Science.gov

Sample records for ferrihydrite phase transformation

  1. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility

    NASA Astrophysics Data System (ADS)

    Paktunc, Dogan; Dutrizac, John; Gertsman, Valery

    2008-06-01

    Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO 4) 1.5 solutions also containing 0.02-0.2 M Na 2HAsO 4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO 4·4-7H 2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH) 6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard

  2. Effects of Al(III) on the ferrihydrite - ordered ferrimagnetic ferrihydrite - hematite transformation

    NASA Astrophysics Data System (ADS)

    Barrón, V.; Michel, F. M.; Liu, Q.; Koch, C. B.; Torrent, J.

    2012-04-01

    Ferrihydrite, a ferric oxyhydroxide nanomineral with high chemical reactivity, is ubiquitous in various Earth surface environments and especially in the edaphosphere. Aluminium is also very common in soils and therefore is tipically associated with iron oxides. Here, we study the influence of Al on the hydrothermal transformation of Al-ferrihydrites to better understand both the structure (much debated in the last years; Michel et al., 2010, Manceau, 2011) and properties of this poorly crystalline phase. Suspensions of synthetic aluminium 2-line ferrihydrite [with Al/(Fe+Al) from 0 to 19 mole%] doped with citrate (citrate/Fe molar ratio = 3%) in order to retard rapid transformation into hematite was aged at 175 °C for periods ranging from 0 to 18 h. X-ray diffraction in the real- and reciprocal-space analyses derived from synchrotron high-energy x-ray total scattering, Mössbauer spectroscopy, magnetic measurements and transmission electron microscopy were used to characterize the dry final products. The presence of Al delays the transformation of ferrihydrite into hematite. In the low-Al samples there is a clear sharpening of the ferrihydrite peaks during aging that is consistent with the formation and growth of the intermediate ordered ferrihydrite. Samples with higher Al contents show minor changes in intensity and peak width that suggest these samples produce less and/or smaller sized intermediate ordered ferrihydrite during aging prior to the formation of hematite. The a- and c-dimensions of the ferrihydrite unit cell [according to the Michel et al. (2010) structure] both decrease with increasing Al content. Uniform changes in the unit cell provide evidence for substitution in all three cation sites in the ferrihydrite structure. The pair distribution functions (from the real XRD pattern) suggest virtually no change in particle size with increasing Al. Increasing the Al concentration results in a decrease in the magnetic enhancement that occurs during aging

  3. Irreversible Sorption of Contaminants During Ferrihydrite Transformation

    SciTech Connect

    Anderson, H.L.; Arthur, S.E.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Westrich, H.R.

    1999-05-19

    A better understanding of the fraction of contaminants irreversibly sorbed by minerals is necessary to effectively quantify bioavailability. Ferrihydrite, a poorly crystalline iron oxide, is a natural sink for sorbed contaminants. Contaminants may be sorbed/occluded as ferrihydrite precipitates in natural waters or as it ages and transforms to more crystalline iron oxides such as goethite or hematite. Laboratory studies indicate that Cd, Co, Cr, Cu, Ni, Np, Pb, Sr, U, and Zn are irreversibly sorbed to some extent during the aging and transformation of synthetic ferrihydrite. Barium, Ra and Sr are known to sorb on ferrihydrite in the pH range of 6 to 10 and sorb more strongly at pH values above its zero point of charge (pH> 8). We will review recent literature on metal retardation, including our laboratory and modeling investigation of Ba (as an analogue for Ra) and Sr adsorption/resorption, during ferrihydrite transformation to more crystalline iron oxides. Four ferrihydrite suspensions were aged at pH 12 and 50 °C with or without Ba in 0.01 M KN03 for 68 h or in 0.17 M KN03 for 3424 h. Two ferrihydrite suspensions were aged with and without Sr at pH 8 in 0.1 M KN03 at 70°C. Barium or Sr sorption, or resorption, was measured by periodically centrifuging suspension subsamples, filtering, and analyzing the filtrate for Ba or Sr. Solid subsamples were extracted with 0.2 M ammonium oxalate (pH 3 in the dark) and with 6 M HCl to determine the Fe and Ba or Sr attributed to ferrihydrite (or adsorbed on the goethite/hematite stiace) and the total Fe and Ba or Sr content, respectively. Barium or Sr occluded in goethite/hematite was determined by the difference between the total Ba or Sr and the oxalate extractable Ba or Sr. The percent transformation of ferrihydrite to goethite/hematite was estimated from the ratio of oxalate and HC1 extractable Fe. All Ba was retained in the precipitates for at least 20 h. Resorption of Ba reached a maximum of 7 to 8% of the Ba2+ added

  4. The transformation of ferrihydrite into goethite or hematite, revisited

    SciTech Connect

    Cudennec, Yannick . E-mail: Yannick.Cudennec@insa-rennes.fr; Lecerf, Andre

    2006-03-15

    During the oxidation of iron, poorly crystallized phases are firstly formed: 2- and 6-line ferrihydrite, which presents for the last phase, a similarity with wustite FeO but also with hematite {alpha}-Fe{sub 2}O{sub 3}. Crystallization increases with time and the solid phase obtained is dependent on temperature and pH. Obviously, high temperature favours the formation of the oxide hematite {alpha}-Fe{sub 2}O{sub 3}. As for the pH factor, it is more complicated. Low and high values of pH (2-5 and 10-14) favour the formation of goethite {alpha}-FeOOH, while obtaining hematite is favoured at neutral pH (values around 7). Goethite or hematite are obtained either through a dissolution-crystallization process or in the solid state, through a topotactic transformation. Given the structural relationships observed between ferrihydrite and wustite and hematite, it is allowed to think that a structural continuity could exist between wustite Fe{sub (1-} {sub x} {sub )}O and hematite via ferrihydrite.

  5. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    2010-02-01

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  6. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite

    SciTech Connect

    Kocar, B.; Borch, T; Fendorf, S

    2010-01-01

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  7. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    SciTech Connect

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    2012-04-30

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  8. Sulfidogenesis Controls on Ferrihydrite Transformation and Repartitioning of Sorbed Arsenic

    NASA Astrophysics Data System (ADS)

    Kocar, B. D.; Fendorf, S.

    2007-12-01

    Iron (hydr)oxides are ubiquitous sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here, we examine diverging pathways of solid phase iron (Fe) transformation during sulfate reduction in the presence of varying As loadings. Columns initially containing As(V)- ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Additionally, abiotic batch reaction experiments were conducted to examine Fe secondary products rapidly formed during sulfidization of As-loaded ferrihydrite. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed within column solids possessing low As(V) surface coverage (10% of the adsorption maximum). Column experiments illustrated that at high As(V) surface coverage (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. The dominant Fe solid-phase transformation products at low As coverage include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)aq concentrations exceed 1 mM. Arsenic(V) is reduced to As(III) and displaced from the zone of sulfidogenesis and Fe(III)s depletion. At higher As coverage, green rust carbonate, as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Abiotic batch reactor experiments illustrate that As is readily released from ferrihydrite during sulfidization, and that low As loadings yield initial Fe secondary products of lepidocrocite and FeS, while high loadings inhibit rapid secondary Fe mineral formation. Our observations illustrate that

  9. Transformation of ferrihydrite in the presence or absence of trace Fe(II): The effect of preparation procedures of ferrihydrite

    SciTech Connect

    Liu Hui; Li Ping; Lu Bin; Wei Yu; Sun Yuhan

    2009-07-15

    Two-line ferrihydrite was prepared by two different procedures. In procedure 1, which is widely used, ferrihydrite (named as ferrihydrite-1) was prepared by droping NaOH solution into Fe(III) solution. In procedure 2, which is rarely reported, ferrihydrite (named as ferrihydrite-2) was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. The results showed that mixing procedures of Fe(III) and alkaline were critical in the sub-microstructures and the conversion mechanisms of ferrihydrites in the presence or absence of trace Fe(II). The sub-microstructure of ferrihydrite-1 favored the mechanism of its dissolution re-crystallization and hematite nanoparticles with rough surface were obtained. The sub-microstructure of ferrihydrite-2 favored the solid state transformation from ferrihydrite to hematite and hematite nanoparticles with smooth surface were formed. These research results will be helpful for us to control the synthesis of hematite nanoparticles with different surface state. - Graphical abstract: Ferrihydrites prepared by mixing Fe{sup 3+} and NaOH solutions according to different procedures can rapidly transform into hematite particles with different surface structures in the presence of trace Fe(II).

  10. Influence of Coprecipitated Organic Matter on Fe2+(aq) -Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics

    SciTech Connect

    Chen, Chunmei; Kukkadapu, Ravi K.; Sparks, Donald L.

    2015-08-10

    The poorly crystalline Fe(III) hydroxide ferrihydrite is an important sink for organic matter (OM), nutrients and contaminants in soils and sediments. Aqueous Fe(II) is known to catalyze the transformation of ferrihydrite to more crystalline and thus less reactive phases. While coprecipitation of OM with ferrihydrite could be a common process in many environments due to changes in pH, redox potential or ionic strength, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we explored the extent and pathways of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates and subsequent C mobility. Mössbauer spectroscopic results indicated that the coprecipitated OM within ferrihydrite weakened the inter-particle magnetic interactions and decreased average particle size. The coprecipitated OM resulted in diminished Fe(II)-induced ferrihydrite transformation and thus preservation of ferrihydrite. The secondary mineral profiles upon Fe(II) reaction with ferrihydrite were a function of OM content and Fe(II) concentration. At low Fe(II) levels, OM completely inhibited goethite formation and stimulated lepidocrocite formation. At high Fe(II) levels, whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrcocite. The solid-phase C content remained unchanged after reaction, while OM desorpability by H2PO4- was enhanced following reaction of OM-ferrihydrites with aqueous Fe(II). These findings provide insights into the reactivity of natural ferrihydrite containing OM in soils and sediments and the subsequent impact on mineral evolution and C dynamics.

  11. Detailed magnetic monitoring of the enhanced magnetism of ferrihydrite along its progressive transformation into hematite

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Barrón, V.; Andrés-Vergés, M.; Serna, C. J.; Veintemillas-Verdaguer, S.; Morales, M. P.; Lázaro, F. J.

    2016-06-01

    Under certain aging conditions, ferrihydrite evolves into hematite through intermediate products of enhanced magnetism. Although the magnetic properties of the end product, hematite, are to date satisfactorily known, those of ferrihydrite (and especially the products of its progressive aging) are not sufficiently explored. To this end, magnetic experiments, conducted mostly by using alternating magnetic fields, have been performed. The results reveal that two-line ferrihydrite exhibits conspicuous low-temperature spin glass behavior, a new finding that, on the other hand, could be expected given the previous microstructural observations that described this mineral as a very disordered gel. Upon aging, a progressive increase of the effective magnetic moment per iron ion is detected, in agreement with previous observations that ascribed ferrimagnetic character to an intermediate crystalline phase (sometime called ferriferrihydrite) that disappears just before the full transformation into hematite. Transmission electron microscopy observations suggest that this intermediate crystalline phase nucleates at the expense of the primordial gel, remaining physically attached to it until complete transformation into hematite. This microstructural picture appears well supported as, upon aging, the glassy magnetic dynamics found in ferrihydrite persists for the aged products even when dispersed in a nonmagnetic matrix, very likely because part of the so grown ferrimagnetic nanoparticles form aggregates within remains of the nontransformed gel. We propose a coherent model of ferrihydrite aging, based on integrated microstructural and magnetic observations, which is useful for the identification of aging products in geological and biological environments.

  12. Coprecipitated arsenate inhibits thermal transformation of 2-line ferrihydrite: implications for long-term stability of ferrihydrite.

    PubMed

    Wang, Zhaohui; Xiao, Dongxue; Bush, Richard T; Liu, Jianshe

    2015-03-01

    2-line ferrihydrite, a ubiquitous iron oxy-hydroxide found in natural and engineered systems, is an efficient sink for the toxic metalloids such as arsenic. While much is known of the excellent capacity of ferrihydrite to coprecipitate arsenate, there is little information concerning the long-term stability of arsenate-accumulated ferrihydrite. By thermal treatment methodology, the expedited transformation of ferrihydrite in the presence of coprecipitated arsenate was studied at varying As/Fe ratios (0-0.5) and different heating temperature (40, 300, 450, 600°C). Pure and transformed minerals were characterized by thermogravimetry (TG), X-ray diffraction (XRD), Electron Spin Resonance (ESR), Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Fourier Transform Infrared Spectroscopy (FTIR). Arsenate was found to retard the thermal transformation of ferrihydrite. The extents of ferrihydrite transformation to hematite decreased with increasing As/Fe ratios, but increased at a higher heating temperature. It is predicted that the coprecipitated arsenate can stabilize the amorphous iron oxides against the transformation to more crystalline solids. Arsenate concentration appears to play an important role in this predicted long-term stability.

  13. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature.

    PubMed

    Das, Soumya; Hendry, M Jim; Essilfie-Dughan, Joseph

    2011-01-01

    Under oxic aqueous conditions, two-line ferrihydrite gradually transforms to more thermodynamically stable and more crystalline phases, such as goethite and hematite. This temperature- and pH-dependent transformation can play an important role in the sequestration of metals and metalloids adsorbed onto ferrihydrite. A comprehensive assessment of the crystallization of two-line ferrihydrite with respect to temperature (25, 50, 75, and 100 °C) and pH (2, 7, and 10) as a function of reaction time (minutes to months) was conducted via batch experiments. Pure and transformed phases were characterized by X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The rate of transformation of two-line ferrihydrite to hematite increased with increasing temperature at all pHs studied and followed first-order reaction kinetics. XRD and XANES showed simultaneous formation of goethite and hematite at 50 and 75 °C at pH 10, with hematite being the dominant product at all pHs and temperatures. With extended reaction time, hematite increased while goethite decreased, and goethite reaches a minimum after 7 days. Observations suggest two-line ferrihydrite transforms to hematite via a two-stage crystallization process, with goethite being intermediary. The findings of this study can be used to estimate rates of crystallization of pure two-line ferrihydrite over the broad range of temperatures and pH found in nature.

  14. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions

    SciTech Connect

    Yang, L.; Steefel, C.I.; Marcus, M.A.; Bargar, J.R.

    2010-04-01

    The readsorption of ferrous ions produced by the abiotic and microbially-mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 hours and 150 hours of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot, it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggest that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed.

  15. Understanding the biological stabilization of ferrihydrite and its transformation to magnetite

    NASA Astrophysics Data System (ADS)

    Gordon, Lyle; Joester, Derk

    2013-03-01

    The biosynthesis of magnetite in the chiton tooth begins with the formation of ferrihydrite, which is transformed into magnetite. This strategy, which employs crystallization of a precursor into the desired polymorph, is generalized across a range of organisms. However, the specific biological factors that control the transformation are not known. Our results employing atom probe tomography of chiton tooth magnetite revealed the presence of acidic proteins binding sodium and magnesium ions associated with chitin nanofibers. Using a model system we are investigating the influence of organic and inorganic additives on the stabilization of ferrihydrite and the transformation to magnetite. I will discuss the influence of a range of organic and inorganic additives on the formation and transformation of ferrihydrite within the gel. We have found that acidic polymers stabilize ferrihydrite and prevent the formation of the crystalline polymorphs. Transformation of the ferrihydrite to magnetite upon addition of ferrous iron is observed as early as 30 minutes. Taken together, the contribution of these factors to magnetite biomineralization in the presence of an organic matrix will help to elucidate biological mechanisms for nucleation, stabilization, and transformation of iron oxides.

  16. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  17. Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite.

    PubMed

    Cismasu, A Cristina; Williams, Kenneth H; Nico, Peter S

    2016-01-05

    Natural organic matter is often associated with Fe(III) oxyhydroxides, and may be stabilized as a result of coprecipitation or sorption to their surfaces. However, the significance of this association in relation to Fe and C dynamics and biogeochemical cycling, and the mechanisms responsible for organic matter stabilization as a result of interaction with minerals under various environmental conditions (e.g., pH, Eh, etc.) are not entirely understood. The preservation of mineral-bound OM may be affected by OM structure and mineral identity, and bond types between OM and minerals may be central to influencing the stability, transformation and composition of both organic and mineral components under changing environmental conditions. Here we use bulk and submicron-scale spectroscopic synchrotron methods to examine the in situ transformation of OM-bearing, biogenic ferrihydrite stalks (Gallionella ferruginea-like), which formed following injection of oxygenated groundwater into a saturated alluvial aquifer at the Rifle, CO field site. A progression from oxidizing to reducing conditions during an eight-month period triggered the aging and reductive transformation of Gallionella-like ferrihydrite stalks to Fe (hydroxy)carbonates and Fe sulfides, as well as alteration of the composition and amount of OM. Spectromicroscopic measurements showed a gradual decrease in reduced carbon forms (aromatic/alkene, aliphatic C), a relative increase in amide/carboxyl functional groups and a significant increase in carbonate in the stalk structures, and the appearance of organic globules not associated with stalk structures. Biogenic stalks lost ∼30% of their initial organic carbon content. Conversely, a significant increase in bulk organic matter accompanied these transformations. The character of bulk OM changed in parallel with mineralogical transformations, showing an increase in aliphatic, aromatic and amide functional groups. These changes likely occurred as a result of an

  18. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry.

    PubMed

    Canhisares-Filho, José E; Carneiro, Cristine E A; de Santana, Henrique; Urbano, Alexandre; da Costa, Antonio C S; Zaia, Cássia T B V; Zaia, Dimas A M

    2015-09-01

    Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine > uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.

  19. Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium.

    PubMed

    Borch, Thomas; Inskeep, William P; Harwood, Jace A; Gerlach, Robin

    2005-09-15

    Batch studies were conducted to explore differences in the transformation pathways of 2,4,6-trinitrotoluene (TNT) reduction by a Gram-positive fermenting bacterium (Cellulomonas sp. strain ES6) in the presence and absence of ferrihydrite and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Strain ES6 was capable of TNT and ferrihydrite reduction with increased reduction rates in the presence of AQDS. Hydroxylaminodinitrotoluenes, 2,4-dihydroxylamino-6-nitrotoluene (2,4-DHANT), and tetranitroazoxytoluenes were the major metabolites observed in ferrihydrite- and AQDS-free systems in the presence of pure cell cultures. Ferrihydrite enhanced the production of amino derivatives because of reactions with microbially produced surface-associated Fe(ll). The presence of AQDS in the absence of ferrihydrite promoted the fast initial formation of arylhydroxylamines such as 2,4-DHANT. However, unlike in pure cell systems, these arylhydroxylamines were transformed into several unidentified polar products. When both microbially reduced ferrihydrite and AQDS were present simultaneously, the reduction of TNT was more rapid and complete via pathways thatwould have been difficult to infer solely from single component studies. This study demonstrates the complexity of TNT degradation patterns in model systems where the interactions among bacteria, Fe minerals, and organic matter have a pronounced effect on the degradation pathway of TNT.

  20. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite

    PubMed Central

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Barrón, Vidal; Torrent, José; Roberts, Andrew P.

    2016-01-01

    Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism. PMID:27458091

  1. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite.

    PubMed

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J; Barrón, Vidal; Torrent, José; Roberts, Andrew P

    2016-07-26

    Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities <~60 μT. Higher fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism.

  2. The Mineralogic Transformation of Ferrihydrite Induced by Heterogeneous Reaction with Bioreduced Anthraquinone Disulfonate (AQDS) and the Role of Phosphate

    SciTech Connect

    Zachara, John M.; Kukkadapu, Ravi K.; Peretyazhko, Tetyana; Bowden, Mark E.; Wang, Chong M.; Kennedy, David W.; Moore, Dean A.; Arey, Bruce W.

    2011-10-12

    Anthraquinone-2-6-disulfonate (AQDS) enhances electron donor utilization and mineral product crystallization in studies of Fe(III) oxide reductive mineralization by metal reducing bacteria (MRB) through heterogeneous redox reaction. In spite of the strong effect of AQDS in these systems, little information exits on its direct role in reductive mineralization. To provide such insights, bioreduced AQDS (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. P inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)]=0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The direct AH2DS-driven reductive reaction pathway produced mineral products that were different from AH2DS-ferrihydite-MRB systems, particularly in presence of P.

  3. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism

    PubMed Central

    Michel, F. Marc; Barrón, Vidal; Torrent, José; Morales, María P.; Serna, Carlos J.; Boily, Jean-François; Liu, Qingsong; Ambrosini, Andrea; Cismasu, A. Cristina; Brown, Gordon E.

    2010-01-01

    The natural nanomineral ferrihydrite is an important component of many environmental and soil systems and has been implicated as the inorganic core of ferritin in biological systems. Knowledge of its basic structure, composition, and extent of structural disorder is essential for understanding its reactivity, stability, and magnetic behavior, as well as changes in these properties during aging. Here we investigate compositional, structural, and magnetic changes that occur upon aging of “2-line” ferrihydrite in the presence of adsorbed citrate at elevated temperature. Whereas aging under these conditions ultimately results in the formation of hematite, analysis of the atomic pair distribution function and complementary physicochemical and magnetic data indicate formation of an intermediate ferrihydrite phase of larger particle size with few defects, more structural relaxation and electron spin ordering, and pronounced ferrimagnetism relative to its disordered ferrihydrite precursor. Our results represent an important conceptual advance in understanding the nature of structural disorder in ferrihydrite and its relation to the magnetic structure and also serve to validate a controversial, recently proposed structural model for this phase. In addition, the pathway we identify for forming ferrimagnetic ferrihydrite potentially explains the magnetic enhancement that typically precedes formation of hematite in aerobic soil and weathering environments. Such magnetic enhancement has been attributed to the formation of poorly understood, nano-sized ferrimagnets from a ferrihydrite precursor. Whereas elevated temperatures drive the transformation on timescales feasible for laboratory studies, our results also suggest that ferrimagnetic ferrihydrite could form naturally at ambient temperature given sufficient time. PMID:20133643

  4. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism.

    PubMed

    Michel, F Marc; Barrón, Vidal; Torrent, José; Morales, María P; Serna, Carlos J; Boily, Jean-François; Liu, Qingsong; Ambrosini, Andrea; Cismasu, A Cristina; Brown, Gordon E

    2010-02-16

    The natural nanomineral ferrihydrite is an important component of many environmental and soil systems and has been implicated as the inorganic core of ferritin in biological systems. Knowledge of its basic structure, composition, and extent of structural disorder is essential for understanding its reactivity, stability, and magnetic behavior, as well as changes in these properties during aging. Here we investigate compositional, structural, and magnetic changes that occur upon aging of "2-line" ferrihydrite in the presence of adsorbed citrate at elevated temperature. Whereas aging under these conditions ultimately results in the formation of hematite, analysis of the atomic pair distribution function and complementary physicochemical and magnetic data indicate formation of an intermediate ferrihydrite phase of larger particle size with few defects, more structural relaxation and electron spin ordering, and pronounced ferrimagnetism relative to its disordered ferrihydrite precursor. Our results represent an important conceptual advance in understanding the nature of structural disorder in ferrihydrite and its relation to the magnetic structure and also serve to validate a controversial, recently proposed structural model for this phase. In addition, the pathway we identify for forming ferrimagnetic ferrihydrite potentially explains the magnetic enhancement that typically precedes formation of hematite in aerobic soil and weathering environments. Such magnetic enhancement has been attributed to the formation of poorly understood, nano-sized ferrimagnets from a ferrihydrite precursor. Whereas elevated temperatures drive the transformation on timescales feasible for laboratory studies, our results also suggest that ferrimagnetic ferrihydrite could form naturally at ambient temperature given sufficient time.

  5. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    SciTech Connect

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  6. Ferrihydrite in soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Shoba, S. A.

    2016-07-01

    Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10-20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.

  7. Low aggregation state diminishes ferrihydrite reactivity

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Heister, Katja; Meckenstock, Rainer U.

    2013-04-01

    Ferrihydrite is an abundant iron(oxy)hydroxide in soils and sediments and plays an important role in microbial iron cycling due to its high reactivity. Therefore, it is often synthesized and used in geomicrobiological and mineralogical studies. The reactivities of synthetic ferrihydrites vary between different studies and synthesis protocols. Hence, we synthesized five different ferrihydrites and characterized them with XRD, FTIR, XPS, and BET specific surface area. The reactivity of the ferrihydrite samples towards ascorbic acid was examined and compared with microbial reduction rates by Geobacter sulfurreducens. FTIR and XRD results show the presence of secondary, higher crystalline iron oxide phases like goethite and akaganeite for two samples. Consequently, those samples revealed lower biotic and abiotic reduction rates compared to pure ferrihydrite. Comparison of reduction rates with the specific surface area of all ferrihydrites showed neither correlation with abiotic reductive dissolution nor with microbial reduction. Especially one sample, characterized by a very low aggregation state and presence of secondary minerals, revealed a poor reactivity. We speculate that apart from the occurring secondary minerals also the low aggregation state played an important role. Decreasing aggregation diminishes the amount of kinks and edges on the surfaces, which are produced at contact sites in aggregates. According to dissolution theories, dissolution mainly starts at those surface defects and slows down with decreasing amount of defects. Furthermore, the non-aggregated ferrihydrite is free of micropores, a further stimulant for dissolution. Independent repetitions of experiments and syntheses according to the same protocol but without formation of secondary minerals, confirmed the low reactivity of the non-aggregated ferrihydrite. In summary, our results indicate that a decreasing aggregation state of ferrihydrite to a certain size does increase the reactivity

  8. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  9. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  10. Microbial sulfidogenesis in ferrihydrite-rich environments: Effects on iron mineralogy and arsenic mobility

    NASA Astrophysics Data System (ADS)

    Burton, Edward D.; Johnston, Scott G.; Bush, Richard T.

    2011-06-01

    Microbial sulfidogenesis plays a potentially important role in Fe and As biogeochemistry within wetland soils, sediments and aquifers. This study investigates the specific effects of microbial sulfidogenesis on Fe mineralogy and associated As mobility in mildly acidic (pH 6) and mildly basic (pH 8) advective-flow environments. A series of experiments were conducted using advective-flow columns, with an initial solid-phase comprising As(III)-bearing ferrihydrite-coated quartz sand. Columns for each pH treatment were inoculated with the sulfate-reducing bacteria Desulfovibrio vulgaris, and were compared to additional abiotic control columns. Over a period of 28 days, microbial sulfidogenesis (as coupled to the incomplete oxidation of lactate) caused major changes in Fe mineralogy, including replacement of ferrihydrite by mackinawite and magnetite at the in-flow end of the inoculated columns. At pH 8, the Fe 2+ produced by electron transfer between sulfide and ferrihydrite was mainly retained near its zone of formation. In contrast, at pH 6, much of the produced Fe 2+ was transported with advecting groundwater, facilitating the downstream Fe 2+-catalyzed transformation of ferrihydrite to goethite. At both pH 6 and pH 8, the sulfide-driven reductive dissolution of ferrihydrite and its replacement by mackinawite at the in-flow end of the inoculated columns resulted in substantial mobilization of As into the pore-water. At pH 8, this caused the downstream As concentrations within the inoculated columns to be greater than the corresponding abiotic column. However, the opposite occurred under pH 6 conditions, with the Fe 2+-catalyzed transformation of ferrihydrite to goethite in the inoculated columns causing a decrease in downstream As concentrations compared to the abiotic column. Although thermodynamically favorable at intermediate times and depth intervals within the inoculated columns, solid As sulfide phases were undetectable by As XANES spectroscopy. Our findings

  11. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  12. Ferrous Phosphate Surface Precipitates Resulting from the Reduction of Intragrain 6-line Ferrihydrite by Shewanella oneidensis MR-1

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Kennedy, David W.; Fredrickson, Jim K.; Arey, Bruce W.; McKinley, James P.; Wang, Chong M.; Dohnalkova, Alice; Xia, Yuanxian

    2010-07-01

    The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3) and phosphate (P) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behaviour with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L-1 Fe(III)T]. In the intragrain ferrihydrite suspensions, 200-300 µmol L-1 dissolved Fe(III) was released during the initial stages of incubation; no Fe(III)aq was detected in the free ferrihydrite suspensions. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Distinctive surface precipitates of Fe(II) phosphates with spherical morphology were observed on porous silica when P was present. These precipitates were well colonized by microorganisms and fragments of extracellular materials at the end of incubation.

  13. In vivo efficacy of ferrihydrite as an enterosorbent for arsenic: short-term evaluation in rodents.

    PubMed

    Taylor, John F; Robinson, Abraham; Mitchell, Nicole J; Marroquin-Cardona, Alicia; Johnson, Natalie; Elmore, Sarah E; Romoser, Amelia A; Phillips, Timothy D

    2013-01-01

    The use of dietary adsorbents to reduce arsenic (As) exposure is innovative. Ferrihydrite successfully sorbs arsenite and asenate over a wide range of pH conditions and the As-ferrihydrite complexes are stable in gastrointestinal (GIT) models. Our objectives were to (1) compare structural characteristics (using x-ray diffraction and Fourier-transform infrared [FTIR] spectroscopy) and As binding affinities of industrially produced ferrihydrite (IDF) and lab-synthesized ferrihydrite and (2) evaluate the efficacy of the material displaying the best sorption capability as an As enterosorbent in a short-term mammalian model. Lab-synthesized ferrihydrite displayed superior binding affinity for both arsenate and arsenite in vitro, which led to its use in the in vivo portion of the study. Young Sprague-Dawley male rats were fed either a control diet or a 0.5% w/w ferrihydrite feed. After 1 wk of acclimation, rats were given 0.5 ml of 500 mg/L arsenate or arsenite via gavage with or without ferrihydrite. Rats were then transferred to metabolism cages, and urine collected after 24 and 48 h was analyzed for total As. Rats were evaluated daily for signs of morbidity and mortality for up to 1 wk. Ferrihydrite reduced mean urinary As levels by 74.9% and 43.6% after 24 h and 49.1% and 39.5% after 48 h for arsenite- and arsenate-treated groups, respectively. Importantly, treatment groups receiving ferrihydrite displayed no signs of As-related toxicity. All As reductions were statistically significant except for arsenate treatments at 24 h. Data suggest that, as an enterosorbent, ferrihydrite reduces bioavailability after As exposures.

  14. Phase Transformations and Microstructural Evolution: Part I

    DOE PAGES

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less

  15. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  16. Phase Transformations and Microstructural Evolution: Part II

    SciTech Connect

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in this issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.

  17. Phase Transformations and Microstructural Evolution: Part I

    SciTech Connect

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution are highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.

  18. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    NASA Astrophysics Data System (ADS)

    Pariona, N.; Camacho-Aguilar, K. I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-05-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a "plum pudding", where hematite NPs "raisins" are surrounded by ferrihydrite "pudding". Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere.

  19. Biotransformation of Two-Line Silica-Ferrihydrite by a Dissimilatory Fe(III)-Reducing Bacterium: Formation of Carbonate Green Rust in the Presence of Phosphate

    SciTech Connect

    Kukkadapu, Ravi K.; Zachara, John M.; Fredrickson, Jim K.; Kennedy, David W.

    2004-07-01

    The reductive biotransformation of two Si-ferrihydrite (0.01 and 0.05 mole% Si) coprecipiates by Shewanella putrefaciens, strain CN32, was investigated in 1,4-piperazinediethanesulfonic acid-buffered media (pH ~7) with lactate as the electron donor. Anthraquinone-2,6-disulfonate (electron shuttle) that stimulates respiration was present in the media. Experiments were performed without and with PO43- (ranging from 1 to 20 mmol/L in media containing 50 mmol/L Fe). Our objectives were to define the combined effects of SiO44- and PO43- on the bioreducibility and biomineralization of ferrihydrites under anoxic conditions. Iron reduction was measured as a function of time, solids were characterized by powder X-ray diffraction (XRD) and Mossbauer spectroscopy, and aqueous solutions were analyzed for Si, P, Cl- and inorganic carbon. Both of the ferrihydrites were rapidly reduced regardless of the Si content. Si concentration had no effect on the reduction rate or mineralization products. Magnetite was formed in the absence of PO43- whereas carbonate green rust GR(CO32-) ([FeII(6-x)FeIIIx(OH)12]x+(CO32-)0.5x.yH2O) and vivianite [Fe3(PO4)2.8H2O], were formed when PO43- was present. GR(CO32-) dominated as a mineral product in samples with < 4 mmol/L PO43-. The Fe(II)/Fe(III) ratio of GR(CO32-) varied with PO43- concentration; it was 2 in the 1 mmol/L PO43- and approached 1 in the 4- and 10-mmol/L PO43- samples. GR appeared to form by solid-state transformation of ferrihydrite. Medium PO43- concentration dictated the mechanism of transformation. In 1 mmol/L PO43- media, an intermediate Fe(II)/Fe(III) phase with structural Fe(II), which we tentatively assigned to a protomagnetite phase, slowly transformed to GR with time. In contrast, in medium with >4 mmol/L PO43-, a residual ferrihydrite with sorbed Fe2+ phase transformed to GR. Despite similar chemistries, PO43- was shown to have a profound effect on ferrihydrite biotransformations while that of SiO44- was minimal.

  20. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.

    PubMed

    Jiang, Shenghua; Lee, Ji-Hoon; Kim, Donghun; Kanaly, Robert A; Kim, Min-Gyu; Hur, Hor-Gil

    2013-08-06

    Arsenic immobilization and release in the environment is significantly influenced by bacterial oxidation and reduction of arsenic and arsenic-bearing minerals. In this study, we tested three iron-reducing bacteria, Shewanella oneidensis MR-1, Shewanella sp. HN-41, and Shewanella putrefaciens 200, which have diverse arsenate-reducing activities with regard to reduction of an As-bearing ferrihydrite slurry. In the cultures of S. oneidensis MR-1 and Shewanella sp. HN-41, which are not capable of respiratory reduction of As(V) to As(III), arsenic was maintained predominantly in its pentavalent form, existing in particulate poorly crystalline As-bearing ferrihydrite and formed small quantities of a stable ferrous arsenate [Fe3(AsO4)2] precipitate. However, in the culture of the As(V) reducer, S. putrefaciens 200, As(V) was reduced to As(III) and a small fraction of As-bearing ferrihydrite was transformed into ribbon-shaped siderite that subsequently re-released arsenic into the liquid phase. Our results indicated that release of arsenic and formation of diverse secondary nanoscale Fe-As minerals are specifically closely related to the arsenic-reducing abilities of different bacteria. Therefore, bacterial arsenic reduction appears to significantly influence As mobilization in soils, minerals, and other Fe-rich environments.

  1. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.

    PubMed

    Kranzler, Chana; Kessler, Nivi; Keren, Nir; Shaked, Yeala

    2016-12-01

    Iron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria. Some cyanobacteria secrete iron solubilizing ligands called siderophores, yet many environmentally relevant strains do not have this ability. This work explores the bioavailability of amorphous synthetic Fe-oxides (ferrihydrite) to the non-siderophore producing, unicellular cyanobacterium, Synechocystis sp PCC 6803. Iron uptake assays with (55) ferrihydrite established dissolution as a critical prerequisite for iron transport. Dissolution assays with the iron binding ligand, desferrioxamine B, demonstrated that Synechocystis 6803 enhances ferrihydrite dissolution, exerting siderophore-independent biological influence on ferrihydrite bioavailability. Dissolution mechanisms were studied using a range of experimental conditions; both cell-particle physical proximity and cellular electron flow were shown to be important determinants of bio-dissolution by Synechocystis 6803. Finally, the effects of ferrihydrite stability on bio-dissolution rates and cell physiology were measured, integrating biological and chemical aspects of ferrihydrite bioavailability. Collectively, these findings demonstrate that Synechocystis 6803 actively dissolves ferrihydrite, highlighting a significant biological component to mineral phase iron bioavailability in aquatic environments.

  2. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  3. Thermodynamics of entropy-driven phase transformations.

    PubMed

    Radosz, A; Ostasiewicz, K; Magnuszewski, P; Damczyk, J; Radosiński, Ł; Kusmartsev, F V; Samson, J H; Mituś, A C; Pawlik, G

    2006-02-01

    Thermodynamic properties of one-dimensional lattice models exhibiting entropy-driven phase transformations are discussed in quantum and classical regimes. Motivated by the multistability of compounds exhibiting photoinduced phase transitions, we consider systems with asymmetric, double, and triple well on-site potential. One finds that among a variety of regimes, quantum versus classical, discrete versus continuum, a key feature is asymmetry distinguished as a "shift" type and "shape" type in limiting cases. The behavior of the specific heat indicates one phase transformation in a "shift" type and a sequence of two phase transformations in "shape"-type systems. Future analysis in higher dimensions should allow us to identify which of these entropy-driven phase transformations would evolve into phase transitions of the first order.

  4. Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2012-09-01

    :bacteria mass ratio of the composite. EXAFS shows that Cu adsorbs to ferrihydrite as an inner-sphere, (CuO4Hn)n - 6 bidentate edge-sharing complex; and to ferrihydrite composites as an inner-sphere, (CuO5Hn)n - 8 monodentate complex with carboxyl surface functional groups present on the bacterial fraction plus the bidentate edge-sharing complex on the ferrihydrite fraction. Our new results combined with previous work on Cu sorption to bacteria, humic substances and iron (hydr)oxides coated with humics, demonstrate the universal importance of the carboxyl moiety for Cu sorption and mobility in natural environments. Taken together these results show that Cu-carboxyl binding is the predominant mechanism by which Cu interacts with abiotic and biotic organic matter, and provides a ubiquitous control on Cu fate and mobility in natural waters, soils and sediments. Our results indicate that in environments where a significant proportion of iron (hydr)oxides are intimately intermixed with an organic fraction, we must consider Cu sequestration by these composites in addition to pure mineral phases.

  5. Spectral Evolution of Bioreduced Ferrihydrite by Hyperthermophiles

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Kashyap, S.; Holden, J. F.; Dyar, M. D.

    2016-05-01

    The hyperthermophile Pyrodictium sp. Su06 reduces ferrihydrite to a black, magnetic, Fe(II)-bearing mineral. Mossbauer spectra for that mineral freeze dried vs. frozen in the original liquid suspension differ. Both represent potential biosignatures.

  6. Exchange bias in nano-ferrihydrite

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-11-01

    We report the results of investigations of the effect of cooling in an external magnetic field starting from the temperature over superparamagnetic blocking temperature TB on the shift of magnetic hysteresis loops in systems of ferrihydrite nanoparticles from ˜2.5 to ˜5 nm in size with different TB values. In virtue of high anisotropy fields of ferrihydrite nanoparticles and open hysteresis loops in the range of experimentally attainable magnetic fields, the shape of hysteresis loops of such objects in the field-cooling mode is influenced by the minor hysteresis loop effect. A technique is proposed for distinguishing the exchange bias effect among the effects related to the minor hysteresis loops caused by high anisotropy fields of ferrihydrite particles. The exchange bias in ferrihydrite is stably observed for particles not less than 3 nm in size or with TB over 40 K, and its characteristic value increases with the particle size.

  7. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model

    PubMed Central

    Burnol, André; Garrido, Francis; Baranger, Philippe; Joulian, Catherine; Dictor, Marie-Christine; Bodénan, Françoise; Morin, Guillaume; Charlet, Laurent

    2007-01-01

    High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V) sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III)-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II) in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II) concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III) whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V). X-ray diffraction revealed vivianite Fe(II)3(PO4)2.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1) As(V) is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2) the release of As

  8. The Kinetics of Phase Transformation in Welds

    SciTech Connect

    Elmer, J W; Wong, J; Palmer, T

    2002-02-06

    The fundamentals of welding-induced phase transformations in metals and alloys are being investigated using a combination of advanced synchrotron based experimental methods and modem computational science tools. In-situ experimental methods have been developed using a spatially resolved x-ray probe to enable direct observations of phase transformations under the real non- isothermal conditions experienced during welding. These experimental techniques represent a major step forward in the understanding of phase transformations that occur during welding, and are now being used to aid in the development of models to predict microstructural evolution under the severe temperature gradients, high peak temperatures and rapid thermal fluctuations characteristic of welds. Titanium alloys, stainless steels and plain carbon steels are currently under investigation, and the phase transformation data being obtained here cannot be predicted or measured using conventional metallurgical approaches. Two principal synchrotron-based techniques have been developed and refined for in-situ investigations of phase transformation dynamics in the heat-affected zone (HAZ) and fusion zone (FZ) of welds: Spatially Resolved X-Ray Diffraction (SRXRD) and Time Resolved X-Ray Diffraction (TRXRD). Both techniques provide real-time observations of phases that exist during welding, and both have been developed at the Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux wiggler beam line. The SRXRD technique enables direct observations of the phases existing in the HAZ of quasi-stationary moving arc welds, and is used to map the HAZ phases by sequentially jogging the weld with respect to the x-ray beam while taking x-ray diffraction (XRD) patterns at each new location. These spatially resolved XRD patterns are collected in linear traverses perpendicular to the direction of weld travel. The XRD data contained in multiple traverses is later compiled to produce an areal map of the phases

  9. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  10. Chemical analysis for optimal synthesis of ferrihydrite-modified diatomite using soft X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2009-12-01

    Effects of process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and chemical characteristics of ferrihydrite-modified diatomite are studied by using X-ray absorption near-edge structure spectroscopy. The spectra were recorded in total electron yield mode and/or fluorescence yield mode to investigate the chemical nature of Fe and Si on the surface and/or in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite on the surface of diatomite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer-Emmett-Teller specific surface area of ferrihydrite-modified diatomite decreased with the increasing FeCl2 concentration. The crystalline degree of ferrihydrite decreased with the increase of NaOH concentration. The high temperature calcination caused an energy shift in the Si L-edge spectra to the high energy side and a transformation of Si-containing ferrihydrite to crystallized hematite might occur when ferrihydrite-modified diatomite is calcined at 900°C. In this study, the optimal synthesis conditions for the ferrihydrite-modified diatomite with the least crystalline Si-containing ferrihydrite and the highest surface area were found to be as the follows: 0.5 M FeCl2 solution, 6 M NaOH solution and drying temperature of 50°C.

  11. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil

    NASA Astrophysics Data System (ADS)

    Zhuang, Li; Xu, Jielong; Tang, Jia; Zhou, Shungui

    2015-05-01

    Microbial reduction of Fe(III) can be one of the major factors controlling methane production from anaerobic sedimentary environments, such as paddy soils and wetlands. Although secondary iron mineralization following Fe(III) reduction is a process that occurs naturally over time, it has not yet been considered in methanogenic systems. This study performed a long-term anaerobic incubation of a paddy soil and ferrihydrite-supplemented soil cultures to investigate methanogenesis during ferrihydrite biomineralization. The results revealed that the long-term effect of ferrihydrite on methanogenesis may be enhancement rather than suppression documented in previous studies. During initial microbial ferrihydrite reduction, methanogenesis was suppressed; however, the secondary minerals of magnetite formation was simultaneous with facilitated methanogenesis in terms of average methane production rate and acetate utilization rate. In the phase of magnetite formation, microbial community analysis revealed a strong stimulation of the bacterial Geobacter, Bacillus, and Sedimentibacter and the archaeal Methanosarcina in the ferrihydrite-supplemented cultures. Direct electric syntrophy between Geobacter and Methanosarcina via conductive magnetite is the plausible mechanism for methanogenesis acceleration along with magnetite formation. Our data suggested that a change in iron mineralogy might affect the conversion of anaerobic organic matter to methane and might provide a fresh perspective on the mitigation of methane emissions from paddy soils by ferric iron fertilization.

  12. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  13. Materials Science and Technology, Volume 5, Phase Transformations in Materials

    NASA Astrophysics Data System (ADS)

    Haasen, Peter

    1996-12-01

    This volume covers phase transformations, a general phenomenon central to understanding the behavior of materials and to creating high-performance materials. From the Contents: Pelton: Thermodynamics and Phase Diagrams of Materials. Murch: Diffusion in Crystalline Solids. Binder: Statistical Theories of Phase Transitions/Spinodal Decomposition. Wagner/Kampmann: Homogeneous Second Phase Precipitation. Purdy: Transformations Involving Interfacial Diffusion. Delaey: Diffusionless Transformations. Ruoff: High Pressure Phase Transformations. Pitsch/Inden: Atomic Ordering. Müller- Krumbhaar/Kurz: Solidification.

  14. Ferrous phosphate surface precipitates resulting from the reduction of intragrain 6-line ferrihydrite by Shewanella oneidensis MR-1

    SciTech Connect

    Peretyazhko, Tetyana; Zachara, John M.; Kennedy, David W.; Fredrickson, Jim K.; Arey, Bruce W.; McKinley, James P.; Wang, Chong M.; Dohnalkova, Alice; Xia, Yuanxian

    2010-07-01

    The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behaviour with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L-1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.

  15. Domain walls in ω-phase transformations

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Saxena, Avadh

    1998-11-01

    The β-phase (body-centered cubic: b.c.c.) to ω-phase transformation in certain elements (e.g. Zr) and alloys (e.g. ZrNb) is induced either by quenching or application of pressure. The ω-phase is a metastable state and usually coexists with the β-matrix in the form of small particles. To study the formation of domain walls in these materials we have extended the Landau model of Cook for the ω-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy we obtain a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, we obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the ω-phase and the β-matrix. In addition, we obtained soliton lattice (domain wall array) solutions, calculated their formation energy and the asymptotic interaction between the solitons.

  16. Phase amplitude conformal symmetry in Fourier transforms

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2015-04-01

    For the Fourier transform ℑ : L2(R) → L2(R) of a complex-valued even or odd function ψ, it is found that the amplitude invariance |ℑψ| = |ψ| leads to a phase invariance or inversion as arg(ℑψ) = ±argψ + θ (θ = constant). The converse holds unless arg ψ = constant. The condition |ψ| = |ℑψ| is required in dealing with, for example, the minimum uncertainty relation between position and momentum. Without the evenness or oddness of ψ, |ℑψ| = |ψ| does not necessarily imply arg(ℑψ) = ±argψ + θ, nor is the converse.

  17. Phase transformations in xerogels of mullite composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1988-01-01

    Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al2O3-2SiO2). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al2O3, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.

  18. Phase transformations in xerogels of mullite composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1990-01-01

    Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al203-2Si02). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al203, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.

  19. Colloid-borne Americium Migration in Gorleben Groundwater: Significance of Iron Secondary Phase Transformation

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Artinger, R.; Bauer, A.; Dardenne, K.; Kim, J.

    2001-12-01

    The relevance of colloidal transport to enhance the actinide mobility in the natural environment depends among other things on the reversibility of metal colloid binding. The influence of the metastable, low crystalline precursor phase 2-line ferrihydrite (2LFh) and the possible structural entrapment of Am(III) in transformation products (thermal treatment at 70° C over 7d) on the colloidal mobility of Am was investigated in batch and column migration experiments. Time-resolved dynamic laser light scattering analysis (PCS) demonstrated a fast 2LFh aggregation (1.8-5.6 mg2LFh/L) in Gorleben groundwater of low humic content (1-7 mgC/L), which can be attributed to surface charge neutralization detected via zeta potential measurements. The column experiments supported the PCS analysis and showed in groundwater with low humic content (GoHy-182) no significant enhancement of humic colloid bond Am recovery (R = 0.5 %). This can be attributed to the filtration of 2LFh aggregates. Contrary to this, in humic rich groundwater (30-90 mgC/L) the 2LFh colloids remained stable and showed an almost fivefold increase of the unretarded Am mobility in the case of transformed 2LFh. The Am mobilization was limited by the mobile 2LFh colloid concentration. Iron oxide/hydroxide selective extractions indicated a strengthening of Am from exchangeable (1M MgCl2 extraction) in 2LFh to NH4-oxalate-oxalic acid extractable in transformed 2LFh. Batch experiments revealed no equilibrium state of 2LFh colloid and Am-241 sorption onto Gorleben sand after 165 days, therefore indicating that metal colloid association/dissociation and colloid sediment attachment kinetics are a key issue for the actinide mobility.

  20. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  1. Precipitation pathways for ferrihydrite formation in acidic solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Mengqiang; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Khalid, Syed; Zhang, Hengzhong; Mørup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2016-01-01

    Iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV-vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

  2. Precipitation pathways for ferrihydrite formation in acidic solutions

    SciTech Connect

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Zhang, Hengzhong; Morup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

  3. Precipitation pathways for ferrihydrite formation in acidic solutions

    DOE PAGES

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; ...

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the othermore » two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.« less

  4. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  5. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  6. phase transformations in Titanium-Molybdenum-Oxygen

    NASA Astrophysics Data System (ADS)

    Boeckels, Herbert

    The present dissertation has investigated the effect of oxygen on the ω and α phase stability in metastable Ti-Mo β titanium alloys using thermal analysis, hardness measurements, electron microscopy, and x-ray diffraction. Single crystal x-ray diffraction has shown that oxygen atoms are located in the tetrahedral interstitial lattice sites in the rapidly cooled bcc Ti crystal structure, interfering directly with the reversible displacive formation of ω, with this transformation involving collapse of the bcc lattice along β. Subsequent thermal exposure of reversible ω, as occurring during slower cooling, heating, and aging, prompts short range diffusion and the formation of chemical altered irreversible ω. X-ray diffraction particle size analysis based on the Warren-Averbach approach has shown that the continued irreversible ω phase evolves in four stages during isothermal aging, initial growth followed by size stabilization, coarsening, and dissolution. The latter stages of ω evolution are controlled by elastic residual stresses surrounding these particles. Ultimate stress relaxation is based on secondary formation and growth, promoting coarsening and dissolution of ω. All of the aforementioned stages can be accelerated by increasing both the oxygen content and isothermal aging temperature. The hardness response parallels this evolution and is dependent upon the ω and α phase evolution. The initial hardness increase is due to the growth of ω. The hardness plateau is based on stabilized ω size and fine α precipitation. The overaging hardness response is due to continuous secondary α formation and growth combined with ω coarsening and dissolution. Hardness increases with increasing interstitial content as a result of solid solution strengthening and α particle refinement. Isochronal and isothermal thermal analysis has shown that increasing oxygen content promotes the α phase formation thereby increasing the ω instability. Grain boundary and

  7. Mössbauer studies of ferrihydrite for Fischer-Tropsch catalysts

    NASA Astrophysics Data System (ADS)

    Lim, Jung Tae; Kim, Chul Sung; Chun, Dong Hyun; Park, Ji Chan

    2016-01-01

    The 6-line ferrihydrite sample for Ficher-Tropsch catalysts was prepared by using a combination of a co-precipitation technique and a spraydrying method. The crystallographic and magnetic properties of 6-line ferrihydrite sample were investigated by using x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrometer. The XRD patterns of the ferrihydrite sample, measured at 295 K, showed 6-lines peak and its structure was found to be a single-phased hexagonal with space group of P3m1 according to JCPDS card. The temperaturedependent magnetization curves were measured under 1000 Oe between 4.2 and 300 K, and showed blocking temperature ( T B ) around 110 K. Also, Mössbauer spectra of the 6-line ferrihydrite sample were taken at various temperatures ranging from 4.2 to 295 K. At temperature below T B , the obtained spectra were analyzed as two-sextets for Fe sites, while At temperature above T B , the obtained spectra showed a doublet due to relaxation, resulting from the spin dynamic effect.

  8. Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; McLennan, Scott M.; Sklute, Elizabeth C.; Dyar, M. Darby

    2017-02-01

    The presence on the surface of Mars of ferrihydrite, a nanocrystalline iron oxide species, has long been suspected from spectroscopic observations and is further suggested by recent results from the Mars Exploration Rovers and Mars Science Laboratory robotic missions. However, because ferrihydrite is a metastable species in terrestrial environments, it is unclear what would have been its fate during episodes of water/rock interactions that are known to have occurred at the landing sites of the above-mentioned robotic missions. Accordingly, the laboratory experiments presented in this paper investigate the recrystallization of ferrihydrite under various conditions applicable to early Mars. These included low-temperature experiments (1 month at 40°C) at pH ranging from circum-neutral to strongly acidic, and high-temperature experiments (8 days at 150°C) at circum-neutral pH. The effect of mixtures with other mineral phases (namely, amorphous silica and olivine) was also tested. Results obtained at low temperature are at odds with some earlier studies and suggest that ferrihydrite behaves differently in rock-dominated conditions compared to water-dominated conditions. The coexistence of amorphous silica favored the formation of jarosite under low-temperature, acidic conditions, whereas a sample of pure ferrihydrite produced only goethite under the same conditions. At high temperature, ferrihydrite converted into hematite in all samples, but the ferrihydrite-silica mixture led to hematite with much broader diffraction peaks than other experiments, indicating an inhibiting effect of dissolved silica on the recrystallization process. The implications of these results for the aqueous history of early Mars are discussed.

  9. Crystal Level Continuum Modeling of Phase Transformations: The (alpha) <--> (epsilon) Transformation in Iron

    SciTech Connect

    Barton, N R; Benson, D J; Becker, R; Bykov, Y; Caplan, M

    2004-10-18

    We present a crystal level model for thermo-mechanical deformation with phase transformation capabilities. The model is formulated to allow for large pressures (on the order of the elastic moduli) and makes use of a multiplicative decomposition of the deformation gradient. Elastic and thermal lattice distortions are combined into a single lattice stretch to allow the model to be used in conjunction with general equation of state relationships. Phase transformations change the mass fractions of the material constituents. The driving force for phase transformations includes terms arising from mechanical work, from the temperature dependent chemical free energy change on transformation, and from interaction energy among the constituents. Deformation results from both these phase transformations and elasto-viscoplastic deformation of the constituents themselves. Simulation results are given for the {alpha} to {epsilon} phase transformation in iron. Results include simulations of shock induced transformation in single crystals and of compression of polycrystals. Results are compared to available experimental data.

  10. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures

    PubMed Central

    Tang, Jia; Ma, Jinlian; Tang, Ziyang; Yu, Zhen

    2016-01-01

    ABSTRACT The transformation of ferrihydrite to stable iron oxides over time has important consequences for biogeochemical cycling of many metals and nutrients. The response of methanogenic activity to the presence of iron oxides depends on the type of iron mineral, but the effects of changes in iron mineralogy on methanogenesis have not been characterized. To address these issues, we constructed methanogenic cocultures of Geobacter and Methanosarcina strains with different ferrihydrite mineralization pathways. In this system, secondary mineralization products from ferrihydrite are regulated by the presence or absence of phosphate. In cultures producing magnetite as the secondary mineralization product, the rates of methanogenesis from acetate and ethanol increased by 30.2% and 135.3%, respectively, compared with a control lacking ferrihydrite. Biogenic magnetite was proposed to promote direct interspecies electron transfer between Geobacter and Methanosarcina in a manner similar to that of c-type cytochrome and thus facilitate methanogenesis. Vivianite biomineralization from ferrihydrite in the presence of phosphate did not significantly influence the methanogenesis processes. The correlation between magnetite occurrence and facilitated methanogenesis was supported by increased rates of methane production from acetate and ethanol with magnetite supplementation in the defined cocultures. Our data provide a new perspective on the important role of iron biomineralization in biogeochemical cycling of carbon in diverse anaerobic environments. IMPORTANCE It has been found that microbial methanogenesis is affected by the presence of iron minerals, and their influences on methanogenesis are associated with the mineralogical properties of the iron minerals. However, how changes in iron mineralogy affect microbial methanogenesis has not been characterized. To address this issue, we constructed methanogenic cocultures of Geobacter and Methanosarcina strains with different

  11. Phosphate Imposed Limitations on Biological Reduction and Alteration of Ferrihydrite Mineralization

    SciTech Connect

    Borch, Thomas; Masue, Yoko; Kukkadapu, Ravi K.; Fendorf, Scott

    2007-01-01

    Biogeochemical transformation (inclusive of dissolution) of iron (hydr)oxides resulting from dissimilatory reduction has a pronounced impact on the fate and transport of nutrients and contaminants in subsurface environments. Despite the reactivity noted for pristine (unreacted) minerals, iron (hydr)oxides within native environments will likely have a different reactivity owing in part to changes in surface composition. Accordingly, here we explore the impact of surface modifications induced by phosphate adsorption on ferrihydrite reduction by Shewanella putrefaciens under static and advective flow conditions. Alterations in surface reactivity induced by phosphate adsorption change the extent, nearly linearly, and pathway of iron biomineralization. Magnetite is the most appreciable mineralization product while minor amounts of vivianite and green rust-like phases are formed in systems having high aqueous concentrations of phosphate, ferrous iron, and biogenic bicarbonate. Goethite and lepidocrocite, characteristic biomineralization products at low ferrous-iron concentrations, are inhibited in the presence of adsorbed phosphate. Considering deviations in reactivity of iron (hydr)oxides with changes in surface composition is important for deciphering mineralization pathways under native conditions and predicting reactive characteristics.

  12. Phase and structural transformations in magnetorheological suspensions

    NASA Astrophysics Data System (ADS)

    Iskakova, L. Yu.; Romanchuk, A. P.; Zubarev, A. Yu.

    2006-07-01

    Particle condensation in magnetorheological suspensions (MRS) under external magnetic field is studied theoretically. It is shown that the bulk condensation of particles into dense phases is preceded by the formation of fairly long chain aggregates. Phase transition occurs as a condensation of such chains due to their magnetic interaction. In thin layers of MRS, placed into the normal magnetic field, scenario of the phase transition differs essentially from that in infinite volumes of these systems. Equilibrium state of the system after the phase transition corresponds to the formation of ensemble of discrete domains of the dense phase rather than to separation into two massive phases as it takes place in infinite media.

  13. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  14. Anomalous plasticity in defect-mediated phase transformations

    NASA Astrophysics Data System (ADS)

    Ghimire, Punam; Ravelo, R.; Germann, T. C.

    2014-03-01

    Large-scale molecular dynamics simulations of shocked wave propagation in metallic single crystals exhibit high elastic limits and are ideally suited for investigating the role defect nucleation and multiplication play on the kinetics of phase transformations. Here we report on the morphology and kinetics of shocked-induced phase transformations in Aluminum single crystals. The atomic interactions were modeled utilizing various embedded atom method (EAM) models of Aluminum, with most models exhibiting an artificial fcc -->bcc phase transformation in the 25-30 GPa range. For cases where plastic deformation precedes the phase transformation, anomalous defect structures atypical of plastic deformation in bcc lattices nucleate early on but anneal out with time. In all cases, the defect-mediated phase transitions proceed at faster rates than defect-free ones. Part of this work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  15. TEMPERATURE EFFECTS ON THE SYNTHESIS OF SI-FERRIHYDRITE NANOPARTICLES OF VARIABLE SIZES IDENTIFIED BY MAGNETIC MEASUREMENTS

    EPA Science Inventory

    Ferrihydrite is an antiferromagnetic iron oxyhydroxide formed as an ubiquitous product of natural iron diagenesis, and found in iron-containing water, soil, river sediment and oceanic crust. As such, it is a sensitive indicator or proxy of environmental change. This iron phase ha...

  16. Non-gauge phase transformations in quantum transition amplitudes

    NASA Technical Reports Server (NTRS)

    Reiss, H. R.

    1993-01-01

    The prescription for introducing a gauge transformation into a quantum transition amplitude, nominally well known, contains an ambiguous feature. It is presumed by some authors that an appropriate transformation of the phase of a wave function will generate the associated gauge transformation. It is shown that this is a necessary but not sufficient step. Examples from the literature are cited to show the consequences of the failure of this procedure. One must distinguish between true gauge transformations and unitary transformations within a fixed gauge.

  17. Effects of phase transformation of steam-water relative permeabilities

    SciTech Connect

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  18. Reflectance Changes during Shock-induced Phase Transformations in Metals

    SciTech Connect

    Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Jensen, B. J.; Rigg, P. A.

    2010-06-01

    In performing shock wave experiments to study the characteristics of metals at high pressures, wave profiles (i.e., velocity measurements of the surface of the sample) are an established and useful way to study phase transformations. For example, a sudden change in the velocity or its slope can occur when the phase transformation induces a large volume change leading to a change in particle velocity. Allowing the shock to release into a transparent window that is in contact with the sample surface allows the study of conditions away from the shock Hugoniot. However, in cases where the wave profile is not definitive an additional phase-transformation diagnostic would be useful. Changes in the electronic structure of the atoms in the crystal offer opportunities to develop new phase-change diagnostics. We have studied optical reflectance changes for several phase transformations to see whether reflectance changes might be a generally applicable phase-transformation diagnostic. Shocks were produced by direct contact with explosives or with impacts from guns. Optical wavelengths for the reflectance measurements ranged from 355 to 700 nm. We studied samples of tin, iron, gallium, and cerium as each passed through a phase transformation during shock loading and, if observable, a reversion upon unloading. For solid-solid phase changes in tin and iron we saw small changes in the surface scattering characteristics, perhaps from voids or rough areas frozen into the surface of the sample as it transformed to a new crystal structure. For melt in gallium and cerium we saw changes in the wavelength dependence of the reflectance, and we surmise that these changes may result from changes in the crystal electronic structure. It appears that reflectance measurements can be a significant part of a larger suite of diagnostics to search for difficult-to-detect phase transformations.

  19. Reversible metal-hydride phase transformation in epitaxial films.

    PubMed

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  20. Reversible metal-hydride phase transformation in epitaxial films

    NASA Astrophysics Data System (ADS)

    Roytburd, Alexander L.; Boyerinas, Brad M.; Bruck, Hugh A.

    2015-03-01

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  1. Synthesis of general polarization transformers. A geometric phase approach

    NASA Astrophysics Data System (ADS)

    Bhandari, Rajendra

    1989-07-01

    Using a generalized form of Jordan's formulation of the geometric phase problem it is shown that a single gadget capable of realising an arbitrary element of the polarization transformation group SU (2) can be constructed using two half-wave plates and two quarter-wave plates. For special transformations, simpler, practical gadgets are proposed.

  2. Typical Phases of Transformative Learning: A Practice-Based Model

    ERIC Educational Resources Information Center

    Nohl, Arnd-Michael

    2015-01-01

    Empirical models of transformative learning offer important insights into the core characteristics of this concept. Whereas previous analyses were limited to specific social groups or topical terrains, this article empirically typifies the phases of transformative learning on the basis of a comparative analysis of various social groups and topical…

  3. Edge Detection in Digital Images Using Dispersive Phase Stretch Transform

    PubMed Central

    Asghari, Mohammad H.; Jalali, Bahram

    2015-01-01

    We describe a new computational approach to edge detection and its application to biomedical images. Our digital algorithm transforms the image by emulating the propagation of light through a physical medium with specific warped diffractive property. We show that the output phase of the transform reveals transitions in image intensity and can be used for edge detection. PMID:25878656

  4. Solidification Processing and Phase Transformations in Ordered High Temperature Alloys

    DTIC Science & Technology

    1993-01-20

    transformation from cubic to hexagonal and ends with a transformation, from c2 to Orthorhombic phase. During these stages a complex domain structure is formed...arrangement of rotational domains of the 6 ower symmetry orthorhombic phase. [he Crystal Structure of the Ti2AINb Orthorhombic Phase - The results of a... orthorhombic phase in the Ti-Al-Nb system (Paper #7). The structure is ýmcmn (HgNa or Cd 3Er) with a=0.6089 nm, b=0.9569 nm, and c= 0.4667 rnm. Ti(Nb) fills

  5. Atomic Structure and Phase Transformations in Pu Alloys

    SciTech Connect

    Schwartz, A J; Cynn, H; Blobaum, K M; Wall, M A; Moore, K T; Evans, W J; Farber, D L; Jeffries, J R; Massalski, T B

    2008-04-28

    Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc {delta}-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic {delta} {yields} {alpha}{prime} transformation, and the pressure-induced transformations in the {delta}-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases.

  6. Effect of Phosphate on Surface Properties of Ferrihydrite and its Reactivity towards Aqueous Fe(II)

    NASA Astrophysics Data System (ADS)

    Liao, D.; Schroeder, C.; Haderlein, S.

    2012-12-01

    The iron redox cycle plays a prominent role for the biogeochemical cycling of nutrients and metals as well as transformation of contaminants in soils, sediments and aquifers. The mineral surface acts as a sorption site for Fe(II), which becomes partially oxidized upon sorption [1]. According to Gorski and Scherer [2], the electron is transferred to the bulk mineral, where it may be stored in a conduction band leading to an increased reductive potential of the system. Iron (hydr)oxides also exhibit a high sorption capacity for phosphate which forms strong surface complexes with iron. Phosphate is a common constituent of pore waters as a result of agricultural fertilizers, and is frequently used by microbiologists as buffer in laboratory experiments. We investigated the effect of phosphate on the oxidation of Fe(II) in the presence of ferrihydrite minerals in batch reactors. We synthesized three different ferrihydrites: untreated ferrihydrite (Fh); phosphate-coated ferrihydrite (pc-Fh), where phosphate was added to suspensions of pure ferrihydrite and allowed to sorb to the mineral surface; and phosphate-doped ferrihydrite (pd-Fh), where phosphate co-precipitated with ferrihydrite and was included in the bulk mineral structure. Nitrobenzene was used as model oxidant to study ferrous iron oxidation in anoxic Fh-Fe(II) suspensions. Fe(II) oxidation was much slower in the presence of pc-Fh and pd-Fh compared to untreated Fh. Using Mössbauer spectroscopy, we added dissolved Fe(II) either as pure 57Fe (Mössbauer-active) to analyse for the iron fraction associated with the minerals surface, or as 56Fe (Mössbauer-inactive) to focus on the bulk mineral only. We took Mössbauer spectra for each system before and after Fe(II) oxidation by nitrobenzene. Surface bound Fe(II) was oxidized by two processes: e-transfer to structural Fe(III) in Fh and nitrobenzene reduction. The oxidation product was lepidocrocite which increased with nitrobenzene reduction. Phosphate-doped and

  7. Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions.

    PubMed

    Cao, Liang; Jiang, Zhao-Xia; Du, Yong-Hua; Yin, Xin-Mao; Xi, Shi-Bo; Wen, Wen; Roberts, Andrew P; Wee, Andrew T S; Xiong, Yi-Min; Liu, Qing-Song; Gao, Xing-Yu

    2017-03-07

    As an iron oxyhydroxide, nanosized ferrihydrite (Fh) is important in Earth science, biology, and industrial applications. However, its basic structure and origin of its magnetism have long been debated. We integrate synchrotron-based techniques to explore the chemical structures of 2-line ferrihydrite and to determine the origin of its magnetism during hydrothermal aging in air. Our results demonstrate that both the magnetism and X-ray magnetic circular dichroism (XMCD) signal of 2-line ferrihydrite are enhanced with aging time, and that XMCD spectral patterns resemble that of maghemite (γ-Fe2O3) rather than magnetite (Fe3O4). Fe L-edge and K-edge X-ray absorption spectroscopy (XAS) further indicate formation of both maghemite and hematite (α-Fe2O3) with increasing concentrations with longer hydrothermal aging time. Thus, magnetic enhancement with longer hydrothermal aging time is attributed to increasing maghemite concentration instead of a magnetically ordered ferrihydrite as previously reported. Moreover, L-edge and K-edge XAS spectra with different probing depths yield different ratios of these Fe oxides, which suggest the formation of a core (ferrihydrite-rich)-shell (with a mixture of both allotropes; α-Fe2O3 and γ-Fe2O3) structure during hydrothermal aging. Our results provide insights into the chemical evolution of 2-line ferrihydrite that reveal unambiguously the origin of its magnetism.

  8. Colloid-borne americium migration in Gorleben groundwater: significance of iron secondary phase transformation.

    PubMed

    Schäfer, Thorsten; Artinger, Robert; Dardenne, Kathy; Bauer, Andreas; Schuessler, Wolfram; Kim, Jae Il

    2003-04-15

    The mobility of actinides in natural water may be enhanced by colloid-mediated transport. In this context the reversibility of actinide colloid interaction is a key factor. Iron is an element that can generate colloids under conditions found in natural waters. In this paper, the impact of hematite and the low-crystalline precursor 2-line ferrihydrite on colloid-mediated transport of americium(III) is investigated. Am(III)-containing iron colloids are generated from two different approaches, namely contact between the two in aqueous solution or coprecipitation of Am(III) during iron colloid generation. Dissolved organic carbon (DOC), especially humic substances, has a strong influence on the stability of inorganic colloids. In addition, humic substances interfere in the distribution and kinetics of exchange between groundwater and sediments. Four groundwaters from the Gorleben aquifer system are used with DOC concentrations varying between 0.9 and 81.6 mgC/L together with Pleistocene Aeolian quartz sand from this site. Batch and column experiments are conducted under near-natural conditions (Ar + 1% CO2). To study the influence of kinetics, contact times up to one month are studied. The dynamic light-scattering investigations show that the colloidal stability of the 2-line ferrihydrite increases with increasing DOC concentration. The low-crystalline iron colloids have a marginal influence on the Am(III) transport due to reversibility of americium sorption. Contrary to this, the crystalline hematite generated from coprecipitation of Am(III) leads to an increase of unretarded colloid-mediated Am(III) transport up to a factor of almost five. Chemical characterization of these hematite colloids shows that Am(III) is structurally entrapped in the hematite. The distribution of Am(III) and 2-line ferrihydrite between groundwater and sand sediment remained in disequilibrium even after one month. This shows that the kinetics of Am(III) distribution between the different

  9. Positive phase space transformation incompatible with classical physics.

    PubMed

    Son, Wonmin; Kofler, Johannes; Kim, M S; Vedral, Vlatko; Brukner, Caslav

    2009-03-20

    Bell conjectured that a positive Wigner function does not allow violation of the inequalities imposed by local hidden variable theories. A requirement for this conjecture is "when phase space measurements are performed." We introduce the theory-independent concept of "operationally local transformations" which refers to the change of the switch on a local measurement apparatus. We show that two separated parties, performing only phase space measurements on a composite quantum system with a positive Wigner function and performing only operationally local transformations that preserve this positivity, can nonetheless violate Bell's inequality. Such operationally local transformations are realized using entangled ancillae.

  10. Complexion-mediated martensitic phase transformation in Titanium

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A.-C.; Raabe, D.

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α'' (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  11. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  12. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2013-11-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  13. Phase transformation and stabilization of a high strength austenite

    NASA Technical Reports Server (NTRS)

    Jin, S.; Huang, D.

    1976-01-01

    An investigation of the phase transformation and the austenite stabilization in a high strength austenite has been made. An Fe-29Ni-4.3Ti austenite age-hardened by gamma-prime (Ni3Ti) precipitates showed a further increase of strength after martensitic and reverse martensitic phase transformations. The stability of ausaged austenite as well as ausaged and transformation-strengthened austenite was improved significantly through an isothermal treatment at 500 C. The Ms temperature of the strengthened austenite was restored to nearly that of annealed austenite while the austenite was hardened to R(C) 41 through precipitation and phase transformations. The observed austenite stabilization is attributed to the formation of GP zones or short-range order of less than about 10A in size.

  14. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  15. Nucleation, kinetics and morphology of displacive phase transformations in iron

    NASA Astrophysics Data System (ADS)

    Suiker, A. S. J.; Thijsse, B. J.

    2013-11-01

    An extensive, systematic molecular dynamics (MD) study is performed for analysing the nucleation, kinetics and morphology characteristics of thermally-induced, displacive phase transformations from face-centred cubic (fcc) to body-centred cubic (bcc) iron. At the atomic level these transformation characteristics are influenced by a number of factors, including (i) the appearance of free surfaces, (ii) the initial presence of fcc-bcc grain boundaries, (iii) the existence of point defects (i.e., atomic vacancies) near a grain boundary, (iv) the initial thermal velocities of the atoms, and (v) the specific interatomic potential used. Other MD studies that capture the overall transformation behaviour of iron well have often underestimated or ignored the influence by these factors on the transformation response, with the risk of putting the accuracy, generality and physical explanation of the MD results on loose grounds. The present research illustrates the relative contribution of each of the above factors by means of a detailed comparison study for three different interatomic potentials. The accuracy of the interatomic potentials is established by validating for the fcc and bcc phases the calculated elastic moduli, cohesive energy, vacancy formation energy and interfacial energy against experimental and ab initio data reported in the literature. The importance of calibrating material data of both the stable bcc phase and the metastable fcc phase - instead of the stable bcc phase only - is demonstrated. The numerical results call for general caution when interpreting phenomena that start close to instability points and therefore are sensitive to small disturbances; a large spread in the overall transformation time is found under different initial thermal velocities, interfacial lattice incoherence, boundary conditions (free vs. periodic), and interatomic potentials, where for completely transformed atomic systems the discrepancy between the maximum and minimum

  16. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    SciTech Connect

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  17. Efficient multiscale phase unwrapping methodology with modulo wavelet transform.

    PubMed

    Blinder, David; Ottevaere, Heidi; Munteanu, Adrian; Schelkens, Peter

    2016-10-03

    Many robust phase unwrapping algorithms are computationally very time-consuming, making them impractical for handling large datasets or real-time applications. In this paper, we propose a generic framework using a novel wavelet transform that can be combined with many types of phase unwrapping algorithms. By inserting reversible modulo operators in the wavelet transform, the number of coefficients that need to be unwrapped is significantly reduced, which results in large computational gains. The algorithm is tested on various types of wrapped phase imagery, reporting speedup factors of up to 500. The source code of the algorithm is publicly available.

  18. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.

  19. Phase Transformation in Tantalum under Extreme Laser Deformation

    NASA Astrophysics Data System (ADS)

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  20. Phase transformation in tantalum under extreme laser deformation

    SciTech Connect

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  1. Phase transformation in tantalum under extreme laser deformation

    DOE PAGES

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  2. Phase Transformation in Tantalum under Extreme Laser Deformation.

    PubMed

    Lu, C-H; Hahn, E N; Remington, B A; Maddox, B R; Bringa, E M; Meyers, M A

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  3. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  4. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite.

    PubMed

    Ogawa, Shouhei; Katoh, Masahiko; Sato, Takeshi

    2015-01-01

    This study investigated whether a combined application of hydroxyapatite and ferrihydrite could immobilize lead and antimony in shooting range soil in which the level of lead contamination is markedly higher than that of antimony. In addition, we evaluated the stability of lead and antimony immobilized by the combined application with varying soil pH. The levels of water-soluble lead and antimony for the combined application were lower than those of single applications of hydroxyapatite or ferrihydrite, indicating that the combined application could suppress the levels of water-soluble lead and antimony by 99.9% and 95.5%, respectively, as compared with the levels in shooting range soil without immobilization material. The amounts of residual lead and amorphous Fe/Al oxide-bound antimony fractions in sequential extraction increased with a decrease in the exchangeable and carbonate lead fractions as well as in non-specifically bound and specifically bound antimony fractions. The alteration of lead and antimony phases to chemically more stable ones as a result of the combined application would result in the suppression of their mobility. The stability of immobilized lead and antimony in the combined application was equal to that of lead with a single application of hydroxyapatite and that of antimony with a single application of ferrihydrite within neutral to alkaline pH conditions, respectively. Therefore, this study suggests that the combined application of hydroxyapatite and ferrihydrite can simultaneously immobilize lead and antimony in shooting range soil with neutral to alkaline pH.

  5. Dynamic model of a three-phase power transformer

    SciTech Connect

    Dolinar, D.; Pihler, J.; Grcar, B. . Faculty of Technical Sciences)

    1993-10-01

    An adequate mathematical model of a three-phase power transformer is one of the important elements in the programs for the computer analysis of power system transients. Featured in this paper is the simulation model of a three-phase, three-limb core-type power transformer. Non-linear effects of saturation, hysteresis and eddy currents are considered. Two ways of creating major and minor hysteresis loops are presented. The transformer model, described by a system of time dependent differential equations, is solved by an efficient numerical algorithm. The behavior of the transformer model during switching-in and fault transients, as well as other types of transients, has been tested. The computed transient waveforms are compared with the measured ones of there exists very close agreement between them.

  6. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    SciTech Connect

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.; Marcus, M.A.; Nico, P.S.; Fendorf, S.

    2009-06-15

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealized micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in

  7. Phase transformations in steels: Processing, microstructure, and performance

    DOE PAGES

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  8. A diffuse interface approach to phase transformation via virtual melting

    NASA Astrophysics Data System (ADS)

    Momeni, Kasra

    This work represents development of the first phase field models and detailed study solid-solid transformations via intermediate melting within nanometer size interface. Such phase transformations can occur in different materials, including HMX energetic crystals, PbTiO3 nanowires, complex pharmaceutical substances, electronic and geological materials, as well as colloidal, and superhard materials. A thermodynamically consistent phase field model for three phases is developed using two polar order parameters. It includes the effect of energy and width of solid-solid and solid-melt interfaces, interaction between two solid-melt interfaces, temperature, mechanics, and interface stresses. The derived thermodynamic potential satisfies all the equilibrium and stability conditions for homogeneous phases. The HMX energetic crystal is used as the model material and numerical simulations are performed using COMSOL and Cystorm high performance computing facility. Depending on parameters, the intermediate melt may appear and disappear by continuous or discontinuous barrierless disordering or via critical nucleus due to thermal fluctuations. The intermediate melt may appear during heating and persist during cooling at temperatures well below what it follows from sharp-interface approach. For some parameters when intermediate melt is expected, it does not form, producing an intermediate melt free gap. Elastic energy promotes barrierless intermediate melt formation in terms of an increasing degree of disordering, interface velocity, and width of intermediate melt. Drastic reduction (by a factor of 16) of the energy of the critical nuclei of the intermediate melt within the solid-solid interface caused by mechanics is captured. Interfacial stresses surprisingly increase nucleation temperature for the intermediate melt. Interfacial stresses alter the kinetics of phase transformation, resulting in formation of new interfacial phases and drifting of a thermally activated spontaneous

  9. Phase transformation of zirconia ceramics by hydrothermal degradation.

    PubMed

    Kawai, Yohei; Uo, Motohiro; Wang, Yongming; Kono, Sayaka; Ohnuki, Somei; Watari, Fumio

    2011-01-01

    Zirconia has found wide application in dentistry because of its high mechanical strength and superior esthetic properties. However, zirconia degradation caused by phase transformation occurring in a hydrothermal environment is of concern. In the present study, phase transformation and microstructure of tetragonal zirconia polycrystal partially stabilized with yttrium oxide (Y-TZP) and alumina-toughened zirconia (ATZ) sintered at different temperatures were estimated. On grazing angle X-ray diffraction analysis, ATZ showed less phase transformation to the monoclinic phase during hydrothermal treatment and this transformation appeared to occur within a few micrometers below the surface. At a higher sintering temperature the monoclinic phase content of ATZ was found to be lesser than that of Y-TZP, indicating that the alumina in ATZ was effective in suppressing hydrothermal degradation. Examination by transmission electron microscopy and studying of electron backscatter diffraction patterns indicated that grain growth in ATZ was slightly suppressed compared with that in Y-TZP at higher sintering temperatures. The present study demonstrated the effect of adding alumina to zirconia for suppressing hydrothermal degradation and studied the effect of this addition on grain growth in zirconia.

  10. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  11. Pressure-induced structural phase transformations in silicon nanowires.

    PubMed

    Poswal, H K; Garg, Nandini; Sharma, Surinder M; Busetto, E; Sikka, S K; Gundiah, Gautam; Deepak, F L; Rao, C N R

    2005-05-01

    High-pressure structural behavior of silicon nanowires is investigated up to approximately 22 GPa using angle dispersive X-ray diffraction measurements. Silicon nanowires transform from the cubic to the beta-tin phase at 7.5-10.5 GPa, to the Imma phase at approximately 14 GPa, and to the primitive hexagonal structure at approximately 16.2 GPa. On complete release of pressure, it transforms to the metastable R8 phase. The observed sequence of phase transitions is the same as that of bulk silicon. Though the X-ray diffraction experiments do not reveal any size effect, the pressure dependence of Raman modes shows that the behavior of nanowires is in between that of the bulk crystal and porous Si.

  12. Temperature dependent phase transformation in nano sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Sumangala T., P.; Mahender, C.; Venkataramani, N.; Prasad, Shiva

    2015-06-01

    The phase transformation in nanosized stoichiometric magnesium ferrite is being discussed. It was shown by TGA/DSC that there exist two reactions (shown by exothermic peaks) in nano sized magnesium ferrite when synthesized by sol gel combustion synthesis. First one of these reactions resulted in the precipitation of α-Fe2O3 and a resultant spinel. The second reaction resulted in stoichiometric spinel from this two phase system.

  13. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    USGS Publications Warehouse

    Waychunas, G.A.; Rea, B.A.; Fuller, C.C.; Davis, J.A.

    1993-01-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, ?? (goethite), ?? (akaganeite), and ?? (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface (3.28 ??0.01 A ??) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces (3.25 ?? 0.02 A ??). Mono-dentate arsenate linkages (3.60 ?? 0.03 A ??) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ?? 0.01 A ??. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As Fe ratio is increased. Coherent crystallite size is probably no more than 10 A?? in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As Fe) indicates ferrihydrite units consisting mainly

  14. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  15. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    SciTech Connect

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  16. Anomalous compression behavior of germanium during phase transformation

    SciTech Connect

    Yan, Xiaozhi; Tan, Dayong; Ren, Xiangting; Yang, Wenge E-mail: duanweihe@scu.edu.cn; He, Duanwei E-mail: duanweihe@scu.edu.cn; Mao, Ho-Kwang

    2015-04-27

    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  17. In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys

    DOE PAGES

    Tan, L.; Yang, Y.

    2015-11-01

    For an in situ phase transformation of the Chi (χ) phase to the Laves phase we observed in a Fe–Cr–Ni–Mo model alloy. The morphology, composition, and crystal structure of the χ and Laves phases, and their orientation relationship with the matrix austenite phase were investigated. The resulted Laves phase has larger lattice mismatch with the matrix phase than the χ phase, leading to the increase of local strain fields and the formation of dislocations. Moreover, this finding is helpful to understand the precipitation behavior of the intermetallic phases in the Mo-containing austenitic stainless steels.

  18. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein

  19. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  20. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  1. Reconstructing solute-induced phase transformations within individual nanocrystals.

    PubMed

    Narayan, Tarun C; Baldi, Andrea; Koh, Ai Leen; Sinclair, Robert; Dionne, Jennifer A

    2016-07-01

    Strain and defects can significantly impact the performance of functional nanomaterials. This effect is well exemplified by energy storage systems, in which structural changes such as volume expansion and defect generation govern the phase transformations associated with charging and discharging. The rational design of next-generation storage materials therefore depends crucially on understanding the correlation between the structure of individual nanoparticles and their solute uptake and release. Here, we experimentally reconstruct the spatial distribution of hydride phases within individual palladium nanocrystals during hydrogen absorption, using a combination of electron spectroscopy, dark-field imaging, and electron diffraction in an environmental transmission electron microscope. We show that single-crystalline cubes and pyramids exhibit a uniform hydrogen distribution at equilibrium, whereas multiply twinned icosahedra exclude hydrogen from regions of high compressive strains. Our technique offers unprecedented insight into nanoscale phase transformations in reactive environments and can be extended to a variety of functional nanomaterials.

  2. Natural transformation and phase variation modulation in Neisseria meningitidis.

    PubMed

    Alexander, Heather L; Richardson, Anthony R; Stojiljkovic, Igor

    2004-05-01

    Neisseria meningitidis has evolved the ability to control the expression-state of numerous genes by phase variation. It has been proposed that the process aids this human pathogen in coping with the diversity of microenvironments and host immune systems. Therefore, increased frequencies of phase variation may augment the organism's adaptability and virulence. In this study, we found that DNA derived from various neisserial co-colonizers of the human nasopharynx increased N. meningitidis switching frequencies, indicating that heterologous neisserial DNA modulates phase variation in a transformation-dependent manner. In order to determine whether the effect of heterologous DNA was specific to the Hb receptor, HmbR, we constructed a Universal Rates of Switching cassette (UROS). With this cassette, we demonstrated that heterologous DNA positively affects phase variation throughout the meningococcal genome, as UROS phase variation frequencies were also increased in the presence of neisserial DNA. Overexpressing components of the neisserial mismatch repair system partially alleviated DNA-induced changes in phase variation frequencies, thus implicating mismatch repair titration as a cause of these transformation-dependent increases in switching. The DNA-dependent effect on phase variation was transient and may serve as a mechanism for meningococcal genetic variability that avoids the fitness costs encountered by global mutators.

  3. Properties of impurity-bearing ferrihydrite I. Effects of Al content and precipitation rate on the structure of 2-line ferrihydrite

    SciTech Connect

    Cismasu, A. Cristina; Michel, F. Marc; Stebbins, Jonathan F.; Levard, Clément; Brown, Jr., Gordon E.

    2012-10-11

    The association of Al with ferrihydrite (Fh) may have a considerable effect on the composition, structure, and surface properties of Fh nanoparticles, and thus impact its reactivity and interaction with pollutant species. Aluminous Fh is abundant in natural environments, but the mode of association of Al with this nanomineral is not yet fully understood. Al{sup 3+} speciation may vary from true chemical substitution for Fe{sup 3+}, to adsorption or surface precipitation, and/or to formation of a mixture of two (or more) individual nanoscale phases. The conditions of formation (i.e. slow vs. rapid precipitation) may also affect the nature of Fh nanoparticles in terms of their crystallinity, phase purity, and Al speciation. In this study we used a variety of laboratory (TEM, NMR, ICP-AES) and synchrotron-based techniques (X-ray total scattering and PDF analysis, scanning transmission X-ray microscopy, Al K-edge XANES spectroscopy) to characterize two synthetic Al-bearing Fh series formed at different precipitation rates in the presence of 5-40 mol% Al. We find that Al is dominantly octahedrally coordinated in the synthetic Fh samples and that up to 20-30 mol% Al substitutes for Fe in the Fh structure, regardless of the synthesis method we used. Formation of separate aluminous phases (e.g., gibbsite) was most significant at Al concentrations above 30 mol% Al in slowly precipitated samples. However, small amounts (<6% of total Al) of Al-hydroxide phases were also detected by NMR spectroscopy in samples with lower Al content (as low as 15 mol% Al), particularly in the Fh series that was precipitated slowly. Furthermore, it appears that the amount of Al incorporated in Fh is not affected by the synthesis methods we used and is more likely controlled by the accumulated strain caused by Al substitution in the Fh lattice. Given the prevalence of naturally occurring aluminous ferrihydrite, assumptions about ferrihydrite reactivity in natural environments should consider the

  4. Free energy functionals for efficient phase field crystal modeling of structural phase transformations.

    PubMed

    Greenwood, Michael; Provatas, Nikolas; Rottler, Jörg

    2010-07-23

    The phase field crystal (PFC) method is a promising technique for modeling materials with atomic resolution on mesoscopic time scales. While numerically more efficient than classical density functional theory (CDFT), its single mode free energy limits the complexity of structural transformations that can be simulated. We introduce a new PFC model inspired by CDFT, which uses a systematic construction of two-particle correlation functions that allows for a broad class of structural transformations. Our approach considers planar spacings, lattice symmetries, planar atomic densities, and atomic vibrational amplitudes in the unit cell, and parameterizes temperature and anisotropic surface energies. The power of our approach is demonstrated by two examples of structural phase transformations.

  5. Effects of magnetic interactions in antiferromagnetic ferrihydrite particles

    NASA Astrophysics Data System (ADS)

    Berquó, Thelma S.; Erbs, Jasmine J.; Lindquist, Anna; Penn, R. Lee; Banerjee, Subir K.

    2009-04-01

    The effects of magnetic interactions in the magnetic properties of six-line ferrihydrite particles were investigated by studying the behavior of aggregated versus coated particles. Four different coating agents (sugar, alginate, lactate and ascorbate) were employed in order to obtain dispersed particles and prevent particle agglomeration; one sub-sample was allowed to dry with no coating agent. The five sets of ferrihydrite particles were from the same batch and the size was estimated as 3.6 ± 0.4 nm in length. Low temperature magnetization, ac susceptibility and Mössbauer spectroscopy data showed contrasting blocking temperatures for uncoated and coated samples with a decrease of TP from about 50 K to 12 K, respectively. The contributions from magnetic interactions were recognized in magnetic measurements and the effective anisotropy constant for non-interacting ferrihydrite was estimated as (100 ± 10) × 103 J m-3. Overall, employing sugar and alginate as coating agents was more successful in preventing particle aggregation and magnetic interactions. In contrast, ascorbate and lactate were unsuitable due to the chemical reaction between the coating agent and ferrihydrite surface.

  6. Factors Influencing Ferrihydrite Crystallinity In Natural And Synthetic Systems

    EPA Science Inventory

    Recent investigations of the structure of the mineral ferrihydrite indicate that disparities in the number of peaks observed in powder x-ray diffraction patterns can be attributed to differences in crystallite size. This has lead to the conclusion that specimens previously refer...

  7. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach.

    PubMed

    Gao, Xiaodong; Root, Robert A; Farrell, James; Ela, Wendell; Chorover, Jon

    2013-11-01

    The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7-9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 - 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As

  8. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Zachara, J.M.

    2006-01-01

    Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2 (CO3)32- and Ca2 UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30 (aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers. ?? 2005 Elsevier Inc. All rights reserved.

  9. Magnetostructural phase transformations in Tb 1-x Mn 2

    DOE PAGES

    Zou, Junding; Paudyal, Durga; Liu, Jing; ...

    2015-01-16

    Magnetism and phase transformations in non-stoichiometric Tb1-xMn2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at TN, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn2.

  10. Crystalline phase transformation of colloidal cadmium sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghali, M.; Eissa, A. M.; Mosaad, M. M.

    2017-03-01

    In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.

  11. Rapid Solidification and Phase Transformations in Additive Manufactured Materials

    DOE PAGES

    Asle Zaeem, Mohsen; Clarke, Amy Jean

    2016-01-14

    Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizingmore » the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.« less

  12. Rapid Solidification and Phase Transformations in Additive Manufactured Materials

    SciTech Connect

    Asle Zaeem, Mohsen; Clarke, Amy Jean

    2016-01-14

    Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizing the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.

  13. On phase transformation behavior of porous Shape Memory Alloys.

    PubMed

    Liu, Bingfei; Dui, Guansuo; Zhu, Yuping

    2012-01-01

    This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniaxial response under compression for a porous Ni-Ti SMA material considering hydrostatic stress is supplied. Good agreement between the theoretical prediction of the proposed model and published experimental data is observed.

  14. 2D Hilbert transform for phase retrieval of speckle fields

    NASA Astrophysics Data System (ADS)

    Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.

    2016-09-01

    The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.

  15. Application of phase coherent transform to cloud clutter suppression

    SciTech Connect

    Ng, L.C.

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  16. Special phase transformation and crystal growth pathways observed in nanoparticles†

    PubMed Central

    Gilbert, Benjamin; Zhang, Hengzhong; Huang, Feng; Finnegan, Michael P; Waychunas, Glenn A; Banfield, Jillian F

    2003-01-01

    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.

  17. Phase stretch transform for super-resolution localization microscopy

    PubMed Central

    Ilovitsh, Tali; Jalali, Bahram; Asghari, Mohammad H.; Zalevsky, Zeev

    2016-01-01

    Super-resolution localization microscopy has revolutionized the observation of living structures at the cellular scale, by achieving a spatial resolution that is improved by more than an order of magnitude compared to the diffraction limit. These methods localize single events from isolated sources in repeated cycles in order to achieve super-resolution. The requirement for sparse distribution of simultaneously activated sources in the field of view dictates the acquisition of thousands of frames in order to construct the full super-resolution image. As a result, these methods have slow temporal resolution which is a major limitation when investigating live-cell dynamics. In this paper we present the use of a phase stretch transform for high-density super-resolution localization microscopy. This is a nonlinear frequency dependent transform that emulates the propagation of light through a physical medium with a specific warped diffractive property and applies a 2D phase function to the image in the frequency domain. By choosing properly the transform parameters and the phase kernel profile, the point spread function of each emitter can be sharpened and narrowed. This enables the localization of overlapping emitters, thus allowing a higher density of activated emitters as well as shorter data collection acquisition rates. The method is validated by numerical simulations and by experimental data obtained using a microtubule sample. PMID:27867725

  18. Phase transformation-induced tetragonal FeCo nanostructures.

    PubMed

    Gong, Maogang; Kirkeminde, Alec; Wuttig, Manfred; Ren, Shenqiang

    2014-11-12

    Tetragonal FeCo nanostructures are becoming particularly attractive because of their high magnetocrystalline anisotropy and magnetization achievable without rare-earth elements, . Yet, controlling their metastable structure, size and stoichiometry is a challenging task. In this study, we demonstrate AuCu templated FeCo shell growth followed by thermally induced phase transformation of AuCu core from face-centered cubic to L10 structure, which triggers the FeCo shell to transform from the body-centered cubic structure to a body-centered tetragonal phase. High coercivity, 846 Oe, and saturation magnetization, 221 emu/g, are achieved in this tetragonal FeCo structure. Beyond a critical FeCo shell thickness, confirmed experimentally and by lattice mismatch calculations, the FeCo shell relaxes. The shell thickness and stoichiometry dictate the magnetic characteristics of the tetragonal FeCo shell. This study provides a general route to utilize phase transformation to fabricate high performance metastable nanomagnets, which could open up their green energy applications.

  19. Phase transformations in some hafnium-tantalum-titanium-zirconium alloys

    SciTech Connect

    Ohriner, E.K.; Kapoor, D.

    1997-11-01

    Phase transformations in hafnium alloys are of interest as a means of achieving a material which exhibits flow softening and high localized strains during deformation at high strain rates. Hafnium transforms from a body-centered-cubic beta phase to a hexagonal alpha phase upon cooling below 1749{degrees}C. Hafnium-based alloys containing up to 17.5% Ti, up to 17.5% Ta, and up to 7.3% Zr by weight were button-arc melted and, in some cases, hot extruded to obtain a refined grain size. A number of alloys were shown to have beta solvus temperatures in the range of 1100 to 1300{degrees}C and showed evidence of a shear transformation upon water quenching. The Vickers microhardness of the quenched materials are typically above 350 HV as compared to 300 HV or less for materials with an alpha plus beta structure. Quenching dilatometry indicates a martensite start temperature of about 750{degrees}C for the Hf-7.5 Ta-10 Ti-1 Zr alloy and 800{degrees}C or more for the Hf-7.5 Ta-7.5 Ti-1 Zr alloy. Tensile tests at 1 s{sup {minus}1} strain rate show a constant ultimate tensile strength for temperatures up to 600{degrees}C for the above two alloys and a rapid decrease in strength with a further increase in temperature.

  20. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    NASA Astrophysics Data System (ADS)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  1. Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation

    SciTech Connect

    Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J; Campbell, G H; Raoux, S; Topuria, T; Meister, S; Cui, Y

    2011-01-04

    Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front moving at {approx}13 nm/ns and the nucleation of a new phase behind that front. Certain compound semiconductor phase change materials, such as Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), Sb{sub 2}Te and GeSb, exhibit a technologically important series of transformations on scales that fall neatly into the performance specifications of the DTEM. If a small portion of such material is heated above its melting point and then rapidly cooled, it quenches into an amorphous state. Heating again with a less intense pulse leads to recrystallization into a vacancy

  2. Precipitation phase transformation in nanocrystalline Fe-Mo alloys.

    PubMed

    Sarkar, Subhajit; Bansal, Chandrahaas

    2004-01-01

    Precipitation phase transformation was studied in nanocrystalline Fe-rich Fe-Mo alloys with the use of X-ray diffraction and Mössbauer spectroscopy. Alloys up to 5 at% Mo in Fe were synthesized by mechanical alloying and formed in alpha phase bcc solid solutions with average grain sizes in the range of 10-13 nm. The precipitation transformation (alpha-->alpha + lambda) was found to proceed via a Mo clustering that was correlated with the size of the nanograins. This was understood in terms of the Gibbs Thomson effect with a concept of negative surface energy contribution to the Gibbs free energy of mixing in a nanocrystalline alloy with positive internal energy of mixing. This contribution increased the stability of the solid solution for nanosized grains, and the Mo precipitation started once the grains grew beyond a critical size. We argue that the Mo precipitation takes place in the grain boundary regions, and the Mo-rich lambda phase also precipitates directly in the grain boundary regions, in contrast to the microcrystalline alloys, where the Mo clusters formed within the grains and were first dissolved in the Fe matrix before the lambda phase was formed.

  3. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    PubMed

    Guan, Shu-Hui; Liu, Zhi-Pan

    2016-02-14

    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  4. Phase transformations and vibrational properties of coronene under pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Miao; Zhang, Jiang; Berlie, Adam; Qin, Zhen-Xing; Huang, Qiao-Wei; Jiang, Shan; Zhang, Jian-Bo; Tang, Ling-Yun; Liu, Jing; Zhang, Chao; Zhong, Guo-Hua; Lin, Hai-Qing; Chen, Xiao-Jia

    2013-10-01

    Both the vibrational and structural properties of coronene have been investigated upon compression up to 30.5 GPa at room temperature by a combination of Raman scattering and synchrotron x-ray diffraction measurements. The spectroscopic and crystallographic results demonstrate that two pressure-induced structural phase transitions take place at 1.5 GPa and 12.2 GPa where the high-pressure phases are identified as monoclinic and orthorhombic crystal structures with space groups of P2/m and Pmmm, respectively. A kink in the slope of the cell parameters as a function of pressure is associated with the disappearance of several internal Raman modes, which suggests the existence of structural distortions or reorganizations at approximately 6.0 GPa. Above 17.1 GPa, almost no evidence of crystallinity can be observed, indicating a possible transformation of coronene into an amorphous phase.

  5. Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Mikutta, Robert; Bonneville, Steeve; Wagner, Friedrich; Voegelin, Andreas; Christl, Iso; Kretzschmar, Ruben

    2008-02-01

    Iron(III) (hydr)oxides formed at extracellular biosurfaces or in the presence of exopolymeric substances of microbes and plants may significantly differ in their structural and physical properties from their inorganic counterparts. We synthesized ferrihydrite (Fh) in solutions containing acid polysaccharides [polygalacturonic acid (PGA), alginate, xanthan] and compared its properties with that of an abiotic reference by means of X-ray diffraction, transmission electron microscopy, gas adsorption (N 2, CO 2), X-ray absorption spectroscopy, 57Fe Mössbauer spectroscopy, and electrophoretic mobility measurements. The coprecipitates formed contained up to 37 wt% polymer. Two-line Fh was the dominant mineral phase in all precipitates. The efficacy of polymers to precipitate Fh at neutral pH was higher for polymers with more carboxyl C (PGA ˜ alginate > xanthan). Pure Fh had a specific surface area of 300 m 2/g; coprecipitation of Fh with polymers reduced the detectable mineral surface area by up to 87%. Likewise, mineral micro- (<2 nm) and mesoporosity (2-10 nm) decreased by up to 85% with respect to pure Fh, indicative of a strong aggregation of Fh particles by polymers in freeze-dried state. C-1s STXM images showed the embedding of Fh particles in polymer matrices on the micrometer scale. Iron EXAFS spectroscopy revealed no significant changes in the local coordination of Fe(III) between pure Fh and Fh contained in PGA coprecipitates. 57Fe Mössbauer spectra of coprecipitates confirmed Fh as dominant mineral phase with a slightly reduced particle size and crystallinity of coprecipitate-Fh compared to pure Fh and/or a limited magnetic super-exchange between Fh particles in the coprecipitates due to magnetic dilution by the polysaccharides. The pH iep of pure Fh in 0.01 M NaClO 4 was 7.1. In contrast, coprecipitates of PGA and alginate had a pH iep < 2. Considering the differences in specific surface area, porosity, and net charge between the coprecipitates and pure Fh

  6. Phase transformations and thermodynamics of aluminum-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  7. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  8. Texture evolution during nitinol martensite detwinning and phase transformation

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  9. Nonequilibrium phase transformations in bcc titanium and niobium alloys

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin James

    The major goal throughout this entire study was to find a bulk beta-titanium amorphous system. In this case, the feasibility of bulk amorphization by destabilizing the crystalline phase in bcc titanium alloys is developed. The binary Ti-Cr system was previously reported, by others, to undergo spontaneous vitrification. This work was later proven to be irreproducible by several other groups. With the proper alloying additions to the Ti-Cr system, the resultant bcc matrix is extremely unstable, however, the formation of alpha, o, and intermetallics is inhibited. Powders of the complex system Ti65Cr13Cu 16Mn4Fe2 transform to a fully amorphous structure after just 3 to 4 hours of mechanical milling. In bulk, this system forms nanoscale disordered regions, totaling 20 to 30% of the microstructure, upon annealing of the metastable bcc phase. The phase separation, beta → beta + beta' accompanies this transformation and induces strain into the matrix. Analytical high resolution transmission electron microscopy (TEM) is used to characterize the decomposition behavior by obtaining physical measurements of the microstructure and chemistry, and to determine the mechanism of the phase separation. High resolution and analytical TEM data map the development of successive chromium rich (copper poor) and chromium poor (copper rich) regions formed in <100> directions during heat treatment. This reaction is shown to occur by spinodal decomposition. A known bcc, binary spinodal decomposition system, Nb-Zr, was chosen as a reference system to verify the spinodal mechanism in the 5-component titanium system and to validate the use of analytical TEM to characterize spinodal decomposition. The Ti-Cr system is also investigated for comparison with the complex Ti-Cr-Cu-Mn-Fe system and to resolve some of the issues presented during the earlier spontaneous vitrification studies. Finally, a combination of high resolution TEM and chemical analysis is utilized to differentiate between the

  10. Phase transformation strengthening of high-temperature superalloys

    PubMed Central

    Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.

    2016-01-01

    Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ′ to η phase along stacking faults in γ′ precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties. PMID:27874007

  11. Phase transformation strengthening of high-temperature superalloys

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.

    2016-11-01

    Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new `phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ' to η phase along stacking faults in γ' precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties.

  12. Two-dimensional phase transformation probed by second harmonic generation: Oscillatory transformation of the K/Al(111) system

    SciTech Connect

    Ying, Z.C.; Plummer, E.W. |

    1995-12-31

    The technique of optical second harmonic generation is used to study phase transformations at two-dimensional surfaces and interfaces. Examples are given to illustrate that changes in surface symmetry, adsorption configuration, and electronic structure can be detected by this nonlinear optical technique. An oscillatory phase transformation of potassium adsorbed atoms on Al(111) probed by second harmonic generation is analyzed in detail.

  13. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-07-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants KV≈1.7×105 erg/cm3 and KS≈0.055 erg/cm2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed.

  14. Phase transformations of siderite ore by the thermomagnetic analysis data

    NASA Astrophysics Data System (ADS)

    Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.

  15. Phase Transformation in Silica-Coated FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent; Hadjipanayis, George

    2009-03-01

    The A1 to L10 phase transformation has been examined in silica-coated FePt particles. The nanoparticles were synthesized by reduction of platinum acetylacetonate (Pt (acac) 2) followed by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in the presence of oleic acid (OA) and oleyl amine (OY) as surfactants at low temperature ^[1]. The monodispersed FePt nanoparticles, with a size of 5.8 nm were then coated with silica (SiO2) shells ^[2] . The thickness of the silica shell could be controlled between 7.5-25 nm. The coated particles were subjected to thermal processing at 800 C for various amounts of times. No significant sintering was observed up to 2 hours of annealing for the shell thickness of 15.0 nm. In some silica-coated samples an increase in the particle size was observed after annealing. Selected Area Diffraction analysis and magnetic measurements showed the development of ordered L10 structure. Coercivity values up to 15 kOe at 7K are obtained. The phase transformation is currently being examined in other samples annealed at different times and temperatures and the results will be reported.1.Levent Colak and George C. Hadjipanayis, Nanotechnology 19 (2008) 235703.2.M. Aslam, L. Fu, S. Li, Vinayak P. Dravid, Journal of Colloid and Interface Science 290 (2005) 444--449.

  16. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions.

  17. Spectroscopic and Geochemical Analyses of Ferrihydrite from Hydrothermal Springs in Iceland and Applications to Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice; Murad, E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Ferrihydrite samples were collected from a thermal spring and a cold stream in the Landmannalaugar region of Iceland. Chemical and spectroscopic analyses have been performed on the air-dried and fine-grained fractions of these samples. The ferrihydrite from the cold stream is a pure sample, containing small amounts of Ca, P and Si, which do not form minerals detectable with X-ray diffraction (XRD) or reflectance and transmittance spectroscopy. The ferrihydrite from the thermal pool is a less pure sample, containing larger amounts of amorphous Si and P. The XRD and spectral features for this sample are also consistent with a less crystalline structure. Some of the Si is incorporated in the structure of the ferrihydrite. The Ca, P and possibly some of the Si may be biogenic. The spectral character of these Icelandic ferrihydrites is compared with those of synthetic ferrihydrites and other iron oxide/oxyhydroxide minerals. Ferrihydrite is characterized by a broad Fe3+ excitation band near 0.92 microns (approx. 10900/cm) and a strong Fe-O absorption feature near 475/cm (approx. 21 microns) in transmittance spectra. Multiple bands due to H2O and OH are also present for ferrihydrite. Natural ferrihydrites frequently exhibit a band near 950-1050/cm (approx. 10 microns) that is typically not observed for synthetic ferrihydrites and may be due to some Si in the structure. An additional pair of spectral bands near 1400 and 1500/cm (approx. 7 microns) are characteristic of pure ferrihydrites from natural and synthetic sources. Hydrothermal springs may have been present at one time on Mars in association with volcanic activity. Ferrihydrite formation in such an environment may have contributed to the ferric oxide-rich surface material on Mars.

  18. New insight on kinetics of catalytic decomposition of hydrogen peroxide on ferrihydrite: Based on the preparation procedures of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Meng, Shan; Qin, Mei; Liu, Hui; Wei, Yu

    2012-01-01

    The heterogeneous catalytic reaction of H2O2 with iron oxides is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural and atmospheric waters. In this work, three ferrihydrites, labeled Fh-1, -2 and -3, were prepared by different procedures. Fh-1 was prepared by adding alkali solution to ferric solution under stirring. In the preparation of Fh-2, the mixing procedure of the two solutions was reversed. Fh-3 was obtained by adding alkali solution and ferric solution simultaneously into a certain amount of water. The heterogeneous catalytic reaction of H2O2 with three ferrihydrites in aqueous solution was investigated in detail. The results demonstrated that the apparent reaction rate was affected by the preparation procedure of ferrihydrite besides pH, temperature and the dose of catalyst. The activation energy of the decomposition reaction of H2O2 was determined to be 76.13, 59.41 and 68.05 kJ mol-1 for Fh-1, -2 and -3, respectively. The activation enthalpy of the reaction were determined to be 73.59, 56.56 and 65.76 kJ mol-1 and the activation entropy of the reaction were determined to be -69.65, -119.67 and -90.58 J mol-1 K-1, respectively.

  19. Two-phase transformation of lepidocrocite to maghemite

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.

    2003-04-01

    A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.

  20. The HCP To BCC Phase Transformation in Ti Characterized by Nanosecond Electron Microscopy

    SciTech Connect

    Campbell, G; LaGrange, T; King, W; Colvin, J; Ziegler, A; Browning, N; Kleinschmidt, H; Bostanjoglo, O

    2005-06-21

    The general class of martensitic phase transformations occurs by a rapid lattice-distortive mechanism, where kinetics and morphology of the transformation are dominated by the strain energy. Since transformation is diffusionless, phase fronts propagate through a crystal with great speed that can approach the speed of sound. We have observed a particular example of this class of phase transformation, the hexagonal close packed (HCP) to body centered cubic (BCC) transformation in titanium that is driven by a rapid increase in temperature. We have used a novel nanosecond electron microscope (the dynamic transmission electron microscope, DTEM) to acquire diffraction and imaging information on the transformation, which is driven in-situ by nanosecond laser irradiation. Using nanosecond exposure times that are possible in the DTEM, data can be collected about the transient events in these fast transformations. We have identified the phase transformation with diffraction patterns and correlated the time of the phase transformation with calculated conditions in the sample.

  1. Low temperature XAFS investigation on the lutetium binding changes during the 2-line ferrihydrite alteration process.

    PubMed

    Dardenne, K; Schäfer, T; Lindqvist-Reis, P; Denecke, M A; Plaschke, M; Rothe, J; Kim, J I

    2002-12-01

    The time dependent changes of Lu speciation (used as Am(III) homologue), initially sorbed onto 2-line ferrihydrite at pH 5.9, during tempering (70 degrees C) to stable crystalline transformation products, goethite and hematite, is studied. Microscopies (AFM, SEM), XRD and FTIR spectroscopy confirm transformation to both goethite and hematite, with a predominance of hematite. XRD investigation of another transformation series at pH 8.0 (75 degrees C, [Lu(III)initial] 7 times higher) shows that the cell volume of hematite increases, suggesting the incorporation of Lu in the crystal structure. Extended X-ray absorption fine structure (EXAFS) (pH 5.9 series, 70 degrees C) reveals a shortening of the Lu-O bond distance and an increase in asymmetry of the first shell with increasing tempering time in the intermediate temper time samples. The intensity of the second peak in the Fourier transform (FT) of the EXAFS increases and splits into two components. The EXAFS data of the end product can be modeled well using a hematite-like cluster, with an isotropic expansion of distances to account for incorporation of Lu into the hematite structure. These results demonstrate that the Lu is incorporated in the crystal lattice of the transformation product, as opposed to being occluded or remaining a sorbed species on the surface.

  2. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their

  3. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  4. Phase transformation considerations during process development and manufacture of solid oral dosage forms.

    PubMed

    Zhang, Geoff G Z; Law, Devalina; Schmitt, Eric A; Qiu, Yihong

    2004-02-23

    The quality and performance of a solid oral dosage form depends on the choice of the solid phase, the formulation design, and the manufacturing process. The potential for process-induced solid phase transformations must be evaluated during design and development of formulations and manufacturing processes. This article briefly reviews the basic principles of polymorphism, defines the classes of phase transformation and the underlying transformation mechanisms, and discusses respective kinetic factors. The potential phase transformations associated with common unit operations employed in manufacturing solid oral dosage forms are highlighted. Specific examples are given to illustrate the importance of solid phases, and process-induced phase transitions in formulation and process development.

  5. Role of valence electrons in phase transformation kinetics of thallium and its dilute alloys

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Ahmed, S.

    1991-01-01

    The kinetics of the phase transformation of thallium and its dilute alloys were investigated using XRD and calorimetry. Pure thallium exhibits a beta(bcc) to alpha(hcp) phase transformation on cooling at 508 K. With alloying additions, the crystal structure for each phase does not change, although the size of the unit cell increases. The enthalpy and the temperature of phase transformation of each alloy have been determined. The chemical free energy change associated with the phase transformation of each alloy was calculated. The valence electrons make an outstanding contribution to the chemical free energy change required for the phase change.

  6. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    SciTech Connect

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed material than indents that initially nucleate crystalline defects.

  7. On Inclusion-Matrix Interfacial Stresses in Composites Containing Phase-Transforming Phases

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Ko, Chi-Ching

    2010-05-01

    Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded. Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the two-dimensional plane stress elasticity problem of a square plate containing a circular inclusion, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of applied stress to averaged strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The rationale for this nonuniform stress distributions is due to nonlocal effects induced from negative stiffness.

  8. Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys

    SciTech Connect

    Yeddu, Hemantha Kumar; Lookman, Turab

    2015-05-01

    A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy are acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.

  9. Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys

    DOE PAGES

    Yeddu, Hemantha Kumar; Lookman, Turab

    2015-05-01

    A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy aremore » acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.« less

  10. Zig-zag twins and helical phase transformations.

    PubMed

    Ganor, Yaniv; Dumitrică, Traian; Feng, Fan; James, Richard D

    2016-04-28

    We demonstrate the large bending deformation induced by an array of permanent magnets (applied field ∼0.02 T) designed to minimize poles in the bent state of the crystal. Planar cantilevers of NiMnGa (5M modulated martensite) ferromagnetic shape memory alloy deform into an arched shape according to theory, with a zig-zag microstructure that complies with the kinematic and magnetic compatibility between adjacent twin variants. A general theory of bent and twisted states is given, applicable to both twinning and austenite/martensite transformations. Some of these configurations achieve order-of-magnitude amplification of rotation and axial strain. We investigate also atomistic analogues of these bent and twisted configurations with perfect interfaces between phases. These mechanisms of large deformation, induced by small magnetic fields or temperature changes, have potential application to the development of new actuation technologies for micro-robotic systems.

  11. Kinetics of phase transformation in glass forming systems

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1994-01-01

    The objectives of this research were to (1) develop computer models for realistic simulations of nucleation and crystal growth in glasses, which would also have the flexibility to accomodate the different variables related to sample characteristics and experimental conditions, and (2) design and perform nucleation and crystallization experiments using calorimetric measurements, such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) to verify these models. The variables related to sample characteristics mentioned in (1) above include size of the glass particles, nucleating agents, and the relative concentration of the surface and internal nuclei. A change in any of these variables changes the mode of the transformation (crystallization) kinetics. A variation in experimental conditions includes isothermal and nonisothermal DSC/DTA measurements. This research would lead to develop improved, more realistic methods for analysis of the DSC/DTA peak profiles to determine the kinetic parameters for nucleation and crystal growth as well as to assess the relative merits and demerits of the thermoanalytical models presently used to study the phase transformation in glasses.

  12. Phase transformation and thermoelectric properties of bismuth-telluride nanowires

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Lun; Wingert, Matthew; Huang, Chun-Wei; Guo, Hua; Shih, Ten-Jen; Suh, Joonki; Wang, Kevin; Wu, Junqiao; Wu, Wen-Wei; Chen, Renkun

    2013-05-01

    Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures.Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00876b

  13. Phase transformations in an ascending adiabatic mixed-phase cloud volume

    NASA Astrophysics Data System (ADS)

    Pinsky, M.; Khain, A.; Korolev, A.

    2015-04-01

    Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.

  14. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy.

    PubMed

    Lewis, Ruthven N A H; McElhaney, Ronald N

    2013-10-01

    Fourier transform infrared (FTIR) spectroscopy is a powerful yet relatively inexpensive and convenient technique for studying the structure and organization of membrane lipids in their various polymorphic phases. This spectroscopic technique yields information about the conformation and dynamics of all regions of the lipid molecule simultaneously without the necessity of introducing extrinsic probes. In this review, we summarize some relatively recent FTIR spectroscopic studies of the structure and organization primarily of fully hydrated phospholipids in their biologically relevant lamellar crystalline, gel and liquid-crystalline phases, and show that interconversions between these bilayer phases can be accurately monitored by this technique. We also briefly discuss how the structure and organization of potentially biologically relevant nonlamellar micellar or reversed hexagonal lipid phases can be studied and how phase transitions between lamellar and nonlamellar phases, or between various nonlamellar phases, can be followed as well. In addition, we discuss the potential for FTIR spectroscopy to yield fairly high resolution structural information about phospholipid packing in lamellar crystalline or gel phases. Finally, we show that many, but not all of these FTIR approaches can also yield valuable information about lipid-protein interactions in membrane protein- or peptide-containing lipid membrane bilayer model or even in biological membranes. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  15. Phase-field modeling of shock-induced α- γ phase transformation of RDX

    NASA Astrophysics Data System (ADS)

    Rahul, -; de, Suvranu

    2015-06-01

    A thermodynamically consistent continuum phase field model has been developed to investigate the role of shock-induced α- γ phase transition in the sensitivity of RDX. Dislocations and phase transformations are distinguished and modeled within a crystal plasticity framework. The Landau potential is derived for the finite elastic deformation analysis. The response of the shock loaded RDX crystal is obtained by solving the continuum momentum equation along with phase evolution equation using a Helmholtz free energy functional, which consists of elastic potential energy and local interfacial energy that follows from the Cahn-Hilliard formalism. We observe that the orientations for which there is a resolved shear stress along the slip direction, the material absorbs large shear strain through plastic deformation, allowing it to be less sensitive as less mechanical work is available for temperature rise. Therefore, plastic slip should be associated with greater shear relaxation and, hence, decreased sensitivity. For elastic orientations, large shear stress arises from steric hindrance that may provides much more mechanical work to increase the temperature and hence more sensitive to detonation. Our simulations suggest that the α- γ phase transformation in RDX may be associated with the increased temperature rise and hence the shock sensitivity. The authors gratefully acknowledge the support of this work through Office of Naval Research (ONR) Grants N000140810462 and N000141210527 with Dr. Clifford Bedford as the cognizant Program Manager.

  16. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz

    SciTech Connect

    Fox, Patricia M; Davis, James A; Zachara, John M

    2006-01-30

    Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)32- and Ca2UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.

  17. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.

    PubMed

    Huang, Yu-Ting; Huang, Chun-Wei; Chen, Jui-Yuan; Ting, Yi-Hsin; Lu, Kuo-Chang; Chueh, Yu-Lun; Wu, Wen-Wei

    2014-09-23

    Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM.

  18. Collective Atomic Displacements during Complex Phase Boundary Migration in Solid-Solid Phase Transformations.

    PubMed

    Duncan, Juliana; Harjunmaa, Ari; Terrell, Rye; Drautz, Ralf; Henkelman, Graeme; Rogal, Jutta

    2016-01-22

    The A15 to bcc phase transition is simulated at the atomic scale based on an interatomic potential for molybdenum. The migration of the phase boundary proceeds via long-range collective displacements of entire groups of atoms across the interface. To capture the kinetics of these complex atomic rearrangements over extended time scales we use the adaptive kinetic Monte Carlo approach. An effective barrier of 0.5 eV is determined for the formation of each new bcc layer. This barrier is not associated with any particular atomistic process that governs the dynamics of the phase boundary migration. Instead, the effective layer transformation barrier represents a collective property of the complex potential energy surface.

  19. Incorporation of Uranium into Hematite during crystallization from ferrihydrite.

    PubMed

    Marshall, Timothy A; Morris, Katherine; Law, Gareth T W; Livens, Francis R; Mosselmans, J Frederick W; Bots, Pieter; Shaw, Samuel

    2014-04-01

    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments.

  20. Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite

    PubMed Central

    2014-01-01

    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. PMID:24580024

  1. Three-dimensional phase transformation by impedance-matched dielectric slabs and generation of hollow beams based on transformation optics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Shuaisai; Tang, Zhixiang; Shu, Weixing

    2016-10-01

    We propose a three-dimensional (3D) phase transformation method by an impedance-matched dielectric slab and apply it to generating hollow beams. We first employ transformation optics to establish a method for the transformation between two arbitrary 3D wavefronts through a flat dielectric and impedance-matched material. Then the method is used to convert a solid beam into a hollow beam with desired wavefront. By tuning the transformation surface, different hollow beams can be produced. The results are further validated by 3D finite-difference time-domain simulations.

  2. Polymorphic Phase Transformation in the 3-Bromo- trans-cinnamic Acid System

    NASA Astrophysics Data System (ADS)

    Ahn, Shinbyoung; Harris, Kenneth D. M.; Kariuki, Benson M.; Zin, Dimple M. S.

    2001-01-01

    3-Bromo-trans-cinnamic acid (3-BrCA) exists as two crystalline polymorphic forms (designated as β and γ phases). A polymorphic phase transformation from the γ phase to the β phase has been investigated using ex situ powder X-ray diffraction, in situ high-temperature optical microscopy, and differential scanning calorimetry. The transformation occurs at an observable rate at temperatures above about 100°C. A reverse transformation on subsequently cooling the β phase is not observed. Thermodynamic aspects of the polymorphic 3-BrCA system are discussed, together with kinetic aspects of the transformation from the γ phase to the β phase. The structural properties of the β phase (reported previously) and the γ phase (determined in this work from single-crystal X-ray diffraction data) are in accord with the α/β/γ structural classification of trans-cinnamic acid derivatives.

  3. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  4. Microstructural formation in Ti alloys: In-situ characterization of phase transformation kinetics

    NASA Astrophysics Data System (ADS)

    Aeby-Gautier, E.; Bruneseaux, F.; da Costa Teixeira, J.; Appolaire, B.; Geandier, G.; Denis, S.

    2007-02-01

    The prediction of microstructure during processing needs to characterize the phase transformation occurring during the thermal treatments and their kinetics. In-situ high-energy synchrotron x-ray diffraction experiments performed during temperature variations allow the characterization of the phase evolution. For some transformation conditions, the continuous recording of diffraction diagrams evidences clearly intermediate phases. The quantitative analysis of the diffraction diagrams gives the transformation kinetics of each phase as well as their cell parameters. Transformation kinetics obtained by this method are compared to results obtained by electrical resistivity.

  5. Phase Transformation of Calcium Phosphates by Electrodeposition and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Jen; Wang, Moo-Chin; Chang, Kuo-Ming; Wang, Cheng-Li; Wang, Szu-Hao; Li, Wang-Long; Huang, Hong-Hsin

    2010-12-01

    The effect of heat treatment on the calcium phosphate deposited on Ti-6Al-4V substrate using an electrolytic process is investigated. The calcium phosphate was deposited in a 0.04 M Ca(H2PO4)2·H2O (MCPM) solution on a Ti-6Al-4V substrate at 333 K (60 °C), 10 V, and 80 Torr for 1 hour, and calcined at various temperatures for 4 hours. The X-ray diffraction (XRD) results demonstrate that the phases are dicalcium phosphate (CaHPO4, DCPD) and hydroxyapatile [Ca(PO4)6 (OH)2, HAP] for the as-deposited samples. When the deposited sample was calcined at 873 K (600 °C) for 4 hours, the XRD results show that the transformation of DCPD to HAP occurs. Moreover, HAP converts to β-TCP, CPP, and CaO. For the sample calcined at 1073 K (800 °C) for 4 hours, the scanning electron microscopy (SEM) micrograph reveals that the crack of the calcined sample propagates with a width of about 3 μm. This result is due to HAP becoming decomposed and converting to β-TCP, CPP, CaO, and H2O. The vaporization of H2O within the calcined sample promotes the crack propagation and growth.

  6. Chemically and temperature-induced phase transformations of metal vanadates

    NASA Astrophysics Data System (ADS)

    Patridge, Christopher James

    different individual beta'-Cu xV2O5 nanowires vary widely. Using scanning transmission X-ray microspectroscopy of individual beta'-CuxV2O 5 nanowires, correlations appear to exist between MIT characteristics and the markedly different orbital hybridization of vanadium and oxygen at the O K and V L absorption edges. These comprehensive nanostructure studies hint at the possibility of approaching the incredibly important realm of single-domain measurements which are needed to understand and exploit the intrinsic physical properties of materials. In addition to the bronze MIT studies, the classical MIT material vanadium dioxide, VO2, also shows new properties when scaling down to nanoscale dimensions as well as incorporation of substitutional dopants such as tungsten. X-ray absorption spectroscopy of the dopant local structure suggests an increased symmetry and depairing of V4+-V 4+, which is critical for transition to the lower temperature insulating phase thereby super-cooling the metallic phase to temperatures as low as 254 K. Mechanistic insight and structural changes associated with the intercalation of Li+ are key aspects in understanding and designing useful secondary Li ion batteries. In similarity to the MxV2O 5 studies, another metal vanadate, Ag2VO2PO 4, undergoes phase transformations due to introduction of Li and the vacancy of Ag ions. Employing a comprehensive study on Ag2VO 2PO4 using X-ray absorption spectroscopy, information about chemical state changes and rehybridization of frontier orbitals allows for a more precise understanding of how the material discharges, what, if any, intermediate phases exist during the process, and provides evidence for the posited structural stability at high depths of discharge.

  7. Shock Condition Forensics and Cryptic Phase Transformations from Crystallographic Orientation Relationships in Zircon

    NASA Astrophysics Data System (ADS)

    Timms, N. E.; Erickson, T. M.; Cavosie, A. J.; Pearce, M. A.; Reddy, S. M.; Zanetti, M.; Tohver, E.; Schmieder, M.; Nemchin, A. A.; Wittmann, A.

    2016-08-01

    We present an approach to constrain pressure and temperature conditions during impact events involving identification of cryptic histories of phase transformations from orientation relationships in shocked zircon, linked to new P-T phase diagrams.

  8. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    Thermodynamically consistent, three-dimensional (3D) phase field approach (PFA) for coupled multivariant martensitic transformations (PTs), including cyclic PTs, variant-variant transformations (i.e., twinning), and dislocation evolution is developed at large strains. One of our key points is in the justification of the multiplicative decomposition of the deformation gradient into elastic, transformational, and plastic parts. The plastic part includes four mechanisms: dislocation motion in martensite along slip systems of martensite and slip systems of austenite inherited during PT and dislocation motion in austenite along slip systems of austenite and slip systems of martensite inherited during reverse PT. The plastic part of the velocity gradient for all these mechanisms is defined in the crystal lattice of the austenite utilizing just slip systems of austenite and inherited slip systems of martensite, and just two corresponding types of order parameters. The explicit expressions for the Helmholtz free energy and the transformation and plastic deformation gradients are presented to satisfy the formulated conditions related to homogeneous thermodynamic equilibrium states of crystal lattice and their instabilities. In particular, they result in a constant (i.e., stress- and temperature-independent) transformation deformation gradient and Burgers vectors. Thermodynamic treatment resulted in the determination of the driving forces for change of the order parameters for PTs and dislocations. It also determined the boundary conditions for the order parameters that include a variation of the surface energy during PT and exit of dislocations. Ginzburg-Landau equations for dislocations include variation of properties during PTs, which in turn produces additional contributions from dislocations to the Ginzburg-Landau equations for PTs. A complete system of coupled PFA and mechanics equations is presented. A similar theory can be developed for PFA to dislocations and other

  9. Phase field approach to martensitic phase transformations with large strains and interface stresses

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2014-10-01

    Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg-Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg-Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the

  10. Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate.

    PubMed

    Yu, Bo; Jia, Shao-Yi; Liu, Yong; Wu, Song-Hai; Han, Xu

    2013-11-15

    In this study, mobilization and re-adsorption of arsenate on 2-line ferrihydrite and hematite in the presence of oxalate was investigated. Our results showed that arsenate could be mobilized during the dissolution of ferrihydrite and hematite. After reaching the maximum values, the released arsenate could re-adsorb on the residual ferrihydrite, whereas such an observation was not significant in hematite system. More reactive sites exposed during the dissolution of ferrihydrite could contribute to the re-adsorption of the released arsenate at pH 3.0, while the insignificant re-adsorption of arsenate on hematite could be explained by the inhibitory adsorption effect of oxalate on arsenate. Although dissolution rates of iron oxides decreased with the increase of arsenate on both ferrihydrite and hematite, dissolution rate was mainly determined by the reactivity of iron oxides, and ferrihydrite showed a higher reactivity than hematite in the presence of oxalate. Mathematic model proposed in our study further indicated that arsenate loading showed a more significant effect on arsenate mobilization in hematite system, while it was more effective in arsenate re-adsorption in ferrihydrite system.

  11. PHASE TRANSFORMATIONS IN METALS AND ALLOYS (SELECTED ARTICLES),

    DTIC Science & Technology

    Contents: Stabilization of reverse martensite transformation under the influence of intraphase work hardening; and Structural changes during decomposition of supersaturated solid solution of tungsten in cobalt.

  12. Phase transformation of calcium phenyl phosphate in calcium hydroxyapatite

    SciTech Connect

    Tanaka, Hidekazu . E-mail: hidekazu@riko.shimane-u.ac.jp; Ibaraki, Koshiro; Uemura, Masao; Hino, Ryozi; Kandori, Kazuhiko; Ishikawa, Tatsuo

    2007-07-03

    Calcium phenyl phosphate (CaPP) was synthesized from a mixture of Ca(OH){sub 2} and phenyl phosphate (C{sub 6}H{sub 5}PO{sub 4}H{sub 2}) in an aqueous media. XRD pattern of CaPP exhibited five diffraction peaks at 2{theta} = 6.6, 13.3, 20.0, 26.8 and 33.7{sup o}. The d-spacing ratio of these peaks was ca. 1:1/2:1/3:1/4:1/5. The molar ratios of Ca/P and phenyl/P of CaPP were 1.0 and 0.92, respectively, and the chemical formula of the material was expressed as (C{sub 6}H{sub 5}PO{sub 4}){sub 0.92}(HPO{sub 4}){sub 0.08}Ca.1.3H{sub 2}O, similar to that of dicalcium phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O: DCPD). These results allowed us to infer that CaPP is composed of a multilayer alternating bilayer of phenyl groups of the phosphates and DCPD-like phase. The structure of the material was essentially not altered after aging at pH 9.0-11.0 and 85 deg. C in an aqueous media. While, after aging at pH {<=}8.0, the diffraction peaks of CaPP were suddenly weakened and disappeared at pH 7.0. Besides, new peaks due to calcium hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}: Hap) appeared and their intensity was strengthened with decreasing the solution pH. TEM observation revealed that the Hap particles formed at pH 6.0 are fibrous with ca. 1.5 {mu}m in length and ca. 0.2 {mu}m in width. From these results, it is presumed that the layered CaPP was dissolved, hydrolyzed and reprecipitated to fibrous Hap particles at pH {<=}8.0 and 85 deg. C in aqueous media. This phase transformation of CaPP in Hap resembled to the formation mechanism of Hap in animal organism.

  13. In vitro evaluation of ferrihydrite as an enterosorbent for arsenic from contaminated drinking water.

    PubMed

    Taylor, J F; Robinson, A; Johnson, N; Marroquin-Cardona, A; Brattin, B; Taylor, R; Phillips, T D

    2009-07-15

    Arsenic (As) is a toxic trace element found in groundwater due to natural and industrial processes. Exposure has been linked to cancers of the bladder, lungs, skin, kidneys, nasal passages, liver, and the prostate. Arsenic in drinking water is a problem in many countries, notably Bangladesh and Taiwan. The purpose of this research was to utilize binding isotherms, a simulated gastrointestinal (GI) model, and the adult Hydra bioassay to evaluate ferrihydrite's potential to bind As and serve as a potential enterosorbent for As found in drinking water. A variety of clay minerals and synthesized iron oxides including ferrihydrite were screened for their ability to bind As(III), as sodium arsenite, and As(V), as sodium arsenate. After ferrihydrite was demonstrated to be the most effective sorbent for both As species, adsorption isotherms were performed. All isotherm data were fit to the Langmuir equation to determine adsorption capacity (Qmax). Ferrihydrite bound 96% of As(III) and 97% of As(V) in the screening studies and had a Qmax of 1.288 mol/kg for As(III) and 0.744 mol/kg for As(V). Using a simulated GI model, ferrihydrite was found to effectively adsorb As(V) and As(III) in the stomach and intestine. Ferrihydrite (0.25% w/w) protected adult Hydra at levels up to 200 times the minimal effective concentration (MEC) for As(III) and up to 2.5 times the MEC for As(V). These experiments confirm that ferrihydrite is a high capacity sorbent of As and that it is effective at removing As in a simulated GI model. These results suggest that ferrihydrite could be used as a potential enterosorbent for As found in drinking water. Future work will focus on verifying ferrihydrite's safety and efficacy in vivo.

  14. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite.

    PubMed

    Liu, Jing; Zhu, Runliang; Xu, Tianyuan; Xu, Yin; Ge, Fei; Xi, Yunfei; Zhu, Jianxi; He, Hongping

    2016-02-01

    Ferrihydrite (Fh) is of great importance in affecting the migration and transformation of heavy-metal cations and oxyanions. To advance the understanding of co-adsorption reactions on Fh surface, the co-adsorption of phosphate and Zn(II) from aqueous solution to a synthesized Fh was determined. The batch experiments demonstrated a synergistic adsorption of phosphate and Zn(II) on Fh. In the pH range of 3.5-6, the adsorption of the two contaminants showed strong pH dependence in the single solute adsorption systems, but the dependence alleviated in the simultaneous adsorption system. X-ray photoelectron spectroscopy (XPS) revealed that the chemical shifts of Zn 2p1/2 and Zn 2p3/2 binding energies were more significant than that of P 2p in the single and simultaneous adsorption systems. On the other side, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) observed increased formation of outer- and inner-sphere complexes of phosphate in the simultaneous system. Thus, the synergistic adsorption of the two contaminants could be attributed to the formation of ternary complexes as well as electrostatic interactions, while surface precipitation could not be completely ruled out. On the basis of the results from both the batch adsorption experiments and structural characterization, these two contaminants were likely to form phosphate-bridged ternary complexes (≡Fe-P-Zn) in the simultaneous adsorption system.

  15. Enhanced densification of white cast iron powders by cyclic phase transformations under stress

    NASA Astrophysics Data System (ADS)

    Ruano, Oscar A.; Wadsworth, Jeffrey; Sherby, Oleg D.

    1982-03-01

    It is shown that densification of white cast iron powders under stress can be enhanced by multiple phase transformations through thermal cycling. This enhancement occurs by accelerated creep flow during phase changes (transformation superplasticity). The approximate stress range where transformation-assisted densification can occur is shown to be between 1.7 MPa (250 psi) and 34.5 MPa (5000 psi). Below 1.7 MPa insufficient strain occurs during phase transformation to cause significant densification even after many transformation cycles. Above 34.5 MPa, densification occurs principally by normal slip creep. Transformation warm pressing of white cast iron powders leads to dense compacts at low pressures and short times. In addition, because the transformation temperature is low, the ultrafine structures existing in the original powders are retained in the densified compacts.

  16. Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples

    NASA Astrophysics Data System (ADS)

    Javanbakht, Mahdi; Levitas, Valery I.

    2015-09-01

    The complete system of phase field equations for coupled martensitic phase transformations (PTs), dislocation evolution, and mechanics at large strains is presented. Finite element method (FEM) is utilized to solve this system for two important problems. The first one is related to the simulation of shear strain-induced PT at the evolving dislocation pile-ups in a nanosized bicrystal. Plasticity plays a dual part in the interaction with PT. Dislocation pile-ups produce strong stress tensor concentrators that lead to barrierless martensite (M) nucleation. On the other hand, plasticity in the transforming grain relaxes these stress concentrators suppressing PT. The final stationary M morphology is governed by the local thermodynamic equilibrium, either at the interfaces or in terms of stresses averaged over the martensitic region or the entire grain. This is very surprising because of strong heterogeneity of stress fields and is in contrast to previous statements that phase equilibrium conditions do not enter the description of strain-induced PTs. The second problem is devoted to martensitic plate propagation through a bicrystal during temperature-induced PT. For elastic growth (without dislocations) and a large thermal driving force, a complex transformation path with plate branching and direct and reverse PTs is observed, which still ends with the same stationary nanostructure as for a smaller driving force and a traditional transformation path. Sharp grain boundary arrests plate growth at a relatively small driving force, exhibiting an athermal friction. For elastoplastic growth, the generation of dislocations produces athermal friction and arrests the plate below some critical driving force, leading to a morphological transition from plate to lath M. The width of the martensitic plate increases in comparison with elastic growth due to internal stress relaxation. Plate growth is accompanied by the nucleation of dislocations within M and remaining in M, the

  17. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  18. Selective formation of metastable ferrihydrite in the chiton tooth.

    PubMed

    Gordon, Lyle M; Román, Jessica K; Everly, R Michael; Cohen, Michael J; Wilker, Jonathan J; Joester, Derk

    2014-10-20

    Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.

  19. Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation.

    PubMed

    Matrajt, G; Blanot, D

    2004-03-01

    Ferrihydrite, an iron oxide hydroxide, is found in all kinds of environments, from hydrothermal hot springs to extraterrestrial materials. It has been shown that this material is nanoporous, and because of its high surface area, it has outstanding adsorption properties and in some cases catalysis properties. In this work we studied the adsorption properties of ferrihydrite with respect to amino acids. Samples of pure ferrihydrite were synthesised and exposed to solutions of amino acids including both proteinaceous and non-proteinaceous species. These experiments revealed important characteristics of this mineral as both an adsorbent of amino acids and a promoter of peptide bond formation.

  20. Near-equilibrium polymorphic phase transformations in Praseodymium under dynamic compression

    SciTech Connect

    Bastea, M; Reisman, D

    2007-02-12

    We report the first experimental observation of sequential, multiple polymorphic phase transformations occurring in Praseodymium dynamically compressed using a ramp wave. The experiments also display the signatures of reverse transformations occuring upon pressure release and reveal the presence of small hysteresys loops. The results are in very good agreement with equilibrium hydrodynamic calculations performed using a thermodynamically consistent, multi-phase equation of state for Praseodymium, suggesting a near-equilibrium transformation behavior.

  1. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    NASA Astrophysics Data System (ADS)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  2. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  3. Observation of continuous and reversible bcc-fcc phase transformation in Ag/V multilayers

    SciTech Connect

    Wei, Q. M.; Liu, X.-Y.; Misra, A.

    2011-03-14

    A continuous and reversible bcc-fcc phase transformation via a rotation of bcc(110) or fcc(111) planes is observed in the Bain orientation relationship in a sputter deposited V/Ag multilayers using high resolution transmission electron microscopy and analyzed using molecular dynamics simulations. As a result of the continuous phase transformation, an intermediate bct phase connecting the bcc and fcc phases coexists, giving rise to the Bain path. The periodic displacement of atoms occurs in every two adjacent Ag and V layers. The alternating shear stress created by misfit strain is responsible for generating such transformation.

  4. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Chen, Hao; Xiong, Liming

    2017-01-01

    Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation.

  5. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases.

    PubMed

    Levitas, Valery I; Chen, Hao; Xiong, Liming

    2017-01-13

    Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation.

  6. Interplay between diffusive and displacive phase transformations: time-temperature-transformation diagrams and microstructures.

    PubMed

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-08-04

    Materials which can undergo extremely fast displacive transformations as well as very slow diffusive transformations are studied using a Ginzburg-Landau framework. This simple model captures the essential physics behind microstructure formation and time-temperature-transformation diagrams in alloys such as steels. It also predicts the formation of mixed microstructures by an interplay between diffusive and displacive mechanisms. The intrinsic volume changes associated with the transformations stabilize mixed microstructures such as martensite-retained austenite (responsible for the existence of a martensite finish temperature) and martensite-pearlite.

  7. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed materialmore » than indents that initially nucleate crystalline defects.« less

  8. Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel

    NASA Astrophysics Data System (ADS)

    Cho, Hoon-Hwe; Kim, Dong-Wan; Hong, Sung-Tae; Jeong, Yong-Ha; Lee, Keunho; Cho, Yi-Gil; Kang, Suk Hoon; Han, Heung Nam

    2015-12-01

    A three-dimensional (3D) thermo-mechanical model is developed considering the phase transformation occurring during the friction stir welding (FSW) of steel, and the simulated result is compared with both the measured temperature distribution during FSW and the microstructural changes after FSW. The austenite grain size (AGS) decreases significantly because of the frictional heat and severe plastic deformation generated during FSW, and the decreased AGS accelerates the diffusional phase transformation during FSW. The ferrite phase, one of the diffusional phases, is developed mainly in mild steel, whereas the bainite phase transformation occurs significantly in high-strength steel with large hardenability. Additionally, transformation-induced heat is observed mainly in the stir zone during FSW. The measured temperature distribution and phase fraction agree fairly well with the predicted data.

  9. Pressure and Temperature effects on the High Pressure Phase Transformation in Zirconium

    SciTech Connect

    Escobedo-Diaz, Juan P.; Cerreta, Ellen K.; Brown, Donald W.; Trujillo, Carl P.; Rigg, Paulo A.; Bronkhorst, Curt A.; Addessio, Francis L.; Lookman, Turab

    2012-06-20

    At high pressure zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase ({alpha}) to the simple hexagonal omega phase ({omega}). Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams. For this reason, the influence of peak shock pressure and temperature on the retention of omega phase in Zr is explored in this study. In situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  10. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  11. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  12. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability.

    PubMed

    Greco, Kristyn; Bogner, Robin

    2012-09-01

    Solubility improvement of poorly soluble drug compounds is a key approach to ensuring the successful development of many new drugs. Methods used to improve the solubility of drug compounds include forming a salt, cocrystal, or amorphous solid. These methods of improving solubility can often lead to a phenomenon called solution-mediated phase transformation, a phase change that is facilitated through exposure to solution. Solution-mediated phase transformation occurs in three steps: dissolution to create a supersaturated solution followed by nucleation of less soluble phase and the growth of that phase. When the growth of the less soluble phase occurs on the surface of the metastable solid, this phenomenon can cause a marked decrease in dissolution rate during in vitro dissolution evaluation, and ultimately in vivo. Therefore, transformation to a less soluble solid during dissolution is an important aspect to consider when evaluating approaches to increase the solubility of a poorly soluble drug. Identification of solution-mediated phase transformation during dissolution is reviewed for powder dissolution, rotating disk method, and channel flow-through apparatus. Types of solution-mediated phase transformation are described in this report, including those involving salts, polymorphs, amorphous solids, and cocrystals. Many experimental examples are provided. Evidence of potential solution-mediated phase transformation in vivo is discussed to better understand the relationship between in vitro dissolution evaluation and in vivo performance.

  13. Phase transformation in the alumina-titania system during flash sintering experiments

    SciTech Connect

    Jha, S. K.; Lebrun, J. M.; Raj, R.

    2016-02-01

    We show that phase transformation in the alumina–titania system, which produces aluminum-titanate, follows an unusual trajectory during flash sintering. The experiments begin with mixed powders of alumina–titania and end in dense microstructures that are transformed into aluminum-titanate. The sintering and the phase transformation are separated in time, with the sintering occurs during Stage II, and phase transformation during Stage III of the flash sintering experiment. Stage III is the steady-state condition of flash activated state that is established under current control, while Stage II is the period of transition from voltage to current control. The extent of phase transformation increases with the current density and the hold time in Stage III.

  14. Comparison between thermochemical and phase stability data for the quartz-coesite-stishovite transformations

    NASA Technical Reports Server (NTRS)

    Weaver, J. S.; Chipman, D. W.; Takahashi, T.

    1979-01-01

    Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.

  15. Ferrihydrite Alteration to Magnetite, Maghemite and Hematite; Implications for Iron Oxides on Mars

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Bishop, J. L.; Mancinelli, R. L.; Olsen, M.; Wagner, P. A.

    2000-01-01

    Synthetic ferrihydrites have been altered to form magnetite, maghemite and hematite through low-temperature heating experiments (some with an organic reductant). Maghemite formed in this manner could become an indicator for Astrobiology on Mars.

  16. Fourier transform demodulation of pixelated phase-masked interferograms.

    PubMed

    Servin, M; Estrada, J C; Medina, O

    2010-07-19

    Recently a new type of spatial phase shifting interferometer was proposed that uses a phase-mask over the camera's pixels. This new interferometer allows one to phase modulate each pixel independently by setting the angle of a linear polarizer built in contact over the camera's CCD. In this way neighbor pixels may have any desired (however fixed) phase shift without cross taking. The standard manufacturing of these interferometers uses a 2x2 array with phase-shifts of 0, pi/2, pi, and 3 pi/2 radians. This 2x2 array is tiled all over the video camera's CCD. In this paper we propose a new way to phase demodulate these phase-masked interferograms using the squeezing phase-shifting technique. A notable advantage of this squeezing technique is that it allows one the use of Fourier interferometry wiping out the detuning error that most phase shifting algorithms suffers. Finally we suggest the use of an alternative phase-mask to phase modulate the camera's pixels using a linear spatial carrier along a given axis.

  17. Fundamental Development on Utilizing the R-phase Transformation in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiebin; Kustov, Sergey; Verlinden, Bert; Van Humbeeck, Jan

    2015-06-01

    In near equiatomic NiTi alloys, the reversible thermoelastic transformation between B2-structured austenite phase and the R-phase is attracting increasing interest for practical applications. However, the following two issues limit the widespread utilization of the R-phase transformation: (1) there is no effective approach to control the R-phase transformation temperatures; (2) it is not easy to largely separate the temperature domain of the R-phase and the B19' martensite phase transformation, especially in the presence of an external force. This article reviews concisely the work of the present authors on solving the above two problems. The effect of grain size on the aging microstructure and related transformation behavior is first discussed. Inspired by these findings, an approach to solve the above two problems has been developed by introducing nanoscaled Ni4Ti3 precipitates in the samples with micron-sized grains. The performance of alloys associated with the R-phase transformation, which shows controllable transformation temperatures, is summarized.

  18. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  19. Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Singh, Phool; Yadav, A. K.; Singh, Kehar

    2017-04-01

    A novel scheme for image encryption of phase images is proposed, using fractional Hartley transform followed by Arnold transform and singular value decomposition in the frequency domain. Since the plaintext is a phase image, the mask used in the spatial domain is a random amplitude mask. The proposed scheme has been validated for grayscale images and is sensitive to the encryption parameters such as the order of the Arnold transform and the fractional orders of the Hartley transform. We have also evaluated the scheme's resistance to the well-known noise and occlusion attacks.

  20. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  1. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    PubMed Central

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-01-01

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. Here, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. We expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences. PMID:27516044

  2. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    DOE PAGES

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less

  3. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    SciTech Connect

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.

  4. Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems

    SciTech Connect

    Saalfield, S.; Bostick, B

    2009-01-01

    Biologically mediated redox processes have been shown to affect the mobility of iron oxide-bound arsenic in reducing aquifers. This work investigates how dissimilatory sulfate reduction and secondary iron reduction affect sulfur, iron, and arsenic speciation. Incubation experiments were conducted with As(III/V)-bearing ferrihydrite in carbonate-buffered artificial groundwater enriched with lactate (10 mM) and sulfate (0.08-10 mM) and inoculated with Desulfovibrio vulgaris (ATCC 7757, formerly D. desulfuricans), which reduces sulfate but not iron or arsenic. Sulfidization of ferrihydrite led to formation of magnetite, elemental sulfur, and trace iron sulfides. Observed reaction rates imply that the majority of sulfide is recycled to sulfate, promoting microbial sulfate reduction in low-sulfate systems. Despite dramatic changes in Fe and S speciation, and minimal formation of Fe or As sulfides, most As remained in the solid phase. Arsenic was not solubilized in As(V)-loaded incubations, which experienced slow As reduction by sulfide, whereas As(III)-loaded incubations showed limited and transient As release associated with iron remineralization. This suggests that As(III) production is critical to As release under reducing conditions, with sulfate reduction alone unlikely to release As. These data also suggest that bacterial reduction of As(V) is necessary for As sequestration in sulfides, even where sulfate reduction is active.

  5. Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate.

    PubMed

    Tosco, Tiziana; Bosch, Julian; Meckenstock, Rainer U; Sethi, Rajandrea

    2012-04-03

    The use of nanoscale ferrihydrite particles, which are known to effectively enhance microbial degradation of a wide range of contaminants, represents a promising technology for in situ remediation of contaminated aquifers. Thanks to their small size, ferrihydrite nanoparticles can be dispersed in water and directly injected into the subsurface to create reactive zones where contaminant biodegradation is promoted. Field applications would require a detailed knowledge of ferrihydrite transport mechanisms in the subsurface, but such studies are lacking in the literature. The present study is intended to fill this gap, focusing in particular on the influence of flow rate and ionic strength on particle mobility. Column tests were performed under constant or transient ionic strength, including injection of ferrihydrite colloidal dispersions, followed by flushing with particle-free electrolyte solutions. Particle mobility was greatly affected by the salt concentration, and particle retention was almost irreversible under typical salt content in groundwater. Experimental results indicate that, for usual ionic strength in European aquifers (2 to 5 mM), under natural flow condition ferrihydrite nanoparticles are likely to be transported for 5 to 30 m. For higher ionic strength, corresponding to contaminated aquifers, (e.g., 10 mM) the travel distance decreases to few meters. A simple relationship is proposed for the estimation of travel distance with changing flow rate and ionic strength. For future applications to aquifer remediation, ionic strength and injection rate can be used as tuning parameters to control ferrihydrite mobility in the subsurface and therefore the radius of influence during field injections.

  6. Novel double phase transforming organogel based on β-cyclodextrin in 1,2-propylene glycol.

    PubMed

    Liu, Wenqi; Xing, Pengyao; Xin, Feifei; Hou, Yuehui; Sun, Tao; Hao, Jingcheng; Hao, Aiyou

    2012-11-01

    This paper describes a novel double phase transforming organogel (gel-sol-gel') composed of nontoxic β-cyclodextrin, potassium carbonate, and 1,2-propylene glycol. The gel-sol-gel' transforming processes are followed by a reversible gel-sol transforming process and an irreversible sol-gel' transforming process based on heating. The gel-sol-gel' transformation is accompanied by microstructure changes from nanospheres to nanorods. K(2)CO(3) plays a key role in associating supramolecular architectures of β-cyclodextrin into a three-dimensional network. This work may bring further applications in the areas of smart materials, drug delivery systems, and biomaterials.

  7. Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Warren, James A.

    2015-10-01

    The main focus of this paper is to introduce, in a thermodynamically consistent manner, an anisotropic interface energy into a phase field theory for phase transformations. Here we use a small strain formulation for simplicity, but we retain some geometric nonlinearities, which are necessary for introducing correct interface stresses. Previous theories have assumed the free energy density (i.e., gradient energy) is an anisotropic function of the gradient of the order parameters in the current (deformed) state, which yields a nonsymmetric Cauchy stress tensor. This violates two fundamental principles: the angular momentum equation and the principle of material objectivity. Here, it is justified that for a noncontradictory theory the gradient energy must be an isotropic function of the gradient of the order parameters in the current state, which also depends anisotropically on the direction of the gradient of the order parameters in the reference state. A complete system of thermodynamically consistent equations is presented. We find that the main contribution to the Ginzburg-Landau equation resulting from small strains arises from the anisotropy of the interface energy, which was neglected before. The explicit expression for the free energy is justified. An analytical solution for the nonequilibrium interface and critical nucleus has been found and a parametric study is performed for orientation dependence of the interface energy and width as well as the distribution of interface stresses.

  8. Energy Harvesting Utilizing Stress Induced Phase Transformation in Ferroelectric Piezocrystals

    DTIC Science & Technology

    2013-03-14

    of a phase change transducer configured as a Tonpilz transducer employing mechanical pre- stress, adjustable electronic pre-stress and a single...of another transducer 70 utilizing a Tonpilz configuration with a magnetostrictive pre-stress component 72. Magnetostrictive pre- stress component...entitled “Crystalline Relaxor-Ferroelectric Phase Transition Transducer .” STATEMENT OF GOVERNMENT INTEREST [0002] The invention described herein

  9. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  10. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  11. Transient analyses using symmetrical component calculus in three-phase resistive and transformer-type SFCLs

    NASA Astrophysics Data System (ADS)

    Cho, Y. S.; Choi, H. S.; Jung, B. I.

    2010-11-01

    A transformer-type superconducting fault current limiter (SFCL) can control fault current by adjusting a turn's ratio of the primary and secondary windings. In addition, by inserting a neutral line into the secondary winding, the power burden of the superconducting elements can be evenly distributed. We compared the operating and transient characteristics of the three-phase resistive and transformer-type SFCLs in the balanced and unbalanced faults that occur in power systems. In transformer-type SFCLs, where the primary and secondary windings of each phase were connected to one iron core, flux was induced to each winding of the normal phases by the fault current of the fault phase, thus causing simultaneous quench between superconducting elements. In the three-phase power systems, however, when faults occurred in more than two phases, the flux from fault current of the fault phase affected the other normal phase, thus decreasing the reduction ratio of fault current. We confirmed, however, that the fault current was reduced by 70% relative to cases without SFCLs. The results of the analysis of the transient characteristics of the three-phase transformer-type SFCL through the symmetrical component calculus showed that in the case of triple line-to-ground fault, a difference between positive and negative phase currents was large enough to cause an increase in the phase angle (δ) between the generator creating the power and the motor acting as a load. Thus, we expect that the transient stability deteriorates.

  12. Structural and dynamical transformations between neighboring dense microemulsion phases

    NASA Astrophysics Data System (ADS)

    Kotlarchyk, M.; Sheu, E. Y.; Capel, M.

    1992-07-01

    A small-angle x-ray scattering (SAXS) study of dense AOT-water-decane microemulsions [AOT denotes sodium bis(2-ethylhexyl) sulfosuccinate] was undertaken in order to delineate clearly the phase behavior and corresponding structural transitions for AOT-plus-water volume fractions ranging from φ=0.60 to 0.95. Spectra were collected for temperatures between T=3 and 65 °C. The resulting T-vs-φ phase diagram indicates three distinct structural domains when the water-to-AOT molar ratio is fixed at W=40.8, namely, the previously investigated L2 droplet phase, a high-temperature Lα lamellar phase, and a low-temperature L3 phase consisting of randomly connected lamellar sheets. A significantly wide coexistence region accompanies the droplet-to-lamellar phase transition, which is demonstrated to be first order. For W between 15 and 40, an analysis of the lamellar structure using a one-dimensional paracrystal model produces a Hosemann g factor indicative of an approximately constant variation in the lamellar spacing of about 8%. The SAXS study was supplemented by dielectric-relaxation, shear-viscosity, and quasielastic light-scattering measurements in order to substantiate the observed phase transitions and further our understanding of the structural and dynamical properties of the L3 phase. It was found that the L3 phase exhibits Newtonian behavior up to a shear rate of 790 s-1, in contradiction to previous theoretical considerations. The phase exhibits two distinct relaxation modes. A relaxation time of ~1 ms characterizes the Brownian motion of a single lamellar sheet, while the motion of the entire interconnected sheet assembly has a relaxation time on the order of 1 s.

  13. Confined martensitic phase transformation kinetics and lattice dynamics in Ni–Co–Fe–Ga shape memory alloys

    SciTech Connect

    Cong, Daoyong; Rule, Kirrily Clair; Li, Wen-Hsien; Lee, Chi-Hung; Zhang, Qinghua; Wang, Haoliang; Hao, Yulin; Wang, Yandong; Huang, E-Wen

    2016-09-02

    Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are of great significance to the in-depth understanding of the phase transformation behavior responsible for the rich new physical phenomena in shape memory alloys and could shed light on the design of novel multifunctional properties through tuning the confined martensitic transformation.

  14. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    SciTech Connect

    Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.

  15. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    PubMed

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  16. Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase

    SciTech Connect

    Sandoval-Jimenez, A.; Torres-Villasenor, G.

    2010-11-15

    Ribbons of the Zn-Al eutectoid alloy obtained by melt-spinning, were heat treated at 350 deg. C during 30 min in a free atmosphere furnace, and then quenched in liquid nitrogen. The temperature correspond to {beta} phase zone, which has a triclinic crystalline structure [1, 2]. Some evidence, obtained by X-ray diffraction, show that the structures present in the just quenched material are both close-packed hexagonal ({eta}-phase) and rhombohedral (R-phase). X-ray diffractograms taken in the same ribbons after annealed 500 h at room temperature, show that the R phase its transform to {alpha} and {eta} phases.

  17. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  18. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    SciTech Connect

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields} {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.

  19. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  20. Texture Evolution and Phase Transformation in Titanium Investigated by In-Situ Neutron Diffraction

    SciTech Connect

    Ma, Dong; Stoica, Alexandru Dan; An, Ke; Yang, Ling; Bei, Hongbin; Mills, Rebecca A; Skorpenske, Harley David; Wang, Xun-Li

    2011-01-01

    We report in-situ neutron diffraction studies of texture evolution and the (hcp) (bcc) phase transformation in commercially pure cold-drawn titanium upon continuous heating and cooling, complemented by differential scanning calorimetry (DSC) measurements. We show that the recrystallization of the phase at elevated temperature enhanced the preexisting fiber texture, which eventually facilitated the nucleation and growth of the phase favored by the Burgers orientation relationship, i.e., {0001} //{110} . More strikingly, upon completion of the transformation, the {110} texture (or preferred orientation) in was eliminated immediately by the rapid grain growth of intergranular allotriomorphs. This resulted in the loss of the original -texture when Ti was transformed back to from to upon subsequent cooling, distinct from the known texture memory effect for rolling textures in titanium. Our present work provides useful experimental results for understanding the mechanisms of texture evolution and phase transformation in titanium and its alloys and, by and large, low-symmetry alloys such as zirconium.

  1. Macroscopic behavior of a bar undergoing the paraelectric-ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Qing

    1993-10-01

    R ECENT WORK of the author has developed a continuum model for the paraelectric—ferroelectric phase transformation. The present paper describes the detailed implications of this model when it has been supplemented with constitutive information pertaining to the phase transformation. An explicit Helmholtz potential has been constructed to characterize a hypothetical crystal capable of undergoing the paraelectric-ferroelectric phase transformation under the influence of applied electric fields or thermomechanical loads. The hysteretic macroscopic behavior associated with the phase transformation, induced by variation of temperature, application of electric fields and mechanical loads, has been studied. Some of the predictions have been compared qualitatively with experimental observations. The entire analysis is carried out within a one-dimensional setting.

  2. Multiple-image encryption based on phase mask multiplexing in fractional Fourier transform domain.

    PubMed

    Liansheng, Sui; Meiting, Xin; Ailing, Tian

    2013-06-01

    A multiple-image encryption scheme is proposed based on the phase retrieval process and phase mask multiplexing in the fractional Fourier transform domain. First, each original gray-scale image is encoded into a phase only function by using the proposed phase retrieval process. Second, all the obtained phase functions are modulated into an interim, which is encrypted into the final ciphertext by using the fractional Fourier transform. From a plaintext image, a group of phase masks is generated in the encryption process. The corresponding decrypted image can be recovered from the ciphertext only with the correct phase mask group in the decryption process. Simulation results show that the proposed phase retrieval process has high convergence speed, and the encryption algorithm can avoid cross-talk; in addition, its encrypted capacity is considerably enhanced.

  3. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  4. Effect of uni- and biaxial strain on phase transformations in Fe thin films

    NASA Astrophysics Data System (ADS)

    Sak-Saracino, Emilia; Urbassek, Herbert M.

    2016-01-01

    Using molecular-dynamics simulation, we study the phase transformations in Fe thin films induced by uni- and biaxial strain. Both the austenitic transformation of a body-centered cubic (bcc) film at the equilibrium temperature of the face-centered cubic (fcc)-bcc transformation and the martensitic transformation of an undercooled fcc film are studied. We demonstrate that different strain states (uni- or biaxial) induce different nucleation kinetics of the new phase and hence different microstructures evolve. For the case of the austenitic transformation, the direction of the applied strain selects the orientation of the nucleated grains of the new phase; the application of biaxial strain leads to a symmetric twinned structure. For the martensitic transformation, the influence of the strain state is even more pronounced, in that it can either inhibit the transformation, induce the homogeneous nucleation of a fine-dispersed array of the new phase resulting in a single-crystalline final state, or lead to the more conventional mechanism of heterogeneous nucleation of grains at the free surfaces, which grow and result in a poly-crystalline microstructure of the transformed material.

  5. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  6. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  7. Modeling the amorphous-to-crystalline phase transformation in network materials

    NASA Astrophysics Data System (ADS)

    Kohary, K.; Burlakov, V. M.; Pettifor, D. G.

    2005-06-01

    We have developed a computationally efficient rate equation model to study transformations between amorphous and crystalline phases of network forming materials. Amorphous and crystalline phases are treated in terms of their atomic ring distributions. The transformation between the two phases is considered to be driven by the conversion of one set of rings into another, following the Wooten-Winer-Weaire bond-switching algorithm. Our rate equation model describes both the generation and collapse of amorphous regions in thin crystalline films, the processes crucial for phase-change data storage materials. It is found that the amorphous spot collapse is assisted by the motion of certain crystal facets.

  8. The use of 2D Hilbert transform for phase retrieval of speckle fields

    NASA Astrophysics Data System (ADS)

    Angelsky, O. V.; Zenkova, C. Yu.; Riabyi, P. A.

    2016-12-01

    The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of remote objects is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce a new algorithm for solving the phase problem for random 2D intensity distributions.

  9. Color image security system using double random-structured phase encoding in gyrator transform domain.

    PubMed

    Abuturab, Muhammad Rafiq

    2012-05-20

    A novel method for encoding color information based on a double random phase mask and a double structured phase mask in a gyrator transform domain is proposed. The amplitude transmittance of the Fresnel zone plate is used as structured phase-mask encoding. A color image is first segregated into red, green, and blue component images. Each of these component images are then independently encrypted using first a random phase mask placed at the image plane and transmitted through the first structured phase mask. They are then encoded by the first gyrator transform. The resulting information is again encrypted by a second random phase mask placed at the gyrator transform plane and transmitted through the second structured phase mask, and then encoded by the second gyrator transform. The system parameters of the structured phase mask and gyrator transform in each channel serve as additional encryption keys and enlarge the key space. The encryption process can be realized with an electro-optical hybrid system. The proposed system avoids problems arising from misalignment and benefits of a higher space-bandwidth product. Numerical simulations are presented to confirm the security, validity, and possibility of the proposed idea.

  10. Mesh-based phase contrast Fourier transform imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  11. Grid-Based Fourier Transform Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  12. In-situ Monitoring of Dynamic Phenomena during Solidification and Phase Transformation Processing

    SciTech Connect

    Clarke, Amy J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J; Mariam, Fesseha G; Patterson, Brian M.; Imhoff, Seth D.; Lee, Wah Keat; Fezzaa, Kamel; Deriy, Alex; Tucker, Tim J.; Clarke, Kester D.; Field, Robert D.; Thoma, Dan J.; Teter, David F.; Beard, Timothy V.; Hudson, Richard W.; Freibert, Franz J.; Korzekwa, Deniece R.; Farrow, Adam M.; Cross, Carl E.; Mihaila, Bogdan; Lookman, Turab; Hunter, Abigail; Choudhury, Samrat; Karma, Alain; Ott, Jr., Thomas J.; Barker, Martha R.; O'Neill, Finian; Hill, Joshua; Emigh, Megan G.

    2012-07-30

    The purpose of this project is to: (1) Directly observe phase transformations and microstructure evolution using proton (and synchrotron x-ray) radiography and tomography; (2) Constrain phase-field models for microstructure evolution; (3) Experimentally control microstructure evolution during processing to enable co-design; and (4) Advance toward the MaRIE vision. Understand microstructure evolution and chemical segregation during solidification {yields} solid-state transformations in Pu-Ga.

  13. Microstructural Formations and Phase Transformation Pathways in Hot Isostatically Pressed Tantalum Carbides

    DTIC Science & Technology

    2012-01-01

    REPORT Microstructural formations and phase transformation pathways in hot isostatically pressed tantalum carbides 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: A series of XTa:(1 X)C (0.5 < X < 1) compositions have been fabricated by hot isostatic pressing (HIP) of Ta and TaC powder blends...ANSI Std. Z39.18 - Microstructural formations and phase transformation pathways in hot isostatically pressed tantalum carbides Report Title ABSTRACT A

  14. In Vitro Evaluation of Ferrihydrite as an Enterosorbent for Arsenic from Contaminated Drinking Water

    PubMed Central

    Taylor, J. F.; Robinson, A.; Johnson, N.; Marroquin-Cardona, A.; Brattin, B.; Taylor, R.; Phillips, T. D.

    2009-01-01

    Arsenic (As) is a toxic trace element found in groundwater due to natural and industrial processes. Exposure has been linked to cancers of the bladder, lungs, skin, kidneys, nasal passages, liver, and the prostate. Arsenic in drinking water is a problem in many countries, notably Bangladesh and Taiwan. The purpose of this research was to utilize binding isotherms, a simulated gastrointestinal (GI) model, and the adult Hydra bioassay to evaluate ferrihydrite’s potential to bind As and serve as a potential enterosorbent for As found in drinking water. A variety of clay minerals and synthesized iron oxides including ferrihydrite were screened for their ability to bind As(III), as sodium arsenite, and As(V), as sodium arsenate. After ferrihydrite was demonstrated to be the most effective sorbent for both As species, adsorption isotherms were performed. All isotherm data were fit to the Langmuir equation to determine adsorption capacity (Qmax). Ferrihydrite bound 96% of As(III) and 97% of As(V) in the screening studies and had a Qmax of 1.288 mol/kg for As(III) and 0.744 mol/kg for As(V). Using a simulated GI model, ferrihydrite was found to effectively adsorb As(V) and As(III) in the stomach and intestine. Ferrihydrite (0.25% w/w) protected adult hydra at levels up to 200 times the minimal effective concentration (MEC) for As(III) and up to 2.5 times the MEC for As(V). These experiments confirm that ferrihydrite is a high capacity sorbent of As, and that it is effective at removing As in a simulated GI model. These results suggest that ferrihydrite could be used as a potential enterosorbent for As found in drinking water. Future work will focus on verifying ferrihydrite’s safety and efficacy in vivo. PMID:19708388

  15. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    NASA Astrophysics Data System (ADS)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  16. Proposed Giaever transformer to probe the pseudogap phase of cuprates.

    SciTech Connect

    Levchenko, A.; Norman, M. R.

    2011-03-01

    We develop a theory of the rectification effect in a double-layer system where both layers are superconductors or one of the layers is a normal metal. The Coulomb interaction is assumed to provide the dominant coupling between the layers. We find that superconducting fluctuations strongly enhance the drag conductivity, with rectification most pronounced when both layers are superconductors. In view of their distinct dependence on temperature near T{sub c} and layer separation, drag measurements based on a Giaever transformer could distinguish whether rectification occurs due to fluctuating pairs or inductively coupled fluctuating vortices.

  17. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  18. Quantum image encryption based on generalized Arnold transform and double random-phase encoding

    NASA Astrophysics Data System (ADS)

    Zhou, Nan Run; Hua, Tian Xiang; Gong, Li Hua; Pei, Dong Ju; Liao, Qing Hong

    2015-04-01

    A quantum realization of the generalized Arnold transform is designed. A novel quantum image encryption algorithm based on generalized Arnold transform and double random-phase encoding is proposed. The pixels are scrambled by the generalized Arnold transform, and the gray-level information of images is encoded by the double random-phase operations. The keys of the encryption algorithm include the independent parameters of coefficients matrix, iterative times and classical binary sequences, and thus, the key space is extremely large. Numerical simulations and theoretical analyses demonstrate that the proposed algorithm with good feasibility and effectiveness has lower computational complexity than its classical counterpart.

  19. Nonadiabaticity in the iron bcc to hcp phase transformation.

    PubMed

    Johnson, Donald F; Carter, Emily A

    2008-03-14

    Iron is known to undergo a pressure-induced phase transition from the ferromagnetic (FM) body-centered-cubic (bcc) alpha-phase to the nonmagnetic (NM) hexagonal-close-packed (hcp) epsilon-phase, with a large observed pressure hysteresis whose origin is still a matter of debate. Long ago, Burgers [Physica (Amsterdam) 1, 561 (1934)] proposed an adiabatic pathway for bcc to hcp transitions involving crystal shear followed by atom shuffles. However, a quantum mechanics search in six-dimensional stress-strain space reveals a much lower energy path, where the crystal smoothly shears along the entire path while the atoms shuffle only near the transition state (TS). The energy profile for this phase transition path exhibits a cusp at the TS and closely follows bcc and hcp diabatic energy wells. Both the cusp and the overlap with diabatic energy surfaces are hallmarks of nonadiabaticity, analogous to, e.g., electron transfer (ET) reactions in liquids. Fluctuations in the positions of FM bcc iron atoms near the TS induce magnetic quenching (akin to solvent fluctuations inducing ET), which then promotes NM hcp iron formation (akin to solvent reorganization after ET). We propose that the nonadiabatic nature of this transition at the atomic scale may contribute to the observed pressure hysteresis.

  20. Temperature-induced phase transformation of Fe1-xNix alloys: molecular-dynamics approach

    NASA Astrophysics Data System (ADS)

    Sak-Saracino, Emilia; Urbassek, Herbert M.

    2015-07-01

    Using molecular-dynamics simulation, we study the temperature induced bcc/fcc phase transformation of random Fe1-xNix alloys in the concentration range of x ≤ 40 at%. The Meyer-Entel potential describes faithfully the decrease of the transition temperature with increasing Ni concentration. The austenite transformation proceeds by homogeneous nucleation and results in a fine-grained poly-crystalline structure. The transformation follows the Nishiyama-Wassermann orientation relationship. The martensite phase nucleates at the grain boundaries (heterogeneous nucleation). Even for the largest crystallite studied (2.75 × 105 atoms) the back-transformation results in a single-crystalline grain containing only a small amount of defects. The morphological changes in the transformed material show no significant dependence on Ni content.

  1. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    NASA Astrophysics Data System (ADS)

    Honorio, Tulio

    2017-02-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  2. Effect of ball to powder ratio on the ZrO2 phase transformations during milling

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Razavi, M.; Rahimipour, M. R.; Jamal Abbasi, B.

    Effect of milling time and ball to powder weight ratio (BPR) were investigated on the phase transformation of monoclinic zirconia during high energy ball milling. Degree of phase transformation was studied by X-ray diffraction (XRD) and quantitative phase analysis (Rietveld refinement). Morphology and microstructure were monitored by scanning and transmission electron microscopy, respectively. Higher milling time and BPR led to the more transformation, smaller mean grain size and larger strain. There was approximately 80% tetragonal zirconia in the 80 h milled powder with the BPR 25:1. A nanostructure powder with the mean grain size less than 10 nm was obtained in both BPRs that were in consistence with TEM images. Stress and strain inducing in the lattice of m-ZrO2 was proposed as the main mechanism of its transformation.

  3. Ab initio molecular dynamics simulation of pressure-induced phase transformation in BeO

    SciTech Connect

    Xiao, Haiyan; Duan, G; Zu, X T; Weber, William J

    2011-01-01

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ {yields} RS and ZB {yields} RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ {yields} RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange-correlation functional employed and the way of applying pressure.

  4. Finite size effects in phase transformation kinetics in thin films and surface layers

    NASA Astrophysics Data System (ADS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-02-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively.

  5. New Phase Regions of Ir-Ru-Ti System with Eutectic-Peritectic Transformation

    NASA Astrophysics Data System (ADS)

    Lutsyk, V.; Vorob'eva, V.

    2013-12-01

    Special surfaces, corresponding to phase transformation type changing, have been found and designed within six three-phase regions of the system Ti-Ir-Ru with a help of 3D computer model of its T-x-y diagram.

  6. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  7. Phase transformation of oxide film in zirconium alloy in high temperature hydrogenated water

    SciTech Connect

    Kim, Taeho; Kim, Jongjin; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Seung Hyun; Kim, Ji Hyun

    2015-07-23

    The effect of the variation of the dissolved hydrogen concentration on the oxide phase transformation under high-temperature hydrogenated water conditions was investigated using in situ Raman spectroscopy. The Raman spectrum in 50 cm(3)/kg of dissolved hydrogen concentration indicated the formation of monoclinic and tetragonal zirconium oxide at the water-substrate interface. As the dissolved hydrogen concentration decreased to 30 cm(3)/kg, the Raman peaks corresponding to the zirconium oxide phase changed, indicating an oxide phase transformation. And, the results of SEM and TEM analyses were compared with those of in situ analyses obtained for the oxide structure formed on the zirconium alloy.

  8. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  9. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-06

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  10. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect

    Leung Shingyu; Qian Jianliang

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  11. Phase equilibria and transformations in the Ti-Al-Nb system

    NASA Astrophysics Data System (ADS)

    Mishurda, Joseph Constantine

    The phase equilibria and transformations in the Nb-Ti-Al system in the vicinity of the Sigma phase field have been examined with respect to the Liquidus Surface (Phase 1), the Phase Equilibria and Equilibrium Transformations (Phase II), and the Phase Transformations, Mechanisms and Kinetics (Phase III). Eight alloy compositions were produced by arc melting. The alloys were characterized by differential thermal analysis, metallography, X-ray diffraction, scanning electron microscopy (BSEI), electron probe microanalysis and transmission electron microscopy. The liquidus examination shed new light on previous microstructural interpretations, opening up new possibilities for microstructural development and control of multiphase alloys. Differential thermal analysis has identified the existence of a beta to sigma + gamma transformation in an alloy where it was not previously thought to exist. The results differed from the calculated diagram by higher titanium solubility in the sigma and delta phases than predicted at lower temperatures and a lower solubility of alpha2 and gamma. The high temperature betao transforms to gamma + sigma in a eutectoid fashion resulting in a desirable lamellar structure of sigma and gamma. The existence of a new body centered tetragonal crystal structure ao = 5.11A and co 28.12A with a point group symmetry of P4/mmm, at 700°C was discovered. A plethel section was found for the sigma + beta two phase alloys. A betao + O + sigma three phase field passes through the alloys between 981 and 1000°C. The plethel section at the transformation has an eutectoid characteristic, however, the nature of the transformation changes to a peritectoid. At temperatures below 970°C, the first transformation to occur is the decomposition of the metastable betao phase to an intermediate metastable phase O'. Reasonable values for Q were obtained, applicable to the diffusion limited region of the TTT-curve. The microstructure evolution of the sigma + beta

  12. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

    NASA Astrophysics Data System (ADS)

    Greer, Heather F.; Zhou, Wuzong; Guo, Li

    2015-08-01

    A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

  13. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  14. A simplification of the fractional Hartley transform applied to image security system in phase

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos J.; Vilardy, Juan M.; Perez, Ronal

    2017-01-01

    In this work we develop a new encryption system for encoded image in phase using the fractional Hartley transform (FrHT), truncation operations and random phase masks (RPMs). We introduce a simplification of the FrHT with the purpose of computing this transform in an efficient and fast way. The security of the encryption system is increased by using nonlinear operations, such as the phase encoding and the truncation operations. The image to encrypt (original image) is encoded in phase and the truncation operations applied in the encryption-decryption system are the amplitude and phase truncations. The encrypted image is protected by six keys, which are the two fractional orders of the FrHTs, the two RPMs and the two pseudorandom code images generated by the amplitude and phase truncation operations. All these keys have to be correct for a proper recovery of the original image in the decryption system. We present digital results that confirm our approach.

  15. Dual constant composition method and its application to studies of phase transformation and crystallization of mixed phases

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, A.; Zhang, Jingwu; Nancollas, G. H.

    1991-08-01

    In a novel approach, a dual constant composition (DCC) technique has been developed for the investigation of concurrent dissolution and growth processes such as crystalline phase transformation, as well as growth of mixed crystalline phases. DCC utilizes two potentiostats and electrode sets to control simultaneous reactions in the same medium. The kinetics of concurrent dissolution or growth of dicalcium phosphate dihydrate (DCPD) and the growth of octacalcium phosphate (OCP) were studied.

  16. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  17. Fe-Solid Phase Transformations Under Highly Basic Conditions

    SciTech Connect

    Qafoku, Nik; Qafoku, Odeta; Ainsworth, Calvin C.; Dohnalkova, Alice; McKinley, Susan G.

    2007-09-01

    Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe rich precipitates. Batch reactors were used to conduct experiments at 50 0C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite, and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10-13 mol m-2 s-1) was measured in the treatment with no Al and a concentration of 4.32 mol L-1 NaOH in the contacting solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminant and radionuclides.

  18. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  19. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  20. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  1. Phase transformation of the A15 metastable phase of Fe-Cr thin films prepared by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Al-Khoury, W.; Eymery, J.-P.; Goudeau, Ph.

    2007-08-01

    Thermal stability of metastable A15 Fe-Cr phase is investigated through the study of its magnetic and structural properties. This phase presents very interesting mechanical properties suggesting that A15-structured films might be of great interest for tribological applications when considering the hardness H over Young's modulus E ratio i.e., a description in terms of "elastic strain to failure" for wear resistance. Indeed, H is multiplied by a factor 2 with respect to the value measured for the bulk cubic centered α phase whereas E remains identical. Then, an improvement by a factor 8 of resistance to plastic deformation may be expected since predictive models stand that this quantity is proportional to the H3/E2 ratio. However, heating problems due to sliding during tribological tests may lead to structural transformation in the film and then a loose of mechanical performance. The formation and the stability of the A15 cubic structure (δ phase) in centered-cubic refractory metals are generally attributed to the presence of oxygen atoms in the unit cell. For equiatomic Fe-Cr thin films elaborated by physical vapor deposition techniques, residual oxygen atoms present in the deposition chamber would be absorbed during the deposition process. In this work, the δ-phase transformation has been studied ex situ in the temperature range 400-650 °C; structural changes have been accurately investigated thanks to the combination of x-ray diffraction and Mössbauer spectroscopy techniques. Thin films were deposited onto quartz substrates and then annealed ex situ under secondary vacuum. From 400 °C, a "structural relaxation" occurring in the δ phase precedes and accompanies the beginning of the phase transformation. Finally, the partially ordered metastable δ-phase transforms into a stable α-phase presenting the precipitation phenomenon at temperature above 550 °C and the presence of a τ-carbide phase is clearly visible from 600 °C. The δ-phase transformation is

  2. Phase equilibria and solid state transformations in niobium-rich niobium-titanium-aluminum intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Leonard, Keith John

    The phase equilibria and solid state transformations within seven Nb-rich Nb-Ti-Al alloys were investigated. The alloys ranged in composition between 15 and 40 at.% Al with Nb:Ti ratios of 1.5:1 to 4:1. Examination of the as-cast microstructures revealed that all alloys solidified from the beta phase field, with subsequent solid-state transformations occurring within four of the alloys during cooling. The range of primary beta phase solidification was determined to extend beyond the limits of previous liquidus projections. The high temperature beta phase field was verified in each alloy through quenching experiments. The beta phase exhibited B2 ordering at room temperature with the order-disorder transition temperatures increasing with Ti concentration. The site occupancy preferences within the beta phase were evaluated through the ALCHEMI technique, which determined that Ti substitution occurred for Nb on Nb sublattice sites with the degree of sublattice partitioning found to depend upon alloy composition. The phase equilibria and transformations that occurred within the alloys were explored over a complete range of temperatures, with experimental isotherms produced at 1400, 1100, 900 and 700°C. Formation of metastable O-Ti 2AlNb plates occurred within the 15 at.% Al alloys at 700°C, instead of the delta-Nb3Al phase due to the slow diffusion growth kinetics of the delta phase below 900°C. A new phase with a body centered tetragonal structure belonging to the I41/amd space group was discovered in the Nb-24Ti-40Al alloy below 1100°C. This phase formed as lamella with the gamma-TiAl phase from the beta solid solution at 900 and 700°C, and was also present following treatments at 1100 + 900, 1100 + 700°C and within material oil quenched from elevated temperatures. No correlation existed between this phase and either the r-TiAl2 phase, which also has the I41/amd structure, or the gamma1 phase, which was not observed within this work. The formation of a metastable

  3. Understanding strain-induced phase transformations in BiFeO3 thin films

    DOE PAGES

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; ...

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resultingmore » in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.« less

  4. Understanding strain-induced phase transformations in BiFeO3 thin films

    SciTech Connect

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  5. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    PubMed

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO3 thin films, which comprises a tetragonal-like (T') and an intermediate S' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S' phase is energetically very close to the T' phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T' and S' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S' and T' polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S' to T' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  6. Phase transformations and phase relations in Ti{sub 50}Pd{sub (50-x)}TM{sub x} alloys

    SciTech Connect

    Schwartz, A.J.; Sluiter, M.H.; Harmon, B.N.; Tanner, L.E.

    1994-07-15

    The effect of transition metal (TM) substitution for Pd in Ti{sub 5O}Pd{sub (50-x}TM{sub x} alloys with x between 5 and 37.5 at.% and TM = V, Cr, Mn and Fe are being characterized by transmission electron microscopy and First-Principles Alloy Theory modeling. The goal is to obtain detailed structural information related to the ternary phase relations and transformations that are necessary for effective shape-memory alloy development. Thus far, the authors have found that the tend to have pseudobinary eutectoid-like configurations with a terminal TiPd and a non-close-packed long period ordered structure type crystal structure) based on the stoichiometry Ti{sub 2}PdTM. The systems exhibit a conventional martensitic transformation, as well as a new type of displacive transformation that shear-modulates B2 to produce a periodically distorted, but non-close-packed metastable product phase.

  7. Influence of Rapid Thermal Ramp Rate on Phase Transformation of Titanium Silicides

    SciTech Connect

    Bailey, Glenn; Hu, Yao, Zhi; Smith, Paul Martin; Tay, Sing Pin; Thakur, Randhir; Yang, Jiting

    1999-05-03

    ULSI technology requires low resistance, stable silicides formed on small geometry lines. Titanium disilicide (TiSiz), which is the most widely used silicide for ULSI applications, exists in two crystallographic phases: the high resistance, metastable C49 phase and the low resistance, stable C54 phase. The major issue with TiSiz is the increasing thermal budget required to transform the C49 phase into the low resistance C54 phase as linewiths decrease below 0.25 pm. Annealing above 900"C to obtain this transformation often results in thermal degradation, so it is desirable to reduce the transformation temperature. The transformation temperature has been shown to be a fi.mction of many factors including microstructure, grain size, and impurities. In this paper we report an investig+ion of rapid thermal silicidation of titanium films (250, 400, and 600 A) on single crystalline silicon at temperatures from 300 to 1000"C. The ramp rates for these experiments are 5, 30, 70, and 200oC/s. The transformation temperature decreases as the ramp rate increases and as the initial film thickness increases. Scanning electron microscopy (SEM) is used to analyze the resultant film microstructure. The ramp rate influence on Ti silicidation is also investigated on polycrystalline Si lines with widths ranging from 0.27 to 3.0 pm.

  8. Phase Transformation from Smectic to Crystalline a-Form in Isotactic Polypropylene during Heating Process

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Hsiao, Benjamin S.; Srinivas, Srivatsan

    2000-03-01

    The phase transformation during heating of a quenched smectic isotactic polypropylene (iPP) sample was followed by simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques with synchrotron radiation and differential scanning calorimetry (DSC), respectively. DSC thermogram showed a small endotherm at ca. 61^oC (peak temp.) followed by an exotherm at ca. 96^oC (peak temp.). This exotherm represented the phase transformation from the smectic state to the crystal a-form, which began at 82^oC (onset temp.). The final melting endotherm of the monoclinic a-form occurred at 162^oC (peak temp.). The SAXS invariant after normalization by thermal expansion factor during heating process conformed the even of phase transformation from smectic state to monoclinic state due to the improved scattering contrast. The significant increase of long period (11 nm to 24 nm) and crystal thickness (8 nm to 18 nm) from the correlation function analysis during heating also indicated that melting and recrystallization processes occurred during the phase transformation. WAXD results provided the direct evident of phase transformation in the crystal lamellae, starting at 82^oC.

  9. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion.

    PubMed

    Xiao, J; Li, J L; Liu, P; Yang, G W

    2014-12-21

    The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called "new diamond" because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.

  10. Earth physics and phase transformations program: A concept and proposal

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.

    1971-01-01

    A program to study the geophysical characteristics of the earth is presented as an integration of the different disciplines that constitute the earth sciences, through the foundation of a generalized geodynamic theory of earth physics. A program is considered for defining the physical constants of the earth's material which parametrize the hydrodynamic equation in the microscopic solid state behavior of the crystals of the lithosphere. In addition, in order to lay the foundation for a generalized theory in earth physics, specific research areas are considered, such as the nature of the kinetics of the phase transitions in mineral assemblages, the equilibrium thermodynamic properties of crystals which are major constituents of mineral assemblages, and the transport properties of pure crystals which are major constituents of mineral assemblages.

  11. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  12. HIGH CRYSTALLINITY SI-FERRIHYDRITE: AN INSIGHT INTO ITS NÉEL TEMPERATURE AND SIZE DEPENDENCE OF MAGNETIC PROPERTIES

    EPA Science Inventory

    Ferrihydrite, an antiferromagnetic iron oxyhydroxide, is of great importance for the cycling of many trace metals in the environment. Four ferrihydrite samples prepared with 1.3 to 3.5 wt% of Si at different synthesis temperatures (7.5 °C, 22 °C, 50 °C and 75 °C) were studied by ...

  13. Low-pressure phase transformation from rhombohedral to cubic BN: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Shvedov, Leonid K.

    2002-03-01

    An irreversible phase transformation (PT) from the rhombohedral phase of boron nitride rBN to cubic cBN was recently recorded at the surprisingly low pressure of 5.6 GPa at room temperature. In this paper, a very nontrivial and unexpected explanation of this phenomenon is found, based on our criterion for the PT in plastic materials and approximate solution of corresponding plastic problems. It is found that due to orientational plastic instability and rotational softening in rBN and the higher yield stress of cBN, stresses grow drastically in the transforming region during the PT (despite a volume decrease by a factor of 1.53). This allows the fulfillment of the PT criterion which takes into account the whole stress history during the transformation process. It appears that the above experimental phenomenon is connected to the mechanical behavior of the system of transforming particles+surrounding materials at the millimeter scale.

  14. Effect of field driven phase transformations on the loss tangent of relaxor ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.; Liu, Tieqi; Lynch, Christopher S.

    2013-02-01

    The effect of a bias stress induced phase transformation on the large field dielectric loss in [001] cut and poled single crystal stack actuators of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT, x = 32) was experimentally characterized. Dielectric loss was observed to increase with compressive preload and electric field amplitude. The dielectric loss was determined by measuring the area within electric displacement vs. electric field hysteresis loops and the measured area was expressed in terms of an effective loss tangent. This approach matches the measured area within the hysteresis loop to an equivalent area ellipse in which the electric displacement lags the electric field by an amount, delta, under sinusoidal loading. The results collapse the measured loss as a function of bias stress and electric field amplitude reasonably close to a single curve. The measured dielectric loss behavior was attributed to the compressive stress preload driving a partial phase transformation from rhombohedral to orthorhombic and the electric field driving the reverse phase transformation from the stress induced orthorhombic phase to the zero stress rhombohedral phase. When the compressive bias stress partially or fully drives this phase transformation, the dielectric loss under unipolar electric field loading increases. This work is focused on quasi-static measurements. The large field dielectric loss is anticipated to be a function of frequency and temperature.

  15. An olivine to beta phase transformation mechanism in Mg sub 2 SiO sub 4

    SciTech Connect

    Guyot, F.; Gwanmesia, G.D.; Liebermann, R.C. )

    1991-01-01

    Fine-grained powder samples of Mg{sub 2}SiO{sub 4} forsterite ({alpha} phase) have been partially transformed to the beta phase in a 200-ton uniaxial split-sphere apparatus (USSA-2000) at P = 15 GPa and T = 1,000C in runs of 5 minutes duration. This technique allowed them to catch the first steps of the {alpha} {yields} {beta} transformation in Mg{sub 2}SiO{sub 4}. A TEM study of the run products showed that a structurally disordered phase is an intermediate of the reaction. The oxygen sublattice of this intermediate phase is well ordered, but a very large density of planar faults on (010) planes destroys the long range order in the cation sublattices. A two-steps mechanism for the {alpha} {yields} {beta} transformation is therefore probable, involving first the nucleation of the structurally disordered phase, then the ordering of this phase. These two steps may be associated with low energy activation barriers and could thus explain the fast kinetics of the {alpha} {yields} {beta} transformation.

  16. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    SciTech Connect

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  17. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  18. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    NASA Astrophysics Data System (ADS)

    Rolly, Gaboriaud; Fabien, Paumier; Bertrand, Lacroix

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y2O3, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe2+ at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin2ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  19. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  20. Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires.

    PubMed

    Li, Binsong; Wen, Xiaodong; Li, Ruipeng; Wang, Zhongwu; Clem, Paul G; Fan, Hongyou

    2014-06-24

    One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.

  1. Analysis of Transformation Plasticity in Steel Using a Finite Element Method Coupled with a Phase Field Model

    PubMed Central

    Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam

    2012-01-01

    An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295

  2. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  3. Linear canonical transformations of coherent and squeezed states in the Wigner phase space

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1988-01-01

    It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.

  4. Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate overbased nanodetergents preparation.

    PubMed

    Chen, Zhaocong; Xiao, Shan; Chen, Feng; Chen, Dongzhong; Fang, Jianglin; Zhao, Min

    2011-07-01

    The preparation and application of overbased nanodetergents with excess alkaline calcium carbonate is a good example of nanotechnology in practice. The phase transformation of calcium carbonate is of extensive concern since CaCO(3) serves both as an important industrial filling material and as the most abundant biomineral in nature. Industrially valuable overbased nanodetergents have been prepared based on calcium salts of heavy alkylbenzene sulfonate by a one-step process under ambient pressure, the carbonation reaction has been monitored by the instantaneous temperature changes and total base number (TBN). A number of analytical techniques such as TGA, DLS, SLS, TEM, FTIR, and XRD have been utilized to explore the carbonation reaction process and phase transformation mechanism of calcium carbonate. An enhanced understanding on the phase transformation of calcium carbonate involved in calcium sulfonate nanodetergents has been achieved and it has been unambiguously demonstrated that amorphous calcium carbonate (ACC) transforms into the vaterite polymorph rather than calcite, which would be of crucial importance for the preparation and quality control of lubricant additives and greases. Our results also show that a certain amount of residual Ca(OH)(2) prevents the phase transformation from ACC to crystalline polymorphs. Moreover, a vaterite nanodetergent has been prepared for the first time with low viscosity, high base number, and uniform particle size, nevertheless a notable improvement on its thermal stability is required for potential applications.

  5. Double image encryption based on phase-amplitude mixed encoding and multistage phase encoding in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Wang, Qu; Guo, Qing; Lei, Liang

    2013-06-01

    We present a novel method for double image encryption that is based on amplitude-phase mixed encoding and multistage random phase encoding in gyrator transform (GT) domains. In the amplitude-phase mixed encoding operation, a random binary distribution matrix is defined to mixed encode two primitive images to a single complex-valued image, which is then encrypted into a stationary white noise distribution by the multistage phase encoding with GTs. Compared with the earlier methods that uses fully phase encoding, the proposed method reduces the difference between two primitive images in key space and sensitivity to the GT orders. The primitive images can be recovered exactly by applying correct keys with initial conditions of chaotic system, the GT orders and the pixel scrambling operation. Numerical simulations demonstrate that the proposed scheme has considerably high security level and certain robustness against data loss and noise disturbance.

  6. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  7. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  8. On the wurtzite to tetragonal phase transformation in ZnO nanowires.

    PubMed

    Wang, Jun; Shen, Yaogen; Song, Fan; Ke, Fujiu; Liao, Xiaozhou; Lu, Chunsheng

    2017-04-21

    There is a long standing contradiction on the tensile response of zinc oxide nanowires between theoretical prediction and experimental observations. Although it is proposed that there is a ductile behavior dominated by phase transformation, only an elastic deformation and brittle fracture was witnessed in experiments. Using molecular dynamics simulations, we clarified that, as the lateral dimension of zinc oxide nanowires increases to a critical value, an unambiguous ductile-to-brittle transition occurs. The critical value increases with decreasing the strain rate. Factors including planar defects and surface contamination induce brittle fracture prior to the initiation of phase transformation. These findings are consistent with previous atomistic standpoints and experimental results.

  9. On the wurtzite to tetragonal phase transformation in ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Shen, Yaogen; Song, Fan; Ke, Fujiu; Liao, Xiaozhou; Lu, Chunsheng

    2017-04-01

    There is a long standing contradiction on the tensile response of zinc oxide nanowires between theoretical prediction and experimental observations. Although it is proposed that there is a ductile behavior dominated by phase transformation, only an elastic deformation and brittle fracture was witnessed in experiments. Using molecular dynamics simulations, we clarified that, as the lateral dimension of zinc oxide nanowires increases to a critical value, an unambiguous ductile-to-brittle transition occurs. The critical value increases with decreasing the strain rate. Factors including planar defects and surface contamination induce brittle fracture prior to the initiation of phase transformation. These findings are consistent with previous atomistic standpoints and experimental results.

  10. Titanium α-ω phase transformation pathway and a predicted metastable structure

    SciTech Connect

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  11. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Venkatesan, Swaminathan; Guo, Rui; Wang, Yanan; Bao, Jiming; Li, Wenzhi; Fan, Zhiyong; Yao, Yan

    2016-06-01

    Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition pathways as a function of annealing conditions. The interdiffusion of MAI and DMSO varies strongly with the annealing temperature and time, thus determining the final film composition and morphology. A surprising finding reveals that the best performing cells contain ~18% of the non-stoichiometric intermediate phase, instead of pure phase OTP. The presence of such an intermediate phase enables smooth surface morphology and enhances the charge carrier lifetime. Our results highlight the importance of the intermediate phase growth kinetics that could lead to large-scale production of efficient solution processed perovskite solar cells.Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition

  12. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    PubMed Central

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-01-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832

  13. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; ...

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  14. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    SciTech Connect

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  15. Phase transformation of Ho[subscript 2]O[subscript 3] at high pressure

    SciTech Connect

    Jiang, Sheng; Liu, Jing; Li, Xiaodong; Bai, Ligang; Xiao, Wansheng; Zhang, Yufeng; Lin, Chuanlong; Li, Yanchun; Tang, Lingyun

    2012-01-20

    The structural stability of cubic Ho{sub 2}O{sub 3} under high pressure has been investigated by angle-dispersive x-ray diffraction (ADXD) in a diamond anvil cell up to 63.0 GPa at room temperature. The diffraction data reveal two structural transformations on compression. The structural transformation from a cubic to a monoclinic structure starts at 8.9 GPa and is complete at 16.3 GPa with an {approx}8.1% volume collapse. A hexagonal phase begins to appear at {approx}14.8 GPa and becomes dominant at 26.4 GPa. This high-pressure hexagonal phase with a small amount of retained monoclinic phase is stable up to the highest pressure of 63.0 GPa in this study. After release of pressure, the hexagonal phase transforms to a monoclinic structure. A third-order Birch-Murnaghan fit yields zero pressure bulk moduli (B{sub 0}) of 206(3), 200(7) and 204(19) GPa and their pressure derivatives (B'{sub 0}) of 4.8(4), 2.1(4), 3.8(5) for the cubic, monoclinic and hexagonal phases, respectively. Comparing with other rare-earth sesquioxides, it is suggested that the transition pressure from cubic to monoclinic phase, as well as the bulk modulus of the cubic phase, increases with the decreasing of the cation radius of rare-earth sesquioxides.

  16. Crystal-amorphous transformation via defect-templating in phase-change materials

    NASA Astrophysics Data System (ADS)

    Nukala, Pavan

    Phase-change materials (PCM) such as GeTe and Ge-Sb-Te alloys are potential candidates for non-volatile memory applications, because they can reversibly and rapidly transform between a crystalline phase and an amorphous phase with medium-range order. Traditionally, crystal-amorphous transformation in these materials has been carried out via melt-quench pathway, where the crystalline phase is heated beyond its melting point by the rising edge of an electric pulse, and the melt phase is quenched by the falling edge into a glassy phase. Formation of an intermediate melt phase in this transformation pathway requires usage of large switching current densities, resulting in energy wastage, and device degradation issues. Furthermore, melt-quench pathway is a brute force strategy of amorphizing PCM, and does not utilize the peculiar structural properties in crystalline phase. It will be beneficial from a device perspective that crystal-amorphous transformation is carried out via subtler solid-state pathways. Single-crystalline nanowire phase-change memory, owing to its lateral geometry and large volumes of active material, offers a platform to construct a crystal-amorphous transformation pathway via gradually increasing disorder in the crystalline phase, and study it. Using in situ transmission electron microscopy on GeTe and Ge2Sb2Te5 systems, we showed that the application of an electric pulse (heat-shock) creates dislocations in the PCM that migrate with the hole-wind force, and interact with the already existing ferroelectric boundaries in case of GeTe, changing their nature. We adapted novel tools such as optical second harmonic generation polarimety to carefully study these defect interactions. These defects accumulate at a region of local inhomogeneity, and upon addition of defects beyond a critical limit to that region via electrical pulsing, an amorphous phase "nucleates". We also studied the effect of defect dynamics on carrier transport using temperature

  17. Phase cycling for optical two-dimensional Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Autry, Travis; Moody, Galan; Li, Hebin; Siemens, Mark; Cundiff, Steven

    2011-03-01

    Phase-cycling has been implemented in optical two-dimensional Fourier-transform spectroscopy to extract signals from quantum wells and quantum dots and to eliminate noise such as pump scatter co-propagating with the four-wave mixing signal. Experiments using actively phase-stabilized interferometers to cycle the excitation pulse optical phases suffer from partial noise cancellation because excitation and phase-control laser wavelengths are incommensurate. To obtain full noise elimination, we have incorporated liquid crystal variable retarders capable of imposing a π phase shift for wavelengths 650-950 nm. We present non-rephasing spectra of potassium vapor contained in a ~ 20 μ m transmission cell and show that this phase cycling method removes all noise from pump scatter while drastically reducing the data acquisition time compared to mechanical phase-delay techniques. This work was supported by an NSF-REU grant at the University of Colorado- Boulder.

  18. Mutual transformation between crystalline phases in silicon after treatment in a planetary mill: HRTEM studies.

    PubMed

    Kulnitskiy, Boris; Annenkov, Mikhail; Perezhogin, Igor; Popov, Mikhail; Ovsyannikov, Danila; Blank, Vladimir

    2016-10-01

    High-resolution transmission electron microscopy (HRTEM) studies of silicon after treatment in a planetary mill have been performed. It is shown that along with the initial phase of silicon, Si-I, the sample also contains some high-pressure phases: Si-III (Kasper phase) and Si-IV (lonsdaleite). We studied the orientation relationship between the particles of different phases, finding that there are, in general, two mechanisms of formation of Si-IV: (1) through the stacking faults formation; (2) through the transformation first to the Kasper phase (Si-III), and then from the Kasper phase to Si-IV. Estimations of temperature and pressure conditions in the planetary ball mill made previously are in accordance with the conditions of formation of the above-mentioned phases.

  19. Motion artifact reduction using hybrid Fourier transform with phase-shifting methods

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-08-01

    We propose to combine the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP) to reduce motion induced artifacts. The proposed method can be divided into three steps: Step 1 is to obtain a temporarily unwrapped absolute phase map of the entire scene using the FTP method, albeit the absolute phase map has motion introduced artifacts; Step 2 is to generate continuous relative phase maps without motion artifacts for each isolated object by spatially unwrapping each isolated phase map retrieved from the FTP method; and Step 3 is to determine the absolute phase map for each isolate region by referring to the temporally unwrapped phase using PSP method. Experimental results demonstrated success of the proposed method for measuring rapidly moving multiple isolated objects.

  20. White Layer Formation Due to Phase Transformation to Orthogonal machine of AISI 1045 Annealed Steel

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Haluska, Dr. Michael S; Watkins, Thomas R

    2008-01-01

    It is commonly believed that the white layer formed during machining of steels is caused primarily by a thermally induced phase transformation resulting from rapid heating and quenching. As a result, it is often assumed that if the temperature at the tool flank-workpiece interface exceeds the nominal phase transformation temperature for the steel, a white layer forms. However, no attempt has been made to actually measure the temperatures produced at the tool flank-workpiece interface and correlate it with microstructural evidence of phase transformation. This paper aims to address these limitations through suitably designed experiments and analysis. Orthogonal machining tests were performed on AISI 1045 annealed steel at different cutting speeds and tool flank wear. During machining, temperature measurements at the tool flank-workpiece interface were made using an exposed thermocouple technique. Metallographic studies of the machined sub-surface and X-ray diffraction (XRD) measurements were performed to determine the presence and depth of white layer, and the presence of the retained austenite phase in the machined surface layer, respectively. Analysis of the data shows that the white layer can form due to phase transformation at temperatures below the nominal austenitization temperature of the steel. Possible causes of this result are presented.

  1. Indentation-induced structural phase transformations of semiconductor materials and applications

    NASA Astrophysics Data System (ADS)

    Khayyat, Maha; Sosa, Norma; Chaudhri, M. Munawar; Cavendish laboratory, University of Cambridge Team; T. J. Watson Research Center, IBM Collaboration

    During hardness indentation materials are subjected to highly localized pressures. These pressures may cause a complete change of the crystal structure of the material within the indented zone. Such structural phase transformations were observed within Vickers indentations made at room temperature in single crystals and amorphous films of Si and Ge. However, when indentations were made at 77 K in Si and Ge, no phase transitions were observed in either. Measurements were also taken from indentations made in silicon single crystals at different temperatures namely 263, 243, 235 and 206 K, and they showed a strong correlation of phase transformation with temperature. It was suggested that during room temperature indentations there is a significant temperature rise approximately to 760 K, which may assist phase transformation. Raman spectroscopy was used as an ex-situ tool monitoring phase transformations in semiconductor materials. In-situ electrical characterizations of indentation-induced metallization in single crystals of silicon were performed using two- and four-contact measurements. The previous work has led to a technique relates to semiconductor device manufacturing, including solar cells, which is a method for controlling the removal of a surface layer from a base substrate utilizing low-temperature. KACST is acknowledged for support.

  2. Study of phase transformations in CMSX-6 and CMSX-8 superalloys

    NASA Astrophysics Data System (ADS)

    Szczotok, Agnieszka; Wierzbicka-Miernik, Anna

    2014-09-01

    Nickel-based superalloys are extensively used mainly in the aircraft and aeronautic industry, particularly in the hottest parts of engines or turbo-reactors. The phase reactions occurring in these heat-resistant materials play a crucial role in many aspects of the processing and service of the highly alloyed materials. Cast Ni-based superalloys are obtained in a complex way and their structure is complicated. Differential scanning calorimetry (DSC) technique was applied for determination of temperature ranges of the phase transformations occurring in the CMSX-6 and CMSX-8 superalloys during heating/cooling processes. Thermophysical properties, including temperatures of the phase transformation, are the critical input parameters in mathematical models of solidification and casting of metallic materials. The literature data concerning phase transformations and performance of the heat treatment for CMSX-6 and CMSX-8 are incomplete and ambiguous. DSC results accompanied by scanning electron microscopy characterization of microstructure of CMSX-6 and CMSX-8 superalloy was applied. The present study will improve the understanding of the fundamental mechanisms of phase transformations of single-crystal nickel-based superalloys.

  3. Two-dimensional discrete wavelets transform for optical phase extraction: application on speckle correlation fringes

    NASA Astrophysics Data System (ADS)

    Ghlaifan, Abdulatef; Tounsi, Yassine; Zada, Sara; Muhire, Desire; Nassim, Abdelkrim

    2016-12-01

    A method for optical phase extraction based on two-dimensional discrete wavelets transform (2-DWT) decomposition is shown. From modulated fringe pattern, phase distribution is extracted by the ratio between detail and approximation. Modulation process is realized digitally by introducing high-frequency spatial carrier, and this process needs two π/2-shifted fringe patterns. We propose to use only single fringe and generate its quadrature by spiral phase transform (SPT). After validation by computer simulation, we apply the 2-DWT algorithm on experimental speckle fringe correlation taken for hard disk surface. The extracted phase using SPT quadrature was compared with that given using this time experimental quadrature, and we show a good performance by multiscale structural similarity metric.

  4. [A phase error correction method for the new Fourier transforms spectrometer].

    PubMed

    Wang, Ning; Gong, Tian-Cheng; Chen, Jian-Jun; Li, Yang; Yang, Yi-Ning; Zhu, Yong; Zhang, Jie; Chen, Wei-Min

    2014-11-01

    To decrease the distortion of the recovered spectrum, improve the quantity of the recovered spectrum and decrease the influence of the phase error of the new spectrum detection system based on MEMS (micro-electro-mechanical systems) micro-mirrors, a new phase error correction method for this system is proposed in the present paper. The source of phase error of the spectrum detection system based on MEMS micro-mirrors is analyzed firstly. The analyzed result indicated that the phase error of the new spectral Fourier transform detection system is the zero drift of the optical path difference, and the phase error can be corrected by Zero-crossing sampling which is realized by improving the structure of the interferometer system and Mertz product The spectrum detection system is set up and the phase error correction method is verified by this system. The experiment result is show that the quantity of the recovered spectrum of the spectrum detection is improved obviously by using the improved interferometer system and Mertz product, and the recovered spectrum has no negative peaks and the side lobes is suppressed markedly. This correction method can reduce the influence caused by phase error to the system performance well and improve the spectral detection performance effectively. In this paper, the origin of the system phase error based on the new MEMS micromirror Fourier transform spectroscopy detection system is analyzed, and the phase error correction method is proposed. This method can improve the performance of the spectrum detection system.

  5. Statistical physics concepts for the explanation of effects observed in martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Oberaigner, Eduard Roman; Leindl, Mario

    2012-09-01

    Structural solid-to-solid transformations play a key role for the behaviour of several materials, e.g., shape memory alloys, steels, polymers and ceramics. A novel theoretical approach modelling martensitic phase transformation is demonstrated in the present study. The generally formulated model is based on the block-spin approach and on renormalization in statistical mechanics and is applied to a representative volume element (resp. representative mole element) which is assumed to be in a local thermodynamic equilibrium. The neighbouring representative volume elements are in a generally different thermodynamic equilibrium. This leads to fluxes between those elements. Using fundamental physical properties of a shape memory alloy (SMA) single crystal as input data the model predicts the order parameter ‘total strain’, the martensitic phase fraction and the stress-assisted transformation accompanied by pseudo-elasticity without the requirement of evolution equations for internal variables and assumptions on the mathematical structure of the classical free energy. In order to demonstrate the novel approach the first computations are carried out for a simple one-dimensional case, which can be generalized to the two- and three-dimensional case. Results for total strain and martensitic phase fraction are in good qualitative agreement with well known experimental data according to their macroscopic strain rearrangement when phase transformation occurs. Further a material softening effect during phase transformation in SMAs is predicted by the statistical physics approach. Formulas are presented for the relevant quantities such as volume fraction, total strain, transformation strain, rates of the volume fractions and of the strains.

  6. Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

    NASA Astrophysics Data System (ADS)

    Haghgouyan, Behrouz; Shafaghi, Nima; Aydıner, C. Can; Anlas, Gunay

    2016-07-01

    A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K max from the DIC data. Samples have also been tested at T = 100 °C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio-Taylor-Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K max of the transforming material is higher than that of the transformation-suppressed material tested at 100 °C, suggesting transformation toughening. At 100 °C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress-strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.

  7. Cellular neural network implementation using a phase-only joint transform correlator

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqun; Karim, Mohammad A.

    1999-04-01

    A phase-only joint transform correlator (JTC) is used to realize cellular neural networks (CNNs). The operation of summing cross-correlations of bipolar data in CNNs can be realized in parallel by phase-encoding bipolar data. Compared to other optical systems for implementing CNNs, the proposed method offers the advantages of easier implementation and robustness in terms of system alignment, and requires neither electronic precalculation nor data rearrangement. Simulation results of the proposed optical CNNs for edge detection are provided.

  8. Thermodynamic Modeling and Experimental Study of Phase Transformations in Alloys Based on γ-TiAl

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Sokolovskii, V. S.; Salishchev, G. A.; Belov, N. A.; Nochovnaya, N. A.

    2016-09-01

    Thermo-Calc software is used to model the composition diagram for alloys based on γ-TiAl of the systems Ti - Al - Mo - (4 - 10) at.% Nb and Ti - Al - Nb - X ( X is Cr, Mo, V). The effect of alloying on critical points and sequence of phase transformations is established. Changes in phase composition in relation to alloy TNM-B1 temperature are analyzed using a polythermal section of the Ti - Al - Nb - Mo system.

  9. Hydrogen-Induced Phase Transformations: a Base for a New Sphere of the Science of Metals (an Analytical Review)

    NASA Astrophysics Data System (ADS)

    Goltsov, V. A.

    2017-03-01

    Data on the phase transformations induced in metals by hydrogen are generalized and analyzed. It is suggested to classify hydrogen-induced phase transformations on the basis of allowance for the temperature dependence of the parameters of diffusion of substitutional and interstitial (hydrogen) atoms like in the classical science of metals. A pioneer classification of hydrogen-induced phase transformations by this method is developed.

  10. Manipulating mammalian cell by phase transformed titanium surface fabricated through ultra-short pulsed laser synthesis.

    PubMed

    Chinnakkannu Vijayakumar, Sivaprasad; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-15

    Developing cell sensitive indicators on interacting substrates that allows specific cell manipulation by a combination of physical, chemical or mechanical cues is a challenge for current biomaterials. Hence, various fabrication approaches have been created on a variety of substrates to mimic or create cell specific cues. However, to achieve cell specific cues a multistep process or a post-chemical treatment is often necessitated. So, a simple approach without any chemical or biological treatment would go a long way in developing bio-functionalized substrates to effectively modulate cell adhesion and interaction. The present investigation is aimed to study the manipulative activity induced by phase transformed titanium surface. An ultra-short laser is used to fabricate the phase transformed titanium surface where a polymorphic titanium oxide phases with titanium monoxide (TiO), tri-titanium oxide (Ti3O) and titanium dioxide (TiO2) have been synthesized on commercially pure titanium. Control over oxide phase transformed area was demonstrated via a combination of laser scanning time (laser pulse interaction time) and laser pulse widths (laser pulse to pulse separation time). The interaction of phase transformed titanium surface with NIH3T3 fibroblasts and MC3T3-E1 osteoblast cells developed a new bio-functionalized platforms on titanium based biomaterials to modulate cell migration and adhesion. The synthesized phase transformed titanium surface on the whole appeared to induce directional cues for cell migration with unique preferential cell adhesion unseen by other fabrication approaches. The precise bio-functionalization controllability exhibited during fabrication offers perceptible edge for developing a variety of smart bio-medical devices, implants and cardiovascular stents where the need in supressing specific cell adhesion and proliferation is of great demand.

  11. Phase transformation as the single-mode mechanical deformation of silicon

    SciTech Connect

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Raman microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.

  12. Atomic-scale investigation of a new phase transformation process in TiO2 nanofibers.

    PubMed

    Lei, Yimin; Li, Jian; Wang, Zhan; Sun, Jun; Chen, Fuyi; Liu, Hongwei; Ma, Xiaohua; Liu, Zongwen

    2017-03-21

    Crystallography of phase transformation combining transmission electron microscopy (TEM) with in situ heating techniques and X-ray diffraction (XRD) can provide critical information regarding solid-state phase transitions and the transition-induced interfaces in TiO2 nanomaterials theoretically and experimentally. Two types of reduced titanium oxides (Ti3O5, Ti6O11) are found during ex situ and in situ heating of TiO2 (B) nanofibers with a specific morphology of the {100} single form (SF) in air and vacuum. The results indicate that the phase transformation process from TiO2 (B) follows the TiO2 (B) → Ti3O5 → Ti6O11 → anatase sequence for the nanofibers with the {100} SF. The occurrence of such a phase transition is selective to the morphology of TiO2 (B) nanofibers. The corresponding orientation relationships (COR) between the four phases are revealed according to the TEM characterization. Four types of coherent interfaces, following the CORs are also found. They are TiO2 (B)/Ti3O5, TiO2 (B)/Ti6O11, Ti6O11/anatase and TiO2 (B)/anatase respectively. The habit plane for the TiO2 (B) to Ti3O5 transition is calculated as the {100}TB by using the invariant line model. The detailed atomic transformation mechanism is elucidated based on the crystallographic features of the four phases.

  13. Phase transformation as the single-mode mechanical deformation of silicon

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Ramanmore » microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.« less

  14. In-Situ Observations of Phase Transformations in the HAZ of 2205 Duplex Stainless Steel Weldments

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J

    2001-08-15

    Ferrite ({delta})/austenite ({gamma}) transformations in the heat affected zone (HAZ) of a gas tungsten arc (GTA) weld in 2205 duplex stainless steel are observed in real-time using spatially resolved X-ray diffraction (SRXRD) with high intensity synchrotron radiation. A map showing the locations of the {delta} and {gamma} phases with respect to the calculated weld pool dimensions has been constructed from a series of SRXRD scans. Regions of liquid, completely transformed {gamma}, a combination of partially transformed {gamma} with untransformed {delta}, and untransformed {delta}+{gamma} are identified. Analysis of each SRXRD pattern provides a semi-quantitative definition of both the {delta}/{gamma} phase balance and the extent of annealing which are mapped for the first time with respect to the calculated weld pool size and shape. A combination of these analyses provides a unique real-time description of the progression of phase transformations in the HAZ. Using these real-time observations, important kinetic information about the transformations occurring in duplex stainless steels during heating and cooling cycles typical of welding can be determined.

  15. Nondestructive inspection of phase transformation in zirconia-containing hip joints by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Wenliang; Sugano, Nobuhiko; Pezzotti, Giuseppe

    2013-12-01

    Environmental metastability of zirconia (ZrO2) ceramic in the human body [represented by a tetragonal-to-monoclinic (t→m) phase transformation] takes place on the surface of the artificial joint and proceeds with time toward its interior. Its quantitative characterization is mandatory for the safety of joint implants and consists of the assessment of the in-depth monoclinic profile fraction as compared to that of the initially untransformed material. We attempt to fully establish a characterization protocol and present two different nondestructive approaches for resolving highly graded phase-transformation profiles along the hip-joint subsurface by confocal Raman microprobe technique. A series of partially transformed tetragonal zirconia polycrystal and zirconia-toughened alumina ceramics are used as screening samples. Probe biases could be eliminated and the real transformation profiles retrieved through a deconvolution procedure of Raman experimental data collected as a function of pinhole aperture and focal depth, respectively. Confirmation of the confocal assessments was made by a destructive cross-sectional inspection by both laser optical microscope and Raman spectral line scans. This study unveils for the first time the real quantitative amount of surface phase-transformation fractions and the related subsurface profiles in zirconia-based retrieved medical samples.

  16. Bioaccessibility Of Lead Sequestered To Corundum and Ferrihydrite In A Simulated Gastrointestinal System

    EPA Science Inventory

    Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (α-Al2O3) and ferrihydrite (Fe5HO8•4H2

  17. Confined Metastable 2-Line Ferrihydrite for Affordable Point-of-Use Arsenic-Free Drinking Water.

    PubMed

    Kumar, Avula Anil; Som, Anirban; Longo, Paolo; Sudhakar, Chennu; Bhuin, Radha Gobinda; Gupta, Soujit Sen; Anshup; Sankar, Mohan Udhaya; Chaudhary, Amrita; Kumar, Ramesh; Pradeep, Thalappil

    2017-02-01

    Arsenic-free drinking water, independent of electrical power and piped water supply, is possible only through advanced and affordable materials with large uptake capacities. Confined metastable 2-line ferrihydrite, stable at ambient temperature, shows continuous arsenic uptake in the presence of other complex species in natural drinking water and an affordable water-purification device is made using the same.

  18. Structural and phase transformation of apatite and quartz in the indentation process single crystals

    SciTech Connect

    Chaikina, Marina

    2014-11-14

    Using the method of scanning and high-resolution electron microscopy, the zones of indentation by scratching for apatite and quartz single crystals were investigated. The textural, structural and phase transformations revealed have been conventionally ascribed to “deformation” and “diffusion” processes of plastic deformation. In zones of indentation by scratching of single crystals there have been two levels of structural transformations revealed, with a sharp boundary between them, at a stress equal to the theoretical ultimate stress limit (σ{sub TSL}). In the top zone of scratches, within the range of stress from the microhardness value H{sub s} up to the σ{sub TSL} value the substance undergoes profound structural and phase transformations. In the bed of scratches at the stress value lower than σ{sub TSL} values, single crystal fragmentation occurs with the formation of blocks and steps.

  19. Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids

    NASA Astrophysics Data System (ADS)

    Rudraraju, Shiva; van der Ven, Anton; Garikipati, Krishna

    2016-06-01

    We present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition are variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.

  20. Phase transformations in SrAl2Si2O8 glass

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1992-01-01

    Bulk glass of SrAl2Si2O8 composition crystallized at temperatures below 1000 C into hexacelsian, a hexagonal phase which undergoes a reversible, rapid transformation to an orthorhombic phase at 758 C, and at higher temperatures crystallized as celsian, a monoclinic phase. The glass transition temperature and crystallization onset temperature were determined to be 883 C and 1086 C, respectively, from DSC at a heating rate of 20 C/min. Thermal expansion of the various phases and density and bend strengths of cold isostatically pressed glass powder bars, sintered at various temperatures, were measured. The kinetics of the hexacelsian-to-celsian transformation for SrAl2Si2O8 were studied. Hexacelsian flakes were isothermally heat treated at temperatures from 1025-1200 C for various times. Avrami plots were determined by quantitatively measuring the amount of monoclinic celsian formed at various times using x ray diffraction. The Avrami constant was determined to be 1.1, suggesting a diffusionless, one dimensional transformation mechanism. The activation energy was determined from an Arrhenius plot of 1n k vs. 1/T to be 125 kilocal/mole. This value is consistent with a mechanism which transforms the layered hexacelsian structure to a three dimensional framework celsian structure and involves the breaking of Si-O bonds.

  1. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Li, J. L.; Liu, P.; Yang, G. W.

    2014-11-01

    The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond

  2. Kinetic study of phase transformation of n-octane using hydrothermal diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2016-02-01

    A kinetic study of phase transformation of n-octane has been performed using a hydrothermal diamond anvil cell. The results show that pressure has a negative effect on the solid-liquid reaction rate. The increase of pressure can accelerate the liquid-solid transformation rate. Upon the liquid-solid transformation, the light transmittance showed a decreased trend with time in the early stage, which was caused by the formation of a large quantity of crystal nuclei. In the later stage, the light transmittance almost remained the same, thus indicating a growth stage of crystal nuclei. The activation volume yields a value of 2.16×10-5 and -1.35×10-5 m3/mol for the solid-liquid and liquid-solid transformations. Based on the obtained activation energy, the solid-liquid transformation is dominated by the interfacial reaction and diffusion, and the liquid-solid transformation is controlled by diffusion. This technique is an effective and powerful tool for the transformation kinetics study of n-octane.

  3. Enhanced reversibility and unusual microstructure of a phase-transforming material.

    PubMed

    Song, Yintao; Chen, Xian; Dabade, Vivekanand; Shield, Thomas W; James, Richard D

    2013-10-03

    Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn45Au30Cu25, that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 °C after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 °C in the first 20 cycles. (2) The hysteresis remains approximately 2 °C during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 °C (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.

  4. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    NASA Astrophysics Data System (ADS)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  5. Photo-catalyzed p-nitrophenol degradation in aqueous dispersions of ferrihydrite and H2O2.

    PubMed

    Wu, Yongjuan; Chen, Rufen; Liu, Hui; Wei, Yu; Wu, Dong

    2014-09-01

    Nitrophenols are hazardous and toxic to living organisms. For this study, ferrihydrite was prepared to test its capabilities for p-nitrophenol degradation. A ferrihydrite particle prepared in neutral environmental conditions is sphere-like with a diameter of 2-4 nm and its total surface area is approximately 229 m2 x g(-1). The combination of ferrihydrite and trace H2O2 is effective for the degradation of p-nitrophenol under simulated sunlight irradiation. Hydroquinone, the initial intermediate of p-nitrophenol decomposition, autocatalyses the subsequent degradation of p-nitrophenol because it accelerates the photo-reductive dissolution of ferrihydrite. The effect of key operating parameters such as ferrihydrite dosage, initial solution pH and H2O2 dosage were also studied on the photocatalytic degradation of p-nitrophenol. The results indicate that the combination of 0.2 g x L(-1) ferrihydrite, 0.45 mmol x L(-1) H2O2 is highly efficient for the degradation of p-nitrophenol (0.15 mmol x L(-1)) at pH 2.5-3.0. A ferrihydrite was reused several times, still keeping its original photocatalysis.

  6. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.

    PubMed

    Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-08-24

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  7. Gamma to alpha phase transformation in FeCoV alloys

    NASA Astrophysics Data System (ADS)

    Rezende, M. F. S.; Lacerda, A. M.; Pfannes, H.-D.; Mansur, R. A.; Ardisson, J. D.; Persiano, A. I. C.

    1994-12-01

    The effects of filing FeCoV alloys with equiatomic FeCo and up to 14 at% V is studied by Mössbauer spectroscopy and X-ray diffraction. We observed that filing eliminates the paramagnetic component observed in samples in the form of plates. The filed material also presents a linear increase of the lattice parameter and a linear decrease of the average hyperfine field of the alpha phase due to extra low-field satellites with increasing vanadium contents. This indicates that filing produces a gamma to alpha phase transformation, which increases the amount of vanadium in solid solution in the FeCo alpha phase.

  8. Fractional Fourier transform-based optical encryption with treble random phase-encoding

    NASA Astrophysics Data System (ADS)

    Xin, Yi; Tao, Ran; Wang, Yue

    2008-03-01

    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  9. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    NASA Astrophysics Data System (ADS)

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-01

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.

  10. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium.

    PubMed

    Mendelev, M I; Underwood, T L; Ackland, G J

    2016-10-21

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.

  11. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    SciTech Connect

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-17

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.

  12. Role of Outer-Membrane Cytochromes MtrC and OmcA in the Biomineralization of Ferrihydrite by Shewanella oneidensis MR-1.

    SciTech Connect

    Reardon, Catherine L.; Dohnalkova, Alice; Nachimuthu, Ponnusamy; Kennedy, David W.; Saffarini, Daad; Arey, Bruce W.; Shi, Liang; Wang, Zheming; Moore, Dean A.; Mclean, Jeffrey S.; Moyles, Dianne M.; Marshall, Matthew J.; Zachara, John M.; Fredrickson, Jim K.; Beliaev, Alex S.

    2010-01-01

    In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer membrane cytochrome genes mtrC, omcA, or both, were characterized for the ability to reduce metal oxides using a suite of microscopic, spectroscopic, and biochemicalr techniques. The results indicate that neither MtrC nor OmcA are essential for the reduction of soluble, complexed Fe(III)-citrate or Fe(III)-NTA; however, at least one of these outer membrane cytochromes is required for the reduction of Fe(III)- and Mn(III/IV)- oxides. In vitro analysis of purified, recombinant protein demonstrated that both cytochromes transfer electrons directly to metal-oxides; however, MtrC transfers electrons at a faster rate than OmcA. Immunolocalization of MtrC and OmcA reveal that both cytochromes are surface-exposed on the cell outer-membrane and co-localize with insoluble iron precipitates when respiring ferrihydrite or cultured aerobically with Fe(III)-citrate. Additionally, during prolonged incubation, wild-type cells promoted biotransformation of ferrihydrite to vivianite [Fe3(PO4)2•8H2O] while the double cytochrome mutant was unable to form any secondary mineral phases. Collectively, our results support a role for direct electron transfer from OMCs to metal oxides by establishing their in vitro electron transfer activities, confirming the requirement of either MtrC or OmcA for in vivo reductive biomineralization of ferrihydrite, and localizing the cytochromes to the cell exterior where they can directly contact mineral substrates.

  13. Note: An improved calibration system with phase correction for electronic transformers with digital output

    SciTech Connect

    Cheng, Han-miao Li, Hong-bin

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  14. ISOTHERMAL PHASE TRANSFORMATION CYCLING IN STEEL BY APPLICATION OF A HIGH MAGNETIC FIELD

    SciTech Connect

    Ludtka, Gerard Michael; Jaramillo, Roger A; Ludtka, Gail Mackiewicz-; Kisner, Roger A; Wilgen, John B

    2007-01-01

    A phase transformation reversal via the application and removal of a large magnetic field was investigated. Because a large magnetic field can alter the phase equilibrium between paramagnetic austenite and ferromagnetic ferrite, volume fractions for each phase constituent can be modified at constant temperature by changing the magnetic field strength. In this research elevated temperature isothermal hold experiments were performed for 5160 steel. During the isothermal hold, the magnetic field was cycled between 0 and 30 Tesla. As companion experiments, temperature cycling and isothermal holds were performed without magnetic fields. The resulting microstructures were examined using optical and SEM metallography. These microstructures indicate that a portion of the microstructure experiences isothermal transformation cycling between austenite and ferrite due to the application and removal of the 30T (Tesla) magnetic field.

  15. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-03-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  16. Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm

    SciTech Connect

    He, Hongxing; Fang, Hengrui; Miller, Mitchell D.; Phillips, George N. Jr; Su, Wu-Pei

    2016-07-15

    An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationship of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.

  17. Swift heavy ion irradiation induced phase transformation in calcite single crystals

    NASA Astrophysics Data System (ADS)

    Nagabhushana, H.; Nagabhushana, B. M.; Lakshminarasappa, B. N.; Singh, Fouran; Chakradhar, R. P. S.

    2009-11-01

    Ion irradiation induced phase transformation in calcite single crystals have been studied by means of Raman and infrared spectroscopy using 120 MeV Au 9+ ions. The observed bands have been assigned according to group theory analysis. For higher fluence of 5×10 12 ion/cm 2, an extra peak on either side of the 713 cm -1 peak and an increase in the intensity of 1085 cm -1 peak were observed in Raman studies. FTIR spectra exhibit extra absorption bands at 674, 1589 cm -1 and enhancement in bands at 2340 and 2374 cm -1 was observed. This might be due to the phase transformation from calcite to vaterite. The damage cross section ( σ) for all the Raman and FTIR active modes was determined. The increase of FWHM, shift in peak positions and appearance of new peaks indicated that calcite phase is converted into vaterite.

  18. Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heating

    NASA Astrophysics Data System (ADS)

    Khadzhieva, O. G.; Illarionov, A. G.; Popov, A. A.; Grib, S. V.

    2013-06-01

    The effect of hydrogen on structure formation and changes in the volume fractions of phases in an alloy based on orthorhombic titanium aluminide ( O phase) alloy upon its quenching is studied. X-ray diffraction analysis is used to determine the lattice parameters of phases. It has been shown that hydrogen is dissolved mainly in the β0 phase. Differential thermal analysis is used to determine stages and temperature ranges of phase transformations during heating; it was found that introduced hydrogen shifts the β0 → O and reverse O → β0 transformations into the low-temperature range; the enthalpies of transformation are calculated.

  19. Status on Iterative Transform Phase Retrieval Applied to the GBT Data

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Scott; Shiri, Ron; Hollis, Jan M.; Lyons, Richard; Prestage, Richard; Hunter, Todd; Ghigo, Frank; Nikolic, Bojan

    2007-01-01

    This slide presentation reviews the use of iterative transform phase retrieval in the analysis of the Green Bank Radio Telescope (GBT) Data. It reviews the NASA projects that have used phase retrieval, and the testbed for the algorithm to be used for the James Webb Space Telescope. It shows the comparison of phase retrieval with an interferometer, and reviews the two approaches used for phase retrieval, iterative transform (ITA) or parametric (non-linear least squares model fitting). The concept of ITA Phase Retrieval is reviewed, and the application to Radio Antennas is reviewed. The presentation also examines the National Radio Astronomy Observatory (NRAO) data from the GBT, and the Fourier model that NRAO uses to analyze the data. The challenge for ITA phase retrieval is reviewed, and the coherent approximation for incoherent data is shown. The validity of the approximation is good for a large tilt. There is a review of the proof of concept of the Phase Review simulation using the input wavefront, and the initial sampling parameters estimate from the focused GBT data.

  20. Complex Transformations between Bicontinuous Cubic and Cylinder Phases in a Polystyrene-block-Poly(ethylene oxide) Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Sun, Lu; Ge, Qing; Quirk, Roderic P.; Cheng, Stephen Z. D.; Hsiao, Benjamin S.; Sics, Igors; Avila-Orta, Carlos

    2004-03-01

    Complex phase transformations between bicontinuous cubic and hexagonal cylinder (Hex) phases in a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer were investigated using small angle X-ray scattering (SAXS), transmission electron microscope (TEM), rheology, and polarized light microscope (PLM). The sample exhibited a typical double gyroid (G) phase, together with a minority plumbers nightmare (P) phase which was only ˜6 vol.% as calculated from the SAXS scattering intensities for each phase. These two bicontinuous cubic phases had the same unit cell dimensions. Under a large-amplitude reciprocating shear, the bicontinuous cubic sample transformed into a single-crystal Hex phase. Annealing this sample at 150 ^oC for 40 min, the Hex phase partially transformed into well-oriented G and P twin structures, as evidenced by two-dimensional synchrotron SAXS experiments. Epitaxial phase transformation relationships between the Hex/G and Hex/P phases were identified. The phase transformations were further confirmed by rheology study and PLM observations. The P phase was metastable with respect to the G phase, and it disappeared when the sample was heated above the order-disorder transition temperature and annealed at 150 ^oC. The mechanism of the Hex arrow G transformation was investigated by TEM. Generally, in a hexagonal cell, three cylinders evolved into left-handed helices, while the other three formed right-handed helices. An intermediate five-fold junction was speculated to facilitate the phase transformation. The Hex -> G phase transformation was observed to follow a nucleation and growth mechanism, and the phase transition zone was less than one unit cell.

  1. Phase transformation of iron-based catalysts for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Jin, Yaming

    Fischer-Tropsch (F-T) synthesis is used to convert syngas to liquid hydrocarbons using iron-based catalysts. However, the nature of the active phase and phase transformations during F-T synthesis are not well understood. In this work, the phase transformations of Fe catalysts both during F-T synthesis and controlled treatment conditions have been studied using cross-section transmission electron microscopy, x-ray diffraction and Mossbauer spectroscopy. Catalyst samples were obtained from F-T synthesis runs at medium pressure (1.48 MPa) with a H2:CO ratio of 0.7. Samples were analyzed without removal of the wax to preserve the catalyst microstructure intact and prevent oxidation due to air exposure. In all active Fe catalysts, a highly dispersed chi-carbide (Fe5C2) phase with an average particle size <10 nm was seen to be present along with larger sized particles of hexagonal Fe 7C3. On the other hand, the carbide phase whose XRD pattern resembles that obtained by the Barton and Gale was found to be associated with catalysts of low activity. All carbide particles are covered with amorphous carbonaceous layers as seen by electron energy loss spectroscopy (EELS). In a series of separate experiments, phase transformations that occur during catalyst activation at atmospheric pressure were studied. During direct CO carburization of iron oxide at 250°C, multiple nucleation sites lead to formation of smaller Fe carbide particles predominantly of the Barton-Gale carbide. However, starting from metallic Fe we obtain a chi-carbide phase without significant change in particle size. Treatment in syngas (H 2:CO = 0.7) results in less complete carburization and larger particle sizes for both the carbide and the magnetite phases. The presence of trace amounts of water vapor during reduction appears to cause formation of large faceted magnetite crystals, which are difficult to further transform to the active carbide phase. The silica support is effective at keeping the Fe phases

  2. THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS IN PLUTONIUM ALLOYS - PART I

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z; Zhou, S

    2004-08-18

    In this report we investigate order, stability, and phase transformations for a series of actinide-based alloys. The statics and kinetics of precipitation and ordering in this class of alloys are modeled with a scheme that couples fundamental information on the alloy energetics obtained from experimental and assessed thermo-chemical data to the CALPHAD approach commonly used in industry for designing alloys with engineering specificity with the help of the Thermo-Calc software application. The CALPHAD approach is applied to the study of the equilibrium thermodynamic properties of Pu-based alloys, Pu-X, where X=Al, Fe, Ga. The assessment of the equilibrium phase diagrams in the whole range of alloy composition has been performed with the PARROT module of the Thermo-Calc application software. Predictions are made on the low temperature and Pu-rich side of the phase diagrams of Pu-Ga and Pu-Al for which controversy has been noted in the past. The validity of the assessed thermo-chemical database will be discussed by comparing predicted heats of transformation for pure Pu with measured values from differential scanning calorimetry analysis. An overall picture for the stability properties of Pu-Ga and Pu-Al that reconciles the results of past studies carried out on these alloys is proposed. Results on phase stability in the ternary Fe-Ga-Pu and Al-Fe-Pu alloys are discussed. The information collected in this study is then used to model metastability, long-term stability and aging for this class of alloys by coupling Thermo-Calc with DICTRA, a series of modules that allow the analysis of DIffusion Controlled TRAnsformations. Kinetics information is then summarized in so-called TTT (temperature-time-transformations) diagrams for the most relevant phases of actinide alloys. Specifically, results are presented on kinetics of phase transformations associated with the eutectoid-phase decomposition reaction occurring at low temperature, and with the martensitic transformation

  3. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  4. Phase determination for a Fourier transform infrared spectrometer in emission mode

    NASA Astrophysics Data System (ADS)

    Kleinert, Anne; Trieschmann, Olaf

    2007-04-01

    Beam-splitter emission strongly influences the spectra measured with a Fourier transform spectrometer (FTS) as it affects the entire phase behavior, in particular in emission spectroscopy. The various radiation contributions of the scene and the FTS itself have different phases in the complex spectrum. As a specific feature, the radiation of the beam splitter is rotated by approximately π/2 relative to the scene effective radiation. By classical methods of phase correction, the radiation components of different phases are mixed in the complex plane, which may lead to serious errors in the calibrated spectra. For this reason, the nature of the FTS phase has been studied, and a statistical phase determination method has been developed. It allows us to determine the phase function of the scene by minimizing the correlation between the imaginary and the real parts of the complex spectrum and by reducing the variance of the imaginary part. Thus phase accuracies of 10 to 30 mrad can be achieved. In addition, the remaining error of the phase can be calculated for each individual spectrum. The total phase error and its effect on the spectra are discussed.

  5. Phase transformation in thiamine hydrochloride tablets: Influence on tablet microstructure, physical properties, and performance.

    PubMed

    Chakravarty, Paroma; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2012-04-01

    The objective of this article was to monitor phase transformation in thiamine hydrochloride, from a nonstoichiometric hydrate (NSH) to a hemihydrate (HH), in stored tablets, prepared both by direct compression and wet granulation, and to relate the storage-induced phase transformation with changes in tablet microstructure, physical properties, and performance. Raman spectroscopy revealed complete NSH → HH transformation in tablets, within 30 h of storage at 40°C/75% relative humidity. When the tablets were prepared by wet granulation of NSH alone, there was a marked increase in both tablet volume and hardness on storage. However, when microcrystalline cellulose (MCC) was included in granulation, the resulting stored tablets also exhibited a pronounced increase in disintegration time. In contrast, tablets prepared by dry processing via compression of a NSH-MCC physical mixture did not exhibit any changes in properties, despite the in situ solid form conversion. Scanning electron microscopy revealed growth of needle-like HH crystals in all stored tablets and mercury porosimetry revealed considerable changes in the pore size distribution during storage. Longer storage led to crystal growth (Ostwald ripening), causing further gradual but less dramatic changes in properties. The phase transformation and the complex interparticulate associations in the tablet influenced the changes in tablet microstructure, compact physical properties, and product behavior.

  6. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction

    SciTech Connect

    Gualtieri, A.F.; Venturelli, P.

    1999-05-01

    The temperature induced goethite-hematite phase transformation that occurs at about 250 C was studied using in situ synchrotron X-ray powder diffraction with a capillary Debye-Scherrer geometry and a translating image plate system (TIPS). This is the first time the goethite-hematite transformation has been investigated in real time. The sample was a pure, synthetic, stoichiometric goethite with 2 {micro}m long needle-shaped crystals. The microstructural characterization showed that the sample was well crystallized. The Rietveld refinement of 30 powder patterns extracted from the image in the range 25--800 C demonstrates that an intermediate phase with non-stoichiometric composition (protohematite) forms after the decomposition of goethite. The cell parameter b of goethite dramatically decreased during the phase transformation while a and c instead continued to increase. Protohematite is iron-deficient and retains residual hydrolysis for charge balance. With temperature protohematite progressively transforms into hematite. Empty layers (pores) are consequently formed about the hematite clusters. The distribution of iron vacancies was modeled in the powder patterns with stacking faults that were simulated using anisotropic broadening coefficients of the pseudo-Voigt profile function. Its disappearance with temperature was effectively followed with a decrease of the density of stacking faults.

  7. Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Illarionov, A. G.; Grib, S. V.; Demakov, S. L.; Karabanalov, M. S.; Elkina, O. A.

    2008-10-01

    Phase and structural transformations in the Ti-24.3 Al-24.8 Nb-1.0 Zr-1.4 V-0.6 Mo-0.3 Si (at %) alloy that take place during heating in the temperature range of 700 1050°C have been investigated. The temperature ranges of existence of the O + β, O + β + α2, β + α2, and β phase fields have been established. A scheme of the relationships between the volume fractions of the O, β, and α2 phases depending on the temperature of heating of the alloy have been investigated. The formation of an ordered incommensurate ω ( V ω) phase has been revealed in the alloy during quenching from 900°C. The existence of a correlation between the hardness properties and changes in the phase composition and morphology of particles precipitating in the alloy has been shown.

  8. Image multiplexing and authentication based on double phase retrieval in fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Chang, Hsuan-Ting; Lin, Che-Hsian; Chen, Chien-Yue

    2017-04-01

    An image multiplexing and authentication method based on the double-phase retrieval algorithm (DPRA) with the manipulations of wavelength and position in the Fresnel transform (FrT) domain is proposed in this study. The DPRA generates two matched phase-only functions (POFs) in the different planes so that the corresponding image can be reconstructed at the output plane. Given a number of target images, all the sets of matched POFs are used to generate the phase-locked system through the phase modulation and synthesis to achieve the multiplexing purpose. To reconstruct a target image, the corresponding phase key and all the correct parameters in the FrT are required. Therefore, the authentication system with high-level security can be achieved. The computer simulation verifies the validity of the proposed method and also shows good resistance to the crosstalk among the reconstructed images.

  9. 77 FR 16559 - Large Power Transformers From Korea: Scheduling of the Final Phase of an Antidumping Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... COMMISSION Large Power Transformers From Korea: Scheduling of the Final Phase of an Antidumping Investigation... imports from Korea of large power transformers, provided for in subheading 8504.23.00 of the Harmonized... Commerce that imports of large power transformers from Korea are being sold in the United States at...

  10. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    SciTech Connect

    Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay -Rong; Jeng, Horng -Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-04-17

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.

  11. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    DOE PAGES

    Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...

    2015-04-17

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less

  12. Unconventional transformation of spin Dirac phase across a topological quantum phase transition.

    PubMed

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J Hugo; Shibayev, Pavel P; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J; Lin, Hsin; Bansil, Arun; Hasan, M Zahid

    2015-04-17

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.

  13. Diagenetic nanometric ferrihydrite clusters in 2.4 Ga carbonate banded iron formations from the Minas Supergroup

    NASA Astrophysics Data System (ADS)

    Morgan, R. R.; Wirth, R.; Orberger, B.

    2011-12-01

    Iron (oxyhydr)oxides, abundant on the Martian surface, can be formed via magmatic, hydrothermal, diagenetic or weathering processes. At present their formation are poorly understood. The study of Precambrian samples may be key to better understanding the Martian environmental conditions, past and present. Our FIB-TEM study of iron oxides from a banded iron formation (Gandarela Formation (2.4 Ga), Minas Supergroup, Minas Gerais, Brazil) provides a Precambrian terrestrial analogue for the formation of diagenetic ferrihydrite. A detailed mineralogical, petrological and FIB-TEM study of a carbonate banded iron formation (known locally as carbonate itabirites-CI) has revealed the presence of previously unknown nano-platelets of ferrihydrite, goethite and hematite hosted within dolomite. The CI are millimetrically alternating bands of pink dolomite and grey hematite. The fine sedimentary laminations, micritic sized dolomite crystals and nano (oxyhydr)oxide inclusions in the dolomite grains likely reflect a primary origin during deposition. The pink colour of the dolomite is a result of the nano inclusions of euhedral hematite (≤1 μm) and nano platelets of ferrihydrite and gothite (≥10 nm). The smallest ferrihydrites (~10 nm) are mostly rounded with a hint of a euhedral shape whereas the larger ferrihydrites (400 nm) are euhedral platelets. Clinochlore and talc indicate that the CI have experienced greenschist facies metamorphism at two major intervals; the Transamazonian at 2.1 Ga and the Brasiliano at 0.8 Ga. The ferrihydrites occur either as individual droplets or as clusters of up to 30 crystals. A common feature of all the ferrihydrite platelets is their close association with porosity indicating that the ferrihydrite platelets are a result of precipitation from fluid inclusions trapped within the dolomite during its formation. Deciphering the relative time of precipitation of the ferrihydrite is key in understanding the overall history of the rock. Dislocations

  14. Phase-space analysis for ionization processes in the laser-atom interaction using Gabor transformation

    NASA Astrophysics Data System (ADS)

    Shu, X. F.; Liu, S. B.; Song, H. Y.

    2016-04-01

    In this paper, the ionization processes during laser-atom interaction are investigated in phase-space using Gabor transformation. Based on the time-dependent Schrödinger equation (TDSE), the depletion of the whole system caused by the mask function is taken into consideration in calculating the plasma density. We obtain the momentum distribution via the Gabor transformation of the escaping portions of the time-dependent wave packet at the detector-like points on the interior boundaries from which the kinetic energies carried by the escaping portions are calculated.

  15. Linear canonical transformations of coherent and squeezed states in the Wigner phase space. II - Quantitative analysis

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1989-01-01

    It is possible to calculate expectation values and transition probabilities from the Wigner phase-space distribution function. Based on the canonical transformation properties of the Wigner function, an algorithm is developed for calculating these quantities in quantum optics for coherent and squeezed states. It is shown that the expectation value of a dynamical variable can be written in terms of its vacuum expectation value of the canonically transformed variable. Parallel-axis theorems are established for the photon number and its variant. It is also shown that the transition probability between two squeezed states can be reduced to that of the transition from one squeezed state to vacuum.

  16. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks.

    PubMed

    Yaakobi, B; Boehly, T R; Meyerhofer, D D; Collins, T J B; Remington, B A; Allen, P G; Pollaine, S M; Lorenzana, H E; Eggert, J H

    2005-08-12

    Extended x-ray absorption fine structure (EXAFS) measurements have demonstrated the phase transformation from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) iron due to nanosecond, laser-generated shocks. The EXAFS spectra are also used to determine the compression and temperature in the shocked iron, which are consistent with hydrodynamic simulations and with the compression inferred from velocity interferometry. This is a direct, atomic-level, and in situ proof of shock-induced transformation in iron, as opposed to the previous indirect proof based on shock-wave splitting.

  17. Comments on 'Kinetic Study on the Hexacelsian-Celsian Phase Transformation'

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1992-01-01

    A value of 20.1 +/- 4 kcal/mole for the activation energy (E) for the hexacelsian to celsian phase transformation in BaAl2Si2O8 was reported in an earlier work. In the present work, the earlier experimental data were reanalyzed and a much higher value of E was obtained. This revised E value is consistent with the transformation mechanism of a layered hexacelsian structure into a three-dimensional feldspar structure of celsian which would necessitate the breaking of the Si-O and/or the Al-O bonds.

  18. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  19. Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys

    SciTech Connect

    Amini, Rasool; Shamsipoor, Ali; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2013-10-15

    Mechano-synthesis of Fe–32Mn–6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe–Mn–Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development. - Graphical abstract: Mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si shape memory alloys in the powder form: amorphous phase formation, α-to-γ phase transformation, mechano-crystallization of the amorphous, and martensite phase formation during the process. Highlights: • During MA, the α-to-γ phase transformation and amorphization occurred. • Mechano-crystallization of the amorphous phase occurred at sufficient milling time. • The formation of high amount of ε-martensite was evidenced at high milling times. • The platelet, spherical, and then irregular particle shapes was extended by MA. • By MA, the particles size was increased, then reduced, and afterward re-increased.

  20. Conductor Formation Through Phase Transformation in Ti-Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Lin, Y. H.; Wei, Y. S.; Liu, C. Y.

    2012-01-01

    The resistance and transmittance of Ti-oxide thin films sputtered on quartz substrates were studied. The electrical and optical properties can be changed by varying the percentage of O2 introduced during the sputtering. The lowest resistivity for the sputtered Ti-oxide thin film was 2.30 × 10-2 Ω cm for 12.5% O2, which was obtained after annealing at 400°C in ambient oxygen. The results of x-ray photoelectron spectroscopy (XPS) curve-fitting indicate that the Ti-oxide thin film contained both Ti2O3 and TiO2 phases during deposition. The Ti2O3 phase was transformed into the stable TiO2 phase during annealing. The Ti2O3-TiO2 phase transformation initiated the substitution reaction. The substitution of Ti4+ ions in the TiO2 phase for the Ti3+ ions in the Ti2O3 phase created the free electrons. This Ti2O3-TiO2 phase transformation demonstrates the potential mechanism for conduction in the annealed Ti-oxide thin films. The transmittance of the annealed Ti-oxide thin films can be as high as approximately 90% at the 400 nm wavelength with the introduction of 16.5% O2. This result indicates that the annealed Ti-oxide thin films are excellent candidates for use as transparent conducting layers for ultraviolet (UV) or near-UV light-emitting diode (LED) devices.

  1. Cryptosystem for Securing Image Encryption Using Structured Phase Masks in Fresnel Wavelet Transform Domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-12-01

    A cryptosystem for securing image encryption is considered by using double random phase encoding in Fresnel wavelet transform (FWT) domain. Random phase masks (RPMs) and structured phase masks (SPMs) based on devil's vortex toroidal lens (DVTL) are used in spatial as well as in Fourier planes. The images to be encrypted are first Fresnel transformed and then single-level discrete wavelet transform (DWT) is apply to decompose LL,HL, LH and HH matrices. The resulting matrices from the DWT are multiplied by additional RPMs and the resultants are subjected to inverse DWT for the encrypted images. The scheme is more secure because of many parameters used in the construction of SPM. The original images are recovered by using the correct parameters of FWT and SPM. Phase mask SPM based on DVTL increases security that enlarges the key space for encryption and decryption. The proposed encryption scheme is a lens-less optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The computed value of mean-squared-error between the retrieved and the input images shows the efficacy of scheme. The sensitivity to encryption parameters, robustness against occlusion, entropy and multiplicative Gaussian noise attacks have been analysed.

  2. Transformers: the changing phases of low-dimensional vanadium oxide bronzes.

    PubMed

    Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit

    2015-03-28

    In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.

  3. Phase transformation and optical properties of Cu-doped ZnS nanorods

    SciTech Connect

    Datta, Anuja Panda, Subhendu K.; Chaudhuri, Subhadra

    2008-09-15

    ZnS nanorods doped with 0-15 mol% of Cu have been prepared by simple solvothermal process. With gradual increase in the Cu concentration, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed. Twins and stacking faults were developed due to atomic rearrangement in the heavily doped ZnS nanorods during phase transformation. UV-vis-NIR absorbance spectroscopy ruled out the presence of any impure Cu-S phase. The doped ZnS nanorods showed luminescence over a wide range from UV to near IR with peaks at 370, 492-498, 565 and 730 nm. The UV region peak is due to the near-band-edge transition, whereas, the green peak can be related to emission from elementary sulfur species on the surfaces of the nanorods. The orange emission at 565 nm may be linked to the recombination of electrons at deep defect levels and the Cu(t{sub 2}) states present near the valence band of ZnS. The near IR emission possibly originated from transitions due to deep-level defects. - Graphical abstract: ZnS nanorods doped with 0-15 mol% of Cu has been prepared by simple solvothermal route. Interestingly, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed with gradual increase in the Cu concentration. Doped ZnS nanorods showed luminescence over a wide range from UV to near IR, which is also a rare observation.

  4. Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass.

    PubMed

    Jiang, Ying; Ameh, Abiba; Lei, Mei; Duan, Lunbo; Longhurst, Philip

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (<1000°C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000-1200°C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (>1200°C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place.

  5. Application of phase stretch transform to plate license identification under blur and noise conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asghari, Hossein; Hadar, Ofer; Jalali, Bahram

    2016-09-01

    This paper deals with implementing a new algorithm for edge detection based on the Phase Stretch Transform (PST) for purposes of car plate license recognition. In PST edge detection algorithm, the image is first filtered with a spatial kernel followed by application of a nonlinear frequency-dependent phase. The output of the transform is the phase in the spatial domain. The main step is the 2-D phase function which is typically applied in the frequency domain. The amount of phase applied to the image is frequency dependent with higher amount of phase applied to higher frequency features of the image. Since sharp transitions, such as edges and corners, contain higher frequencies, PST emphasizes the edge information. Features can be further enhanced by applying thresholding and morphological operations. Here we investigate the influence of noise and blur on the ability to recognize the characters in the plate license, by comparison of our suggested algorithm with the well known Canny algorithm. We use several types of noise distributions among them, Gaussian noise, salt and paper noise and uniform distributed noise, with several levels of noise variances. The simulated blur is related to the car velocity and we applied several filters representing different velocities of the car. Another interesting degradation that we intend to investigate is the cases that Laser shield license plate cover is used to distort the image taken by the authorities. Our comparison results are presented in terms of True positive, False positive and False negative probabilities.

  6. Carbonate component reduces o,oEDDHA/Fe sorption on two-line ferrihydrite

    NASA Astrophysics Data System (ADS)

    Yunta, F.; Lucena, J. J.; Smolders, E.

    2012-04-01

    The o,oEDDHA/Fe is the most common and effective iron chelate used as fertilizer in calcareous soils. Several authors have reported that the anionic o,oEDDHA/Fe complex is adsorbed to soil components such as ferrihydrite. The bicarbonate anion may be a competing ion for this sorption, however no studies have yet identified the extent and mechanism of this interaction. The aim of this work was to study the carbonate (bicarbonate + carbonate) effect on EDDHA/Fe adsorption on two-line ferrihydrite. Two-line ferrihydrite was synthetized adding NaOH on a nitrate iron (III) solution up to a final pH to be 8.0 and allowing to age for 22 hours at 20°C. Dialyzed ferrihydrite was characterized by determining specific parameters such as Fe/OH ratio, BET surface, point zero of charge and x-ray diffraction. The sorption was performed at three pH levels (5, 7.5 and 9.5) and three initial carbonate concentrations (from 0 to 2 mM). Initial EDDHA/Fe, ferrihydrite and ionic strength concentrations were adjusted to 0.18 mM, 10 g L-1 and 5 mM respectively. Total dissolved FeEDDHA concentrations were quantified at 480 nm. The o,oEDDHA/Fe isomers (rac-o,oEDDHA/Fe and meso-o,oEDDHA/Fe) were separated and quantified by High Performance Liquid Chromatography (HPLC) fitting a photodiode array detector (PDA). Distribution factor (KD) and sorbed o,oEDDHA/Fe concentration were determined. Actual carbonate concentration was determined using a multi N/C analyzer. Ferrihydrite samples showed a typical XRD pattern of two-line ferrihydrite, two broad peaks at about 35 and 62° respectively. The BET surfaces (two replicates) were 259.2 ± 3.1 m2/g and 256.0 ± 2.5 m2/g. The Point Zero of Salt Effect (PZSE) was 7.9 ± 0.2 as bibliographically supported for all fresh and thus not rigorously de-carbonated ferrihydrite samples. The KD of the o,oEDDHA/Fe increased from 27.4 ± 0.6 to 304 ± 6 l/kg by decreasing pH from 9.5 and 5.0 when no carbonate was added. Increasing equilibrium carbonate

  7. Effects of oxygen and/or nitrogen on phase transformations above the monotectoid temperature in NbZr alloys

    NASA Astrophysics Data System (ADS)

    Nakai, K.; Kinoshita, C.; Kitajima, S.

    1981-05-01

    Effects of small amounts of oxygen and/or nitrogen on the NbZr phase diagram and the kinetics of phase transformations have been examined by use of optical microscopy, X-ray diffraction, electron microscopy and electron-probe micro-analysis. Hcp α phase and two bcc phases, βNb, and βZr' are observed near specimen surfaces annealed in vacua at temperatures above the monotectoid temperature and outside the monotectoid loop in Rogers and Atkins' phase diagram. The kinetics of the phase transformation from homogeneous β phase to (βNb + βZr) follows the kinetics of an Ostwald ripening reaction and the reaction rate is reduced by oxygen and/or nitrogen. The conclusion is that oxygen and/or nitrogen have direct effects on the kinetics of phase transformation as well as phase stability in NbZr alloys.

  8. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  9. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Reuter, K. B.; Williams, D. B.; Goldstein, J. I.

    1988-03-01

    The nickel content and the structure of kamacite and decomposed taenite (clear taenite 1, CT-1; the cloudy zone, CZ; and clear taenite 2, CT-2) in the metallic phases of meteorites were determined using X-ray microanalysis techniques in the AEM. The kamacite near the CT-1 interface was found to contain about 4 wt pct Ni. The CT-1 structure contains 51.4-45.6 wt pct Ni; it is ordered FeNi with the L1(0) superstructure. The CZ structure consists of two phases: a globular phase (ordered FeNi containing 50.9 wt pct Ni) and a surrounding honeycomb martensitic phase containing 11.7 wt pct Ni. The CT-2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Based on the preliminary evidence, this region is believed to be ordered Fe3Ni. Possible mechanisms for the decomposition of taenite are discussed.

  10. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    NASA Technical Reports Server (NTRS)

    Reuter, K. B.; Williams, D. B.; Goldstein, J. I.

    1988-01-01

    The nickel content and the structure of kamacite and decomposed taenite (clear taenite 1, CT-1; the cloudy zone, CZ; and clear taenite 2, CT-2) in the metallic phases of meteorites were determined using X-ray microanalysis techniques in the AEM. The kamacite near the CT-1 interface was found to contain about 4 wt pct Ni. The CT-1 structure contains 51.4-45.6 wt pct Ni; it is ordered FeNi with the L1(0) superstructure. The CZ structure consists of two phases: a globular phase (ordered FeNi containing 50.9 wt pct Ni) and a surrounding honeycomb martensitic phase containing 11.7 wt pct Ni. The CT-2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Based on the preliminary evidence, this region is believed to be ordered Fe3Ni. Possible mechanisms for the decomposition of taenite are discussed.

  11. Phase transformations and phase equilibria in the Co-Sn-Ti system in the crystallization interval

    NASA Astrophysics Data System (ADS)

    Fartushna, Iu.; Bulanova, M.; Ayral, R. M.; Tedenac, J. C.; Meleshevich, K.

    2016-12-01

    The Co-Sn-Ti system was studied in the crystallization interval (below 50 at% Sn) by the methods of Scanning Electron Microscopy, microprobe analysis, Differential Thermal Analysis, X-ray diffraction. The liquidus and solidus projections and the melting diagram were constructed. Only Co2TiSn(τ1) ternary compound (Heusler phase-L12) was found in equilibria with the liquid in the concentration interval studied. Taking into account our recent data, the liquidus projection is characterized by the fields of primary crystallization of (βTi), (Co), binary-based phases Ti3Sn, Ti2Sn, Ti5Sn3, Ti6Sn5, Ti2Co, TiCo, TiCo2 (c), TiCo2 (h), TiCo3, βCo3Sn2, CoSn and ternary τ1. The solidus projection is characterized by thirteen three-phase fields, which result from invariant four-phase equilibria, five are of eutectic type (E) and eight of transition type (U) and the existence of one more region Ti2Sn3+βCoSn3+(Sn) in the solidus projection is discussed.

  12. Impact of quasi-dc currents on three-phase distribution transformer installations

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Schafer, D.A. )

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  13. A theoretical study of the omega-phase transformation in metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  14. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    SciTech Connect

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S.; Sahul, Raffi; Hackenberger, Wes

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  15. Shock-induced phase transformation in the Sixiangkou chondrite (L6): Ringwoodite, majorite?

    NASA Astrophysics Data System (ADS)

    Chen, M.; El Goresy, A.

    1994-07-01

    The Sixiangkou chondrite (L6) is a rare example of heavily shocked chondrites. The meteorite is intersected by black silicate melt veins containing isotropic phases formed by shock transformation of silicates. Grains of olivine and pyroxene compositions in the veins are either isotropic mineral glass or ringwoodite or majorite respectively. Plagioclase has been transformed to isotropic glass. The phase tentatively identified as ringwoodite occures as isotropic and colorless large grains up to 300 microns in length usually with rounded outlines. Several sets of regular fractures dissect the grains. These structural features are considered to be related to the deformation process of olivine induced by the impact event. Numerous microprobe analyses indicate that the phase has the same composition as the birefringent olivine in the neighboring unmolten material. Three types compositional of the phase suspected to be majorite were encountered. Type 1 is colorless to yellowish brown and consists of isotropic polycrystalline aggregates ranging in size from approximately 20 to 150 microns. This type has the same composition as the low-Ca pyroxene of the chondrite mass. Type 2 has comparable optical properties to type 1, but the grains are smaller in size, ranging from approximately 5 to 20 microns. The main compositional difference between type 1 and type 2 is that the second one has higher Na2O contents. Type 3 consists of isolated yellowish brown microcrystals ranging in size from 1-3 microns. This phase occurs as subhedral or euhedral crystals in the matrix of veins, and is usually surrounded by fine-grained troilite and FeNi metal or plagioclase glass. Microprobe analyses indicate that this type is relatively rich in Al, Ca, Na, and Cr. Based on the mineralogical features of the veins, we conclude that the shock-induced phase transformation of minerals may have been produced in different stages of a shock event.

  16. Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.

    2004-01-01

    Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors

  17. Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Tao; Fang, Wei; Yin, Fuxing; Faraz Khan, Dil

    2016-12-01

    Using molecular dynamics simulation method, the plastic deformation mechanism of Fe nanowires is studied by applying uniaxial tension along the [110] direction. The simulation result shows that the bcc-to-hcp martensitic phase transformation mechanism controls the plastic deformation of the nanowires at high strain rate or low temperature; however, the plastic deformation mechanism will transform into a dislocation nucleation mechanism at low strain rate and higher temperature. Furthermore, the underlying cause of why the bcc-to-hcp martensitic phase transition mechanism is related to high strain rate and low temperature is also carefully studied. Based on the present study, a strain rate-temperature plastic deformation map for Fe nanowires has been proposed. Project supported by the National Natural Science Foundation of China (Grant No. 51571082) and China Postdoctoral Science Foundation (Grant No. 2015M580191).

  18. Magnetostructural phase transformations in Tb 1-x Mn 2

    SciTech Connect

    Zou, Junding; Paudyal, Durga; Liu, Jing; Mudryk, Yaroslav; Pecharsky, Vitalij K.; Gschneidner, Karl A.

    2015-01-16

    Magnetism and phase transformations in non-stoichiometric Tb1-xMn2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at TN, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn2.

  19. Phase Transformation Surfaces Analysis for SMA Around a Crack Tip with Curvature

    NASA Astrophysics Data System (ADS)

    Laydi, Mohamed Rachid; Lexcellent, Christian

    2015-09-01

    Under loading, for a shape memory alloy, the stress concentration around the crack tip, inside a plate, is a serious fracture problem. The tip shape constitutes an important data. In a recent paper (Lexcellent et al. in Int J Fract 169:1-13, 2011), the determination of phase transformation surfaces around a crack tip without curvature was investigated. For crack with curvature, the approximate stress field solution proposed by Creager and Paris is used (Int J Fract 3:247-252, 1967). The knowledge of phase transformation surfaces dimensions and shapes can help us to define a fracture criterion. The study is focussed on mode I because this opening mode is the most dangerous for the structure. Also, comparisons between experiments and computing can be made. Qualitative agreement was obtained.

  20. Isotropic edge-enhancement by the Hilbert-transform in optical tomography of phase objects.

    PubMed

    Montes-Perez, Areli; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo

    2011-03-14

    In optical tomography, isotropic edge-enhancement of phase-object slices under the refractionless limit approximation can be reconstructed using spatial filtering techniques. The optical Hilbert-transform of the transmittance function leaving the object at projection angles ϕ∈(0°,360°), is one of these techniques with some advantages. The corresponding irradiance of the so modified transmittance is considered as projection data, and is proved that they share two properties with the Radon transform: its symmetry property and its zeroth-moment conservation. Accordingly, a modified sinogram able to reconstruct edge-enhanced phase slices is obtained. In this paper, the theoretical model is amply discussed and illustrated both with numerical and experimental results.

  1. Effect of calcination temperature on phase transformation of HfO{sub 2} nanoparticles

    SciTech Connect

    Tripathi, S. K.; Kaur, Charanpreet; Kaur, Ramneek; Kaur, Jagdish

    2015-08-28

    Oxides nanomaterials exhibit unique physical, chemical and structural properties and motivated a big research that focus in the integration of these materials for various optoelectronic device applications. In present work, hafnium oxide (HfO{sub 2}) nanoparticles (NPs) have been synthesized using precipitation method. Hafnium tetrachloride and sodium hydroxide has been used as starting precursors. Prepared oxide material has been characterized by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and UV-Vis spectroscopy. The phase transformation from amorphous to monoclinic is observed with the increase in calcination temperature from 500 °C and 800 °C. In FTIR spectra, the characteristic bands at ν ∼ 758.53 and 509.57 cm{sup −1} reveals the monoclinic phase of prepared HfO{sub 2} NPs. UV-Vis spectroscopy shows an absorption peak at 204 nm and the bandgap calculated is 6.07 eV.

  2. Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and Hilbert transform.

    PubMed

    Kuklik, Pawel; Zeemering, Stef; Maesen, Bart; Maessen, Jos; Crijns, Harry J; Verheule, Sander; Ganesan, Anand N; Schotten, Ulrich

    2015-01-01

    The Hilbert transform has been used to characterize wave propagation and detect phase singularities during cardiac fibrillation. Two mapping modalities have been used: optical mapping (used to map atria and ventricles) and contact electrode mapping (used only to map ventricles). Due to specific morphology of atrial electrograms, phase reconstruction of contact electrograms in the atria is challenging and has not been investigated in detail. Here, we explore the properties of Hilbert transform applied to unipolar epicardial electrograms and devise a method for robust phase reconstruction using the Hilbert transform. We applied the Hilbert transform to idealized unipolar signals obtained from analytical approach and to electrograms recorded in humans. We investigated effects of deflection morphology on instantaneous phase. Application of the Hilbert transform to unipolar electrograms demonstrated sensitivity of reconstructed phase to the type of deflection morphology (uni- or biphasic), the ratio of R and S waves and presence of the noise. In order to perform a robust phase reconstruction, we propose a signal transformation based on the recomposition of the electrogram from sinusoidal wavelets with amplitudes proportional to the negative slope of the electrogram. Application of the sinusoidal recomposition transformation prior to application of the Hilbert transform alleviates the effect of confounding features on reconstructed phase.

  3. Three-dimensional target recognition using the phase information from a Fourier transform profilometer

    NASA Astrophysics Data System (ADS)

    Choudhury, Debesh; Takeda, Mitsuo

    2003-11-01

    We propose a new technique for three-dimensional (3D) target recognition using the phase information from a Fourier transform profilometer (FTP). Instead of cross-correlating the 3D target/nontargets-induced distorted grating patterns or the associated phase differences directly, the phase information are rather utilized to synthesize two complex harmonic functions, spatial frequency distributions of which are proportional to the computed profilometric phase maps of the target and the nontargets and hence to respective shape information. These complex harmonic functions due to the target and the nontargets are cross-correlated to produce highest correlation peak at the target location and almost no correlation peak for others. The feasibility of the technique is demonstrated by detailed simulations and experiments showing an excellent discrimination capability for 3D target recognition.

  4. Phase transformation as the single-mode mechanical deformation of silicon

    SciTech Connect

    Wong, S. Williams, J. S.; Bradby, J. E.; Haberl, B.

    2015-06-22

    The metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that are formed after the nanoindentation of diamond cubic silicon exhibit properties that are of both scientific and technological interest. This letter demonstrates that large regions of these phases can be readily formed from crystalline silicon via nanoindentation with minimal damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes of these phases 6 μm wide and up to 650 nm deep can be generated using a symmetrical spherical tip of ∼21.5 μm diameter. This result indicates that the use of large symmetrical spherical tips result in highly hydrostatic conditions that can favor the single phase transformation mode without extensive damage to the surrounding crystalline regions that are observed in previous studies.

  5. Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.

    1985-01-01

    The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.

  6. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Ruling; Luo, Jianbin; Guo, Dan; Lu, Xinchun

    2008-07-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages.

  7. Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-05-01

    An optical color image encryption in the Fractional Wavelet Transform (FWT) domain is carried out. The original images are segregated into three colors components: R (red), G (green) and B (blue). After that the components are encrypted separately using double random phase encoding (DRPE) in the FWT domain. Random phase masks (RPMs) are used in the input as well as in Fourier plane. The images to be encrypted are transformed with the discrete wavelet transform (DWT), the resulting coefficients from the DWT are multiplied each one by masks different form RPM. Masks are independent each other and the results are applied an inverse discrete Wavelet Transform (IDWT), obtaining the encrypted images. The input images are recovered from their corresponding encrypted images by using the correct parameters of the FWT, and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family and fractional orders associated with the FWT are extra keys that access difficulty an attacker; thereby the scheme is more secure as compared to conventional techniques. The sensitivity of proposed scheme is verified with encryption parameters, occlusions, and noise attacks.

  8. Parameter estimation of optical fringes with quadratic phase using the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Feng; Zhang, Feng; Tao, Ran; Ni, Guo-Qiang; Bai, Ting-Zhu; Yang, Wen-Ming

    2015-11-01

    Optical fringes with a quadratic phase are often encountered in optical metrology. Parameter estimation of such fringes plays an important role in interferometric measurements. A novel method is proposed for accurate and direct parameter estimation using the fractional Fourier transform (FRFT), even in the presence of noise and obstacles. We take Newton's rings fringe patterns and electronic speckle pattern interferometry (ESPI) interferograms as classic examples of optical fringes that have a quadratic phase and present simulation and experimental results demonstrating the performance of the proposed method.

  9. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  10. Dynamics of Structural Transformations between Lamellar and Inverse Bicontinuous Cubic Lyotropic Phases

    SciTech Connect

    Conn, Charlotte E.; Ces, Oscar; Mulet, Xavier; Seddon, John M.; Templer, Richard H.; Finet, Stephanie; Winter, Roland

    2006-03-17

    The liquid crystalline lamellar (L{sub {alpha}}) to double-diamond inverse bicontinuous cubic (Q{sub II}{sup D}) phase transition for the amphiphile monoelaidin in excess water exhibits a remarkable sequence of structural transformations for pressure or temperature jumps. Our data imply that the transition dynamics depends on a coupling between changes in molecular shape and the geometrical and topological constraints of domain size. We propose a qualitative model for this coupling based on theories of membrane fusion via stalks and existing knowledge of the structure and energetics of bicontinuous cubic phases.

  11. Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.

    2016-08-01

    Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.

  12. Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm

    PubMed Central

    He, Hongxing; Fang, Hengrui; Miller, Mitchell D.; Phillips, George N.; Su, Wu-Pei

    2016-01-01

    An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationship of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed. PMID:27580202

  13. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys

    NASA Astrophysics Data System (ADS)

    Brück, E.; Xiao, Q. F.; Thang, P. D.; Toonen, M. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-07-01

    We have studied the effect of the atomic disorder-order transformation on remanence enhancement and coercivity in Fe-Pt-based materials by isothermal annealing at temperatures well below the transformation point. We also investigated the effect of the annealing temperature and the effect of various types of additives. The relative amount of the low-temperature hard-magnetic face-centered-tetragonal (FCT) phase precipitated in the high-temperature magnetically soft face-centered-cubic (FCC) phase was determined by means of X-ray diffraction. As a function of annealing time and annealing temperature, particle size and relative amount of the FCT phase increased at the cost of the FCC phase. These changes were followed by means of magnetic measurements. We observed a continuous increase in coercivity with increasing annealing time, eventually reaching a maximum. The Kneller-Hawig model was used to explain the occurrence of remanence enhancement and the continuously changing degree of exchange coupling between the magnetically soft and hard phase. The suitability of Fe-Pt based alloys in dental applications is discussed.

  14. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    DOE PAGES

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-17

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less

  15. Calculation of Fresnel diffraction from 1D phase step by discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Aalipour, Rasoul

    2017-01-01

    When a part of an optical wave-front experiences a sharp change in its phase, Fresnel diffraction becomes appreciable. Sharp change in phase occurs as a wave-front strikes with a phase step. The intensity distributions of diffraction patterns of the phase step is formulated by applying Fresnel-Kirchhoff integral. For while the incident light on the step is coherent, the Fresnel-Kirchhoff integral can be solved by using familiar Fresnel integrals. But, when the incident light is partially coherent, one can not express the diffraction integral as the Fresnel integrals and the problem is summarized in solving some unusual integrals. In this report, we propose Fourier transform method for solving the Fresnel-Kirchhoff integral. In this regard we use discrete Fourier transform method and calculate Fresnel diffraction from the 1D phase step by FFT-based algorithms. This method does not have any restriction on the coherence and profile shape of the incident light. We show that the method have appropriate solutions for coherent and partially coherent lights. For the case of the coherent light illumination of the step, the obtained results are in good agreement with the calculated results by using the Fresnel integrals in reported literatures.

  16. Phase transformation α → ɛ in meteoritic Fe-Ni alloy under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Muftakhetdinova, R. F.; Grokhovsky, V. I.; Kozlov, E. A.; Khomskaya, I. V.; Yakovlev, G. A.

    2016-12-01

    We have studied microstructural deformation-induced changes and phase transformations in the material of the Sikhote-Alin iron meteorite (IIAB) after loading by spherically converging shock waves. The results obtained by the method of electron backscatter diffraction, as well as the data of local chemical analysis unambiguously indicate the presence of regions experiencing polymorphic α → ɛ and ɛ → α transitions in the loaded sample.

  17. Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase.

    PubMed

    Wang, Yue; Li, Xiaoming; Sreejith, Sivaramapanicker; Cao, Fei; Wang, Zeng; Stuparu, Mihaiela Corina; Zeng, Haibo; Sun, Handong

    2016-12-01

    Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm(-2) ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

  18. Field Performance of Three-Phase Amorphous Metal Core Distribution Transformers at Pearl Harbor, Hawaii

    DTIC Science & Technology

    1990-08-01

    37 Waste water management and sanitary engineering Airfields and pavements 38 O1 pollution removal and recovery3 Air polution ADVANCED BASE AND...utility systems at Ford Island, Barbers Point Naval Air Station, the Naval Shipyard, and the Naval Supply Center at Pearl Harbor, Hawaii. The main...Power Meter connected to a three-phase 4-wire amorphous core transformer under test at Barbers Point Naval Air Station. This testing procedure was

  19. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  20. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  1. Phased-ultrasonic receiving-planar array transducer for partial discharge location in transformer.

    PubMed

    Yongfen, Luo; Shengchang, Ji; Yanming, Li

    2006-03-01

    Partial discharge (PD) location in transformers is very important, and many methods that have been brought forward in past decades have a limitation theoretically, namely, they cannot locate multiple PDs in electrical equipment. In this paper, a new PD location method based on UHF and ultrasonic-phased arrays receiving theory has been presented, which has a possibility to locate multiple PDs. According to the method, a phased-ultrasonic receiving-planar array sensor that possesses 16 * 16 elements is designed; and, based on the phased-array theory, the characteristics of the plane sensor are studied. The laboratory experimental tests on the plane sensor element indicates that it has a good performance within the frequency band of the main ultrasonic energy produced by PD in transformer oil. Location tests are conducted on one or two piezoelectric ultrasonic sources in oil, which are both simulated as PD sources and triggered by an electrical pulse whose front is considered as a time benchmark in the locating algorithm. The test results show locations to one and two PDs can be realized in a single measurement, which lays a foundation for locating PDs in a power transformer in service.

  2. Phase transformation induced resistive switching behavior in Al/Cu2Se/Pt

    NASA Astrophysics Data System (ADS)

    Rehman, Shania; Kim, Kihwan; Hur, Ji-Hyun; Kim, Deok-kee

    2017-04-01

    The phase transformation induced resistive switching behavior of an Al/Cu2Se/Pt device was studied. While the device did not demonstrate any resistive switching behavior at room temperature, it exhibited resistive switching behavior at 125 °C, near the transition temperature of copper(I) selenide (Cu2Se) (137 °C), where Cu2Se is known to transform from the monoclinic to superionic phase. The increase in ionic conductivity and structural variations (from ordered to disordered structure) associated with phase transformation were observed to be responsible for the origin of the switching behavior and increase in the on/off resistance ratio near the transition temperature. Thermodynamic calculations showed that a reduction in Gibb’s free energy of nucleation and an increase in the migration speed of the Cu ion associated with the ionic conductivity and order to disorder the transition of the Cu2Se at the transition temperature were the important factors responsible for the reduction in the SET voltages at 155 °C.

  3. Dynamically driven phase transformations in heterogeneous materials. II. Applications including damage

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Clements, B. E.; Addessio, F. L.

    2006-12-01

    A model, developed for heterogeneous materials undergoing dynamically driven phase transformations in its constituents, has been extended to include the evolution of damage. Damage is described by two mechanisms: interfacial debonding between the constituents and brittle failure micro-crack growth within the constituents. The analysis is applied to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites that undergo the following phenomena: Ti has a yield stress of approximately 0.5 GPa and above a pressure of about 2 GPa undergoes a solid-solid phase transformation. The inelastic work from plastic dissipation contributes to the temperature and pressure rise in the Ti. SiC behaves elastically below a critical stress, above which it is damaged by microcrack growth. Finally, under tensile loading, the interface between Ti and SiC debonds according to an interfacial decohesion law. Each process is first examined independently in order to understand how its characteristic behavior is manifested in the stress-strain response of the composite. The complex interplay between loading states, viscoplasticity, damage, and solid-solid phase transformations is then studied at both the micromechanics and macromechanics levels.

  4. The Effect of Hardenability Variation on Phase Transformation of Spiral Bevel Gear in Quenching Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Shi, Wankai; Yang, Lin; Gu, Zhifei; Li, Zhichao

    2016-07-01

    The hardenability of gear steel is dependent on the composition of alloying elements and is one of important criteria to assess process of phase transformation. The variation of hardenability has to be considered in control of the microstructures and distortion during gear quenching. In this paper, the quantitative effect of hardenability has been investigated on phase transformations of spiral bevel gears in die quenching. The hardenability deviation of 22CrMoH steel was assessed by using Jominy test. The dilatometry experiments were conducted to build phase transformation kinetic models for steels with low and high hardenability, respectively. The complete die quenching process of spiral bevel gear was modeled to reveal the significant difference on microstructures and temperature history with variation of hardenability. The final microstructures of the gear are martensite in surface layer after quenching process. There are bainite inside the gear tooth and the mixture of bainite and ferrite inside gear for the gear with low hardenability. The microstructure is bainite inside the gear with high hardenability.

  5. Temperature-dependent mechanical deformation of silicon at the nanoscale: Phase transformation versus defect propagation

    SciTech Connect

    Kiran, M. S. R. N. Tran, T. T.; Smillie, L. A.; Subianto, D.; Williams, J. S.; Bradby, J. E.; Haberl, B.

    2015-05-28

    This study uses high-temperature nanoindentation coupled with in situ electrical measurements to investigate the temperature dependence (25–200 °C) of the phase transformation behavior of diamond cubic (dc) silicon at the nanoscale. Along with in situ indentation and electrical data, ex situ characterizations, such as Raman and cross-sectional transmission electron microscopy, have been used to reveal the indentation-induced deformation mechanisms. We find that phase transformation and defect propagation within the crystal lattice are not mutually exclusive deformation processes at elevated temperature. Both can occur at temperatures up to 150 °C but to different extents, depending on the temperature and loading conditions. For nanoindentation, we observe that phase transformation is dominant below 100 °C but that deformation by twinning along (111) planes dominates at 150 °C and 200 °C. This work, therefore, provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale and helps to clarify previous inconsistencies in the literature.

  6. Residual stress delaying phase transformation in Y-TZP bio-restorations

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud; Hanan, Jay C.

    2012-01-01

    Engineering favorable residual stress for the complex geometry of bi-layer porcelain-zirconia crowns potentially prevents crack initiation and improves the mechanical performance and lifetime of the dental restoration. In addition to external load, the stress field depends on initial residual stress before loading. Residual stress is the result of factors such as the thermal expansion mismatch of layers and compliance anisotropy of zirconia grains in the process of sintering and cooling. Stress induced phase transformation in zirconia extensively relaxes the residual stress and changes the stress state. The objective of this study is to investigate the coupling between tetragonal to monoclinic phase transformations and residual stress. Residual stress, on the surface of the sectioned single load to failure crown, at 23 points starting from the pure tetragonal and ending at a fully monoclinic region were measured using the micro X-ray diffraction sin2 ψ method. An important observation is the significant range in measured residual stress from a compressive stress of -400 MPa up to tensile stress of 400 MPa and up to 100% tetragonal to monoclinic phase transformation.

  7. Incorporation of plasticity into the Landau-Ginzburg theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, Roman; Lookman, Turab

    2008-03-01

    The Landau-Ginzburg theory of martensitic phase transformations has been utilized to reproduce the evolution of elastic texture in defect-free materials undergoing structural phase transformations. Generalizations of this theory to phase transformations that are accompanied by significant plastic distortions (as in U6Nb) have been little studied. We propose a simple model that demonstrates how to incorporate plasticity into the Landau-Ginzburg theory. In the presence of topological defects such as dislocations, the usual Saint Venant compatibility constraint becomes an incompatibility constraint and this is represented by a tensor field ηij. In our case, the components of ηij are expressed as gradients of the components of the Nye tensor that represent the dislocation density. The presence of dislocations induces large internal stresses in certain regions of the material, and these act as initiation sites for plastic deformation. When the external loading is applied, dislocations moving from these regions cause strain hardening that is detectable in experimental uniaxial measurements. This model serves as a starting point for further development of the framework of three-dimensional rate-independent theory of plasticity within the Landau-Ginzburg formalism.

  8. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the

  9. Transformation between spin-Peierls and incommensurate fluctuating phases of Sc-doped TiOCl

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wölfel, Alexander; Bykov, Maxim; Schönleber, Andreas; van Smaalen, Sander; Kremer, Reinhard K.; Williamson, Hailey L.

    2014-07-01

    Single crystals of ScxTi1-xOCl(x=0.005) have been grown by the vapor phase transport technique. Specific heat measurements prove the absence of phase transitions for 4-200 K. Instead, an excess entropy is observed over a range of temperatures that encompasses the incommensurate phase transition at 90 K and the spin-Peierls transition at 67 K of pure TiOCl. Temperature-dependent x-ray diffraction on ScxTi1-xOCl gives broadened diffraction maxima at incommensurate positions between Tc1=61.5(3) and ˜90 K, and at commensurate positions below 61.5 K. These results are interpreted as due to the presence of an incommensurate phase without long-range order at intermediate temperatures, and of a highly disturbed commensurate phase without long-range order at low temperatures. The commensurate phase is attributed to a fluctuating spin-Peierls state on an orthorhombic lattice. The monoclinic symmetry and local structure of the fluctuations are equal to the symmetry and structure of the ordered spin-Peierls state of TiOCl. A novel feature of ScxTi1-xOCl(x =0.005) is a transformation from one fluctuating phase (the incommensurate phase at intermediate temperatures) to another fluctuating phase (the spin-Peierls-like phase). This transformation is not a phase transition occurring at a critical temperature, but it proceeds gradually over a temperature range of ˜10 K wide. The destruction of long-range order requires much lower levels of doping in TiOCl than in other low-dimensional electronic crystals, like the canonical spin-Peierls compound CuGeO3. An explanation for the higher sensitivity to doping has not been found, but it is noticed that it may be the result of an increased two-dimensional character of the doped magnetic system. The observed fluctuating states with long correlation lengths are reminiscent of Kosterlitz-Thouless-type phases in two-dimensional systems.

  10. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  11. High Pressure Phase-Transformation Induced Texture Evolution and Strengthening in Zirconium Metal: Experiment and Modeling

    PubMed Central

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-01-01

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation. PMID:26218405

  12. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  13. A study of phase transformation in hedenbergite to 40 GPa at ˜1200° C

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ho; Ming, Li Chung; Manghnani, Murli H.

    1989-11-01

    Phase transformations in a natural sample of hedenbergite ((Ca0.93Fe0.61Mn0.34Mg0.08Na0.01Zn0.02Al0.003)Si2O6) have been studied by X-ray diffraction up to 40 GPa at ˜ 1200°C in a diamond anvil cell interfaced with a laser heating system. The starting hedenbergite phase decomposed into a garnet plus γ-spinel and stishovite at ˜ 14 GPa; then into garnet plus stishovite and wüstite at ˜ 18 GPa; and finally into perovskite plus stishovite and wüstite at pressures higher than ˜ 24 GPa. On decompression to 0.1 MPa, all the high pressure phases are retained except for the cubic perovskite, which reverts back into the ɛ-CaSiO3 phase, in accordance with previous reports. Energy-dispersive SEM analyses show that the garnet is present as a calcium-rich ABO 3-type phase. As no garnet phase has been previously observed either in pure CaSiO3 or in pure CaMgSi2O6, it appears that the observed calcium-rich garnet phase has been stabilized by the presence of other cations such as the Na+, Zn2+, Mn2+, Fe2+, Mn3+, Fe3+ and Al3+.

  14. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles.

    PubMed

    Wittig, James E; Bentley, James; Allard, Lawrence F

    2016-12-11

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L10 ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500°C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700°C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5min at 700°C produced complete single-domain L10 order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L10 order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases.

  15. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; James, Richard D.

    2016-05-01

    The alloy Cu25Au30Zn45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  16. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    SciTech Connect

    Mangalampalli S. R. N. Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-05-27

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.

  17. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    PubMed Central

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana

    2014-01-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  19. Ultrasonic Observations of Elasticity Changes Across Phase Transformations in MgSiO3 Pyroxenes

    SciTech Connect

    Kung,J.; Li, B.; Liebermann, R.

    2006-01-01

    Using ultrasonic interferometry in conjunction with synchrotron X-radiation techniques in a high-pressure, multi-anvil apparatus, the elastic behavior of MgSiO{sub 3} pyroxene has been continuously monitored as the specimens undergo phase transformations from the orthoenstatite (OEN) to the high-pressure clinoenstatite phase (HP-CEN) and from HP-CEN to the low-pressure clinoenstatite phase (LP-CEN). In the former case, elastic softening and amplitude attenuation is observed for both compresssional (P) and shear (S) waves when the pressure exceeds 9 GPa at room temperature, which we suggest is associated with a transition to a metastable phase intermediate between OEN and HP-CEN. In the latter case, both P and S wave velocities decrease rapidly as the back-transformation from HP-CEN to LP-CEN occurs on decrease of pressure below 4 GPa at room temperature; this is accompanied by an increase in attenuation of the P waves in the specimen, but not the S waves.

  20. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    DOE PAGES

    Mangalampalli S. R. N. Kiran; Tran, Tuan; Smillie, Lachlan; ...

    2015-05-27

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that themore » dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.« less

  1. Superplasticity in silicon nitride through the α to β phase transformation

    NASA Astrophysics Data System (ADS)

    Rossignol, Fabrice; Roussel, Tanguy; Besson, Jean-Louis; Goursat, Paul; Lespade, Pierre

    1995-02-01

    Superplasticity is observed in silicon for temperatures ranging between 1500 and 1600 ^{circ}C in damage resistant materials with a submicron grain size. The microstructure evolves rapidly in the temperature range. This study shows that it is an advantage to start with an α-Si{3}N{4} rich ceramic in order to derive benefit from both the equiaxed α-grain shape and the transient liquid phase that forms during deformation at an intermediate stage of the αtoβ transformation. The kinetics of this transformation is analyzed and direct correlation is made with the deformation curves (elongation > 80%). La superplasticité du nitrure de silicium se manifeste entre 1500 et 1600 ^{circ}C pour des matériaux à grains submicroniques présentant une bonne résistance à l'endommagement. Dans ce domaine de température la microstructure évolue rapidement. Cette étude montre qu'il est avantageux de partir d'une céramique principalement constituée de la phase α-Si{3}N{4} afin de bénéficier de la forme équiaxe des grains α ainsi que la phase liquide transitoire qui se forme au cours de la déformation durant le processus de transformation αtoβ. La cinétique de cette transformation est anlysée et son incidence sur les courbes de déformation à chaud (allongement > 80%) est mise en évidence.

  2. Liquid-gas relative permeabilities in fractures: Effects of flow structures, phase transformation and surface roughness

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Ying

    2005-11-01

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam-water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  3. Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study.

    PubMed

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf

    2015-03-25

    A combined density functional theory and solid-state nudged elastic band study is presented to investigate the martensitic transformation between β → (α″, ω) phases in the Ti-Ta system. The minimum energy paths along the transformation are calculated and the transformation mechanisms as well as relative stabilities of the different phases are discussed for various compositions. The analysis of the transformation paths is complemented by calculations of phonon spectra to determine the dynamical stability of the β, α″, and ω phase. Our theoretical results confirm the experimental findings that with increasing Ta concentration there is a competition between the destabilisation of the α″ and ω phase and the stabilisation of the high-temperature β phase.

  4. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  5. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform

    PubMed Central

    Wang, Yong; Abdelkader, Ali Cherif; Zhao, Bin; Wang, Jinxiang

    2015-01-01

    Inverse synthetic aperture radar (ISAR) imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS) after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID) technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS) based on the modified discrete polynomial-phase transform (MDPT) is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it. PMID:26404299

  6. A study of phase transformations in hygroscopic aerosols by Raman spectroscopy

    SciTech Connect

    Tang, I.N.; Fung, K.H.

    1995-12-31

    Atmospheric aerosol particles are composed mostly of hygroscopic inorganic salts. These aerosols play an important role in many atmospheric processes which affect local air quality, visibility degradation, and the global climate as well. Indeed, hygroscopic aerosols as metastable supersaturated solution droplets are routinely observed in laboratories. Here, we report first spectroscopic evidence that new metastable solid states form from hygroscopic aerosol particles. Levitated single particles undergo hydration and crystallization in calibrated humidity environment. Laser Raman and Mie scattering techniques are used to probe the chemical and physical state of the microparticle before and after phase transformation. The formation of these states is not predicted from bulk-phase thermodynamics. In some cases, the resulting metastable state is entirely unknown heretofore. We also present new solid/solution and solid/solid phase transitions which occur exclusively in microparticles.

  7. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform.

    PubMed

    Wang, Yong; Abdelkader, Ali Cherif; Zhao, Bin; Wang, Jinxiang

    2015-09-03

    Inverse synthetic aperture radar (ISAR) imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS) after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID) technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS) based on the modified discrete polynomial-phase transform (MDPT) is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.

  8. Transformation of Hume-Rothery phases under the action of high pressure torsion

    NASA Astrophysics Data System (ADS)

    Straumal, B. B.; Kilmametov, A. R.; Kucheev, Yu. O.; Kolesnikova, K. I.; Korneva, A.; Zieba, P.; Baretzky, B.

    2014-11-01

    It has been revealed experimentally that high-pressure torsion induces phase transformations of certain Hume-Rothery phases (electron compounds) to others. High-pressure torsion induces the ξ → δ + ɛ reaction in copper-tin alloys with the appearance of the δ + ɛ phase mixture as after long-term annealing in the temperature range T eff = 350-589°C. The mass transfer rate driven by high-pressure torsion is 14-18 orders of magnitude higher than the rate of conventional thermal diffusion at the processing temperature T HPT. This phenomenon can be explained by an increased concentration of defects (in particular, vacancies) in the steady state under high-pressure torsion, which is equivalent to an increase in the temperature.

  9. Distortion induced band gap and phase transformation in Tix Ag(1 - x) O2 system

    NASA Astrophysics Data System (ADS)

    Mathpal, Mohan Chandra; Tripathi, Anand Kumar; Kumar, Promod; Agrahari, Vivek; Singh, Manish Kumar; Agarwal, Arvind

    2014-10-01

    The polymorphic crystallization and optical properties of Ag-doped TiO2 nanoparticles have been investigated. Sol-gel method has been used to prepare anatase, rutile, and the anatase-rutile mixed phase of TiO2 nanoparticles by Ag doping on Ti(4+) sites. The doped TiO2 nanoparticles exhibit different phase of TiO2 for the different concentration of dopants. The Ag-doping affects the luminescence and morphological properties of TiO2 nanoparticles. The anatase to rutile phase transformation temperature (ART) has reduced significantly. The Ag doping in TiO2 lattice gives a large red shift for a particular concentration of Ag dopants.

  10. Aluminum effect on dissolution and precipitation under hyperalkaline conditions: II. Solid phase transformations.

    PubMed

    Qafoku, Nikolla P; Ainsworth, Calvin C; Szecsody, James E; Bish, David L; Young, James S; McCready, David E; Qafoku, Odeta S

    2003-01-01

    The high-level radioactive, Al-rich, concentrated alkaline and saline waste fluids stored in underground tanks have accidentally leaked into the vadose zone at the Hanford Site in Washington State. In addition to dissolution, precipitation is likely to occur when these waste fluids contact the sediments. The objective of this study was to investigate the solid phase transformations caused by dissolution and precipitation in the sediments treated with solutions similar to the waste fluids. Batch experiments at 323 K were conducted in metal- and glass-free systems under CO2 and O2 free conditions. Results from X-ray diffraction (XRD), quantitative X-ray diffraction (QXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and energy dispersive X-ray fluorescence spectroscopy (EDXRF) indicated that significant solid phase transformations occurred in the sediments contacted with Al-rich, hyperalkaline, and saline solutions. The XRD and QXRD analyses confirmed that smectite and most likely biotite underwent dissolution. The SEM and the qualitative EDS analyses confirmed the formation of alumino-silicates in the groups of cancrinite and probably sodalite. The morphology of the alumino-silicates secondary phases changed in response to changes in the Si/Al aqueous molar ratio. The transformations in the sediments triggered by dissolution (weathering of soil minerals) and precipitation (formation of secondary phases with high specific surface area and probably high sorption capacities) may play a significant role in the immobilization and ultimate fate of radionuclides and contaminants such as Cs, Sr, and U in the Hanford vadose zone.

  11. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.

    PubMed

    Li, S J; Cui, T C; Hao, Y L; Yang, R

    2008-03-01

    Due to recent concern about allergic and toxic effects of Ni ions released from TiNi alloy into human body, much attention has been focused on the development of new Ni-free, metastable beta-type biomedical titanium alloys with a reversible phase transformation between the beta phase and the alpha'' martensite. This study investigates the effect of the stress-induced alpha'' martensite on the mechanical and fatigue properties of Ti-24Nb-4Zr-7.6Sn (wt.%) alloy. The results show that the as-forged alloy has a low dynamic Young's modulus of 55GPa and a recoverable tensile strain of approximately 3%. Compared with Ti-6Al-4V ELI, the studied alloy has quite a high low-cycle fatigue strength because of the effective suppression of microplastic deformation by the reversible martensitic transformation. Due to the low critical stress required to induce the martensitic transformation, it has low fatigue endurance comparable to that of Ti-6Al-4V ELI. Cold rolling produces a beta+alpha'' two-phase microstructure that is characterized by regions of nano-size beta grains interspersed with coarse grains containing alpha'' martensite plates. Cold rolling increases fatigue endurance by approximately 50% while decreasing the Young's modulus to 49GPa along the rolling direction but increasing it to 68GPa along the transverse direction. Due to the effective suppression of the brittle isothermal omega phase, balanced properties of high strength, low Young's modulus and good ductility can be achieved through ageing treatment at intermediate temperature.

  12. Identifying stable phase coupling associated with cerebral autoregulation using the synchrosqueezed cross-wavelet transform and low oscillation morlet wavelets.

    PubMed

    Addison, Paul S

    2015-01-01

    A novel method of identifying stable phase coupling behavior of two signals within the wavelet transform time-frequency plane is presented. The technique employs the cross-wavelet transform to provide a map of phase coupling followed by synchrosqueezing to collect the stable phase regime information. The resulting synchrosqueezed cross-wavelet transform method (Synchro-CrWT) is illustrated using a synthetic signal and then applied to the analysis of the relationship between biosignals used in the analysis of cerebral autoregulation function.

  13. Development of a carburizing and quenching simulation tool: A material model for low carbon steels undergoing phase transformations

    SciTech Connect

    Bammann, D.; Prantil, V.; Kumar, A.

    1996-06-24

    An internal state variable formulation for phase transforming alloy steels is presented. We have illustrated how local transformation plasticity can be accommodated by an appropriate choice for the corresponding internal stress field acting between the phases. The state variable framework compares well with a numerical micromechanical calculation providing a discrete dependence of microscopic plasticity on volume fraction and the stress dependence attributable to a softer parent phase. The multiphase model is used to simulate the stress state of a quenched bar and show qualitative trends in the response when the transformation phenomenon is incorporated on the length scale of a global boundary value problem.

  14. In-situ Phase Transformation and Deformation of Iron at High Pressure andTemperature

    SciTech Connect

    Miyagi, Lowell; Kunz, Martin; Knight, Jason; Nasiatka, James; Voltolini, Marco; Wenk, Hans-Rudolf

    2008-07-01

    With a membrane based mechanism to allow for pressure change of a sample in aradial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, itis now possible to investigate texture changes during deformation and phasetransformations over a wide range of temperature-pressure conditions. The device isused to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations are favored to transform to the hcp structure first and generate a texture of (01-10) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)bcc // (0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal {2-1-12}<2-1-13> and basal (0001)-{2-1-10} slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression.

  15. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.

    PubMed

    Handelman, Amir; Natan, Amir; Rosenman, Gil

    2014-07-01

    Thermally induced phase transformation in bioorganic nanotubes, which self-assembled from two ultrashort dipeptides of different origin, aromatic diphenylalanine (FF) and aliphatic dileucine (LL), is studied. In both FF and LL nanotubes, irreversible phase transformation found at 120-180 °C is governed by linear-to-cyclic dipeptide molecular modification followed by formation of extended β-sheet structure. As a result of this process, native open-end FF and LL nanotubes are transformed into ultrathin nanofibrils. Found deep reconstructions at all levels from macroscopic (morphology) and structural space symmetry to molecular give rise to new optical properties in both aromatic FF and aliphatic LL nanofibrils and generation of blue photoluminescence (PL) emission. It is shown that observed blue PL peak is similar in these supramolecular nanofibrillar structures and is excited by the network of non-covalent hydrogen bonds that link newly thermally induced neighboring cyclic dipeptide strands to final extended β-sheet structure of amyloid-like nanofibrils. The observed blue PL peak in short dipeptide nanofibrils is similar to the blue PL peak that was recently found in amyloid fibrils and can be considered as the optical signature of β-sheet structures. Nanotubular structures were characterized by environmental scanning electron microscope, ToF-secondary ion mass spectroscopy, CD and fluorescence spectroscopy.

  16. Texture of primary recrystallization on nonoriented electrical steel sheet with phase transformation

    SciTech Connect

    Kumano, T.; Kubota, T.; Takahashi, N.

    1995-08-01

    The magnetic properties of nonoriented (NO) electrical steel sheet are commonly improved if the texture of their products possesses cube texture e.g., {l_brace}100{r_brace} <0vw>, ``goss texture`` i.e., {l_brace}110{r_brace}<011>, and less {l_brace}222{r_brace} texture. Industrially ``cube type`` has not been obtained, but ``goss texture`` has been. In a greater or lesser degree, {l_brace}222{r_brace} texture exists. To improve ``goss texture`` and reduce {l_brace}222{r_brace} texture, the grain size of the material prior to cold rolling should be larger. When the grain size before cold rolling is larger, during primary recrystallization, ``goss texture`` is enriched, {l_brace}222{r_brace} texture is decreased, and the grain grows so easily that higher induction and lower core loss can be obtained. This does not depend on the presence of phase transformation. In case of NO steel with phase transformation, heat treatment before cold rolling has been done below the austenite transition temperature (Ac{sub 1}) in order to prevent the fine grain size caused by {alpha} {yields} {gamma}(+{alpha}) {yields} {alpha} transformation. By using material that was heated over Ac{sub 1} and cooled with changing cool rates, this study describes (a) the relationship between textures before cold rolling and the texture of the final product, and (b) the development of the magnetic properties.

  17. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  18. Structural transformations in Pb/Si(111) phases induced by C₆₀ adsorption.

    PubMed

    Matetskiy, A V; Bondarenko, L V; Gruznev, D V; Zotov, A V; Saranin, A A; Tringides, M C

    2013-10-02

    Structural transformations at the Pb/Si(111) surface occurring upon C₆₀ adsorption onto Pb/Si(111)1 × 1 phase at room temperature and Pb/Si(111)[Formula: see text] at low temperatures between 30 and 210 K, have been studied using scanning tunneling microscopy and low-energy electron diffraction observations. Typically, C₆₀ fullerenes agglomerate into random molecular islands nucleated at the surface defects. C₆₀ island formation is accompanied by expelling Pb atoms to the surrounding surface area where more dense Pb/Si(111) phases form. Productivity of C₆₀-induced expelling of Pb atoms is controlled by surface defects and is suppressed dramatically when regular ('crystalline') C₆₀ islands self-assemble at the defect-free Pb/Si(111) surface. When Pb atoms are ejected by the random C₆₀ islands, extended structural transformations involving reordering of numerous Pb atoms are fully completed at the surface within the shortest possible time (a few dozen seconds) to reapproach and image the surface after C₆₀ deposition. Estimations show that the observed transformations cannot be controlled by random walk diffusion of Pb adatoms, which implies a highly correlated motion of the Pb atom displacements within the layer.

  19. Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1992-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  20. On the Concordance of Static High Pressure Phase Transformation Data on Minerals With Shock Wave Data

    NASA Astrophysics Data System (ADS)

    de Carli, P. S.; El Goresy, A.; Xie, Z.; Sharp, T. G.

    2006-12-01

    About 50 years ago, shock wave researchers were confounded by the apparent rapidity of shock-induced phase transformations and invoked special mechanisms as an explanation. Some workers speculatively interpret shock wave data as indicative of very rapid reconstructive phase transformations of minerals at modest temperatures. The belief that kinetic effects are negligible has justified the use of microsecond duration shock recovery experiments to interpret much longer duration shock effects in terrestrial impact craters and in meteorites. Here we summarize the extensive evidence that phase transformations under shock compression are governed by the same kinetics as phase transitions under static compression. Hugoniot measurements on quartz and feldspars have been interpreted as indicating phase transitions to dense phases at pressures near 35 GPa. Release adiabat measurements imply that these phases persist on release of pressure down to about 7 GPa, below which there is expansion to a final density appropriate to a glass. Microsecond-duration shock recovery experiments support this interpretation; a low density amorphous phase (diaplectic glass) is recovered. A similar effect is observed in static compression experiments conducted at room temperature at a lower pressure, 12-15 GPa. The pressure difference is a kinetic effect; the transition requires higher shock pressures (implying higher shock temperatures) to run to completion on a microsecond time scale. Direct evidence for kinetic effects on the tectosilicate transformation is found in studies of naturally shocked meteorites that contain melt veins. When the melt veins solidify under pressure, the resultant mineralogy together with vein cooling calculations constrains the shock pressure-time history. In some samples, in which the shock pressure is constrained by vein mineralogy to a range of 17-25 Gpa, one may observe the presence of diaplectic glass in only near-vein regions heated by conduction from the vein

  1. A progressive transmission image coder using linear phase uniform filterbanks as block transforms.

    PubMed

    Tran, T D; Nguyen, T Q

    1999-01-01

    This paper presents a novel image coding scheme using M-channel linear phase perfect reconstruction filterbanks (LPPRFBs) in the embedded zerotree wavelet (EZW) framework introduced by Shapiro (1993). The innovation here is to replace the EZWs dyadic wavelet transform by M-channel uniform-band maximally decimated LPPRFBs, which offer finer frequency spectrum partitioning and higher energy compaction. The transform stage can now be implemented as a block transform which supports parallel processing and facilitates region-of-interest coding/decoding. For hardware implementation, the transform boasts efficient lattice structures, which employ a minimal number of delay elements and are robust under the quantization of lattice coefficients. The resulting compression algorithm also retains all the attractive properties of the EZW coder and its variations such as progressive image transmission, embedded quantization, exact bit rate control, and idempotency. Despite its simplicity, our new coder outperforms some of the best image coders published previously in the literature, for almost all test images (especially natural, hard-to-code ones) at almost all bit rates.

  2. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  3. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joël; Pring, Allan

    2006-11-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 °C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9S 8 to violarite (Fe,Ni) 3S 4 under mild conditions (pH∼4) at 120 °C and 3 bar using in situ neutron diffraction measurements are presented.

  4. Detailed Review and Application of the 3-Phase Self-Limiting Transformer with Magnetic Flux Applied

    NASA Astrophysics Data System (ADS)

    Kosa, Janos

    The paper describes in detail the 3-phase self-limiting transformer with magnetic flux applied and contains measured results. The solution includes two independent iron cores. I applied two pieces of iron cores with 3 limbs on each. One of the iron cores contains the 3 primary coils on the limbs respectively and the other iron core also contains 3 secondary coils. As I use two iron cores the loss, the size, the weight and the cost are higher compared to the conventional transformers but this solution has several advantages. For example, the fault power is less, switching is fast. In the case, when there is no load on the secondary side and primary voltage increases, the arrangement is able to break coupling between the primary and secondary sides. The work has been carried out by me as a novel possibility of application of the principle of magnetic flux constancy in the closed loop.

  5. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    PubMed

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  6. Influence of water concentrations on the phase transformation of a model surfactant/co-surfactant/water system

    NASA Astrophysics Data System (ADS)

    Lunkad, Raju; Srivastava, Arpita; Debnath, Ananya

    2017-02-01

    The influence of water concentrations on phase transformations of a surfactant/co-surfactant/water system is investigated by using all atom molecular dynamics simulations. At higher water concentrations, where surfactant (behenyl trimethyl ammonium chloride, BTMAC) to co-surfactant (stearyl alcohol, SA) ratio is fixed, BTMAC and SA self-assemble into spherical micelles, which transform into strongly interdigitated one dimensional rippled lamellar phases upon decreasing water concentrations. Fragmentation or fusions of spherical micelles of different sizes are evident from the radial distribution functions at different temperatures. However, at lower water concentrations rippled lamellar phase transforms into an LβI phase upon heating. Our simulations reveal that the concentrations of water can influence available space around the head groups which couple with critical thickness to accommodate the packing fraction required for respective phases. This directs towards obtaining a controlling factor to design desired phases important for industrial and medical applications in the future.

  7. α-Phase transformation kinetics of U – 8 wt% Mo established by in situ neutron diffraction

    SciTech Connect

    Garlea, Elena; Steiner, M. A.; Calhoun, C. A.; Klein, R. W.; An, K.; Agnew, S. R.

    2016-05-08

    The α-phase transformation kinetics of as-cast U - 8 wt% Mo below the eutectoid temperature have been established by in situ neutron diffraction. α-phase weight fraction data acquired through Rietveld refinement at five different isothermal hold temperatures can be modeled accurately utilizing a simple Johnson-Mehl-Avrami-Kolmogorov impingement-based theory, and the results are validated by a corresponding evolution in the γ-phase lattice parameter during transformation that follows Vegard’s law. Neutron diffraction data is used to produce a detailed Time-Temperature-Transformation diagram that improves upon inconsistencies in the current literature, exhibiting a minimum transformation start time of 40 min at temperatures between 500 °C and 510 °C. Lastly, the transformation kinetics of U – 8 wt% Mo can vary significantly from as-cast conditions after extensive heat treatments, due to homogenization of the typical dendritic microstructure which possesses non-negligible solute segregation.

  8. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    SciTech Connect

    Kubiak, Marcin Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  9. Microstructural Evidence for Conditioning-dependent (delta) -> (alpha)' Transformations in Retained (delta)-phase Pu-Ga

    SciTech Connect

    Jeffries, J R; Blobaum, K M; Wall, M A; Schwartz, A J

    2008-06-16

    The retained {delta} phase of a Pu-1.9 at.% Ga alloy is metastable with respect to the martensitic {delta} {yields} {alpha}{prime} transformation that occurs at low temperatures. This transformation has been shown to proceed by means of an isothermal martensitic mode, but the kinetics of the transformation are atypical. The transformation exhibits a 'double-C' in a time-temperature-transformation diagram, wherein there exist two temperatures where a given amount of transformation occurs in a minimum amount of time. The cause of the double-C kinetics remains uncertain, eliciting proposals of multiple mechanisms, multiple paths, or different morphologies as possible origins. Recently, a 'conditioning' treatment was found to affect the {delta} {yields} {alpha}{prime} transformation, but the underlying mechanism by which the conditioning treatment influences the transformation has not yet been resolved. In this study, microstructural characterization as a function of temperature, time, and conditioning has been employed to illuminate the role of conditioning in the {delta} {yields} {alpha}{prime} transformation. Conditioning is found to enhance transformation in the upper-C and to enable transformation in the lower-C. The data garnered from these experiments suggest that conditioning is intimately linked to nucleation processes and of little consequence to the growth and morphology of the {alpha}{prime} product phase.

  10. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  11. Cluster Variation Method as a Theoretical Tool for the Study of Phase Transformation

    NASA Astrophysics Data System (ADS)

    Mohri, Tetsuo

    2017-02-01

    Cluster variation method (CVM) has been widely employed to calculate alloy phase diagrams. The atomistic feature of the CVM is consistent with first-principles electronic structure calculations, and the combination of CVM with electronic structure calculation enables one to formulate free energy from the first-principles. CVM free energy conveys affluent information of a given system, and the second-order derivative traces the stability locus against configurational fluctuation. The kinetic extension of the CVM is the path probability method (PPM) which is utilized to calculate transformation and relaxation kinetics associated with the temperature change. Hence, the CVM and PPM are coherent methods to perform a synthetic study from initial non-equilibrium to final equilibrium states. By utilizing CVM free energy as a homogeneous free energy density term, one can calculate the time evolution of ordered domains within the phase field method. Finally, continuous displacement cluster variation method (CDCVM) is discussed as the recent development of CVM. CDCVM is capable of introducing the local lattice displacement into the free energy. Moreover, it is shown that CDCVM can be extended to study collective atomic displacements leading to displacive phase transformation.

  12. Monte-Carlo simulation of phase space transformation of ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Zsigmond, G.; Allenspach, P.

    2008-02-01

    The very high phase space density of ultra-cold neutrons (UCN) originating from a superthermal UCN-source can be exploited for the production of intense cold neutron beams. UCN are accelerated by means of Doppler-shifter crystals. This method is called phase space transformation (PST). In the cold regime, gain factors of 100 are theoretically expected compared to standard beam generation. The Atominstitut in Vienna and the Paul Scherrer Institut have joined to design and construct a "proof of principle"-experiment for such a phase space transformer in the framework of the FP7-NMI3-JRA3 European project. The aims of this experiment are to explore its feasibility, its experimental limitations and to validate preceding MC-simulations. Employing a sophisticated mechanical system, stage-2 Potassium intercalated HOPG crystals (d=8.74 Å) will be moved with velocities of up to 250 m/s. The experiment is planned to take place at the PF-2 UCN source at the Institut Laue-Langevin (ILL) in the second half of 2007. In this contribution recent results of preliminary Monte-Carlo simulations of the experiment are presented.

  13. Atomic-Level Simulation of Epitaxial Recrystallization and Phase Transformation in SiC

    SciTech Connect

    Gao, Fei; Devanathan, Ram; Zhang, Yanwen; Posselt, Matthias; Weber, William J.

    2006-06-01

    A nano-sized amorphous layer embedded in a perfect crystal has been created to study the amorphous-to-crystalline (a-c) transition and subsequent phase transformation in 3C-SiC by means of classical molecular dynamics methods. The recovery of bond defects and the rearrangement of atoms at the interfaces are important processes driving the initial epitaxial recrystallization of the amorphous layer, which is eventually hindered by the nucleation and growth of a polycrystalline 2H-SiC phase. A spectrum of activation energies, ranging from about 0.8 eV to 2.0 eV, is associated with these processes. Following formation of the 2H phase, the kink sites and triple junctions formed at the interfaces between 2H- and 3C-SiC provide low-energy paths for 2H-SiC atoms to transform to 3C-SiC atoms, and complete recrystallization back to the 3C structure occurs at 2000 K with an activation energy on the order of 2.3 eV.

  14. Time-dependence of the alpha to epsilon phase transformation in iron

    DOE PAGES

    Smith, R. F.; Eggert, J. H.; Swift, D. C.; ...

    2013-12-11

    Here, iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σα→ε) for the transformation ~14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 106 ≤more » $$\\dot{μ}$$α→ε(s₋1) ≤ 5×108. We find σα→ε= 10.8 + 0.55 ln($$\\dot{μ}$$ α→ε) for $$\\dot{μ}$$ α→ε < 106/s and σα→ε= 1.15($$\\dot{μ}$$ α→ε)0.18 for $$\\dot{μ}$$α→ε > 106/s. This $$\\dot{μ}$$ response is quite similar to recent results on incipient plasticity in Fe suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for $$\\dot{μ}$$ > 106/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.« less

  15. Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Gomez, Hector

    2016-09-01

    Surfactants are compounds that find energetically favorable to be located at the boundaries between fluids. They are able to modify the properties of those interfaces, for example, reducing surface tension. Here, we propose a new model for liquid-vapor flows with surfactants which captures the dynamics of the surfactant and accounts for phase transformations in the fluid. The aforementioned model is derived from a free energy functional by using a Coleman-Noll approach. The proposed theory emanates from the isothermal Navier-Stokes-Korteweg equations, which describe single-component two-phase flow and naturally allow for phase transformations. We believe that our model has significant potential to study the influence of surfactants in vaporization and condensation processes. From a numerical point of view, the proposed model poses significant challenges to existing discretization methods, including stiffness in space and time, internal and boundary layers as well as higher-order partial differential operators. To overcome these challenges we propose algorithms based on Isogeometric Analysis, which permit an accurate and efficient discretization. Finally, we illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several numerical problems in two and three dimensions.

  16. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  17. Study of phase transformation and crystal structure for 1D carbon-modified titania ribbons

    SciTech Connect

    Zhou, Lihui Zhang, Fang; Li, Jinxia

    2014-02-15

    One-dimensional hydrogen titanate ribbons were successfully prepared with hydrothermal reaction in a highly basic solution. A series of one-dimensional carbon-modified TiO{sub 2} ribbons were prepared via calcination of the mixture of hydrogen titanate ribbons and sucrose solution under N{sub 2} flow at different temperatures. The phase transformation process of hydrogen titanate ribbons was investigated by in-situ X-ray diffraction at various temperatures. Besides, one-dimensional carbon-modified TiO{sub 2} ribbons calcined at different temperatures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption isotherms, diffuse reflectance ultraviolet–visible spectroscopy, and so on. Carbon-modified TiO{sub 2} ribbons showed one-dimensional ribbon crystal structure and various crystal phases of TiO{sub 2}. After being modified with carbon, a layer of uniform carbon film was coated on the surface of TiO{sub 2} ribbons, which improved their adsorption capacity for methyl orange as a model organic pollutant. One-dimensional carbon-modified TiO{sub 2} ribbons also exhibited enhanced visible-light absorbance with the increase of calcination temperatures. - Highlights: • The synthesis of 1D carbon-modified TiO{sub 2} ribbons. • The phase transformation of 1D carbon-modified TiO{sub 2} ribbons. • 1D carbon-modified TiO{sub 2} exhibites enhanced visible-light absorbance.

  18. A high-resolution TEM-AEM, pH titration, and modeling study of Zn 2+ coprecipitation with ferrihydrite

    NASA Astrophysics Data System (ADS)

    Martin, Stacin; Zhu, Chen; Rule, Joseph; Nuhfer, Noel T.; Ford, Robert; Hedges, Sheila; Soong, Yee

    2005-03-01

    Experiments of Zn 2+ and Fe 3+ coprecipitation as a function of pH were conducted in the laboratory at ambient temperature and pressure. X-ray diffraction patterns of the coprecipitates show two broad peaks at 0.149 and 0.258 nm, which is consistent with published patterns for pure 2-line ferrihydrite. Zn 2+ uptake occurred at pH ≥5 while Fe 3+ precipitation occurred between pH 3 and 4, although both Zn 2+ and Fe 3+ were present in the same solution during the entire range of pH titration. High-resolution transmission electron microscopy shows that the coprecipitates are 2 to 6 nm sized single crystalline particles but aggregated to 50 to 400 nm sized clusters. Analytical electron microscopy indicated that the 5% atomic Zn with respect to Fe was homogeneously distributed. No segregated phases were found in the clusters or at single crystal edges, which is consistent with published extended X-ray absorption fine structure (EXAFS) results at similar Zn/(Zn + Fe) ratios. Hence, occlusion and surface precipitation may be excluded as possible coprecipitation mechanisms. The bulk solution Zn 2+ sorption edge was fitted to both solid solution and generalized diffuse layer surface complexation models. However, a solid solution model is inconsistent with published EXAFS results that show tetrahedral polydentate Zn 2+ complexes sharing apices with Fe 3+octahedra.

  19. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  20. Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence

    SciTech Connect

    Guo, Xiaoxiao; Dai, Dejian; Fan, Baolu; Fan, Jiyang

    2014-11-10

    Phase transformation can occur among different SiC polytypes under extreme conditions such as high pressure or temperature. It remains unknown whether phase transformation can occur under normal conditions. We demonstrate that the α → β phase transformation can occur at ambient temperature and pressure in nanoscale SiC. The microstructural characterization and light absorption and emission spectroscopy demonstrate the occurrence of this phase transformation. It is found that the quantum-confinement luminescence dominates in larger SiC quantum dots (QDs) and the surface-defect luminescence dominates in ultrasmall SiC QDs. The rare phenomenon of multiple-phonon-assisted light absorption is observed in the SiC QDs.

  1. Mechanism of the gamma-beta phase transformation of Mg2SiO4 at high temperature and pressure

    NASA Technical Reports Server (NTRS)

    Rubie, D. C.; Brearley, A. J.

    1990-01-01

    The results of experiments on the phase transformation of Mg2SiO4 olivine at 15 GPa pressure in a multianvil cell are reported. At this pressure and a temperature of 900 C, early formed metastable gamma-spinel transforms partially to the beta-phase. The observed microstructures, which are similar to those in shocked meteorites, show that the gamma-to-beta transformation can occur either by diffusion-controlled growth or by a martensitic mechanism, depending on how far the pressure-temperature conditions deviate from their values at phase equilibrium. The results suggest that the diffusion-controlled mechanism is most likely to operate at the beta/gamma phase boundary in the mantle, but martensitic beta-to-gamma transformation might occur in subduction zones and could reduce the shear strength of the subducting slab.

  2. Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry.

    PubMed

    Stutzman, John R; Blanksby, Stephen J; McLuckey, Scott A

    2013-04-02

    Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1)) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC(18:1/16:0)), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry.

  3. Phase transformation and phonon anomalies in Ni{sub 2}MnGa

    SciTech Connect

    Zheludev, A.; Shapiro, S.M.; Wochner, P.; Schwartz, A.; Wall, M.; Tanner, L.E.

    1995-07-01

    Inelastic neutron scattering experiments and transmission electron microscopy have been used to study a single crystal of the Ni{sub 2}MnGa shape memory Hustler alloy in a wide temperature range covering the parent phase (T>T{sub 1}=265 K), a recently discovered pemartensitic (T{sub 1}T>T{sub M}) and martensitic (Tphase regions. A temperature-dependent anomaly in the TA{sub 2} phonon dispersion in the parent phase was observed and related to the phase transformations. The premartensitic phase involves a transverse modulation of the parent cubic structure with a simple periodicity of 1/3 [110]. The approximately tetragonal lattice of the low-temperature martensite is distorted by transverse modulations with incommensurate wave vectors [{zeta}M {zeta}M {sup 0}] and [{sup 2}{zeta}M {sup 2}{zeta}M {sup 0}], {zeta}M {approx}0.43. The observed phenomena are attributed to electron-phonon interactions and anharmonic effects.

  4. Phase transformation and microstructural evolution of nanostructured oxides and nitrides under ion irradiations

    NASA Astrophysics Data System (ADS)

    Lu, Fengyuan

    Material design at the nanometer scale is an effective strategy for developing advanced materails with enhanced radiation tolerance for advanced nuclear energy systems as high densities of surfaces and interfaces of the nanostructured materials may behave as effective sinks for defect recovery. However, nanostructured materials may not be intrinsically radiation tolerant, and the interplay among the factors of crystal size, temperature, chemical composition, surface energy and radiation conditions may eventually determine material radiation behaviors. Therefore, it is necessary to understand the radiation effects of nanostructured materials and the underlying physics for the design of advanced nanostructured nuclear materials. The main objective of this doctoral thesis is to study the behavior of nanostructured oxides and nitrides used as fuel matrix and waste forms under extreme radiation conditions with the focus of phase transformation, microstructural evolution and damage mechanisms. Radiation experiments were performed using energetic ion beam techniques to simulate radiation damage resulting from energetic neutrons, alpha-decay events and fission fragments, and various experimental approaches were employed to characterize materials’ microstructural evolution and phase stability upon intense radiation environments including transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Thermal annealing experiments indicated that nanostructured ZrO2 phase stability is strongly affected by the grain size. Radiation results on nanostructured ZrO2 indicated that thermodynamically unstable or metastable high temperature phases can be induced by energetic beam irradiation at room temperature. Various phase transformation among different polymorphs of monoclinic, tetragonal and amorphous states can be induced, and different mechanisms are responsible for structural transformations including oxygen vacancies accumulation upon displacive

  5. Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2012-01-01

    The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.

  6. Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghua; Chen, Zhongping; Ding, Zhihua; Ren, Hongwu; Nelson, J. Stuart

    2002-01-01

    We have developed a novel real-time phase-resolved functional optical coherence tomography system that uses optical Hilbert transformation. When we use a resonant scanner in the reference arm of the interferometer, with an axial scanning speed of 4 kHz, the frame rate of both structural and Doppler blood-flow imaging with a size of 100 by 100 pixels is 10 Hz. The system has high sensitivity and a larger dynamic range for measuring the Doppler frequency shift that is due to moving red blood cells. Real-time images of in vivo blood flow in human skin obtained with this interferometer are presented.

  7. Gyrator transform based double random phase encoding with sparse representation for information authentication

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-07-01

    Optical information security systems have drawn long-term concerns. In this paper, an optical information authentication approach using gyrator transform based double random phase encoding with sparse representation is proposed. Different from traditional optical encryption schemes, only sparse version of the ciphertext is preserved, and hence the decrypted result is completely unrecognizable and shows no similarity to the plaintext. However, we demonstrate that the noise-like decipher result can be effectively authenticated by means of optical correlation approach. Simulations prove that the proposed method is feasible and effective, and can provide additional protection for optical security systems.

  8. Novel Electro-Analytical Tools for Phase-Transformation Electrode Materials

    DTIC Science & Technology

    2009-08-13

    words) We measured and compared phase transformation accommodation energy (AE) for Li4Ti5O12 and LiFePO4 with different particle size by using...larger than next cycles due to inducing of defects; Because of smaller volume difference, AE of Li4Ti5O12 was lower than that of LiFePO4 ; AE of... LiFePO4 with small particle size was lower than that of LiFePO4 with large particle size. By plugging the AE measured by GITT into mixed control

  9. A New, More Stable Polymorphic Form of Otilonium Bromide: Solubility, Crystal Structure, and Phase Transformation.

    PubMed

    Vega, Daniel R; Halac, Emilia; Segovia, Luciano; Baggio, Ricardo

    2016-10-01

    A new polymorphic form of otilonium bromide is presented (Form I), and a thorough analysis of its crystal and molecular structure is performed. The compound suffers a temperature-driven first-order phase transition at about 396 K, which transforms it into the polymorph reported by Dapporto P and Sega A (Acta Cryst. 1986;C42:474-478) (Form II). Through thermal analysis and solubility experiments the relative stability of both crystal modifications were determined, confirming that at room temperature this new Form I is the more stable one, Form II existing just in a metastable state.

  10. Pressure-induced transformation and superhard phase in fullerenes: The effect of solvent intercalation

    NASA Astrophysics Data System (ADS)

    Yao, Mingguang; Cui, Wen; Xiao, Junping; Chen, Shuanglong; Cui, Jinxing; Liu, Ran; Cui, Tian; Zou, Bo; Liu, Bingbing; Sundqvist, Bertil

    2013-08-01

    We studied the behavior of solvated and desolvated C60 crystals under pressure by in situ Raman spectroscopy. The pressure-induced bonding change and structural transformation of C60s are similar in the two samples, both undergoing deformation and amorphization. Nevertheless, the high pressure phases of solvated C60 can indent diamond anvils while that of desolvated C60s cannot. Further experiments suggest that the solvents in the solvated C60 act as both spacers and bridges by forming covalent bonds with neighbors in 3D network at high pressure, and thus, a fraction of fullerenes may preserve the periodic arrangement in spite of their amorphization.

  11. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; DesMarais, D. J.; Downs, R. T.; Farmer, J. D.; Morookian, J. M.; Morrison, S. M.; Sarrazin, P.; Spanovich, N.; Stolper, E. M.; Treiman, A. H.; Vaniman, D. T.; Yen, A. S.

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in

  12. Phase Transformation of U3O8 and Enhanced Structural Stability at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Fuxiang; Lang, Maik; Ewing, Rodney

    2013-06-01

    A powder sample of β-U3O8 was pressurized at room temperature up to 37.5 GPa with a symmetric diamond anvil cell. XRD patterns clearly indicated that a phase transition occurred between 3-11 GPa. The high-pressure phase is a fluorite-like structure. The fluorite-like structure is stable up to 37.5 GPa. The high-pressure phase was then laser heated to over 1700 K in the diamond anvil cell at high pressure conditions. No phase transition was found at high pressure/ temperature conditions, and the fluorite-like structure of U3O8 is even fully quenchable. The lattice parameter of the fluorite-like high-pressure phase is 5.425 Å at ambient conditions, which is smaller than that of the stoichiometric UO2. Previous experiments have shown that the stoichiometric uranium dioxide (UO2) is not stable at high pressure conditions and starts to transform to a cotunnite structure at ~30 GPa. When heating the sample at high pressure, the critical transtion pressure is greatly reduced. However, the fluorite-like high-pressure phase of U3O8 is very stable at high pressure/high temperature conditions. The enhanced phase stability is believed to be related to the presence of extra oxygen (or U vacancies) in the structure. This work was supported by Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001089.

  13. Statistical Thermodynamics of Phase Transformations in Lithium Alanates with Release of Hydrogen

    NASA Astrophysics Data System (ADS)

    Zaginaichenko, S. Yu.; Matysina, Z. A.; Shchur, D. V.; Pomytkin, A. P.; Gabdullin, M. T.; Zaritskii, D. A.

    2017-02-01

    Based on the molecular and kinetic concepts, the paper presents the theory of phase transformations in lithium alanates with the release of hydrogen. The calculations are given for free energies of phases and their dependences on pressure, temperature, hydrogen concentration, and energy parameters are determined. The equations are derived for the thermodynamically-equilibrium states which determine the Pressure-Temperature-Concentration diagram and estimate the energy parameters with the use of experimental results taken from the literature. The investigation of the detected temperature/concentration dependence in crystals shows the impossibility of a complete hydrogen release from alanates. The paper contains isotherm and isopleth plots. A possibility is established for the hysteresis effect. A comparison is given to the theoretical and experimental results.

  14. Domain wall modeling of bcc to hcp reconstructive phase transformation in early transition metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Saxena, A.; Lookman, T.

    2001-09-01

    The bcc (body-centered-cubic) phase to hcp (hexagonal-close-packed) phase transformation in certain elements and alloys is induced either by quenching or the application of pressure. Following the Burgers mechanism and through first-principles calculations we show that the bcc structure of Sc, Y, Ti, Zr, and Hf is unstable with respect to the shuffle of atoms rather than the shear. We therefore reduce the two-order-parameter (two-OP) Ginzburg-Landau (GL) free energy to an effective free energy in the shuffle OP. From the phonon dispersion experiments and the change of entropy at transition temperature we found the GL free energy coefficients for Ti and Zr. By using this information we obtain the domain wall width and energy for Ti and Zr.

  15. Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate

    DOE PAGES

    Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2016-01-06

    At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb0.5Gd0.5PO4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb0.5Gd0.5PO4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c1133 + c1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics can be affected by both formation of the anhydrite-typemore » phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less

  16. Multiple Plane Phase Retrieval Based On Inverse Regularized Imaging and Discrete Diffraction Transform

    NASA Astrophysics Data System (ADS)

    Migukin, Artem; Katkovnik, Vladimir; Astola, Jaakko

    2010-04-01

    The phase retrieval is formulated as an inverse problem, where the forward propagation is defined by Discrete Diffraction Transform (DDT) [1], [2]. This propagation model is precise and aliasing free for pixelwise invariant (pixelated) wave field distributions in the sensor and object planes. Because of finite size of sensors DDT can be ill-conditioned and the regularization is an important component of the inverse. The proposed algorithm is designed for multiple plane observations and can be treated as a generalization of the Gerchberg-Saxton iterative algorithm. The proposed algorithm is studied by numerical experiments produced for phase and amplitude modulated object distributions. Comparison versus the conventional forward propagation models such as the angular spectrum decomposition and the convolutional model used in the algorithm of the same structure shows a clear advantage of DDT enabling better accuracy and better imaging.

  17. In Situ Observation of Phase Transformation and Structure Evolution of a 12 pct Cr Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Song, Changjiang; Guo, Yuanyi; Li, Kefeng; Sun, Fengmei; Han, Qingyou; Zhai, Qijie

    2012-10-01

    This work focuses on an in situ observation of phase transformation of a 12 pct Cr ferritic stainless steel using high-temperature laser scanning confocal microscopy. α→ γ→ δ phase transformation temperatures are determined to be approximately 1073 K and 1423 K (800 °C and 1150 °C), respectively. The onset of phase transformation is found to occur at grain boundaries. When the temperature is beyond 1518 K (1245 °C), the grain growth rate suddenly becomes very high, and the grain growth is related to the self-organizing of adjacent grains. δ→ γ phase transformation has been mostly restrained when cooling rates are in the range of 22.4 K/s to 13.3 K/s (22.4 °C/s to 13.3 °C/s) except for at grain boundaries. Martensitic phase transformation, rather than γ→ α phase transformation, occurs when the cooling rates are in the range of 8.5 K/s to 2.2 K/s (8.5 °C/s to 2.2 °C/s). The starting temperature of martensitic phase transformation is approximately 697 K to 728 K (424 °C to 455 °C) for specimens heated to 1373 K (1100 °C) ( i.e., γ phase field), which is 50 K to 100 K (50 °C to 100 °C) higher than that of specimens heated to 1723 K (1450 °C) ( i.e., δ phase field). Many bulges remain on the surfaces of the specimen heated to 1723 K (1450 °C), and their formation mechanism is analyzed.

  18. Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations

    SciTech Connect

    Andreev, O.V.; Kharitontsev, V.B.; Polkovnikov, A.A.; Elyshev, A.V.; Andreev, P.O.

    2015-10-15

    A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.

  19. 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions.

    PubMed

    Rout, K; Mohapatra, M; Anand, S

    2012-03-21

    Nano-structured 2-line ferrihydrite was synthesized by a pH-controlled precipitation technique at 90 °C. Chemical, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman analyses confirmed the sample to be 2-line ferrihydrite. The nano nature of the prepared sample was studied by transmission electron microscopy (TEM). The surface area obtained by the Brunauer-Emmett-Teller (BET) method was 175.8 m(2) g(-1). The nanopowder so obtained was used to study its behaviour for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. The relative importance of experimental parameters such as solution pH, contact time and concentration of adsorbate on the uptake of various cations was evaluated. By increasing the pH from 2.0 to 5.5, adsorption of the four cations increased. The kinetics parameters were compared by fitting the contact time data to both linear as well as non-linear forms of pseudo-second-order models. Linear forms of both Langmuir and Freundlich models fitted the equilibrium data of all the cations except for Pb(II) which was also fitted to the non-linear forms of both the models as it gave a low R(2) value of 0.85 for the Langmuir model. High Langmuir monolayer capacities of 366, 250, 62.5 and 500 mg g(-1) were obtained for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. Presence of chloride or sulfate had an adverse effect on cation adsorption. The interactive effects on adsorption from solutions containing two, three or four cations were studied. Surprisingly no Cd(II) adsorption was observed in Pb(II)-Cd(II), Pb(II)-Cd(II)-Zn(II) and Pb(II)-Cd(II)-Cu(II)-Zn(II) systems under the studied concentration range. The overall loading capacity of the adsorbent decreased in mixed cation systems. Metal ion loaded adsorbents were characterized by XRD, FTIR and Raman techniques. The high adsorption capability of the 2-lines ferrihydrite makes it a potentially attractive adsorbent for the removal of cations from aqueous solutions.

  20. Isomorphism in Fluid Phase Diagrams: Kulinskii Transformations Related to the Acentric Factor

    SciTech Connect

    Wei, Q; Herschbach, DR

    2013-10-31

    For a wide class of molecular fluids, the temperature-density phase diagrams exhibit two prominent generic properties: a nearly linear locus, termed the Zeno line, along which the compressibility factor, Z = P/rho RT = 1 (same as an ideal gas), and the widely arching border of the vapor-liquid coexistence region, termed the binodal curve, with gas and liquid branches meeting at the critical point. The Zeno and binodal loci have been known for more than a century, yet only during the past two decades were striking empirical correlations between them recognized. Recently, Kulinskii introduced a remarkably simple projective transformation, wherein the linearity of the Zeno line and its relation to the binodal curve are geometrical consequences of an approximate isomorphism of the fluid with a venerable theoretical model, the lattice gas (equivalent to the Ising spin model). Here we show the Kulinskii transformation is significantly improved in accuracy and scope by using as input, in place of the lattice gas, the original van der Waals equation or simulation results for the Lennard-Jones potential. Moreover, the key parameters in these transformations can be expressed in terms of the acentric factor, introduced by Pitzer to extend corresponding states.