFR 582.5306 - Ferric sodium pyrophosphate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...
21 CFR 582.5306 - Ferric sodium pyrophosphate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...
Soon, Chu Yong; Tee, Yee Bond; Tan, Choon Hui; Rosnita, Abdul Talib; Khalina, Abdan
2018-03-01
Large amount of sodium hydroxide (NaOH) is consumed to remove the protein content in chitin biomass during deproteinization. However, excessive NaOH concentration used might lead to the reduction of cost effectiveness during chitin extraction. Hence, the present study aimed to extract and evaluate the physicochemical properties of chitin and chitosan isolated from superworm (Zophobas morio) larvae using 0.5M-2.0M of NaOH. The extracted chitin and chitosan were subjected to Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The 0.5M NaOH treatment resulted in the highest yield of chitin (5.43%), but produced the lowest yield (65.84%) of chitosan. The extracted chitin samples had relatively high degree of acetylation (DA) (82.39%-101.39%). Both chitin and chitosan showed smooth surface with tiny pores. The extracted chitin samples were confirmed as α-chitin based on the FT-IR and TGA. The chitin samples were amorphous with low degree of crystallinity. From TGA, the Chitosan 3 extracted was partially deacetylated. Both DPPH radical scavenging and ferric-chelating assay showed positive correlation with DD of chitosan isolates. However, the chitosan isolates were not fully dissolved, resulting in lower radical scavenging and ferric-chelating ability compared to commercial chitosan. Copyright © 2017. Published by Elsevier B.V.
DeFilippi, L J; Hultquist, D E
1978-05-10
The two green hemoproteins isolated from bovine erythrocytes (form I and form II) have been characterized as to spectral, electrochemical, and chemical properties. The absorption spectra of the isolated hemoproteins are typical of high spin ferric states. Reduction of the hemoproteins yields high spin ferrohemoproteins. Complexation of the ferrohemoproteins with CO and the ferrihemoproteins with cyanide yields low spin complexes, demonstrating the presence of an exchangeable weak field ligand in both the ferrous and ferric states of the hemoproteins. The differences in position and intensity of the absorption peaks of the visible spectra allow the two forms to be distinguished from one another. The midpoint potential of forms I and II were found to be +0.075 and +0.019 V, respectively, at pH 6.4 and +0.038 and -0.005 V, respectively, at pH 7.0. This is consistent with the gaining of 1 proton/electron during the reduction. The Nernst plot reveals an unusual 0.5-electron transfer, whereas a quantitative titration demonstrates a 1-electron transfer. Form I binds cyanide more tightly than form II (KD of 84 and 252 micrometer, respectively). The observed spectral, electrochemical, and ligand-binding differences between forms I and II can be explained in terms of a greater electron-withdrawing ability of the side chains of the heme of form I relative to the heme of form II.
Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments
Mey, Alexandra R.; Wyckoff, Elizabeth E.
2015-01-01
SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001
Wheat bran particle size influence on phytochemical extractability and antioxidant properties.
Brewer, Lauren Renee; Kubola, Jittawan; Siriamornpun, Sirithon; Herald, Thomas J; Shi, Yong-Cheng
2014-01-01
It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran milled to medium and fine treatments from the same wheat bran. Antioxidant properties (capacity, ability, power), carotenoids and phenolic compounds (phenolic acids, flavonoids, anthocyanins) were measured and compared. The ability of whole bran fractions of differing particle size distributions to inhibit free radicals was assessed using four in vitro models, namely, diphenylpicrylhydrazyl radical-scavenging activity, ferric reducing/antioxidant power (FRAP) assay, oxygen radical absorbance capacity (ORAC), and total antioxidant capacity. Significant differences in phytochemical concentrations and antioxidant properties were observed between whole bran fractions of reduced particle size distribution for some assays. The coarse treatment exhibited significantly higher antioxidant properties compared to the fine treatment; except for the ORAC value, in which coarse was significantly lower. For soluble and bound extractions, the coarse treatment was comparatively higher in total antioxidant capacity (426.72 mg ascorbic acid eq./g) and FRAP value (53.04 μmol FeSO4/g) than bran milled to the finer treatment (314.55 ascorbic acid eq./g and 40.84 μmol FeSO4/g, respectively). Likewise, the fine treatment was higher in phenolic acid (7.36 mg FAE/g), flavonoid (206.74 μg catechin/g), anthocyanin (63.0 μg/g), and carotenoid contents (beta carotene, 14.25 μg/100 g; zeaxanthin, 35.21 μg/100 g; lutein 174.59 μg/100 g) as compared to the coarse treatment. An increase of surface area to mass increased the ORAC value by over 80%. With reduction in particle size, there was a significant increase in extracted anthocyanins, carotenoids and ORAC value. Particle size does effect the extraction of phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biotic and abiotic reduction of arsenic (V) and iron (III) influences the partioning of arsenic (As) between the solid and aqueous phases in soils, sediments and wastes. In this study, laboratory experiments on arsenic adsorbed on granular ferric hydroxide (GFH) was performed to ...
21 CFR 186.1300 - Ferric oxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... food packaging. (2) The ingredient is used at levels not to exceed current good manufacturing practice... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
21 CFR 186.1300 - Ferric oxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... food packaging. (2) The ingredient is used at levels not to exceed current good manufacturing practice... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
21 CFR 73.2299 - Ferric ferrocyanide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ferrocyanide. 73.2299 Section 73.2299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in amounts...
21 CFR 73.2298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ammonium ferrocyanide. 73.2298 Section 73.2298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the area...
21 CFR 73.2298 - Ferric ammonium ferrocyanide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium ferrocyanide. 73.2298 Section 73.2298 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the area...
21 CFR 73.2299 - Ferric ferrocyanide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferric ferrocyanide. 73.2299 Section 73.2299 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in amounts...
ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS
The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...
21 CFR 184.1296 - Ferric ammonium citrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...
21 CFR 184.1296 - Ferric ammonium citrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...
21 CFR 184.1296 - Ferric ammonium citrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... prepared by the reaction of ferric hydroxide with citric acid, followed by treatment with ammonium..., approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish brown or garnet red scales or..., approximately 7.5 percent ammonia, and 75 percent citric acid and occurs as thin transparent green scales, as...
21 CFR 184.1296 - Ferric ammonium citrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...
21 CFR 184.1296 - Ferric ammonium citrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...
Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon
Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...
21 CFR 186.1300 - Ferric oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... food packaging. (2) The ingredient is used at levels not to exceed current good manufacturing practice... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
21 CFR 186.1300 - Ferric oxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) The ingredient is used as a constituent of paper and paperboard used for food packaging. (2) The... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD...
21 CFR 186.1300 - Ferric oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... food packaging. (2) The ingredient is used at levels not to exceed current good manufacturing practice... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...
ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY
A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...
Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature
NASA Astrophysics Data System (ADS)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.
2016-09-01
The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core-mantle boundary conditions.
Xiao, Qiaobin; Jiang, Xiaoxu; Moore, Kyle J.; Shao, Yi; Pi, Hualiang; Dubail, Iharilalao; Charbit, Alain; Newton, Salete M.; Klebba, Phillip E.
2011-01-01
Summary We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb), respectively. Deletion of lmo2185 in the srtB region reduced listerial [59Fe]-Hn transport, and purified Lmo2185 bound [59Fe]-Hn (KD = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a hemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [59Fe]-Hn transport at external concentrations less than 10 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (KD = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (KD = 123 nM). Deletions of Hup permease components hupD, hupG, or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC+ and hupG+ alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [59Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall KM of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (Vmax = 23 pMol/109 cells/min) to those of ferric siderophore transporters. In the ΔhupDBGC strain uptake occurred at a 3-fold lower rate (Vmax = 7 pMol/109 cells/min). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g., Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD50 of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence. PMID:21545655
Evaluating and Improving Water Treatment Plant Processes at Fixed Army Installations.
1985-05-01
blender with variable speeds to handle different flow rates through the plant. * A coagulant feed system using orifices (facing upstream) may help achieve...cause the pipe to rupture. Tubercules are formed on pipe surfaces when iron ions are oxidized and ferric hydroxide precipitates: 2 + 2Fe + 5H20 + 1/20...2 2Fe (01)3 + 4H + " The tubercules interfere with flow and reduce the carrying capacity of the pipe . Several factors affect the rate of corrosion
DCT-TCI: Real Gas Characterization of Plasma Flow Control - An Integrated Approach
2011-12-23
as Navier-Stokes equations are solved in this study. We utilize the two-species basic model to reduce the computational complexity of plasma...constant of 3.0. Copper tape was first adhered to both sides of a 3 mm thick acrylic plate. A negative photo-resist, a transparent film and a UV light...ferric chloride. The reminiscence of the adhesive glue left behind by the copper tape was removed using a solvent such as methanol or acetone. The
Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.
Troxell, Bryan; Hassan, Hosni M
2013-01-01
In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.
Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria
Troxell, Bryan; Hassan, Hosni M.
2013-01-01
In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria. PMID:24106689
Morphological, structural, and spectral characteristics of amorphous iron sulfates
Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.
2018-01-01
Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6–8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover. PMID:29675340
Sutak, Robert; Botebol, Hugo; Blaiseau, Pierre-Louis; Léger, Thibaut; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel
2012-01-01
We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface. PMID:23033141
Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O.; John, B.; Sposito, G.
2006-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.
Characterization of the Heme Environment in Arabidopsis thaliana Fatty Acid α-Dioxygenase-1*
Liu, Wen; Rogge, Corina E.; Bambai, Bijan; Palmer, Graham; Tsai, Ah-Lim; Kulmacz, Richard J.
2010-01-01
Plant α-dioxygenases (PADOX) are hemoproteins in the myeloperoxidase family. We have used a variety of spectroscopic, mutagenic, and kinetic approaches to characterize the heme environment in Arabidopsis thaliana PADOX-1. Recombinant PADOX-1 purified to homogeneity contained 1 mol of heme bound tightly but noncovalently per protein monomer. Electronic absorbance, electron paramagnetic resonance, and magnetic circular dichroism spectra showed a high spin ferric heme that could be reduced to the ferrous state by dithionite. Cyanide bound relatively weakly in the ferric PADOX-1 heme vicinity (Kd ~10 mm) but did not shift the heme to the low spin state. Cyanide was a very strong inhibitor of the fatty acid oxygenase activity (Ki ~5 µm) and increased the Km value for oxygen but not that for fatty acid. Spectroscopic analyses indicated that carbon monoxide, azide, imidazole, and a variety of substituted imidazoles did not bind appreciably in the ferric PADOX-1 heme vicinity. Substitution of His-163 and His-389 with cysteine, glutamine, tyrosine, or methionine resulted in variable degrees of perturbation of the heme absorbance spectrum and oxygenase activity, consistent with His-389 serving as the proximal heme ligand and indicating that the heme has a functional role in catalysis. Overall, A. thaliana PADOX-1 resembles a b-type cytochrome, although with much more restricted access to the distal face of the heme than seen in most other myeloperoxidase family members, explaining the previously puzzling lack of peroxidase activity in the plant protein. PADOX-1 is unusual in that it has a high affinity, inhibitory cyanide-binding site distinct from the distal heme face and the fatty acid site. PMID:15100225
Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott
2014-10-01
Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.
Functional analysis of an feoB mutant in Clostridium perfringens strain 13.
Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I
2016-10-01
Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vergara, Alessandro; Franzese, Marisa; Merlino, Antonello; Vitagliano, Luigi; Verde, Cinzia; di Prisco, Guido; Lee, H Caroline; Peisach, Jack; Mazzarella, Lelio
2007-10-15
Spontaneous autoxidation of tetrameric Hbs leads to the formation of Fe (III) forms, whose physiological role is not fully understood. Here we report structural characterization by EPR of the oxidized states of tetrameric Hbs isolated from the Antarctic fish species Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, as well as the x-ray crystal structure of oxidized Trematomus bernacchii Hb, redetermined at high resolution. The oxidation of these Hbs leads to formation of states that were not usually detected in previous analyses of tetrameric Hbs. In addition to the commonly found aquo-met and hydroxy-met species, EPR analyses show that two distinct hemichromes coexist at physiological pH, referred to as hemichromes I and II, respectively. Together with the high-resolution crystal structure (1.5 A) of T. bernacchii and a survey of data available for other heme proteins, hemichrome I was assigned by x-ray crystallography and by EPR as a bis-His complex with a distorted geometry, whereas hemichrome II is a less constrained (cytochrome b5-like) bis-His complex. In four of the five Antartic fish Hbs examined, hemichrome I is the major form. EPR shows that for HbCTn, the amount of hemichrome I is substantially reduced. In addition, the concomitant presence of a penta-coordinated high-spin Fe (III) species, to our knowledge never reported before for a wild-type tetrameric Hb, was detected. A molecular modeling investigation demonstrates that the presence of the bulkier Ile in position 67beta in HbCTn in place of Val as in the other four Hbs impairs the formation of hemichrome I, thus favoring the formation of the ferric penta-coordinated species. Altogether the data show that ferric states commonly associated with monomeric and dimeric Hbs are also found in tetrameric Hbs.
Boaventura, Brunna Cristina Bremer; Di Pietro, Patrícia Faria; Stefanuto, Aliny; Klein, Graziela Alessandra; de Morais, Elayne Cristina; de Andrade, Fernanda; Wazlawik, Elisabeth; da Silva, Edson Luiz
2012-06-01
To evaluate the effect of long-term ingestion of mate tea, with or without dietary intervention, on the markers of oxidative stress in dyslipidemic individuals. Seventy-four dyslipidemic volunteers participated in this randomized clinical trial. Subjects were divided into three treatment groups: mate tea (MT), dietary intervention (DI), and mate tea with dietary intervention (MD). Biochemical and dietary variables were assessed at the beginning of the study (baseline) and after 20, 40, 60, and 90 d of treatment. Participants in the MT and MD groups consumed 1 L/d of mate tea. Those in the DI and MD groups were instructed to increase their intake of fruit, legumes and vegetables and decrease their consumption of foods rich in cholesterol and saturated and trans-fatty acids. Biomarkers of oxidative stress such as antioxidant capacity of serum (ferric reducing antioxidant potential assay), uric acid, reduced glutathione, paraoxonase-1 enzyme, lipid hydroperoxide (LOOH), and protein carbonyl were analyzed. Participants in the DI group showed a significant decrease in total fat and saturated fatty acid intakes. Those in the DI and MD groups presented a significant increase in vitamin C consumption. For all groups, there was a significant increase in ferric reducing antioxidant potential and reduced glutathione concentrations but no significant changes in LOOH, protein carbonyl, and paraoxonase-1 values. The reduced glutathione concentration was positively correlated with the consumption of monounsaturated fatty acids, fiber, and vitamin C, whereas levels of LOOH were inversely correlated with intakes of vitamin C and fiber. In addition, LOOH correlated positively with low-density lipoprotein cholesterol and inversely with high-density lipoprotein cholesterol, which had a positive association with paraoxonase-1. The ingestion of mate tea independently of the dietary intervention increased plasma and blood antioxidant protection in patients with dyslipidemia. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmar, N.; Gorby, Yuri A.; Beveridge, Terrance J.
This investigation documents the formation of Green Rust (GR) and immobilization of Ni2+ in response to bacterial reduction of hydrous ferric oxide (HFO) reduction experiments provided evidence that the solid-phase partitioning of Ni2+ in GR extended from equilibrium solid-solution behavior.
Suzuki, Sachiko; Fukuda, Katsuharu; Irie, Motoko; Hata, Yoji
2007-01-01
Ferrichrysin (Fcy), which is produced by Aspergillus oryzae and is present in foods used for human consumption, belongs to a group of hydroxamate siderophore ferric iron chelators. Fcy (100 mg/mL) dissolves completely at both pH 2.0 and 7.0, being very stable at a wide range of pH, high temperatures and pressures, with little reactivity to dietary iron absorption inhibitors, phytic acid, tannic acid, and catechin. We studied the effect of Fcy in male Sprague-Dawley rats with iron-deficiency anemia, which were separated into three different dietary groups (n=5) and supplementing diets as follows: (i) ferric citrate, (ii) heme iron concentrate, and (iii) Fcy (35 mg Fe/kg diet) for three weeks. Fcy exhibited the same beneficial effect in improving iron deficiency anemia as ferric citrate, being significantly greater than the effect of heme iron. The iron concentration of liver in the Fcy group was 35% greater than that in the ferric citrate group. These findings indicate that Fcy could be an efficient oral iron supplement to prevent or treat iron deficiency.
Reactions of metal ions at surfaces of hydrous iron oxide
Hem, J.D.
1977-01-01
Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.
Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region
NASA Technical Reports Server (NTRS)
Farrand, William H.; Singer, Robert B.
1991-01-01
As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.
Ebeling, J.M.; Ogden, S.R.; Sibrell, P.L.; Rishel, K.L.
2004-01-01
An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted to determine optimum conditions for treating the backwash effluent from microscreen filters in an intensive recirculating aquaculture system. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were greater than 90% at a dosage of 60 mg/L. Optimum turbidity removal was achieved with a 60-mg/L dosage for both alum and ferric chloride. Both alum and ferric chloride demonstrated excellent removal of suspended solids from initial total suspended solid values of approximately 320 mg/L to approximately 10 mg/L at a dosage of 60 mg/L. Flocculation and mixing speed and duration played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min.
Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts.
Loizzo, Monica R; Tundis, Rosa; Menichini, Federica; Pugliese, Alessandro; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco
2010-12-01
The metal chelating activity, antioxidant properties and the effect on carbohydrate-hydrolysing enzyme inhibition of Muscari comosum extracts have been investigated. M. comosum bulbs contain a total amount of the phenols with a value of 56.6 mg chlorogenic acid equivalent per gram of extract and a flavonoid content of 23.4 mg quercetin equivalent per gram of extract. In order to evaluate the non-polar constituents, n-hexane extract was obtained. Gas chromatography-mass spectrometry analysis revealed the presence of fatty acids and ethyl esters as major constituents, with different aldehydes and alkanes as minor components. Ethanolic extract had the highest ferric-reducing ability power (66.7 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC₅₀) value of 40.9 μg/ml. Moreover, this extract exhibited a good hypoglycaemic activity with IC₅₀ values of 81.3 and 112.8 μg/ml for α-amylase and α-glucosidase, respectively. In conclusion, M. comosum bulbs show promising antioxidant and hypoglycaemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from a functional point of view and for the revalorization of this ancient non-cultivated vegetable of Mediterranean traditional gastronomy.
Enduring amnesia induced by ICV scopolamine is reversed by sesame oil in male rats.
Tabari, Shabnam-Sadat Seyedi; Babri, Shirin; Mirzaie, Fariba; Farajdokht, Fereshteh; Mohaddes, Gisou
2016-08-01
To evaluated the long-term effect of scopolamine and sesame oil on spatial memory. Memory impairment induced by Intracerebroventricular (ICV) injection of scopolamine hydrochloride (10 μg/ rat). Animals were gavaged for 4 weeks with saline, sesame oil (0.5, 1, or 2 mL/kg/day), or 3 weeks with memantine (30 mg/kg/day) in advance to induction of amnesia. Morris water maze (MWM) test was conducted 6 days after microinjection of scopolamine. Then, blood and brain samples were collected and evaluated for the malondialdehyde (MDA) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and total antioxidant status (TAS) and ferric reducing ability of plasma (FRAP). Scopolamine significantly decreased traveled distance and time spent in target quadrant in probe test. Pretreatment of rats with sesame oil (0.5 mg/kg) mitigated scopolamine-induced behavioral alterations. Measurement of MDA, SOD, and GPX in brain tissue, and FRAP and TAS in blood showed little changes in animals which had received scopolamine or sesame oil. Intracerebroventricular injection of scopolamine has a residual effect on memory after six days. Sesame oil has an improving effect on spatial memory; however this effect is possibly mediated by mechanisms other than antioxidant effect of sesame oil.
Phytochemical Composition, Antifungal and Antioxidant Activity of Duguetia furfuracea A. St.-Hill
Pinho, Francisca Valéria Soares de Araújo; da Cruz, Litiele Cezar; Rodrigues, Nathane Rosa; Waczuk, Emily Pansera; Souza, Celestina Elba Sobral; da Costa, José Galberto Martins; Athayde, Margareth Linde; de Menezes, Irwin Rose Alencar
2016-01-01
Background. Duguetia furfuracea is popular plant used in popular medicine. Hypothesis/Purpose. This claim evaluated the phytochemical composition of the hydroethanolic extract (HEDF), fractions of Duguetia furfuracea, and antioxidant and antifungal activity. Methods. The chemical profile was carried out by HPLC-DAD. The total phenolic contents and flavonoid components were determined by Folin-Ciocalteu and aluminium chloride reaction. The antioxidant activity was measured by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric reducing ability of plasma (FRAP) methods. The antifungal activity was determined by microdilution assay. Results. HPLC analysis revealed caffeic acid and rutin as major compounds (HEDF), caffeic acid and quercitrin (Mt-OH fraction), and quercitrin and isoquercitrin (Ac-OEt fraction). The highest levels of phenols and total flavonoids were found for Ac-OEt fraction, and the crude extract showed higher in vitro antioxidant potential. The antifungal activity showed synergic effect with fluconazole and EHDF against C. krusei, fluconazole and Mt-OH against C. krusei and C. tropicalis, and Ac-OE and fluconazole against C. albicans. Conclusion. The highest levels of phenols and total flavonoids were marked with antioxidant effect. This is the first report of bioactivity of the synergic effect of HEDF and fractions. More studies would be required to better clarify its mechanism of synergic action. PMID:27127550
Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai
2015-01-01
Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.
Augustin, K; Blank, R; Boesch-Saadatmandi, C; Frank, J; Wolffram, S; Rimbach, G
2008-12-01
Supplementation of pigs with vitamin E, the most important lipid-soluble antioxidant, has been shown to improve meat quality and animal health. Previous studies in cultured cells and laboratory animals indicate synergistic effects between polyphenols and vitamin E. The present feeding trial was undertaken to investigate the effects of dietary green tea polyphenols (GTP) on vitamin E status, antioxidative capacity and parameters of meat quality in growing pigs. Eighteen castrated, crossbred, male pigs received a flavonoid-poor diet based on corn starch, caseinate and rapeseed oil with a total vitamin E content of 17 IU/kg diet over a period of 5 weeks. This basal diet was supplemented with green tea extract to provide daily doses of 0 (control), 10 and 100 mg GTP/kg body weight. Dietary supplementation of growing pigs with GTP did not affect serum, liver, lung and muscle vitamin E (alpha- and gamma-tocopherol) concentrations, plasma antioxidant capacity (ferric reducing ability of plasma, trolox equivalent antioxidant capacity) or parameters of meat quality including meat temperature, pH, conductivity, colour and drip loss. In conclusion, supplementation of pig diets with green tea catechins is not associated with improved antioxidant status and meat quality under practice-oriented conditions.
Inhibition of protein glycation by extracts of culinary herbs and spices.
Dearlove, Rebecca P; Greenspan, Phillip; Hartle, Diane K; Swanson, Ruthann B; Hargrove, James L
2008-06-01
We tested whether polyphenolic substances in extracts of commercial culinary herbs and spices would inhibit fructose-mediated protein glycation. Extracts of 24 herbs and spices from a local supermarket were tested for the ability to inhibit glycation of albumin. Dry samples were ground and extracted with 10 volumes of 50% ethanol, and total phenolic content and ferric reducing antioxidant potential (FRAP) were measured. Aliquots were incubated in triplicate at pH 7.4 with 0.25 M fructose and 10 mg/mL fatty acid-free bovine albumin. Fluorescence at 370 nm/440 nm was used as an index of albumin glycation. In general, spice extracts inhibited glycation more than herb extracts, but inhibition was correlated with total phenolic content (R(2) = 0.89). The most potent inhibitors included extracts of cloves, ground Jamaican allspice, and cinnamon. Potent herbs tested included sage, marjoram, tarragon, and rosemary. Total phenolics were highly correlated with FRAP values (R(2) = 0.93). The concentration of phenolics that inhibited glycation by 50% was typically 4-12 microg/mL. Relative to total phenolic concentration, extracts of powdered ginger and bay leaf were less effective than expected, and black pepper was more effective. Prevention of protein glycation is an example of the antidiabetic potential for bioactive compounds in culinary herbs and spices.
2012-01-01
Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585
Ulbin-Figlewicz, Natalia; Jarmoluk, Andrzej
2016-06-01
The effect of low-pressure plasma on quality attributes of meat is an important aspect, which must be considered before application in food. The aim of this study was to determine the color, fatty acid composition, lipid oxidation expressed as thiobarbituric acid reactive substances and total antioxidant capacity of raw pork samples exposed to helium low-pressure plasma treatment (20 kPa) for 0, 2, 5, and 10 min during the storage period. The thiobarbituric acid reactive substance concentrations of all plasma-treated samples during storage were in the range from 0.26 to 0.61 mg malondialdehyde/kg. Exposure time caused significant changes only in total color difference, hue angle, and chroma after 10 min of treatment. Ferric reducing ability of plasma values of meat samples decreased from 1.93 to 1.40 mmol Trolox Eq/kg after 14 days of storage. The storage period significantly affected proportion of polyunsaturated fatty acids, with an increase about 3% after 14 days of refrigeration storage while the content of saturated fatty acids was at the same level. Helium low-pressure plasma does not induce oxidative processes. Application of this decontamination technique while maintaining product quality is possible in food industry. © The Author(s) 2015.
Dhale, Mohan A; Javagal, Manjunatha; Puttananjaiah, Mohan-Kumari H
2018-05-03
Monascus purpureus is known to produce several coloured secondary metabolites. In this study, M. purpureus CFR 410-11 mutant fermented with rice was dried and extracted in hexane for purification of pigment. The purity of the isolated pigment was confirmed by different chromatography techniques. The spectroscopic analysis revealed its structural identity as rubropunctatin. The antioxidant potencies of isolated rubropunctatin were evaluated. Rubropunctatin scavenged 16% 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical and inhibited 20% superoxide generation at 8 μg/ml concentration. The multiple antioxidant abilities of rubropunctatin were evidenced by its ferric reducing capacity also. The oxidative damage of BSA protein was induced by the metal catalyzed oxidation (MCO) by Fe 2+ /H 2 O 2 . The protective effects of rubropunctatin and M. purpureus (MTCC-410 and CFR 410-11) extracts were compared with glutathione and ascorbic acid. The M. purpureus extracts and rubropunctatin inhibited the formation of carbonyl content and protein oxidation assayed by SDS-PAGE. Rubropunctatin (42-169 μM) efficiently inhibited the protein oxidation compared to glutathione (48-195 μM) and ascorbic acid (85-340 μM) by scavenging the superoxide and hydroxyl radical generated in the system. Copyright © 2018 Elsevier B.V. All rights reserved.
Diaz, Patricia; Jeong, Sang Chul; Lee, Samiuela; Khoo, Cheang; Koyyalamudi, Sundar Rao
2012-11-24
This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs.
Gawron-Skarbek, Anna; Guligowska, Agnieszka; Prymont-Przymińska, Anna; Godala, Małgorzata; Kolmaga, Agnieszka; Nowak, Dariusz; Szatko, Franciszek; Kostka, Tomasz
2017-07-09
It is not clear whether habitual dietary intake influences the antioxidant or inflammatory status. The aim of the present study was to assess the impact of antioxidative vitamins C, E, and β-carotene obtained from daily food rations on plasma and salivary Total Antioxidant Capacity (TAC), uric acid and salivary C-reactive protein (CRP). The study involved 80 older subjects (66.9 ± 4.3 years), divided into two groups: group 1 ( n = 43) with lower and group 2 ( n = 37) with higher combined vitamins C, E and β-carotene intake. A 24-h dietary recall was obtained from each individual. TAC was assessed simultaneously with two methods in plasma (Ferric Reducing Ability of Plasma-FRAP, 2.2-diphenyl-1-picryl-hydrazyl-DPPH) and in saliva (FRAS and DPPHS test). Lower vitamin C intake corresponded to higher FRAS. There were no other correlations between vitamins C, E or β-carotene intake and antioxidant indices. Salivary CRP was not related to any antioxidant indices. FRAS was decreased in group 2 ( p < 0.01) but no other group differences for salivary or for plasma antioxidant parameters and salivary CRP were found. Habitual, not extra supplemented dietary intake does not significantly affect plasma or salivary TAC and salivary CRP.
Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali
2017-03-01
The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.
Tosevska, Anela; Moelzer, Christine; Wallner, Marlies; Janosec, Milan; Schwarz, Ursula; Kern, Carina; Marculescu, Rodrig; Doberer, Daniel; Weckwerth, Wolfram; Wagner, Karl-Heinz
2016-03-01
Bilirubin (BR) is a natural endogenous compound with a potent bioactivity. Gilbert's Syndrome (GS) is a benign hereditary condition of increased unconjugated bilirubin (UCB) in serum and serves as a convenient model for studying the effects of BR in humans. In absence of liver disease, increased UCB levels are inversely associated to all-cause mortality risk, especially from cardiovascular diseases (CVDs). On the other hand, telomere malfunction is linked to a higher risk of CVDs. To our knowledge, there is no data on whether UCB is linked to telomere length in healthy or diseased individuals In the present study we have observed a relationship between mildly increased serum UCB and telomere length. We used an in vivo approach, assessing telomere length in PBMCs from individuals with GS (n = 60) and matched healthy controls (n = 60). An occurrence of longer telomeres was observed in male individuals chronically exposed to increased UCB, as well as in Gunn rats, an animal model of unconjugated hyperbilirubinaemia. Previously identified differences in immunomodulation and redox parameters in individuals with GS, such as IL-6, IL-1β and ferric reducing ability of plasma, were confirmed and proposed as possible contributors to the occurrence of longer telomeres in GS.
Lu, Nai-Hao; Chen, Chao; He, Ying-Jie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan
2013-01-01
Flavonoids have been widely reported to protect liver injury in iron-overload diseases, where the mechanism of this therapeutic action is dependent on their antioxidant effects, including free radical scavenging and metal-chelating. In this study, in contrast to the significant decrease in iron content, quercetin (Qu) from lower diet (0.3%, w/w) showed pro-oxidant ability on protein carbonyl formation and exhibited unobvious effect on iron-overload rat liver injury. Furthermore, the anti- and pro-oxidant activities of Qu on hemoglobin (Hb)-dependent redox reactions (i.e. the oxidative stability of Hb and its cytotoxic ferryl intermediate, Hb-induced protein oxidation) were investigated to illustrate the elevated protein oxidation in lower Qu-treated iron-overload rat. It was found that superoxide (O₂·⁻) and hydrogen peroxide (H₂O₂) were generated during the reaction between Qu and Hb. Qu, however, effectively reduced ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. Moreover, Qu could significantly aggravate Hb-H₂O₂-induced protein oxidation at low concentrations and exhibit protective effects at high concentrations. Different from the classic antioxidant mechanisms of Qu, the dual effects on Hb redox reactions in vitro, therefore, may provide new insights into the physiological and pharmacological implications of Qu with iron-overload disease.
Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.
2014-01-01
The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493
Erel, Ozcan
2004-04-01
To develop a novel colorimetric and automated direct measurement method for total antioxidant capacity (TAC). A new generation, more stable, colored 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(*+)) was employed. The ABTS(*+) is decolorized by antioxidants according to their concentrations and antioxidant capacities. This change in color is measured as a change in absorbance at 660 nm. This process is applied to an automated analyzer and the assay is calibrated with Trolox. The novel assay is linear up to 6 mmol Trolox equivalent/l, its precision values are lower than 3%, and there is no interference from hemoglobin, bilirubin, EDTA, or citrate. The method developed is significantly correlated with the Randox- total antioxidant status (TAS) assay (r = 0.897, P < 0.0001; n = 91) and with the ferric reducing ability of plasma (FRAP) assay (r = 0.863, P < 0.0001; n = 110). Serum TAC level was lower in patients with major depression (1.69 +/- 0.11 mmol Trolox equivalent/l) than in healthy subjects (1.75 +/- 0.08 mmol Trolox equivalent/l, P = 0.041). This easy, stable, reliable, sensitive, inexpensive, and fully automated method described can be used to measure total antioxidant capacity.
Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.
Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta
2018-01-01
The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
[Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].
Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui
2014-09-01
Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter.
Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei
2017-03-01
The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.
1996-01-01
The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase. PMID:12226175
Guo, Xiaohua; Niu, Chuncheng; Wu, Yunhua; Liang, Xiaosheng
2015-12-01
Ferric and ferrous ion plays critical roles in bioprocesses, their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix. In this study, an M13 bacteriophage (phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein. The interaction between the specific phenol group of tyrosine and Fe(3+) / Fe(2+) was used as the sensor. Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe(3+) and Fe(2+). The aggregated phages infected the host bacterium inefficiently. This phenomenon could be utilized for detection of ferric and ferrous ions. For ferric ions, a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired. For ferrous ions, a calibration curve ranging from 800 nmol/L to 8 μmol/L with a detection limit of 641.7 nmol/L was acquired. The assay was specific for Fe(3+) and Fe(2+) when tested against Ni(2+), Pb(2+), Zn(2+), Mn(2+), Co(2+), Ca(2+), Cu(2+), Cr(3+), Ba(2+), and K(+). The tyrosine displaying phage to Fe(3+) and Fe(2+) interaction would have plenty of room in application to biomaterials and bionanotechnology.
Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.
1996-01-01
The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase.
Intravenous ferric carboxymaltose for anaemia in pregnancy.
Froessler, Bernd; Collingwood, Joshua; Hodyl, Nicolette A; Dekker, Gustaaf
2014-03-25
Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia (IDA) is associated with significant maternal, fetal and infant morbidity. Current options for treatment are limited: these include oral iron supplementation, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a new treatment option that may be better tolerated.The study was designed to assess the safety and efficacy of iron deficiency anaemia (IDA) correction with intravenous ferric carboxymaltose in pregnant women with mild, moderate and severe anaemia in the second and third trimester. Prospective observational study; 65 anaemic pregnant women received ferric carboxymaltose up to 15 mg/kg between 24 and 40 weeks of pregnancy (median 35 weeks gestational age, SD 3.6). Treatment effectiveness was assessed by repeat haemoglobin (Hb) measurements and patient report of well-being in the postpartum period. Safety was assessed by analysis of adverse drug reactions and fetal heart rate monitoring during the infusion. Intravenous ferric carboxymaltose infusion significantly increased Hb values (p < 0.01) above baseline levels in all women. Increased Hb values were observed at 3 and 6 weeks post infusion and up to 8 weeks post-infusion. Ferritin values increased significantly after the infusion. Only 4 women had repeat ferritin values post-partum which remained above baseline levels. Fetal heart rate monitoring did not indicate a drug related negative impact on the fetus. Of the 29 (44.6%) women interviewed, 19 (65.5%) women reported an improvement in their well-being and 9 (31%) felt no different after the infusion. None of the women felt worse. No serious adverse effects were found and minor side effects occurred in 13 (20%) patients. Our prospective data is consistent with existing observational reports of the safe and effective use of ferric carboxymaltose in the treatment of iron deficiency anaemia in pregnancy.
Bassez, Marie-Paule
2017-12-01
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H 2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
NASA Astrophysics Data System (ADS)
Bassez, Marie-Paule
2017-12-01
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
NASA Astrophysics Data System (ADS)
Wan, Moli; Schröder, Christian; Peiffer, Stefan
2017-11-01
The formation of pyrite has been extensively studied because of its abundance in many anoxic environments. Yet, there is no consensus on the underlying pathways and kinetics of its formation. We studied the formation of pyrite during the reaction between reactive ferric hydroxides (goethite and lepidocrocite) and aqueous sulfide in an anoxic glove box at neutral pH. The formation of pyrite was monitored with Mössbauer spectroscopy using 57Fe isotope-enriched ferric (hydr)oxides. The initial molar ratios of Fe(III):S(-II) were adjusted to be 'high' with Fe(III) concentrations in excess of sulfide (HR) and 'low' (LR) with excess of sulfide. Approximately the same surface area was applied in all HR runs in order to compare the mineral reactivity of ferric hydroxides. Electron transfer between aqueous sulfide and ferric hydroxides in the first 2 h led to the formation of ferrous iron and methanol-extractable oxidized sulfur (MES). Metastable FeSx formed in all of the experiments. Pyrite formed at a different rate in HR and LR runs although the MES and ferrous iron concentrations were rather similar. In all HR runs, pyrite formation started after 48 h and achieved a maximum concentration after 1 week. In contrast, pyrite started to form only after 2 months in LR runs (Fe(III):S(-II) ∼ 0.2) with goethite and no pyrite formation was observed in LR with lepidocrocite after 6 months. Rates in LR runs were at least 2-3 orders of magnitude slower than in HR runs. Sulfide oxidation rates were higher with lepidocrocite than with goethite, but no influence of the mineral type on pyrite formation rates in HR runs could be observed. Pyrite formation rates in HR runs could not be predicted by the classical model of Rickard (1975). We therefore propose a novel ferric-hydroxide-surface (FHS) pathway for rapid pyrite formation that is based on the formation of a precursor species >FeIIS2-. Its formation is competitive to FeSx precipitation at high aqueous sulfide concentrations and requires that a fraction of the ferric hydroxide surface not be covered by a surface precipitate of FeSx. Hence, pyrite formation rate decreases with decreasing Fe(III):S(-II)aq ratio. In LR runs, pyrite formation appears to follow the model of Rickard (1975) and to be kinetically controlled by the dissolution of FeS. The FHS-pathway will be prominent in many aquatic systems with terrestrial influence, i.e. abundance of ferric iron. We propose that the Fe(III):S(-II)aq ratio can be used as an indicator for rapid pyrite formation during early diagenesis in anoxic/suboxic aquatic systems.
Nuclear magnetic resonance studies of high-spin ferric hemoproteins.
Morishmima, I; Ogawa, S; Inubushi, T; Iizuka, T
1978-01-01
220 MHz proton Fourier transform (FT) NMR with quadrature phase detection (QPD) technique is applied to observe largely hyperfine-shifted signals of various hemoproteins and hemoenzymes in ferric high-spin state. The binding of F-, OCN-, SCN-, and CH3OH to the ferric heme iron in high-spin state in various hemoproteins has been studied by the use of FT/QPD technique at 220 MHz. The binding of formate ion to metmyoglobin (metMb) has also been studied. The spectrum of the formate complex was compared with that of hemoglobin M Milwaukee where carboxylate groups are bound to the hemes of the beta subunits. The acid-base transition of ferric myoglobin (Mb) was confirmed by monitoring the pH-dependent shift of the heme side methyl signals with the reflection point at pH 9.1. This finding is analyzed on the basis of rapid exchange between alkaline (low spin) and acidic (high spin) forms accompanied by the dissociation and association of one proton in the ferric Mb. The structure of the heme environment of ferric horseradish peroxidase (HRP) was studied. The pH-dependent features of NMR spectra of the ferric enzyme and its complexes with cyanide and azide were discussed in terms of heme environmental structures, comparing with the case of metMb. The results were interpreted as follows: There exists an ionizable amino group near the heme responsible for the ligand binding reactions of the enzyme, which modulates the entry of external azide to the heme iron through protolytic equilibrium of this group. The pK value of this group was determined to be 5.9 by monitoring the pH-dependent shift of the heme peripheral methyl signals of the native enzyme, indicating that the group is probably a histidyl residue. Acid-alkaline transition of metMb was confirmed to associate with the proton dissociation of an iron-bound water molecule, whereas in HRP, pH-dependent spin state change characterized by pK 11 is attributed not to the simple protolytic reaction of the iron-bound water but to the direct coordination of an amino acid residue of the polypeptide chain to the ferric heme iron. Histidyl imidazole is a possible candidate for the new sixth iron ligand in alkaline peroxidase above pH 11. Interaction of HRP with electron donor(indolepropionic acid, IPA) was also studied. The hyperfine-shifted proton signals of the heme peripheral groups of the enzyme showed a small but significant shift with stepwise additions of IPA, indicating that the donor binds at a specific site of HRP. There results are interpreted in terms of the interaction between the enzyme and the donor at the heme edge site.
METHOD OF SEPARATING PLUTONIUM
Heal, H.G.
1960-02-16
BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.
Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe
NASA Technical Reports Server (NTRS)
Jaworske, D. A.
1984-01-01
The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction.
[Study on the degradation and transformation of nonylphenol in water containing algae].
Peng, Zhang-E; Feng, Jin-Mei; He, Shu-Ying; Wu, Feng
2012-10-01
The photodegradation of nonylphenol induced by two common freshwater algae was investigated. The mechanism of nonylphenol photodegradation induced by algae was analyzed. The synergistic induction of nonylphenol degradation by algae and substances in water such as humic acid and ferric ions was also investigated. Results showed that the algae could induce the photodegradation of nonylphenol. The degradation of nonylphenol in water in the presence of algae, humic acid and ferric ions was obvious and the efficiency of degradation could reach 58% after 4 h illumination. Based on the results, it was speculated that the algae, humic acid and ferric ions system could produce more active oxygen after illumination, which could promote the photodegradation of the organic contaminants in water.
Misra, Ankita; Anil Kumar, K S; Jain, Manish; Bajaj, Kirti; Shandilya, Shyamali; Srivastava, Smriti; Shukla, Pankaj; Barthwal, Manoj K; Dikshit, Madhu; Dikshit, Dinesh K
2016-03-03
N-aralkylpyroglutamides of substituted bispidine were prepared and evaluated for their ability to inhibit collagen induced platelet aggregation, both in vivo and in vitro. Some compounds showed high anti-platelet efficacy (in vitro) of which six inhibited both collagen as well as U46619 induced platelet aggregation with concentration dependent anti-platelet efficacy through dual mechanism. In particular, the compound 4j offered significant protection against collagen epinephrine induced pulmonary thromboembolism as well as ferric chloride induced arterial thrombosis, without affecting bleeding tendency in mice. Therefore, the present study suggests that the compound 4j displays a remarkable antithrombotic efficacy much better than aspirin and clopidogrel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep
2016-01-01
Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen. PMID:27902780
Chukwuma, Chika Ifeanyi; Islam, Shahidul
2017-05-01
The present study investigated the anti-oxidative effects of xylitol both in vitro and in vivo in normal and type 2 diabetes (T2D) rat model. Free radical scavenging and ferric reducing potentials of different concentrations of xylitol were investigated in vitro. For in vivo study, six weeks old male Sprague-Dawley rats were divided into four groups, namely: Normal Control (NC), Diabetic Control (DBC), Normal Xylitol (NXYL) and Diabetic Xylitol (DXYL). T2D was induced in the DBC and DXYL groups. After the confirmation of diabetes, a 10% xylitol solution was supplied instead of drinking water to NXYL and DXYL, while normal drinking water was supplied to NC and DBC ad libitum. After five weeks intervention period, the animals were sacri- ficed and thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) concentrations as well as superoxide dismutase, catalase glutathione reductase and glutathione peroxidase activities were determined in the liver, heart, kidney, pancreatic tissues and serum samples. Xylitol exhibited significant (p < 0.05) in vitro nitric oxide and hydroxyl radical scavenging and ferric reducing activities. In vivo study revealed significant (p < 0.05) reduction in TBARS concentrations in the xylitol consuming groups compared to their respective controls. Significant (p < 0.05) increase in GSH levels and antioxidant enzyme activities were observed in analyzed tissues and serum of xylitol-fed animals compared to their respective controls. Results of this study indicate that xylitol has strong anti-oxidative potential against T2D-associated oxidative stress. Hence, xylitol can be used as a potential supplement in diabetic foods and food products.
Firuzi, Omidreza; Khajehrezaei, Soraya; Ezzatzadegan, Shahrokh; Nejati, Maryam; Jahanshahi, Keramat-Allah; Roozbeh, Jamshid
2016-10-01
Introduction End-stage renal disease (ESRD) patients especially those undergoing dialysis are vulnerable to several complications, in particular those related to oxidative stress. Silymarin is an herbal medicine commonly used as an antioxidant in different pathologies. Methods To evaluate the effect of silymarin on biochemical and oxidative stress markers, 50 ESRD patients undergoing peritoneal dialysis were randomly divided into two groups of silymarin (n = 28) and control (n = 22) and received silymarin (140 mg every 8 hours) or placebo for 2 months, respectively. Ferric reducing antioxidant power and total 8-iso-prostaglandin F 2α were measured in plasma, while catalase enzyme activity was measured in erythrocytes of both groups before and after treatment. Findings Ferric reducing antioxidant power values after treatment were significantly decreased in silymarin group compared to before treatment values (17.2 ± 2.9 and 15.9 ± 3.1 µM equivalent of quercetin/dL, respectively, P < 0.05). Conversely, catalase levels were increased 17.3% after silymarin consumption, while it was decreased 9.1% in control group. Further, hemoglobin (from 10.94 ± 2.17 to 11.54 ± 2.03 g/dL, P < 0.05) and albumin levels (from 3.48 ± 0.67 to 3.61 ± 0.53 g/dL, P < 0.05) were significantly increased after silymarin administration. Discussion It is concluded that silymarin could be regarded as a supplementary therapy for ESRD patients undergoing peritoneal dialysis in order to reduce complications. © 2016 International Society for Hemodialysis.
Roy, Souvik; Majumdar, Sumana; Singh, Amit Kumar; Ghosh, Balaram; Ghosh, Nilanjan; Manna, Subhadip; Chakraborty, Tania; Mallick, Sougato
2015-08-01
A new trend was developed for the formation of a complex between vanadium and flavonoid derivatives in order to increase the intestinal absorption and to reduce the toxicity of vanadium compounds. The vanadium-rutin complex was characterized by several spectroscopic techniques like ultraviolet (UV)-visible, Fourier transform infrared (FTIR), NMR, mass spectrometry, and microscopic evaluation by scanning electron microscopy. The mononuclear complex was formed by the interaction between vanadium and rutin with 1:2 metal to ligand stoichiometry. Antioxidant activity of the complex was evaluated by 1,1-diphenyl-2 picrylhydrazyl, ferric-reducing power, and 2,2'-azin-obis 3-ethylbenzothiazoline-6-sulphonic acid methods. It was shown that radical scavenging activity and ferric-reducing potential of free rutin was lower as compared with vanadium-rutin complex. The study was also investigated for oral acute toxicity and 28 days repeated oral subacute toxicity study of vanadium-rutin complex in balb/c mice. The vanadium-rutin complex showed mortality at a dose of 120 mg/kg in the balb/c mice. In 28 days repeated oral toxicity study, vanadium-rutin complex was administered to both sex of balb/c mice at dose levels of 90, 45, and 20 ppm, respectively. In addition, subacute toxicity study of vanadium-rutin complex (at 90 ppm dose level) showed increase levels of white blood cell (WBC), total bilirubin, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen and decrease level of total protein (TP) as compared with control group. Histopathological study of vanadium-rutin showed structural alteration in the liver, kidney, and stomach at 90 ppm dose level. No observed toxic level of vanadium-rutin complex at 20 ppm dose level could be good for further study.
Oskoueian, Ehsan; Abdullah, Norhani; Zulkifli, Idrus; Ebrahimi, Mahdi; Karimi, Ehsan; Goh, Yong Meng; Oskoueian, Armin; Shakeri, Majid
2015-10-30
Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage. The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage. The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes. The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.
Adeleye, Abdulwasiu O; Ajiboye, Taofeek O; Iliasu, Ganiyat A; Abdussalam, Folakemi A; Balogun, Abdulazeez; Ojewuyi, Oluwayemisi B; Yakubu, Musa T
2014-08-01
This study investigated the effect of Dialium guineense pulp phenolic extract on aflatoxin B1 (AFB1)-induced oxidative imbalance in rat liver. Reactive oxygen species (ROS) scavenging potentials of free and bound phenolic extract of D. guineense (0.2-1.0 mg/mL) were investigated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide ion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical, and ferric ion reducing system. In the in vivo study, 35 animals were randomized into seven groups of five rats each. Free and bound phenolic extract (1 mg/mL) produced 66.42% and 93.08%, 57.1% and 86.0%, 62.0% and 90.05%, and 60.11% and 72.37% scavenging effect on DPPH radical, O2(-) radical, H2O2, and hydroxyl radical, while ferric ion was significantly reduced. An AFB1-mediated decrease in the activities of ROS detoxifying enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6 phosphate dehydrogenase) was significantly attenuated (P<.05). AFB1-mediated elevation in the concentrations of oxidative stress biomarkers; malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and percentage DNA fragmentation were significantly lowered by D. guineense phenolic extract (P<.05). Overall, the in vitro and in vivo effects suggest that D. guineense phenolic extract elicited ROS scavenging and detoxification potentials, as well as the capability of preventing lipid peroxidation, protein oxidation, and DNA fragmentation.
Engida, Adam Mekonnen; Faika, Sitti; Nguyen-Thi, Bich Thuyen; Ju, Yi-Hsu
2015-06-01
In the present work, heat reflux extraction with ethanol/water (80:20; v/v) as the solvent was used to extract antioxidants from Myrmecodia pendans. The crude extract (CE) was fractionated using hexane and ethyl acetate. Ethyl acetate fraction (EAF) and aqueous fraction were collected. Antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power of the CE, EAF, and aqueous fraction were evaluated. EAF showed comparable antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power to those of the CE. UV/visible, liquid chromatography/electrospray ionization/tandem mass spectrometry, and high-performance liquid chromatography were employed for identifying the major antioxidant compounds in the EAF. Three major phenolic compounds (rosmarinic acid, procyanidin B1, and polymer of procyanidin B1) were identified. The first two compounds were confirmed and quantified by high-performance liquid chromatography using authentic standards, but confirmation of the third compound was hampered by a lack of commercial standard. Concentrations of rosmarinic acid and procyanidin B1 in the EAF were found to be 20.688 ± 1.573 mg/g dry sample and 3.236 ± 0.280 mg/g dry sample, respectively. All these three compounds are reported for the first time in sarang semut. Copyright © 2014. Published by Elsevier B.V.
Antia, Bassey Sunday; Ita, Basil Nse; Udo, Uwemedimo Emmanuel
2015-01-01
Abstract The stembarks of Harungana madagascariensis were analyzed for their content of chemical constituents, antinutrients, vitamin levels, and in vitro antioxidant properties in two solvent systems. Phytochemical screening revealed higher levels of alkaloids, saponins, and flavonoids in the methanolic (MHM) extract than in the dichloromethane (DCM) extract. The methanolic extract had higher contents of minerals, vitamins, and antinutrients except K, vitamin B1, and phytic acid, respectively. Antioxidant potentials of the stembark extracts were assessed by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and ferric reducing power. The methanolic extract showed a better antioxidant activity (IC50=87.66±0.97 μg/mL) in the DPPH system. The metal chelating activity was higher in the methanolic extract (92.4% at 20 mg/mL), but lower than the control ethylenediaminetetraacetic acid (EDTA). The methanolic extract also showed greater ferric reducing power and was richer in phenolics (132.24±0.61 mgGAE/g) and flavonoids (259.05±2.85 mgQE/g). Antinutrient analysis of the extracts indicated low levels of phytic acid, oxalates, and hydrocyanides below the lethal doses. The LD50 (i.p. mice) of the extracts showed relatively low toxicity in the range 1000–1414 mg/kg. These results support the ethnomedicinal uses of this plant in the treatment of diseases related to oxidative stress and suggest that consumption of H. madagascariensis is not harmful nutritively. PMID:25785542
Antia, Bassey Sunday; Ita, Basil Nse; Udo, Uwemedimo Emmanuel
2015-05-01
The stembarks of Harungana madagascariensis were analyzed for their content of chemical constituents, antinutrients, vitamin levels, and in vitro antioxidant properties in two solvent systems. Phytochemical screening revealed higher levels of alkaloids, saponins, and flavonoids in the methanolic (MHM) extract than in the dichloromethane (DCM) extract. The methanolic extract had higher contents of minerals, vitamins, and antinutrients except K, vitamin B1, and phytic acid, respectively. Antioxidant potentials of the stembark extracts were assessed by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and ferric reducing power. The methanolic extract showed a better antioxidant activity (IC50=87.66±0.97 μg/mL) in the DPPH system. The metal chelating activity was higher in the methanolic extract (92.4% at 20 mg/mL), but lower than the control ethylenediaminetetraacetic acid (EDTA). The methanolic extract also showed greater ferric reducing power and was richer in phenolics (132.24±0.61 mgGAE/g) and flavonoids (259.05±2.85 mgQE/g). Antinutrient analysis of the extracts indicated low levels of phytic acid, oxalates, and hydrocyanides below the lethal doses. The LD50 (i.p. mice) of the extracts showed relatively low toxicity in the range 1000-1414 mg/kg. These results support the ethnomedicinal uses of this plant in the treatment of diseases related to oxidative stress and suggest that consumption of H. madagascariensis is not harmful nutritively.
Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles
NASA Astrophysics Data System (ADS)
Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.
1987-04-01
Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.
Microbial reduction of iron ore
Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.
1989-11-14
A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.
Microbial reduction of iron ore
Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory
1989-01-01
A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.
Bacterial Formation of As(V) and As(III) Ferric Oxyhydroxides in Acid Mine Drainage.
NASA Astrophysics Data System (ADS)
Morin, G.; Juillot, F.; Lebrun, S.; Casiot, C.; Elbaz-Poulichet, F.; Bruneel, O.; Personne, J.; Leblanc, M.; Ildefonse, P.; Calas, G.
2002-12-01
The oxidation of dissolved Fe(II) which is often promoted by acidophilic bacteria in acid mine drainage (AMD) and some hot springs, leads to the precipitation of Fe(III) oxy-hydroxides which incorporate toxic elements within their structure or adsorb them at their surface, thus limiting their mobility. In such complex natural systems, synchrotron-based techniques as X-ray absorption spectroscopy offer the opportunity to monitor surface/solution interactions as well as redox changes affecting the mobility and toxicity of trace elements as arsenic. Spatial and seasonal variations of the (bio-) oxidation of Fe(II) and As(III), and the subsequent precipitation of As-Fe gels, were followed by XANES, XRD, and SEM along the CarnoulŠs AMD (Gard, France). Chemical and mineralogical data collected on sediments, stromatolite, and bioassay samples showed that some indigenous bacteria living in the As-rich CarnoulŠs water ([As] = up to 350 mg.l-1) play an important role in the nature and composition of the solid phases that sequester arsenic at the site. The formation of nano-crystalline and amorphous As(III) ferric oxy-hydroxides has been related to the presence of bacteria able to oxidize Fe(II) but not As(III), which are only present in winter in the upstream area. A rare ferric arsenite sulfate oxy-hydroxide mineral was discovered in this context. Other types of bacteria, occurring in the downstream area whatever the season, are able to catalyze As(III) to As(V) oxidation and, provided that enough Fe(II) oxidizes, promote the formation of amorphous As(V) rich ferric oxy-hydroxides. These bacterially mediated reactions significantly reduce the concentration of dissolved As(III), which is more toxic and mobile than As(V), and might thus be helpful for designing As-removal processes. This work was supported by the French PEVS and ACI Ecologie Quantitative Programs and the PIRAMID EC program. ?Deceased, 26 October 1999 Juillot F., Ildefonse Ph., Morin G., Calas G., De Kersabiec A.M. and Benedetti M. Applied Geochemistry 8, 1031-1048 (1999). Morin G., Lecocq D., Juillot F., Ildefonse Ph., Calas Bull. Soc. Géol. Fr. 173, 281-291 (2002). Morin G., Juillot F., Casiot C., Bruneel O., Personné J-C., Elbaz-Poulichet F., Leblanc M., Ildefonse P. and Calas G. Environ. Sci. Technol (in review.)
Walter, D.A.
1997-01-01
Iron-related well-screen encrustation and aquifer biofouling has decreased the specific capacity of several production wells in Suffolk County, N.Y., and has forced the Suffolk County Water Authority to adopt a costly well-reconditioning and replacement program. The specific-capacity declines are the result of the precipitation of iron oxyhydroxides and the growth of iron bacteria on the well screens and in the pore spaces of the surrounding formation. Mineralogic and chemical analyses indicate that the inorganic part of the encrusting material consists primarily of amorphous ferric hydroxide (Fe(OH)3 ); minor components of the material include goethite (FeOOH), hematite (Fe2 O 3 ), and quartz (SiO 2 ). The weight percent of ferric hydroxide in the material ranged from 32.3 to 98.6 percent and averaged 64.3 percent. Equilibrium modeling indicated that during pumping the well waters were supersaturated with respect to goethite, hematite, magnetite, and quartz and were under-saturated with respect to ferric hydroxide. Theoretical Eh values computed for the ferrous/ferric-iron redox couple and the oxygen/water redox couple averaged 390 millivolts and 810 millivolts, respectively, indicating that the waters were in a state of redox disequilibrium. The disequilibrium condition arises from the mixing of ground water with a low dissolved-oxygen concentration with oxygenated ground water during operation of the well. The low pH of the ground water contributes to the disequilibrium condition by slowing the rate of iron oxidation after the introduction of oxygen. Chemical and mineralogical data indicate that most of the encrusting material in the wells was deposited while the wells were shut down, probably in response to the use of treated water of higher pH to keep pump turbines wet while the wells were not in operation; the increased pH of water in the static water column increases the rate of ferrous-iron oxidation and causes the well water to become increasingly saturated with respect to ferric hydroxide. The median half-time of oxidation in samples of untreated ground water (pH 4-5) was 4.19 days, whereas the average half-time of oxidation in treated water (pH 7-8) was 11.9 minutes Equilibrium modeling indicated that treated waters generally were supersaturated with respect to ferric hydroxide, whereas untreated well waters were not. Field and laboratory data indicate that iron bacteria play an important role in the encrustation and biofouling process in Suffolk County. Filamentous iron bacteria were common in the affected wells. The most common species was Gallionella ferruginea, an effective biofouling agent that prefers water with low, but detectable, dissolved-oxygen concentrations and high dissolved-iron concentrations; this species was more common in biofilm samples from the Magothy aquifer than in those from the upper glacial aquifer. Iron bacteria also were found in sediment cores from several locations in the aquifer and in drilling water. Lignite could act as a carbon source for heterotrophic iron bacteria, which could accelerate the formation of iron-bacteria biofilms in wells screened in some parts of the Magothy aquifer. Iron-bacteria biofilms alter the chemistry of well water by removing iron, manganese, and sulfate from solution and by increasing the pH. Sulfur-reducing bacteria and iron-sulfide mineral phases were observed in some samples of encrusting material, indicating that these bacteria could contribute to well-screen encrustation in some geochemical environments.
Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna
2014-03-01
Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing power with an EC50 of 871.25 microg/mL. The metal chelating activity of the extracts increased with concentration. Chelating effect was 83.60% for fruit extract at 1mg/mL concentration. Oil content of fruit and mixed parts were detected as 6.71 and 6.14%, respectively. A total of 32 fatty acids were found in the oil. Essential fatty acids (linoleic and a-linolenic acid) were identified as the most abundant fatty acids in the oil. These results demonstrated that this plant species can be considered as an alternative to synthetic antioxidants. Likewise, the oil obtained from the plant can be used as a source of essential fatty acids for food and pharmacological applications.
Photoreduction and incorporation of iron into ferritins.
Laulhère, J P; Labouré, A M; Briat, J F
1990-01-01
Pea seed ferritin is able to incorporate ferrous iron into the mineral core. Fe2+ may be formed by reduction of exogenous Fe3+ with ascorbate or by photoreduction by ferritin and by ferric citrate. In our experimental conditions the bulk of the photoreduction is carried out by ferritin, which is able to photoreduce its endogenous iron. Citrate does not enhance the photoreduction capacity of ferritin, and exogenous ferric citrate improves the yield of the reaction by about 30%. The mineral core of the ferritin is shown to photoreduce actively, and the protein shell does not participate directly in the photoreduction. Low light intensities and low concentration of reducing agents do not allow a release of iron from ferritins, but induce a 'redox mill' of photoreduction and simultaneous ferroxidase-mediated incorporation. High ascorbate concentrations induce the release of ferritin iron. These reactions are accompanied by the correlated occurrence of damage caused by radicals arising from Fenton reactions, leading to specific cleavages in the 28 kDa phytoferritin subunit. This damage caused by radicals occurs during the oxidative incorporation into the mineral core and is prevented by o-phenanthroline or by keeping the samples in the dark. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:2375759
NASA Astrophysics Data System (ADS)
Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua
2018-05-01
Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.