Science.gov

Sample records for ferrite films grown

  1. Magnetic properties of manganese ferrite films grown at atomic scale

    SciTech Connect

    Zuo Xu; Yang, Aria; Yoon, Soack-Dae; Christodoulides, Joe A.; Harris, Vincent G.; Vittoria, Carmine

    2005-05-15

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  2. Magnetic Properties of Manganese Ferrite Films Grown at Atomic Scale

    SciTech Connect

    Zuo,X.; Yang, A.; Yoon, S.; Christodoulides, I.; Harris, V.; Vittoria, C.

    2005-01-01

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  3. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    de la Figuera, Juan; Quesada, Adrián; Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta; Prieto, Pilar; Muñoz-Martín, Ángel; Aballe, Lucía; Marco, José F.

    2015-12-01

    We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO3 by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  4. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  5. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  6. Spin-spray plating of spinel ferrite films on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Yoo, Kee C.; Talisa, Salvador H.

    1990-10-01

    The possibility of monolithic integration of microwave magnetic and semiconductor electronic components has been investigated by growing spinel ferrite films on GaAs and Si using the spin-spray plating (SSP) technique. Since film deposition by SSP is performed at temperatures as low as 100 C, this process facilitates deposition of ferrite material without any thermal deterioration of the underlying GaAs devices. This was demonstrated by depositing and patterning a Ni-Zn ferrite film on a portion of a GaAs wafer containing several MMIC circuits. X-ray diffraction analysis of SSP-grown ferrite films indicated that the films formed different crystallographic textures at different growth temperatures. To achieve the thicker films required for practical device applications, deposition of a 25-pm-thick Ni-Zn ferrite film was demonstrated by a multiple deposition method with intermediate drying processes. The magnetic properties of these films, measured by ferrpmagnetic resonance (FMR) , compared well to those of commercially available polycrystalline material. The electrical resistivity of the films varied as a function of their chemical composition. The dielectric loss tangent (tan 5) of the as-deposited film was observed to be greater than ten. However, the measured resistivity dependence of dielectric loss tangent showed that the dominant microwave loss mechanism was not due to conduction alone. Post-growth annealing experiments indicated that moisture in the films trapped during the SSP process caused high dielectric losses, and that annealing could reduce the loss tangent value.

  7. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (NixFe3-xO4, x≤1) films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pachauri, Neha; Khodadadi, Behrouz; Singh, Amit V.; Mohammadi, Jamileh Beik; Martens, Richard L.; LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim; Gupta, Arunava

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl2O4 substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (NixFe3-xO4 where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline NixFe3-xO4 films. The out-of-plane lattice constant (c) obtained for Ni0.8Fe2.2O4 film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni0.8Fe2.2O4 film as compared to the other two compositions. A comprehensive frequency (5-40 GHz) and temperature (10-300 K) dependent FMR study of the Ni0.8Fe2.2O4 sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization Ms. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (Hres) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni0.8Fe2.2O4 sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  8. Room-temperature growth of Ni-Zn-Cu ferrite/PTFE composite thick films on PET via aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Jun; Kwon, Oh-Yun; Jang, Chan-Ick; Kim, Tae Kyoung; Oh, Jun Rok; Yoon, Young Joon; Kim, Jong-Hee; Nam, Song-Min; Koh, Jung-Hyuk

    2013-11-01

    Ni-Zn-Cu ferrite and Ni-Zn-Cu ferrite/poly-tetra-fluoro-ethylene (PTFE) composite-thick-films were grown at room temperature on polyethylene terephthalate (PET) sheets via aerosol deposition (AD) as a magnetic shielding sheet for near-field communication. An 80 µm-thick Ni-Zn-Cu ferrite/PTFE composite-thick-film was grown on the PET sheet when 2.0 wt. % PTFE starting powder was used. The real relative permeability µ r ' and the imaginary permeability µ r ″ of the Ni-Zn-Cu ferrite thick film were 10.1 and 2.1 at 13.56 MHz, respectively. In the case of the composite thick film, µ r ' and µ r ″ decreased to 3.9 and 1.3, respectively, at 13.56 MHz; with the addition of the PTFE.

  9. Energy of domain walls in ferrite films

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Prieto, P.; Mendoza, A.; Guzman, O.

    2007-03-01

    MnZn Ferrite films were deposited by RF sputtering on (001) single crystal MgO substrates. AFM images show an increment in grain size with the film thickness. Grains with diameter between φ ˜ 70 and 700 nm have been observed. The coercive field Hc as a function of the grain size reaches a maximum value of about 80 Oe for φc˜ 300 nm. The existence of a multidomain structure associated with a critical grain size was identified by Magneto-optical Kerr effect technique (MOKE). The transition of the one-domain regime to the two-domain regime was observed at a critical grain size of Dc˜ 530 nm. This value agree with values predicted previously. The Jiles-Atherton model (JAM) was used to discuss the experimental hysteresis loops. The k pinning parameter obtained from JAM shows a maximum value of k/μo = 67 Am^2 for grains with Lc˜ 529 nm. The total energy per unit area E was correlated with k and D. We found a simple phenomenological relationship given by E α kD; where D is the magnetic domain width.

  10. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.; Sahoo, Subasa C.; Prasad, Shiva; Venkataramani, N.; Bohra, Murtaza; Krishnan, R.

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  11. Magnetooptical and crystalline properties of sputtered garnet ferrite film on spinel ferrite buffer layer

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Kagami, Osamu; Tanabe, Takaya

    2016-09-01

    The purpose of this study is to provide garnet films for volumetric magnetic holography. Volumetric magnetic holography usually employs an easily obtainable short-wavelength laser (visible light, not infrared light) with a large diffraction intensity. Bi-substituted garnet ferrite with a large Faraday rotation is promising for volumetric magnetic holography applications in the visible light region. However, a garnet film without a deteriorated layer must be obtained because a deteriorated layer (minute polycrystalline grains containing an amorphous phase) is formed during the initial deposition on a glass substrate. In particular, the required magnetooptical properties have not been obtained in a thin garnet film (100 nm or less) after annealing (1 h, 700 °C, oxygen atmosphere). Therefore, there is a need for excellent garnet films with the required magnetooptical (MO) properties even if the films are thin. By using a spinel ferrite buffer layer for garnet film deposition, we could obtain a thin garnet film with excellent MO properties. We determined the effect of the initial buffer layer on the crystallinity of the deposited garnet films by observing the film cross section. In addition, we undertook a qualitative estimation of the influence of the crystallinity and optical properties of the garnet film on a glass substrate with a spinel ferrite buffer layer.

  12. Growth and Properties of Magnetic Spinel Ferrite Thin Films and Heterostructures

    NASA Astrophysics Data System (ADS)

    Gupta, Arunava

    2013-03-01

    There is considerable interest in the growth of single crystal spinel ferrites films because of their numerous technological applications in areas such as microwave integrated devices, magnetoelectric coupling heterostructures, and potentially as an active barrier material in an emerging class of spintronic devices called spin filters. Unlike perovskites, the study of spinel ferrite films is quite limited in part due to the complex crystal structure with a large unit cell consisting of many interstitial sites and that the transition metal cations can adopt various oxidation states. We have grown high-quality, atomically smooth epitaxial ferrite (NiFe2O4, CoFe2O4 and LiFe5O8) films using chemical vapor deposition and pulsed laser deposition techniques and carried out detailed studies of their structural, magnetic and optical properties. Of particular interest are systematic studies on the formation of antiphase boundaries in epitaxial NiFe2O4 films grown on different substrates and the accurate determination of the band gap of this material using optical spectroscopy and first principles calculations. Additionally, we have grown ferrite films on piezoelectric substrates and observed large shifts in the ferromagnetic resonance profile due to magnetoelectric coupling resulting from electrostatic field-induced changes in the magnetic anisotropy field. Work done in collaboration with N. Z. Bao, W. H. Butler, R. Datta, B. S. Holinsworth, M. Iliev, S. Kanuri, S. V. Karthik, G. Kim, T. M. Klein, N. Li, M. Liu, P. R. LeClair, J. X. Ma, D. Mazumdar, T. Mewes, D. V. B. Murthy, J. L. Musfeldt, K. R. O'Neal, N. Pachauri, V. M. Petrov, H. Sato, S. Schäfer, L. Shen, H. Sims, G. Srinivasan, N. X. Sun, Q. -C. Sun, and Z. Zhou. The work was supported by ONR (Grant Number N00014-12-1-0102)

  13. A large polarization in Ce-modified bismuth ferrite thin films

    SciTech Connect

    Wang Yuanyu

    2011-06-15

    Bi{sub 0.95}Ce{sub 0.05}FeO{sub 3} (BCFO) thin films were grown on SrRuO{sub 3}/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via radio frequency sputtering. The BCFO thin film has a (111) orientation with a high phase purity. Improved dielectric behavior is observed for the BCFO thin film as compared with that of pure bismuth ferrite thin film. A large remanent polarization of 2P{sub r} {approx} 183.9 {mu}C/cm{sup 2} is induced in the BCFO thin film, owing to the (111) orientation and the introduction of Ce. The local phase decomposition induced by larger depolarization fields and the oxygen vacancies dominates the fatigue resistance of the BCFO thin film.

  14. Thin-film ferrites vapor deposited by one-step process in vacuum

    NASA Technical Reports Server (NTRS)

    Hacskaylo, M.

    1966-01-01

    Thin-film ferrites are formed by vapor deposition of a mixture of powdered ferrites and powdered boron oxide at controlled temperatures in a vacuum chamber. These films are used in memory devices for computers and as thin-film inductors in communications and telemetry systems.

  15. Effects of preparation conditions on the physical properties of nickel ferrite thin films

    NASA Astrophysics Data System (ADS)

    Belliveau, Hillary; Bonilla, Manuel; McArdle, Patrick; Miller, Casey

    2014-03-01

    The effects of the deposition temperature, pressure, and oxygen partial pressure were investigated on the structural, electrical, and magnetic properties of nickel ferrite (NiFe2O4) thin films grown by magnetron sputtering. The samples were grown on Si (100), Si (100) with 500nm of amorphous SiO2, and on MgO (100) substrates. Increasing the deposition temperature allowed the NiFe2O4 (004) XRD peak to appear at higher oxygen partial pressures. Between films of the same oxygen pressure, increasing the deposition temperature reduced the FWHM and increased the intensity of the NiFe2O4 (004) XRD peak. The films were 800 to 1000nm thick as measured by profilometry. Increasing the oxygen partial pressure reduces the intensity of the (004) NiFe2O4 XRD peak, and allows us to tune the material from a conducting material (rho = 114 microOhm*cm at T =220K) to an insulating one (rho = 2475 Ohm*cm at T =220K). The resistivity at 220K decreased as the deposition temperature was increased for films grown at the same oxygen partial pressure. The magnetic properties were investigated with magneto-optical Kerr effect and vibrating sample magnetometry. Supported by NSF-ECCS.

  16. Fabrication of ultrathin Ni-Zn ferrite films using electron cyclotron resonance sputtering method

    SciTech Connect

    Tanaka, Terumitsu; Kurisu, Hiroki; Matsuura, Mitsuru; Shimosato, Yoshihiro; Okada, Shigenobu; Oshiro, Kazunori; Fujimori, Hirotaka; Yamamoto, Setsuo

    2006-04-15

    Well-crystallized Ni-Zn ferrite (Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4}) highly oriented ultrathin films were obtained at a substrate temperature of 200 deg. C by a reactive sputtering method utilizing electron cyclotron resonance microwave plasma, which is very effective to crystallize oxide or nitride materials without heat treatment. Thin films of Ni-Zn ferrite deposited on a MgO (100) underlayer showed an intense X-ray-diffraction peak of (400) from the Ni-Zn ferrite as compared to similar films deposited directly onto thermally oxidized Si substrates. A 1.5-nm-thick Ni-Zn ferrite film, which corresponds to twice the lattice constant for bulk Ni-Zn ferrite, crystallized on a MgO (100) underlayer.

  17. Site-specific local structure of Mn in artificial manganese ferrite films

    SciTech Connect

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Harris, V. G.; Zuo, X.

    2006-09-01

    Diffraction anomalous fine structure (DAFS) spectroscopy has been applied to resolve site-specific Mn local structure in manganese ferrite films grown under nonequilibrium conditions. The DAFS spectra were measured at a number of Bragg reflections in the vicinity of the Mn absorption K edge. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around crystallographically inequivalent Mn sites in the unit cell with nominal octahedral and tetrahedral coordination. The strong preference for Mn to be tetrahedrally coordinated in this compound is not only manifested in the relative site occupancies but also in a strong reduction in coordination number for Mn ions at nominal octahedral sites.

  18. Diamond films grown from fullerene precursors

    SciTech Connect

    Gruen, D.M.; Zuiker, C.D.; Krauss, A.R.

    1995-07-01

    Fullerene precursors have been shown to result in the growth of diamond films from argon microwave plasmas. In contradistinction to most diamond films grown using conventional methane-hydrogen mixtures, the fullerene-generated films are nanocrystalline and smooth on the nanometer scale. They have recently been shown to have friction coefficients approaching the values of natural diamond. It is clearly important to understand the development of surface morphology during film growth from fullerene precursors and to elucidate the factors leading to surface roughness when hydrogen is present in the chemical vapor deposition (CVD) gas mixtures. To achieve these goals, we are measuring surface reflectivity of diamond films growing on silicon substrates over a wide range of plasma processing conditions. A model for the interpretation of the laser interferometric data has been developed, which allows one to determine film growth rate, rms surface roughness, and bulk losses due to scattering and absorption. The rms roughness values determined by reflectivity are in good agreement with atomic force microscope (AFM) measurements. A number of techniques, including high-resolution transmission electron microscopy (HRTEM) and near-edge x-ray absorption find structure (NEXAFS) measurements, have been used to characterize the films. A mechanism for diamond-film growth involving the C{sub 2} molecule as a growth species will be presented. The mechanism is based on (1) the observation that the optical emission spectra of the fullerene- containing plasmas are dominated by the Swan bands of C{sub 2} and (2) the ability of C{sub 2} to insert directly into C-H and C-C bonds with low activation barriers, as shown by recent theoretical calculations of reactions of C{sub 2} with carbon clusters.

  19. Effect of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films

    SciTech Connect

    Nongjai, R.; Khan, S.; Ahmad, H.; Khan, I.; Asokan, K.

    2013-06-03

    We present the influence of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films. Thin films of Co ferrite were deposited by rf sputtering on Si (100) substrate and characterized by X - Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Vibrating Sample Magnetometer (VSM). The XRD patterns showed the formation of crystalline single phase of the films. The particle size and surface roughness of the films were strongly influence by gas pressure. Hysteresis loops measured at room temperature showed the enhancement of magnetic properties with the increase of gas pressure which is attributed to the decrease of particle size.

  20. Thickness dependence of the preferred orientation of Mn-Zn ferrite thin films deposited by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-07-01

    The thickness dependence of the preferred orientation of the Cu or Ti added Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion-beam sputtering was investigated. A mosaic target, consisting of a single-crystal (110) Mn-Zn ferrite with a metal strip on it, was employed as the target. The (hhh) preferred orientation, formed at the initial growth stage, of the Cu added Mn-Zn ferrite film changed to the (h00) preferred orientation with increasing film thickness, while the initially formed (h00) preferred orientation of the Ti added one was enhanced with increasing film thickness. Such different behaviors were discussed in terms of the surface energy and the preferred growth orientation of the ferrite film. The thickness dependence of magnetic properties of the ferrite films was also investigated.

  1. Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films

    SciTech Connect

    Yan, Q.Y.; Gambino, R.J.; Sampath, S.; Huang, Q.

    2005-02-01

    The magnetic properties of MnZn ferrites are affected by the plasma spray process. It is found that improvements can be made by annealing the ferrite films at 500 deg. C - 800 deg. C. The annealing induced magnetic property changes are studied by neutron diffraction and ferromagnetic resonance techniques. The increase of the saturation magnetization is attributed to the cation ordering within the spinel lattice, which increases the magnetic moment per ferrite formula. The refinements on the neutron diffraction data suggest that the redistribution of the cation during annealing neither starts from a fully disordered state nor ends to a fully ordered state. The decrease of the coercivity is analyzed with the domain wall pinning model. The measurements on the magnetostriction and residual stress indicate that coercive mechanisms arising from the magnetoelastic energy term are not dominant in these ferrite films. The decrease of the coercivity for annealed ferrite films is mainly attributed to the decrease of the effective anisotropic field, which may result from the homogenization of the film composition and the reduction of the microstructural discontinuity (e.g., cracks, voids, and splat boundaries)

  2. Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications

    NASA Astrophysics Data System (ADS)

    Shannigrahi, S. R.; Pramoda, K. P.; Nugroho, F. A. A.

    2012-01-01

    Phase pure single phase ferrite powders of (NixR1-x)0.5Zn0.5Fe2O4 (R=Mn, Co, Cu; x=0, 0.5) were manufactured using microwave sintering at 930 °C for 10 min in air atmosphere. The powders were characterized for their structure, microstructure, thermal, and magnetic properties. Selected powders were used as fillers to prepare their composite films using polymethyl methacrylate polymers as matrix. The composite films were prepared using the melt blending approach and were tested for their microstructure, thermal, and magnetic hysteresis loop as well as 3D magnetic field space mappings using an electromagnetic compatibility scanner. Among the studied ferrites, cobalt doped ferrites and their composites showed the best electromagnetic interference (EMI) shielding effectiveness value and have potential for practical EMI shielding applications.

  3. Chlorine gas sensing performance of palladium doped nickel ferrite thin films

    NASA Astrophysics Data System (ADS)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-05-01

    NiFe2O4 and Pd:NiFe2O4 (Pd=1 w/o, 3 w/o and 5 w/o) thin films, p-type semiconducting oxides with an inverse spinel structure have been used as a gas sensor to detect chlorine. These films were prepared by spray pyrolysis technique and XRD was used to confirm the structure. The surface morphology was studied using SEM. Magnetization measurements were carried out at room temperature using SQUID VSM, which shows ferrimagnetic behavior of the samples. The reduction in optimum operating temperature and enhancement in response was observed on Pd-incorporation in nickel ferrite thin films. Faster response and recovery characteristic is observed Pd-incorporated nickel ferrite thin films. The long-term stability is evaluated over a period of six months. This feature may be regarded as a significant facet towards their practical application as gas sensors.

  4. High-frequency magnetic properties of Zn ferrite films deposited by magnetron sputtering

    SciTech Connect

    Guo Dangwei; Zhu Jingyi; Yang Yuancai; Fan Xiaolong; Chai Guozhi; Sui Wenbo; Zhang Zhengmei; Xue Desheng

    2010-02-15

    The effect of thermal annealing on structural and magnetic properties has been investigated for Zn ferrite films deposited on Si (111) substrates using radio frequency magnetron sputtering. The saturation magnetization at room temperature was enhanced upto 303 emu/cm{sup 3} by annealing at relatively low temperature of 200 deg. C and decreased at higher temperatures. The complex permeability {mu}={mu}{sup '}-i{mu}{sup ''} values of the ferrite films as-deposited and annealed at 200 and 400 deg. C were measured at frequency upto 5 GHz. These films exhibited better high-frequency properties, especially, the film annealed at 200 deg. C had a large {mu}{sup '} of 19.5 and high resonance frequency f{sub r} of 1.61 GHz. And the reason was investigated preliminarily based on the bianisotropy model.

  5. Solution-grown cadium sulfide films for photovoltaic devices

    SciTech Connect

    Chu, T.L.; Chu, S.S. ); Schultz, N.; Wang, C.; Wu, C.Q. . Dept. of Electrical Engineering)

    1992-09-01

    This paper reports on thin films of cadmium sulfide (CdS) which have major applications in optoelectronic devices. Several techniques have been developed for the deposition of CdS films. Among these, growth of CdS films from an aqueous solution is the low-cost technique suitable for many applications. In this work, the deposition of device quality CdS films on glass and SnO[sub 2]:F/glass substrates from an aqueous solution containing cadmium acetate, ammonia, ammonium acetate, and thiourea has been investigated. The structural and electrical properties of CdS films have been characterized. The doping of CdS films with boron and the properties of boron-doped CdS films have also been studied. High efficiency thin film CdS/CdTe solar cells have been prepared from solution-grown CdS films.

  6. Columnar grown copper films on polyimides strained beyond 100%

    PubMed Central

    Sun, Jeong-Yun; Lee, Hae-Ryung; Hwan Oh, Kyu

    2015-01-01

    Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains on a polyimide (PI) substrate. The columnar grown copper films (CGC films) were deposited by regulating radio frequency (RF) sputtering powers. CGC films were able to sustain their electrical conductivity at strains above 100%. Instead of ultimate electrical discontinuity by channel crack propagation, CGC films maintained their conductivity by forming ligament structures, or a ‘conductive net,’ through trapped micro-cracks. XRD, AFM and in situ SEM analysis were used to investigate these stretchable conductors. PMID:26337668

  7. Fe 3O 4 films grown by laser ablation on mica with and without MgO buffer layers

    NASA Astrophysics Data System (ADS)

    Kennedy, R. J.; Stampe, P. A.

    1999-05-01

    Fe 3O 4 and MgO films have been grown on (0 0 1) mica substrates by ablation of an Fe or Mg metal target in an oxygen atmosphere using the fundamental frequency of a Nd : YAG laser. X-ray measurements show that the MgO films are epitaxial and (1 1 1) oriented. The Fe 3O 4 films grown on bare mica substrates are (1 1 1) oriented and random in plane. The introduction of an MgO buffer layer between the mica and the Fe 3O 4 films results in epitaxial (1 1 1) growth of Fe 3O 4. Room temperature high-field magnetization measurements of the random in plane Fe 3O 4/mica films are the same as for the epitaxial Fe 3O 4/MgO/mica films. The out of plane coercivities are almost twice as large as the in-plane coercivities, in contrast to ferrite films grown on Si and GaAs for which Hc|| ˜ Hc⊥ .

  8. Solution Grown Antimony Doped Zinc Oxide Films

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.

    Zinc oxide is an extensively studied semiconducting material due to its versatile properties applicable to many technologies such as electronics, optoelectronics, sensing and renewable energy. Although zinc oxide films have been created for device fabrication, the methods used to synthesize them are expensive and unrealistic for affordable commercial devices. In addition, zinc oxide is intrinsically n-type making the realization of stable p-type materials a great challenge for light emitting diodes, solar cells and UV lasing. In this thesis zinc oxide films are created using low cost solution methods. To accomplish this, a previously unreported surfactant, tert-butanol, is used. Several controlled experiments vary the concentration of tert-butanol, zinc and oxygen sources to demonstrate the ability of tert-butanol to create low cost films. Further, small amounts of antimony glycolate are added to the reaction solution, to create antimony doped zinc oxide films on sapphire and silicon substrates. Although hall measurements indicate that the films are n-type, a discussion of antimony activation provides a feasible path for the realization of low cost, p-type zinc oxide films.

  9. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  10. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  11. A Study of Morphology and Magnetic Properties of Doped Barium Ferrite Films Formed by Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter; Gonzalez, Christopher; Robinson, Zachary; Ellsworth, David; Wu, Mingzhong

    Aerosol deposition is a room-temperature thick film deposition technique that produces polycrystalline films that have > 95% of theoretical density and are up to several hundred microns thick. In addition to depositing films at room temperature another distinct advantage of aerosol deposition is the ability to produce films with the same resulting stoichiometry as the starting material. For this work, we deposited a proprietary doped barium ferrite (BaFe12O19) film from powder produced by Temex Ceramics. This material is designed for microwave absorption near 18 GHz via ferromagnetic resonance. We compare the structural and magnetic properties of the as-deposited film, bulk material, and starting powder. For this purpose, we employed scanning electron microscopy, x-ray photoemission spectroscopy, x-ray diffraction, vibrating sample magnetometry, and broad-band ferromagnetic resonance characterization techniques.

  12. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    SciTech Connect

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Highly economic solution precursor route capable of producing films/coating even for mass scale production. Black-Right-Pointing-Pointer Pure spinel phase ZnFe{sub 2}O{sub 4} porous, immobilized films deposited in single step. Black-Right-Pointing-Pointer Parameter optimization yields access to nanostructuring in SPPS method. Black-Right-Pointing-Pointer The ecofriendly immobilized ferrite films were active under solar radiation. Black-Right-Pointing-Pointer Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH {<=} 10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH {approx} 8.0, yielded pure cubic phase ZnFe{sub 2}O{sub 4} film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of {approx}1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  13. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films

    SciTech Connect

    Simoes, A.Z.; Riccardi, C.S.; Dos Santos, M.L.; Garcia, F. Gonzalez; Longo, E.; Varela, J.A.

    2009-08-05

    Bismuth ferrite thin films were deposited on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N{sub 2} and O{sub 2}) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.

  14. InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2014-04-24

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl{sub 3} and 0.03M SbCl{sub 3}, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm{sup −1} corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  15. InSb thin films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Rajaram, P.

    2014-04-01

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl3 and 0.03M SbCl3, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm-1 corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  16. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  17. Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition

    SciTech Connect

    Sorescu, Monica; Diamandescu, L.; Swaminathan, R.; McHenry, M.E.; Feder, M.

    2005-05-15

    Laser ablation deposition has been used to synthesize nanoscale ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon(100) substrates. Films produced by laser ablation at room temperature were annealed at 550 deg. C for 1 h. Other films were deposited directly at a 550 deg. C substrate temperature without subsequent annealing. Complementary x-ray diffraction and superconducting quantum interference device magnetometry measurements helped identify the optimum laser ablation deposition conditions for obtaining the desired nanoferrite structures. From the hysteresis loops at 300 and 10 K we identified the paramagnetic or ferromagnetic behavior of the films. The zero field cooled-field cooled (ZFC-FC) magnetization, M(T), curves yielded the value of the blocking temperature in both NiZn and Zn ferrite systems.

  18. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-28

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  19. Carbon films grown from plasma on III-V semiconductors

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Warner, J. D.; Liu, D. C.

    1985-01-01

    Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies.

  20. Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates

    NASA Astrophysics Data System (ADS)

    Jayathilaka, P. B.; Belyea, D. D.; Fawcett, T. J.; Miller, Casey W.

    2015-05-01

    We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry.

  1. thin films grown with additional NaF layers

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Kim, Juran; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-10-01

    CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.

  2. Magnetoactive feature of in-situ polymerised polyaniline film developed on the surface of manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Vilčáková, J.; Stejskal, J.

    2012-07-01

    A polyaniline film exhibits magnetoactive properties when deposited on the surface of multidomain particles of manganese-zinc ferrite during in-situ polymerisation of aniline. This is reflected in the increased coercivity and thermomagnetic stability of an in-situ prepared composite compared with bare ferrite and its mixed composite with polyaniline. In addition, the deposition of a polyaniline film results in a shift of the complex-permeability dispersion region towards ultrahigh frequency band. These changes in the magnetic properties of polyaniline-coated ferrite are attributed to the increased value of the inner demagnetisation factor, which results from stress-induced magnetic anisotropy due to the pinning of domain walls appearing on the surface of ferrite. This study is focused on the mechanism of pinning of domain walls and its influence on the magnetic properties of in-situ prepared composites in terms of the molecular mechanism of oxidative polymerisation of aniline. Ferrite stimulates the propagation of polyaniline chains, which start to grow on the domain walls on the ferrite surface. It leads to the pinning of domain walls and restricts their mobility in a magnetic field. The further increase in the coercivity and the resonance frequency of polyaniline-coated ferrite due to film shrinkage after deprotonation of polyaniline makes it obvious that polyaniline coating induces elastic stresses in a ferrite particle that stimulate the growth of the effective magnetic anisotropy. Stress-induced magnetic anisotropy contributes to the reorientation of the magnetisation vectors in domains with respect to the new directions of easy magnetisation, given by magnetoelastic stresses, which leads to complex changes in the magnetic properties of in-situ prepared composites.

  3. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  4. Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Jiang, Zhengyi; Wei, Dongbin; Gong, Dianyao; Cheng, Xiawei; Zhao, Jingwei; Luo, Suzhen; Jiang, Laizhu

    2016-10-01

    The aim of this study is to investigate the effect of zinc dialkyl dithio phosphate (ZDDP) films on sticking during hot rolling of a ferritic stainless steel strip. The surface characterization and crack propagation of the oxide scale are very important for understanding the mechanism of the sticking. The high-temperature oxidation of one typical ferritic stainless was conducted at 1373 K (1100 °C) for understanding its microstructure and surface morphology. Hot-rolling tests of a ferritic stainless steel strip show that no obvious cracks among the oxide scale were observed with the application of ZDDP. A finite element method model was constructed with taking into consideration different crack size ratios among the oxide scale, surface profile, and ZDDP films. The simulation results show that the width of the crack tends to be reduced with the introduction of ZDDP films, which is beneficial for improving sticking.

  5. Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Jiang, Zhengyi; Wei, Dongbin; Gong, Dianyao; Cheng, Xiawei; Zhao, Jingwei; Luo, Suzhen; Jiang, Laizhu

    2016-08-01

    The aim of this study is to investigate the effect of zinc dialkyl dithio phosphate (ZDDP) films on sticking during hot rolling of a ferritic stainless steel strip. The surface characterization and crack propagation of the oxide scale are very important for understanding the mechanism of the sticking. The high-temperature oxidation of one typical ferritic stainless was conducted at 1373 K (1100 °C) for understanding its microstructure and surface morphology. Hot-rolling tests of a ferritic stainless steel strip show that no obvious cracks among the oxide scale were observed with the application of ZDDP. A finite element method model was constructed with taking into consideration different crack size ratios among the oxide scale, surface profile, and ZDDP films. The simulation results show that the width of the crack tends to be reduced with the introduction of ZDDP films, which is beneficial for improving sticking.

  6. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-03-01

    We investigated the effects of additives on the preferred orientation of the Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion beam sputtering. A mosaic target, consisting of a single crystal (100) Mn-Zn ferrite with a metal strip on it, was employed as the target. The preferred orientation of the ferrite films was (hhh) for the target with or without Fe and Zn additives, and (h00) for Ti addition. In the case of Cu addition, a weak (311) orientation appeared with a strong (hhh) preferred orientation. The origin of the changes in the preferred orientation with different additives was discussed. The easy axis of magnetization, however, lay in the direction parallel to the film plane due to large shape anisotropy, irrespective of the preferred orientation.

  7. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  8. Persistent conductive footprints of 109° domain walls in bismuth ferrite films

    SciTech Connect

    Stolichnov, I.; Iwanowska, M.; Colla, E.; Setter, N.; Ziegler, B.; Gaponenko, I.; Paruch, P.; Huijben, M.; Rijnders, G.

    2014-03-31

    Using conductive and piezoforce microscopy, we reveal a complex picture of electronic transport at weakly conductive 109° domain walls in bismuth ferrite films. Even once initial ferroelectric stripe domains are changed/erased, persistent conductive paths signal the original domain wall position. The conduction at such domain wall “footprints” is activated by domain movement and decays rapidly with time, but can be re-activated by opposite polarity voltage. The observed phenomena represent true leakage conduction rather than merely displacement currents. We propose a scenario of hopping transport in combination with thermionic injection over interfacial barriers controlled by the ferroelectric polarization.

  9. Growth and crystallographic feature-dependent characterization of spinel zinc ferrite thin films by RF sputtering

    PubMed Central

    2013-01-01

    ZnFe2O4 (ZFO) thin films exhibiting varying crystallographic features ((222)-epitaxially, (400)-epitaxially, and randomly oriented films) were grown on various substrates by radio-frequency magnetron sputtering. The type of substrate used profoundly affected the surface topography of the resulting ZFO films. The surface of the ZFO (222) epilayer was dense and exhibited small rectangular surface grains; however, the ZFO (400) epilayer exhibited small grooves. The surface of the randomly oriented ZFO thin film exhibited distinct three-dimensional island-like grains that demonstrated considerable surface roughness. Magnetization-temperature curves revealed that the ZFO thin films exhibited a spin-glass transition temperature of approximately 40 K. The crystallographic orientation of the ZFO thin films strongly affected magnetic anisotropy. The ZFO (222) epitaxy exhibited the strongest magnetic anisotropy, whereas the randomly oriented ZFO thin film exhibited no clear magnetic anisotropy. PMID:24354428

  10. Structure property relationships of carbonaceous films grown under ion enhancement

    SciTech Connect

    Weissmantel, C.; Ackermann, E.; Bewilogua, K.; Hecht, G.; Kupfer, H.; Rau, B.

    1986-11-01

    Based on our own results and in comparison with data published by other groups the structure property relationships of carbon and carbon/metal films prepared by sputtering and deposition of partially ionized species are discussed. Films grown by ion beam sputtering are dark brownish and amorphous with a small fraction of microcrystals. However, a transition to transparent and insulating layers can be effected by ion bombardment. C/Me coatings, where Me stands for Ti or Sn, were obtained by magnetron sputtering of composite targets. The films proved to be amorphous up to metal concentrations of more than 10 at. %, but metal and carbide crystals grow upon annealing. Measurements of the hardness, the electrical conductivity, and the contact behavior in dependence on the composition provided interesting information. For carbon films prepared by deposition of partially ionized benzene species it has been found that the properties depend characteristically on the ion energy; typical ''diamondlike'' i-C films are obtained by applying a bias voltage from 1--3 keV. The thermal stability of the amorphous coatings is discussed in conjunction with their electrical conductivity. Summarizing extensive structure investigations, a structure model based on tetrahedrally interlinked carbon rings is proposed. Composites of the type i-C/Me (Me: Al, Ti, Cr), which were prepared by simultaneous metal evaporation, exhibit a wide range of structure property relations.

  11. Integration of microwave termination based on TaN thin films on ferrite substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Ji, Liang; Kolodzey, James

    2015-10-01

    Integration of microwave discrete devices such as isolators and circulators is highly desired for radar and communication platforms and in particular as components used in transmit and receive (T/R) modules. In those applications, Tantalum nitride (TaN) films are widely used as a surface mounted termination to improve the reliability and performance. In the current work, TaN thin films were directly deposited on polycrystalline ferrite substrate (Ni0.3Zn0.7Fe2O4) to be integrated with isolators or circulators. The deposition conditions were first optimized to obtain suitable sheet resistance and near zero temperature coefficients of resistance (TCR). Next a 50 Ω microwave termination was designed and fabricated using standard photolithography techniques. Broadband measurements show that the terminator has a low voltage standing wave ratio (VSWR) of less than 1.20 in the frequency range of DC-20 GHz. The measured resistance was between 48 and 54 Ω.

  12. Cation Engineering of Cu-ferrite Films Deposited by Alternating Target Laser Ablation Deposition

    SciTech Connect

    Yang,A.; Chen, Z.; Islam, S.; Vittoria, C.; Harris, V.

    2008-01-01

    Epitaxial copper ferrite thin films were deposited on MgO substrates by the alternating target laser ablation deposition method. A series of films was studied to explore the impact of oxygen operating pressure, substrate temperature, and the ratio of laser shots incident on each target upon the magnetic, structural, and atomic structural properties. The highest saturation magnetization, 2800?G, was achieved at a 90?mTorr oxygen pressure and at 650? C for the substrate temperature. This value is 65% higher than the room temperature magnetization for bulk equilibrium samples. The inversion parameter was measured by extended x-ray absorption fine structure analysis. The sample having the highest saturation magnetization had a corresponding inversion parameter (percentage of Cu ion octahedral site occupancy) of 51.5% compared with the bulk value of 85%.

  13. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  14. Cathodic arc grown niobium films for RF superconducting cavity applications

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Lorkiewicz, J.; Tazzari, S.; Langner, J.; Strzyzewski, P.; Sadowski, M.; Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Russo, R.

    2006-07-01

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Zs as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  15. Atomically flat nickel film grown on synthetic mica

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2016-07-01

    We have grown nickel heteroepitaxially on muscovite and synthetic mica in vacuo for use as substrates for scanning probe microscopy (SPM) and graphene formation. We have determined annealing conditions that could generate atomically flat surfaces (with rms surface roughness of less than 1 nm). Owing to accelerated degradation at temperatures above 600 °C, muscovite mica was unsuitable as a substrate at high growth temperatures. Thermally stable synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2], on the other hand, was found to be stable at 800 °C and successfully employed for the formation of atomically flat films.

  16. Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang

    2016-06-01

    Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m‑1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

  17. Element- and Site-Specific Oxidation State and Cation Distribution in Manganese Ferrite Films by Diffraction Anomalous Fine Structure

    SciTech Connect

    Yang,A.; Chen, Z.; Geiler, A.; Zuo, X.; Haskel, D.; Kravtsov, E.; Vittoria, C.; Harris, V.

    2008-01-01

    Epitaxial manganese ferrite thin films were studied by x-ray diffraction anomalous fine structure to obtain element-specific and site-specific information on site occupancy, local structure, and valency. These properties were introduced to molecular field theory to reproduce thermomagnetization curves and determine superexchange energy, Neel temperature, and spin canting angle.

  18. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  19. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  20. DAFS study of site-specific local structure of Mn in manganese ferrite films.

    SciTech Connect

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Zuo, X.; Harris, V. G.; X-Ray Science Division; Inst. of Metal Physics; Northeastern Univ.; Nankai Univ.

    2006-01-01

    Manganese ferrite (MnFe{sub 2}O{sub 4}) is a well-known magnetic material widely used in electronics for many years. It is well established that its magnetic behavior is strongly influenced by local structural properties of Mn ions, which are distributed between crystallographically inequivalent tetrahedral and octahedral sites in the unit cell. In order to understand and be able to tune properties of these structures, it is necessary to have detailed site-specific structural information on the system. Here we report on the application of diffraction-anomalous fine structure (DAFS) spectroscopy to resolve site-specific Mn local structures in manganese ferrite films. The DAFS measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source at Argonne National Laboratory. The DAFS spectra (Fig. 1) were measured at several Bragg reflections in the vicinity of the Mn absorption K-edge, having probed separately contributions from tetrahedrally and octahedrally coordinated Mn sites. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around different inequivalent Mn sites in the unit cell. The reliability of the data treatment was checked carefully, and it was showed that the site-specific structural parameters obtained with DAFS allow us to describe fluorescence EXAFS spectrum measured independently. Fig. 2 shows individual site contributions to the imaginary part of the resonant scattering amplitude obtained from the treatment of the data of Fig. 1. The analysis of the refined site-specific absorption spectra was done using EXAFS methods based on theoretical standards. We provided direct evidence for the tetrahedral Mn-O bond distance being increased relative to the corresponding Fe-O distance in bulk manganese ferrites. The first coordination shell number was found to be reduced significantly for Mn atoms at these sites. This finding is consistent with the well-known tendency

  1. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  2. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  3. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  4. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    DOEpatents

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  5. Valence-driven electrical behavior of manganese-modified bismuth ferrite thin films

    SciTech Connect

    Wu Jiagang; Wang, John; Xiao Dingquan; Zhu Jianguo

    2011-06-15

    BiFe{sub 0.95}R{sub 0.05}O{sub 3} (Mn{sup 2+}, Mn{sup 3+}, and Mn{sup 4+}) thin films with (110) orientation were fabricated on SrRuO{sub 3}/Pt/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via rf sputtering. With the increasing valence of Mn in BiFe{sub 0.95}R{sub 0.05}O{sub 3}, the concentration of Fe{sup 2+} increases, whereas the concentration of oxygen vacancies decreases. The electrical properties of BiFe{sub 0.95}R{sub 0.05}O{sub 3} are correlated with the valence of Mn. Their leakage current density is dependent on the concentration of oxygen vacancies caused by different valences of Mn. Their P-E loops become better with the increasing valence of Mn owing to a lower leakage current density in high electric field regions, and a large remanent polarization of 2P{sub r} {approx} 145.2 {mu}C/cm{sup 2} is obtained for the Mn{sup 4+}-doped film. For the Mn{sup 2+}-doped bismuth ferrite film, the space-charge-limited conduction and Schottky barrier dominate its leakage behavior under a negative electric field, the Ohmic conduction and Schottky barrier are involved in the leakage behavior under a positive electric field, and the interface-limited Fowler-Nordheim tunneling is their dominant mechanism in a high electric field region. In contrast, an Ohmic conduction dominates the leakage behavior of Mn{sup 3+}- and Mn{sup 4+}-doped films regardless of negative and positive directions or measurement temperatures.

  6. Visualization of weak ferromagnetic domains in multiferroic hexagonal ferrite thin film

    NASA Astrophysics Data System (ADS)

    Wu, Weida; Wang, Wenbo; Moyer, Jarrett A.; Schiffer, Peter; Mundy, Julia A.; Muller, David A.; Schlom, Darrell G.

    Hexagonal h-LuFeO3 thin film has been reported to be a room-temperature multiferroic. Extensive studies on high quality MBE thin films revealed a magnetoelectric phase with weak ferromagnetism emerges below TN ~ 147 K. However, the direct observation of weak ferromagnetic domain structures is still lacking. Here we report cryogenic magnetic force microscopy (MFM) results on 200 nm thick h-LuFeO3 film grown by molecular-beam epitaxy (MBE) on (111)-oriented yttria-stablized cubic zirconia (YSZ) substrates. Labyrinth-like weak ferromagnetic domain structures were observed with a domain size ~ 1 μm and domain wall width ~ 0 . 4 μm . Field-dependent MFM data indicates the coercive field is ~ 2 . 66 T at 50 K and ~ 3 . 15 T at 6 K. This work is supported by DOE BES under Award # DE-SC0008147.

  7. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films.

    PubMed

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  8. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-09-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

  9. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    PubMed Central

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  10. The magnetic properties of plasma-sprayed thick-film manganese zinc ferrite (MZF) and nickel iron alloy (Permalloy) composites

    SciTech Connect

    Liang, S.; Gambino, R. J.; Sampath, S.; Raja, M. M.

    2006-04-15

    MnZn ferrite/Permalloy composites have potential in high frequency magnetic applications and can be made into thick-film devices by air plasma spray. The as-sprayed composites have lower saturation magnetization than the starting powder. After annealing below 600 deg. C, the magnetic properties and electrical resistivity improve significantly. The changes in magnetic and electrical properties were correlated to structural changes and studied by x-ray-diffraction analysis, vibrating-sample magnetometer measurements, and microstructural analysis.

  11. Features of AlN film grown by ion-plasma sputtering

    NASA Astrophysics Data System (ADS)

    Lubyanskiy, Ya V.; Bondarev, A. D.; Soshnikov, I. P.; Kotlyar, K. P.; Kirilenko, D. A.; Bert, N. A.; Ayusheva, K. R.; Tarasov, I. S.

    2016-08-01

    The work under consideration presents research of structure, composition and optical properties of aluminium nitride thin films grown by reactive ion plasma sputtering. Aluminium nitride films are shown to contain amorphous and polycrystalline phases. Amorphous phase presence influences on refraction and absorption indexes. Conditions of polycrystalline films with primary (dedicated) orientation synthesis are revealed.

  12. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  13. Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films

    SciTech Connect

    Krishnan, P.S. Sanakara R.; Aguiar, Jeffery A.; Ramasse, Q. M.; Kepaptsoglou, D. M.; Liang, W. I.; Chu, Y. H.; Browning, Nigel D.; Munroe, Paul R.; Nagarajan, Valanoor

    2015-01-01

    Strain engineering of epitaxial ferroelectrics has emerged as a powerful method to tailor the electromechanical response of these materials, although the effect of strain at the atomic scale and the interplay between lattice displacements and electronic structure changes are not yet fully understood. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we systematically probe the role of epitaxial strain in mixed phase bismuth ferrite thin films. Electron energy loss O K and Fe L2,3 edge spectra acquired across the rhombohedral (R)-tetragonal (T) phase boundary reveal progressive, and systematic changes, in electronic structure going from one phase to the other. The comparison of the acquired spectra, with theoretical simulations using DFT, suggests a breakage in the structural symmetry across the boundary due to the simultaneous presence of increasing epitaxial strain and off- axial symmetry in the T phase. This implies that the imposed epitaxial strain plays a significant role in not only changing the crystal-field geometry, but also the bonding environment surrounding the central iron cation at the interface thus providing new insights and a possible link to understand how the imposed strain could perturb magnetic ordering in the T phase BFO.

  14. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  15. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  16. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2016-09-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  17. Structural and magnetic properties of zinc ferrite thin films irradiated by 90 keV neon ions

    NASA Astrophysics Data System (ADS)

    Gafton, E. V.; Bulai, G.; Caltun, O. F.; Cervera, S.; Macé, S.; Trassinelli, M.; Steydli, S.; Vernhet, D.

    2016-08-01

    The effects of 90 keV neon beam irradiation on the structure and magnetic properties of zinc ferrite thin films have been investigated through several methods, namely, X-ray diffraction technique, Vibrating Sample and SQUID magnetometers. Beforehand, the pristine have also been characterized using profilometry and microscopy techniques. In particular single-phase formation of the thin films deposited on monocrystalline Si (111) substrate by pulsed laser deposition technique was confirmed. Crystal lattice, coercivity, saturation magnetization have been studied for the first time, as a function of ion penetration depth and irradiation fluence. The chemical composition and the crystallinity of the films are not affected with the ion impact acting as a mechanical stress relief. On the contrary, both magnetization and coercivity are sensitive to Neq+ ion irradiation and exhibit different behaviours depending on the ion fluence range.

  18. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  19. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  20. Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong

    2011-04-01

    Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 {mu}m, a saturation magnetization of 150 emu/cm{sup 3}, and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

  1. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  2. Significance of microstructure for a MOCVD-grown YSZ thin film gas sensor

    SciTech Connect

    Vetrone, J.; Foster, C.; Bai, G.

    1996-11-01

    The authors report the fabrication and characterization of a low temperature (200--400 C) thin film gas sensor constructed from a MOCVD-grown yttria-stabilized zirconia (YSZ) layer sandwiched between two platinum thin film electrodes. A reproducible gas-sensing response is produced by applying a cyclic voltage which generates voltammograms with gas-specific current peaks and shapes. Growth conditions are optimized for preparing YSZ films having dense microstructures, low leakage currents, and maximum ion conductivities. In particular, the effect of growth temperature on film morphology and texture is discussed and related to the electrical and gas-sensing properties of the thin film sensor device.

  3. Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films

    SciTech Connect

    Prokes, S. M.; Glembocki, O. J.; Cleveland, Erin; Caldwell, Josh D.; Foos, Edward; Niinistoe, Jaakko; Ritala, Mikko

    2012-01-30

    The plasmonic behavior of Ag thin films produced by plasma enhanced atomic layer deposition (PEALD) has been investigated. We show that as-deposited flat PEALD Ag films exhibit unexpected plasmonic properties, and the plasmonic enhancement can differ markedly, depending on the microstructure of the Ag film. Electromagnetic field simulations indicate that this plasmonic behavior is due to air gaps that are an inherent property of the mosaic-like microstructure of the PEALD-grown Ag film, suggesting that this is a metamaterial with behavior very similar to what would be expected in spoof plasmonics where gaps are fabricated in films to create plasmonic-like resonances.

  4. Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition

    SciTech Connect

    Smid, Bretislav; Li, Zhenjun; Dohnalkova, Alice; Arey, Bruce W.; Smith, R. Scott; Matolin, Vladimir; Kay, Bruce D.; Dohnalek, Zdenek

    2012-05-17

    We report on the preparation and characterization of high surface area, supported nanoporous tungsten oxide films prepared under different conditions on polished polycrystalline Ta and Pt(111) substrates via direct sublimation of monodispersed gas phase of cyclic (WO3)3 clusters. Scanning Electron Microscopy and Transmission Electron Microscopy were used to investigate the film morphology on a nanometer scale. The films consist of arrays of separated filaments that are amorphous. The chemical composition and the thermal stability of the films were investigated by means of X-ray Photoelectron Spectroscopy. The surface area and the distribution of binding sites on the films are measured as functions of growth temperature, deposition angle, and annealing conditions using temperature programmed desorption of Kr. Films deposited at 20 K and at an incident angle of 65{sup o} from substrate normal display the greatest specific surface area of {approx}560 m2/g.

  5. Characterization of epitaxially grown films of vanadium oxides

    SciTech Connect

    Rogers, K.D.; Coath, J.A.; Lovell, M.C. , Shrivenham, Swindon, Wiltshire, SN6 8LA, England )

    1991-08-01

    The growth of VO{sub 2} and V{sub 2}O{sub 3} thin films by reactive sputtering has been investigated. Previously reported studies of such thin films have often presented ambiguous results concerning the precise nature of the layers produced. A thorough and comprehensive characterization program including x-ray diffraction, scanning electron microscopy, Rutherford-backscattering spectroscopy, and electrical conductivity measurements has been undertaken to ensure that the films produced were of a true epitaxial nature.

  6. PECVD grown SiO2 film process optimization

    NASA Astrophysics Data System (ADS)

    Ping, Song; Jie, Lian; Gao, Shang; Li, Ping; Wang, Xiao; Wu, Shiliang; Ma, Zheng

    2011-02-01

    SiO2 films have been widely applied in the production of electronic devices, integrated devices, optical thin film devices, sensors because of their desirable properties, such as good insulation, high light transmittance, strong corrosion resistance, good dielectric properties, etc. Amorphous silicon dioxide was fabricated by plasma enhanced chemical deposition on GaAs substrate. The thickness and refractive index are obtained by optical transmittance of the film, which are measured by ellipsometer. The deposition rate of the film and the refractive index are studied at different time, pressure, and the ratio of SiH4/N2O. The SiO2 thin film growth rate remained basically unchanged versus time. The reaction chamber pressure, which make the SiO2 thin film growth rate getting the peak, should be about 105Pa. But the SiO2 thin film growth rate and the refractive index are anti-related. The enormous changes of the gas flow rate do not have huge impact to the response rate. However, the refractive index of SiO2 thin film changed greatly when the SiH4flow increased the refractive index of the thin films is highest when the ratio of SiH4/N2O is 200:20

  7. Photoresponse in thin films of WO{sub 3} grown by pulsed laser deposition

    SciTech Connect

    Roy Moulik, Samik; Samanta, Sudeshna; Ghosh, Barnali

    2014-06-09

    We report, the photoresponse behaviour of Tungsten trioxide (WO{sub 3}) films of different surface morphology, grown by using pulsed laser deposition (PLD). The Growth parameters for PLD were changed for two substrates SiO{sub 2}/Si (SO) and SrTiO{sub 3} (STO), such a way which, result nanocrystalline film on SO and needle like structured film on STO. The photoresponse is greatly modified in these two films because of two different surface morphologies. The nanocrystalline film (film on SO) shows distinct photocurrent (PC) ON/OFF states when light was turned on/off, the enhancement of PC is ∼27%. Whereas, the film with needle like structure (film on STO) exhibits significantly enhanced persistent photocurrent even in light off condition, in this case, the enhancement of PC ∼ 50% at room temperature at lowest wavelength (λ = 360 nm) at a nominal bias voltage of 0.1 V.

  8. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  9. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGESBeta

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  10. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  11. Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Zheng, Liang; Deng, Jiangxia; Zheng, Peng; Wu, Qiong; Deng, Longjiang; Qin, Huibin

    2016-09-01

    In this work, hexagonal barium ferrite thin films have been deposited on Pt/MgO(111) substrates by pulsed laser deposition. The anneal temperature dependence of crystal structures, extents of diffusion and magnetic properties have been studied. X-ray diffraction patterns reveal that the crystal structure changes from the hexagonal to the spinel when the anneal temperature increases. The texture with c-axis perpendicular to the film plane and the small c-axis dispersion angles (△ɵc) have been obtained in the film annealed at 950 °C for 10 h. Both the X-ray photoelectron spectroscopy profiles and energy dispersive spectrometer show that the diffusions of Mg2+and Fe3+cations are more obvious when the annealing temperature is higher than 950 °C. The film annealed at 950 °C show anisotropic and hard magnetic properties. The magnetic properties of film annealed at 1050 °C are soft. In order to study the cation diffusions between thin film and substrate, the concentration profiles of cations (Ba2+, Fe3+, Mg2+) have been measured by XPS for a thin film with a thickness of 130 nm annealed at 950°C and 1050°C, as shown in Fig. 3. When Ta is 950°C, as shown in Fig. 3(a), diffusions between the film and the substrate are scarcely detected. However, obvious inter-diffusions have been found for Mg2+ cation and Fe3+ cation when it is annealed at 1050°C. An obvious diffusion has not been found for Ba2+ cation at both annealing temperatures.

  12. The influence of Cd doping on the microstructure and optical properties of nanocrystalline copper ferrite thin films

    SciTech Connect

    El-Hagary, M.; Matar, A.; Shaaban, E.R.; Emam-Ismail, M.

    2013-06-01

    Highlights: ► The structural and optical properties of Cu{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} thin films were studied. ► The micro structural parameters of the films have been determined. ► The room temperature reflectance and transmittance data are analyzed. ► The refractive index and energy gap are determined. ► The single oscillator parameters were calculated. - Abstract: Nanocrystalline thin films of mixed Cu–Cd ferrites, Cu{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 1), were deposited by electron beam evaporation technique. The films were annealed at 450 °C for 1 h. The effect of Cd doping on the structural and optical properties of the deposited films has been investigated by using X-ray diffraction (XRD) and optical spectrophotometry. XRD patterns of the annealed films show spinal cubic structure. The lattice parameter was found to increase with the increase of cadmium concentration. The crystallite size of the films was found to vary from 8 nm to 30 nm. The optical transition was found to be direct and indirect transitions with energy gaps decrease from 2.466 (x = 0) to 2.00 (x = 1) eV and from 2.148 (x = 0) to 1.824 (x = 1) eV, respectively. The refractive index dispersion of the films was found to increase with Cd content and discussed in terms of the Wemple–DiDomenico single oscillator model.

  13. Friction and wear performance of diamondlike carbon films grown in various source gas plasmas

    SciTech Connect

    Erdemir, A.; Nilufer, I. B.; Eryilmaz, O. L.; Beschliesser, M.; Fenske, G. R.

    2000-01-18

    In this study, the authors investigated the effects of various source gases (methane, ethane, ethylene, and acetylene) on the friction and wear performance of diamondlike carbon (DLC) films prepared in a plasma enhanced chemical vapor deposition (PECVD) system. Films were deposited on AISI H13 steel substrates and tested in a pin-on-disk machine against DLC-coated M50 balls in dry nitrogen. They found a close correlation between friction coefficient and source gas composition. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios exhibited lower friction coefficients and higher wear resistance than films grown in source gases with lower hydrogen-to-carbon (H/C) ratios. The lowest friction coefficient (0.014) was achieved with a film derived from methane with an WC ratio of 4, whereas the coefficient of films derived from acetylene (H/C = 1) was of 0.15. Similar correlations were observed for wear rates. Specifically, films derived from gases with lower H/C values were worn out and the substrate material was exposed, whereas films from methane and ethane remained intact and wore at rates that were nearly two orders of magnitude lower than films obtained from acetylene.

  14. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  15. Effects of Seed Layer on YBa2Cu3Ox Films Grown by Liquid Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Zama, Hideaki; Miyakoshi, Masayuki; Yamamoto, Hiroshi; Morishita, Tadataka

    1999-11-01

    Crack-free YBa2Cu3Ox (YBCO) films were grown by liquid phaseepitaxy (LPE) on MgO(100) substrates with a YBCO seed layer. Thecrystalline property of LPE was crucially dependent on that of theseed layer. On the purely c-axis-oriented seed layer, reasonable YBCOfilms were grown with a full-width at half maximum of the (005)reflection rocking curve, Δω, of 0.07°. In the case of the seedincluding an a-axis-oriented grain, the value of Δω of LPE films waspoor in reproducibility and larger than 0.1° on average. For thea-axis-oriented seed, no YBCO films grew under the growth conditionsin this study. X-ray topographic observations revealed that thecrystalline quality of MgO substrates limited the Δω of LPE films grownon them.

  16. Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis

    1998-10-01

    Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.

  17. Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices

    PubMed Central

    Moyer, Jarrett A.; Gao, Ran; Schiffer, Peter; Martin, Lane W.

    2015-01-01

    The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growth mode before progressing to a 2D growth mode. Films grown in the 2D-like and 3D-to-2D growth modes are atomically flat and partially strained, while films grown in the island growth mode are terminated in islands and fully relaxed. We find that the optimal structural, transport, and magnetic properties are obtained for films grown on the 2D-like/3D-to-2D growth regime boundary. The viability for including such thin films in perovskite-based all-oxide devices is demonstrated by growing a Fe3O4/La0.7Sr0.3MnO3 spin valve epitaxially on SrTiO3. PMID:26030835

  18. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  19. Creatinine biomaterial thin films grown by laser techniques.

    PubMed

    György, E; Axente, E; Mihailescu, I N; Predoi, D; Ciuca, S; Neamtu, J

    2008-03-01

    Creatinine thin films were synthesised by matrix assisted pulsed laser deposition (PLD) techniques for enzyme-based biosensor applications. An UV KrF* (lambda=248 nm, tau approximately 10 ns) excimer laser source was used for the irradiation of the targets at incident fluence values in the 0.3-0.5 J/cm2 range. For the matrix assisted PLD the targets consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. The surface morphology, chemical composition and structure of the obtained biomaterial thin films were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and electron dispersive X-ray spectroscopy as a function of the target preparation procedure and incident laser fluence.

  20. Study of critical current density in superconducting magnesium diboride films grown by ex situ annealing of CVD boron films

    NASA Astrophysics Data System (ADS)

    Hanna, Mina

    MgB2 films have been processed by different techniques, the most successful of which include the hybrid physical-chemical vapor deposition (HPCVD) as well as the ex situ high temperature annealing of boron films in Mg vapor. The advantage of the ex situ method is that it allows the coating of MgB2 on large and complex surfaces, such as superconducting radio frequency (RF) cavities. However, it has always been realized that HPCVD films can carry higher J c than the ex situ annealed films. In this research, we succeeded in fabricating high quality MgB2 films by the ex situ annealing technique that produced a Jc value as high as 1.8 x 106 A/cm 2 for 1 mum thick film at 20 K and self-field. This high Jc value is, however, considerably reduced at higher thicknesses similar to that observed in YBCO coated conductors. In order to understand the mechanisms responsible for J c decrease with increasing film thickness, we studied the Jc behavior as a function of thickness in MgB2 films fabricated by ex situ annealing at 840°C of boron films, grown by chemical vapor deposition, in Mg vapor. The film thickness ranged between 300 nm and 10 mum. The values of Jc for these films ranged from 1.2 x 107 A/cm2 for 300 nm to 1.9 x 105 A/cm2 for 10 mum film thickness at 20 K and self-field. In addition, the results show that critical current (Ic) reaches a maximum value of 728 A/cm width at ˜1 mum thick MgB2 film at 20 K and self-field. These results of Jc and Ic behaviors with higher thickness are interpreted in terms of impurity diffusion during annealing and microstructural degradation for thicker films.

  1. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  2. Investigation of Annealing Atmospheres on Physical Properties of Cigs Films Grown by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    This study investigated the effect of different annealing conditions (influence of the annealing temperature and atmosphere) on structural, microstructure, optical and electrical properties of electrodeposited CuIn1-xGaxSe2 (CIGS) thin films. X-ray diffraction analysis exhibited all the samples have grown preferentially in the [112] crystal orientation with the chalcopyrite structure and without unwanted secondary CIGS phases. With the increase of annealing temperature, energy band gap of the CIGS film decrease from 1.32 to 1.12eV. The electrical properties of the films distinctly upgraded after annealing in nitrogen+ Se vapor, and worsened when annealed in vacuum.

  3. Self-assembled, nanostructured polypyrrole films grown in a high-gravity environment.

    PubMed

    Chang, Jean H; de Leon, Christian R Aleman; Hunter, Ian W

    2012-03-13

    A simple, novel method of synthesizing self-assembled, nanostructured conducting polymer films has been developed. Applying an increased centrifugal force on the electrodes during the electrochemical deposition process yields high surface area, micro- or nanostructured polymer films. Scanning electron microscopy showed that as the applied g-force increased, the polymers progressed from having smooth, "cauliflower" morphologies, to intermediate microstructured surfaces, to finally dense nanostructured surfaces with pore sizes as small as 50 nm. Cyclic voltammetry revealed that films grown at higher centrifugal accelerations (higher than 500g) exhibited less degradation after electrochemical cycling and more capacitive behavior.

  4. High quality CuInSe2 films grown on pseudo-lattice-matched substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Niki, S.; Fons, P. J.; Yamada, A.; Kurafuji, T.; Chichibu, S.; Nakanishi, H.; Bi, W. G.; Tu, C. W.

    1996-07-01

    CuInSe2 films have been grown by molecular beam epitaxy on pseudo-lattice-matched substrates that consist of a 1-μm-thick In0.29Ga0.71As layer grown on a linearly composition-graded InxGa1-xAs buffer (0≤x≤0.29) grown in turn on GaAs (001). The properties of these films have been compared with those of the films grown directly on GaAs (001). High resolution x-ray diffraction analysis on CuInSe2 grown on pseudo-lattice-matched substrates indicated substantial reduction on residual strain in the CuInSe2 films. A photoluminescence spectrum dominated by sharp free exciton emissions has been observed for the first time from CuInSe2 films indicative of significant improvement in crystalline quality and substantial reduction in the point defect density.

  5. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    PubMed Central

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-01-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained. PMID:27686046

  6. Cu(In,Ga)Se 2 thin-film solar cells grown with cracked selenium

    NASA Astrophysics Data System (ADS)

    Kawamura, Masahiro; Fujita, Toshiyuki; Yamada, Akira; Konagai, Makoto

    2009-01-01

    Cu(In 1-xGa x)Se 2 (CIGS) films have been grown by using cracked selenium. In conventional evaporation system, the Se atoms were supplied as large clusters (Se x, x>5). However, the size of clusters can be reduced by the thermal cracking. The film qualities grown with small clusters (Se x, x<4) would be improved, since the smaller size molecules easily react with elemental metals, resulting in the reduction of selenium vacancies and the enhancement of surface migration. The CIGS films were deposited by the three-stage method with cracked selenium, and the films were evaluated by SEM, XRD, EDX, C- V measurement and admittance spectroscopy. It was found from the C- V characteristics that the carrier concentrations of the CIGS films grown with cracked selenium were increased with increasing the cracking temperature. The result clearly showed that the use of cracked selenium was effective for reduction of selenium vacancies. The conversion efficiency of 15.4% was obtained by using cracked selenium at a cracking temperature of 500 °C.

  7. Static and dynamic magnetic property of MBE-grown Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Huo, Yan; Zhao, Jianhua; Wu, Yizheng; Zhang, Xinhui

    2014-08-01

    In this work, the static and dynamic magnetic properties of Co2FeAl films grown by molecular beam epitaxy (MBE) were studied by employing the magneto-optical Kerr rotation and ferromagnetic resonance (FMR) measurements. The growth temperature dependent magnetocrystalline anisotropy of MBE-grown Co2FeAl films were first investigated by employing the rotating magneto-optical Kerr effect. Then the magnetization dynamics and Gilbert damping property for high quality Co2FeAl films were investigated in detail by combining both the FMR and time-resolved magneto-optical Kerr rotation techniques. The apparent damping parameter was found to show strong dependence on the strength of the applied magnetic field at low-field regime, but decrease drastically with increasing magnetic field and eventually become a constant value of 0.004 at high-field regime. The inhomogeneity of magnetocrystalline anisotropy and two-magnon scattering are suggested to be responsible for the observed abnormal damping properties observed especially at low field regime. The intrinsic damping parameter of 0.004 is deduced for our highly-ordered Co2FeAl film. Our results provide essential information for highly-ordered MBE-grown Co2FeA film and its possible application in spintronic devices.

  8. Structural characterization of InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2015-06-24

    In the present work we have grown InSb thin films on brass substrates, using the electrodeposition technique. The electrochemical baths used in the growth were made up of aqueous solutions of InCl{sub 3} and SbCl{sub 3} mixed together in various proportions. The films grown were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Analysis of X-rays (EDAX). Compositional studies show that stoichiometric InSb films can be prepared from a bath containing 0.05M InCl{sub 3} and 0.04M SbCl{sub 3}. XRD studies reveal that the films grown are polycrystalline having the zinc blende structure with (111) orientation. Crystallite size, dislocation density and strain were calculated using the XRD results. Optical transmission spectra were recorded using an FTIR spectrophotometer. The value of direct band gap was found to be around 0.20 eV for the thin films having the best stoichiometry.

  9. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2016-05-01

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10-3 V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×1018 cm3, while the Hall mobility of the IGZO thin film was 16 cm2 V-1S-1.

  10. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    SciTech Connect

    Yin, H.; Ziemann, P.

    2014-06-23

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (10{sup 2} cm{sup 2}/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  11. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates

    NASA Astrophysics Data System (ADS)

    Dai, Guohong; Zhan, Qingfeng; Liu, Yiwei; Yang, Huali; Zhang, Xiaoshan; Chen, Bin; Li, Run-Wei

    2012-03-01

    We investigated on magnetic properties of magnetostrictive Fe81Ga19 films grown on flexible polyethylene terephthalate (PET) substrates under various mechanical strains. The unstrained Fe81Ga19 films exhibit a significant uniaxial magnetic anisotropy due to a residual stress in PET substrates. It was found that the squareness of hysteresis loops can be tuned by an application of strains, inward/compressive or outward/tensile bending of the films. A modified Stoner-Wohlfarth model with considering a distribution of easy axes in polycrystalline films was developed to account for the mechanically tunable magnetic properties in flexible Fe81Ga19 films. These results provide an alternative way to tune mechanically magnetic properties, which is particularly important for developing flexible magnetoelectronic devices.

  12. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  13. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  14. Thin film transistors using PECVD-grown carbon nanotubes.

    PubMed

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-21

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 microA mm(-1), which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 10(5), has been realized in the relatively short channel length of 10 microm. The field effect mobility of the device was 5.8 cm(2) V(-1) s(-1). PMID:20418603

  15. Thin film transistors using PECVD-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-01

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 µA mm - 1, which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 105, has been realized in the relatively short channel length of 10 µm. The field effect mobility of the device was 5.8 cm2 V - 1 s - 1.

  16. Growth and high rate reactive ion etching of epitaxially grown barium hexaferrite films on single crystal silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui

    Ferrites are an invaluable group of insulating magnetic materials used for high frequency microwave applications in such passive electronic devices as isolators, phase shifters, and circulators. Because of their high permeability, non-reciprocal electromagnetic properties, and low eddy current losses, there are no other materials that serve such a broad range of applications. Until recently, they have been widely employed in bulk form, with little success in thin film-based applications in commercial or military microwave technologies. In today's technology, emerging electronic systems, such as high frequency, high power wireless and satellite communications (GPS, Bluetooth, WLAN, commercial radar, etc) thin film materials are in high demand. It is widely recognized that as high frequency devices shift to microwave frequencies the integration of passive devices with semiconductor electronics holds significant advantages in the realization of miniaturization, broader bandwidths, higher performance, speed, power and lower production costs. Thus, the primary objective of this thesis is to explore the integration of ferrite films with wide band gap semiconductor substrates for the realization of monolithic integrated circuits (MICs). This thesis focuses on two key steps for the integration of barium hexaferrite (Ba M-type or BaM) devices on semiconductor substrates. First, the development of high crystal quality ferrite film growth via pulsed laser deposition on wide band gap silicon carbide semiconductor substrates, and second, the effective patterning of BaM films using dry etching techniques. To address part one, BaM films were deposited on 6H silicon carbide (0001) substrates by Pulsed Laser Deposition. X-ray diffraction showed strong crystallographic alignment while pole figures exhibited reflections consistent with epitaxial growth. After optimized annealing, BaM films have a perpendicular magnetic anisotropy field of 16,900 Oe, magnetization (4piMs) of 4.4 k

  17. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    NASA Astrophysics Data System (ADS)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  18. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  19. Investigation of the transport properties of Bi2 Se3 films grown on various substrates

    NASA Astrophysics Data System (ADS)

    Lin, H. Y.; Wang, C. Y.; Chen, K. H. M.; Lin, Y. H.; Chen, K. H.; Yang, B. Y.; Hong, M.; Kwo, J.

    2015-03-01

    Topological insulators, a new state of quantum matter, displayed a variety of physical phenomena. We have obtained high quality TI films of Bi2Se3, Bi2Te3,andSb2Te3 grown on various substrates with streaky RHEED patterns and large domains 1-2um in size. However, the Fermi level of Bi2Se3 tends to locate in the bulk conduction band due to the high density of intrinsic defects in TIs. To fine tune the Fermi level to be within the band gap, Bi2Se3 films were grown on amorphous oxide layers such as SiO2, Y2O3,andAl2O3 ~20 nm thick deposited on GaAs and Si substrates in a back gate structure for the electrical field effect. Compare to Bi2Se3 thin films on crystalline substrates such as sapphire, samples grown on amorphous oxides such as Al2O3 showed lower carrier concentration for the film thickness less than 10 QL, and the resistivity showed an insulating behavior at T below 50K. Other transport properties such as mobility, WAL effects are underway.

  20. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Li, Yuqing; Wang, Yan

    2014-11-01

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr0.2Fe11.8O19/PANI composite film and the HCl-PANI film prepared by a sol-gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr0.2Fe11.8O19 film are greater than those of the SrPr0.2Fe11.8O19-PANI composite film. In the frequency range of 8-12 GHz, the dielectric loss of HCl-PANI film is the maximum, and the dielectric loss of SrPr0.2Fe11.8O19 film is the minimum; the magnetic loss of the four films is in descending order as SrPr0.2Fe11.8O19 film, PrSrM/(HCl-PANI) composite film, PrSrM/(CSA-PANI) and HCl-PANI film.

  1. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    SciTech Connect

    Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji

    2015-05-15

    The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (V{sub LSSE}) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H∥[11{sup -}0] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of V{sub LSSE} has a linear relationship with the temperature difference (ΔT), giving the relatively large V{sub LSSE} /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.

  2. Structure and Morphology of Phthalocyanine Films Grown in Electrical Fields by Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Banks, Curtis E.; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin

    1999-01-01

    Phthalocyanine is a very stable organic material in the atmosphere and has been used in numerous applications, such as optical switching and optical storage devices. Although this material has already been discovered for several decades and has had extensive studies conducted on it, many properties still need to be better understood, for example, the mechanisms of forming different solid phases and of changing film morphology by external forces. Phthalocyanine has two preferred solid phases (alpha and beta phases) for which the crystal structures, surface morphology and optical properties are different. In order to investigate these phenomena and the relationship among them, phthalocyanine films have been synthesized by vapor deposition on quartz substrates with and without an external electrical field. Some substrates were coated with a very thin gold film for the electrical field. These films have been characterized using x-ray diffraction, scanning electron microscopy, Fourier transfer infrared spectroscopy, and Z-scan technique. The films have excellent chemical and thermal stability. However, the surface of these films grown without the electrical field shows flower-like morphology. When films are deposited under an electrical field (approximately 3000 V/cm), an aligned structure is revealed on the surface. A comparison of the structure, morphology, optical properties, and the growth mechanism for these films with and without an electrical field will be discussed.

  3. Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition

    SciTech Connect

    Serrao, Claudy R.; You, Long; Gadgil, Sushant; Hu, Chenming; Salahuddin, Sayeef; Diamond, Anthony M.; Hsu, Shang-Lin; Clarkson, James; Carraro, Carlo; Maboudian, Roya

    2015-02-02

    Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.

  4. Ar ions irradiation effects in ZrN thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Dorcioman, G.; Simeone, D.; Gosset, D.; Behdad, S.; Boesl, B.; Craciun, V.

    2015-05-01

    Thin ZrN films (<500 nm) were grown on (1 0 0)Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under CH4 or N2 atmosphere. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies indicated that the films were very dense and with a smooth surface. The films were used to study the effect of 800 keV Ar ion irradiation on their structure and properties. After irradiation with a dose of 1014 at/cm2 the lattice parameter and crystallites size did marginally change. However, after irradiation with a 1015 at/cm2 dose, a clear increase in the lattice parameter accompanied by a significant decrease in nanohardness and Young modulus were observed.

  5. Physical and tribological properties of diamond films grown in argon-carbon plasmas

    SciTech Connect

    Zuiker, C.; Krauss, A.R.; Gruen, D.M.; Pan, X.; Li, J.C.; Csencsits, R.; Erdemir, A.; Bindal, C.; Fenske, G.

    1995-06-01

    Nanocrystalline diamond films have been deposited using a microwave plasma consisting of argon, 2--10% hydrogen and a carbon precursor such as C{sub 60} or CH{sub 4}. It was found that it is possible to grow the diamond phase with both carbon precursors, although the hydrogen concentration in the plasma was 1--2 orders of magnitude lower than normally required in the absence of the argon. Auger electron spectroscopy, x-ray diffraction measurements and transmission electron microscopy indicate the films are predominantly composed of diamond. Surface roughness, as determined by atomic force microscopy and scanning electron microscopy indicate the nanocrystalline films grown in low hydrogen content plasmas grow exceptionally smooth (30--50 nm) to thicknesses of 10 {mu}m. The smooth nanocrystalline films result in low friction coefficients ({mu}=0.04--0.06) and low average wear rates as determined by pin-on-disk measurements.

  6. On detection of the Fermi edge in in situ grown thin films of high- Tc oxides

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Saleh, S. A.; Rast, S.; Margaritondo, G.; Onellion, M.; Pavuna, D.

    2001-11-01

    We discuss our systematic series of experiments on the photoelectric detection of the Fermi edge using a cylindrical mirror analyser on films of high- Tc oxides, grown in situ by pulsed laser ablation. The Fermi edge (comparable to the edge of the reference Ag) is very easily observed even in the two-phase BSCCO-2212 film that exhibits onsets of superconducting transitions, at 85 and 45 K. In contrast, the Fermi edge is weaker and more difficult to observe even in the state-of-the-art, highly epitaxial, monophase YBa 2Cu 3O 7- y (YBCO) and NdBa 2Cu 3O 7- y (NBCO-123) films (both with Tc=92 K). So far we could not detect the Fermi edge in the films of the double-`chain' YBCO-124.

  7. Diamond thin films grown by microwave plasma assisted chemical vapor deposition

    SciTech Connect

    Leksono, M.

    1991-09-05

    Undoped and boron doped diamond thin films have been successfully grown by microwave plasma chemical vapor deposition from CH{sub 4}, H{sub 2}, and B{sub 2}H{sub 6}. The films were characterized using x- ray diffraction techniques, Raman and infrared spectroscopies, scanning electron microscopy, secondary ion mass spectrometry, and various electrical measurements. The deposition rates of the diamond films were found to increase with the CH{sub 4} concentration, substrate temperature, and/or pressure, and at 1.0% methane, 900{degrees}C, and 35 Torr, the value was measured to be 0.87 {mu}m/hour. The deposition rate for boron doped diamond films, decreases as the diborane concentration increases. The morphologies of the undoped diamond films are strongly related to the deposition parameters. As the temperature increases from 840 to 925 C, the film morphology changes from cubo-octahedron to cubic structures, while as the CH{sub 4} concentration increases from 0.5 to 1.0%, the morphology changes from triangular (111) faces with a weak preferred orientation to square (100) faces. At 2.0% Ch{sub 4} or higher the films become microcrystalline with cauliflower structures. Scanning electron microscopy analyses also demonstrate that selective deposition of undoped diamond films has been successfully achieved using a lift-off process with a resolution of at least 2 {mu}m. The x-ray diffraction and Raman spectra demonstrate that high quality diamond films have been achieved. The concentration of the nondiamond phases in the films grown at 1.0% CH{sub 4} can be estimated from the Raman spectra to be at less than 0.2% and increases with the CH{sub 4} concentration. The Raman spectra of the boron doped diamond films also indicate that the presence of boron tends to suppress the nondiamond phases in the films. Infrared spectra of the undoped diamond films show very weak CH stretch peaks which suggest that the hydrogen concentration is very low.

  8. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition.

    PubMed

    Shih, Huan-Yu; Lin, Ming-Chih; Chen, Liang-Yih; Chen, Miin-Jang

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate.

  9. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  10. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  11. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  12. Magnetic and chemical aspects of Cr-based films grown on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Mosca, D. H.; de Camargo, P. C.; Guimarães, J. L.; Schreiner, W. H.; de Oliveira, A. J. A.; Souza, P. E. N.; Eddrief, M.; Etgens, V. H.

    2005-11-01

    We have investigated the magnetic and chemical properties of very thin films of Cr, CrAs, and arsenized Cr, grown by molecular beam epitaxy on GaAs (001), using x-ray photoemission spectroscopy and SQUID magnetometry. The substrate was kept at 200 °C in an As-rich environment for incoming Cr atoms at the GaAs surface. Gallium segregation and the chemical reactivity between Ga and Cr have negligible contribution to the formation of different thin films. A clear ferromagnetic response, even at room temperature, suggests the formation of a very thin buried interfacial layer during the growth process.

  13. Low temperature magnetoresistance studies in MBE grown topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Guchhait, Samaresh; Sonde, Sushant; Rai, Amritesh; Majumder, Sarmita; Ghosh, Bahniman; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We studied low temperature magnetoresistance in molecular beam epitaxy grown topological insulator Bi2Se3andBi2Te3 thin films. The surface and structural characterization of the grown films showed smooth epitaxial growth on Si(111). The magnetoresistance has been measured at low temperatures (2 - 20 K) with magnetic fields upto 9 T. The full range perpendicular field magnetoresistance has been explained with the original Hikami-Larkin-Nagaoka theory. Altshuler-Aronov theory of localization has been used to understand the full range parallel field magnetoresistance. Various scattering times have been estimated by fitting the magnetoresistance data with the theory. It is shown that the Zeeman effect is not needed to explain the magnetoresistance and has not been considered in the theory either. The angle dependent anisotropic magnetoresistance has also been observed and explained using the above theories. This work is funded by NRI-SWAN.

  14. Scanning Tunneling Microscopy and Transport study of Pb Thin Films Grown on Si Substrates

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    2002-03-01

    By varying the interface structures and thus changing the interface energy, Pb film morphology can be modified from Stranski-Krastanov growth mode in the case of Si(111)7x7, to Frank van der Merwe growth mode when Pb is deposited onto Si(111)6x6-Au surface at room temperature. Different superstructures are observed on the Pb films formed on Au interfaces which can be interpreted as the moiré patterns due to the lattice mismatch between Pb film and Si substrate. The Pb(111) film tends to align with Si(111)1x1 when the thickness is between 1ML to 4ML, but in registry with Si(111)root 3 by root3 orientation when layers are thicker than 6ML. Furthermore, atomic lattices of the buried Si(111)root 3 by root 3 interface can be imaged by STM through conduction electrons in the Pb films because of the anisotropic effective mass in Pb layers. Quantum well (QW) states have been observed in Pb films and QW peak positions change due to different thicknesses and thus different confinement condition of electrons. Transport measurement of Pb thin films grown on Si substrate will be discussed.

  15. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  16. Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    SciTech Connect

    Halliday, Matthew T.; Joly, Alan G.; Hess, Wayne P.; Shluger, AL

    2015-10-22

    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.

  17. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    SciTech Connect

    Salas, E.; Jiménez Riobóo, R. J.; Jiménez-Villacorta, F.; Prieto, C.; Sánchez-Marcos, J.; Muñoz-Martín, A.; Prieto, J. E.; Joco, V.

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  18. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  19. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  20. Surface state conductivity in epitaxially grown Bi1‑x Sb x (111) films

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Kröger, Philipp; Pfnür, Herbert; Tegenkamp, Christoph

    2016-09-01

    Topologically non-trivial surface states were reported first on {{Bi}}1-xSb x bulk crystals. In this study we present transport measurements performed on thin {{Bi}}1-xSb x -films (up to 24 nm thickness) grown epitaxially on Si(111) with various Sb-concentrations (up to x = 0.22). The analysis of the temperature dependency allowed us to distinguish between different transport channels originating from surface and bulk bands as well as impurity states. At temperatures below 30 K the transport is mediated by surface states while at higher temperatures activated transport via bulk channels sets in. The surface state conductivity and bulk band gaps can be tuned by the Sb-concentration and film thickness, respectively. For films as thin as 4 nm the surface state transport is strongly suppressed in contrast to Bi(111) films grown under identical conditions. The impurity channel is of intrinsic origin due to the growth and alloy formation process and turns out to be located at the buried interface.

  1. Magneto-optical properties of Bi-substituted GdIG films grown by LPE

    SciTech Connect

    Ohno, H.; Sasaki, T.; Imamura, M.

    1987-02-01

    Reduction of optical absorption as the amount of Bi in Bi-substituted films is increased is discussed. The amount of Bi in the films grown was controlled by adjusting the supercooling temperature of the solvent, the ratio of PbO to Bi/sub 2/O/sub 3/ in the solvent, the substrate rotation speed and other parameters. Variation in Bi content with respect to Bi-YIG was found at substrate rotation speeds of 84 rpm and 170 rpm. The measurements of the absorption characteristics of Bi-GdIG and Bi-GdGaIG films grown on a GGG substrate indicated that they included a Bi quantity of approximately 0.8 with respect to the Bi-GdIG. A figure of merit of 6.7 deg/dB was obtained for a 21.2 ..mu..m thick Bi-GdIG film at a wavelength of 0.76 ..mu..m.

  2. Surface state conductivity in epitaxially grown Bi1-x Sb x (111) films

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Kröger, Philipp; Pfnür, Herbert; Tegenkamp, Christoph

    2016-09-01

    Topologically non-trivial surface states were reported first on {{Bi}}1-xSb x bulk crystals. In this study we present transport measurements performed on thin {{Bi}}1-xSb x -films (up to 24 nm thickness) grown epitaxially on Si(111) with various Sb-concentrations (up to x = 0.22). The analysis of the temperature dependency allowed us to distinguish between different transport channels originating from surface and bulk bands as well as impurity states. At temperatures below 30 K the transport is mediated by surface states while at higher temperatures activated transport via bulk channels sets in. The surface state conductivity and bulk band gaps can be tuned by the Sb-concentration and film thickness, respectively. For films as thin as 4 nm the surface state transport is strongly suppressed in contrast to Bi(111) films grown under identical conditions. The impurity channel is of intrinsic origin due to the growth and alloy formation process and turns out to be located at the buried interface.

  3. Lithium outdiffusion in LiTi2O4 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mesoraca, S.; Kleibeuker, J. E.; Prasad, B.; MacManus-Driscoll, J. L.; Blamire, M. G.

    2016-11-01

    We report surface chemical cation composition analysis of high quality superconducting LiTi2O4 thin films, grown epitaxially on MgAl2O4 (111) substrates by pulsed laser deposition. The superconducting transition temperature of the films was 13.8 K. Surface chemical composition is crucial for the formation of a good metal/insulator interface for integrating LiTi2O4 into full-oxide spin-filtering devices in order to minimize the formation of structural defects and increase the spin polarisation efficiency. In consideration of this, we report a detailed angle resolved x-ray photoelectron spectroscopy analysis. Results show Li segregation at the surface of LiTi2O4 films. We attribute this process due to outdiffusion of Li toward the outermost LiTi2O4 layers.

  4. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    NASA Astrophysics Data System (ADS)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  5. Electrochemical synthesis and properties of ceria films grown on stainless steel

    NASA Astrophysics Data System (ADS)

    Živković, Lj. S.; Lair, V.; Lupan, O.; Ringuedé, A.

    2011-12-01

    Electrochemical synthesis of ceria films was performed on a stainless steel substrate in view of Solid Oxide Fuel Cells (SOFC) applications. Films were obtained from aqueous nitrate solutions via cathodic deposition method at room temperature. A constant potential value of -0.8 V/(SCE) was applied to reduce the molecular oxygen as hydroxide precursor, leading to a formation of adherent, homogeneous and covering films in 20 min deposition time. Structure, morphology and composition of as-grown coatings were studied by X-ray diffraction, Raman and energy-dispersive X-ray spectroscopy, as well as scanning electron microscopy. Cubic fluorite-type nanostructured ceria of leaf-like particles was synthesized. Thermal annealing (600°C, 1 h) was found to enhance ceria crystallinity.

  6. Zinc blende GaAs films grown on wurtzite GaN/sapphire templates

    SciTech Connect

    Chaldyshev, V.V.; Nielsen, B.; Mendez, E.E.; Musikhin, Yu.G.; Bert, N.A.; Ma, Zh.; Holden, Todd

    2005-03-28

    1-{mu}m-thick zinc-blende GaAs (111) films were grown by molecular-beam epitaxy on wurtzite GaN/sapphire (0001) templates. In spite of a {approx}20% lattice mismatch, epitaxial growth was realized, so that the GaAs films showed good adhesion and their surface had a larger mirror-like area with an average surface roughness of 10 nm. Transmission electron microscopy revealed a flat and abrupt epitaxial GaAs/GaN interface with some nanocavities and a large number of dislocations. Reasonably good crystalline quality of the GaAs films was confirmed by Raman characterization. Spectroscopic ellipsometry showed sharp interference fringes and characteristic parameters in the range of 0.75-5.3 eV. Photoluminescence study revealed extended band tails and dominance of non-radiative carrier recombination.

  7. Quantitative assessment of molecular dynamics-grown amorphous silicon and germanium films on silicon (111)

    NASA Astrophysics Data System (ADS)

    Käshammer, Peter; Borgardt, Nikolai I.; Seibt, Michael; Sinno, Talid

    2016-09-01

    Molecular dynamics based on the empirical Tersoff potential was used to simulate the deposition of amorphous silicon and germanium on silicon(111) at various deposition rates and temperatures. The resulting films were analyzed quantitatively by comparing one-dimensional atomic density profiles to experimental measurements. It is found that the simulations are able to capture well the structural features of the deposited films, which exhibit a gradual loss of crystalline order over several monolayers. A simple mechanistic model is used to demonstrate that the simulation temperature may be used to effectively accelerate the surface relaxation processes during deposition, leading to films that are consistent with experimental samples grown at deposition rates many orders-of-magnitude slower than possible in a molecular dynamics simulation.

  8. Tunnel junctions on as-grown MgB 2 films

    NASA Astrophysics Data System (ADS)

    Ueda, Kenji; Naito, Michio

    2004-08-01

    We prepared MgB 2 films by coevaporation of pure Mg and B metals in an ultra high vacuum chamber. These films have c-axis orientation and a slightly depressed Tc (∼35 K). We fabricated various tunnel junctions (SIN and SIS) using these as-grown MgB 2 films. Of these, Au/MgO/MgB 2 junctions showed typical SIN characteristics with a clear superconducting gap of Δ∼2.5 meV. This gap value may correspond to the smaller gap in the multi-gap scenario. Preliminary MgB 2/Al 2O 3/MgB 2 junctions exhibited SIS characteristics, although not ideal, with a similar value of Δ.

  9. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  10. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    NASA Astrophysics Data System (ADS)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  11. Low-temperature transport properties of multigraphene films grown on the SiC surface by sublimation

    SciTech Connect

    Lebedev, A. A. Agrinskaya, N. V.; Lebedev, S. P.; Mynbaeva, M. G.; Petrov, V. N.; Smirnov, A. N.; Strel'chuk, A. M.; Titkov, A. N.; Shamshur, D. V.

    2011-05-15

    Multigraphene films grown by sublimation on the surface of a semi-insulating 6H-SiC substrate have been studied. It is shown that pregrowth annealing of the substrate in a quasiclosed growth cell improves the structural quality of a multigraphene film. Ohmic contacts to the film have been fabricated, and the Hall effect has been studied at low temperatures. It is found that a 2D electron gas exists in the films. It is concluded that the conductivity of the film is determined by defects existing within the graphene layer or at the interface between the graphene film and a SiC substrate.

  12. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Mayr, Lukas; Stöger-Pollach, Michael; Klötzer, Bernhard; Penner, Simon

    2015-03-01

    Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films ("YSZ", 8 mol% Y2O3) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  13. Characterization of nanostructured iron selenide thin films grown by chemical route at room temperature

    SciTech Connect

    Ubale, A.U.; Sakhare, Y.S.; Belkedkar, M.R.; Singh, Arvind

    2013-02-15

    Highlights: ► Nanostructured FeSe thin films were successfully synthesized at room temperature by CBD method. ► The XRD and EDAX characterization confirms nanocrystalline nature of FeSe. ► The SEM and AFM show microporous morphology with nanorods and nanoplates of FeSe. -- Abstract: Iron selenide thin films have been deposited onto glass substrates by using chemical bath deposition technique. Structural characterization of iron selenide thin films was carried out by means of X-ray diffraction and Fourier transforms infrared spectrum. The morphological characterization of FeSe thin film was carried out using scanning electron microscopy and atomic force microscopy, which revealed porous grain morphology of FeSe with some nano rectangular rods and plates grown on it. The as-deposited thin films exhibited optical band gap energy 2.60 eV. The as deposited FeSe thin films are semiconducting in nature with p-type electrical conductivity. The room temperature electrical resistivity is of the order of 1.1 × 10{sup 5} Ω-cm with activation energy 0.26 and 0.95 eV, respectively, in low and high temperature region.

  14. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  15. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films.

    PubMed

    Chen, Xinxin; Zhu, Xiaojian; Xiao, Wen; Liu, Gang; Feng, Yuan Ping; Ding, Jun; Li, Run-Wei

    2015-04-28

    Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories. PMID:25794422

  16. Heteroepitaxial film silicon solar cell grown on Ni-W foils

    SciTech Connect

    Wee, Sung Hun; Cantoni, Claudia; Fanning, Thomas; Teplin, Charles; Bogorin, Daniela Florentina; Bornstein, Jon; Bowers, Karen; Schroeter,; Hasoon, Falah; Branz, Howard; Paranthaman, Mariappan Parans; Goyal, Amit

    2013-01-01

    Today, silicon-wafer-based technology dominates the photovoltaic (PV) industry because it enables high efficiency, is produced from abundant, non-toxic materials and is proven in the PV marketplace.[1] However, costs associated with the wafer itself limit ultimate cost reductions.[1,2] PV based on absorber layers of crystalline Si with only 2 to 10 m thickness are a promising route to reduce these costs, while maintaining efficiencies above 15%.[3-5] With the goal of fabricating low-cost film crystalline Si (c-Si), recent research has explored wafer peeling,[6,7] crystallization of amorphous silicon films on glass,[4,8-10] and seed and epitaxy approaches.[3,5,11] In this third approach, one initially forms a seed layer that establishes the grain size and crystalline order. The Si layer is then grown heteroepitaxially on the seed layer, so that it replicates the seed crystal structure. In all of these film c-Si approaches, the critical challenge is to grow c-Si with adequate material quality: specifically, the diffusion length (LD) must be at least three times the film thickness.[12] In polycrystalline Si films, grain boundaries (GBs) are recombination-active and significantly reduce LD. This adverse effects of GBs motivates research into growth of large grained c-Si [13,14] (for a low density of GBs) and biaxially-textured c-Si [11] (for low-angle GBs).

  17. Epitaxially-Grown Europium-Doped Barium Titanate Films on Various Substrates for Red Emission.

    PubMed

    Hwang, Kyu-Seog; Jeon, Young-Sun; Lee, Young-Hwan; Hwangbo, Seung; Kim, Jin-Tae

    2015-10-01

    Intense red photoluminescence under ultraviolet excitation was observed in epitaxially-grown europium-doped perovskite BaTiO3 thin films deposited on the SrTiO3 (100), MgO (100) and sapphire (0001) substrates using metal carboxylate complexes. Precursor films prepared by spin coating were pyrolyzed at 250 °C for 120 min in argon, followed by final annealing at 850 °C for 60 min in argon. Crystallinity and epitaxy of the films were analyzed by X-ray diffraction θ-2θ scan and pole-figure analysis. Photoluminescence of the thin films at room temperature under 254 nm was confirmed by a fluorescent spectrophotometer. The obtained epitaxial BaTiO3 thin films on the SrTiO3 (100) and MgO (100) substrates show an intense red-emission lines at 615 nm corresponding to the (5)D0 --> (7)F2 transitions on Eu(3+) with broad bands at 595 and 650 nm.

  18. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  19. Visible and infrared emission from GaN:Er thin films grown by sputtering

    SciTech Connect

    Chen, H.; Gurumurugan, K.; Kordesch, M.E.; Jadwisienczak, W.M.; Lozykowski, H.J.

    2000-07-01

    Erbium-doped films were grown on sapphire and silicon substrates by reactive sputtering, with different Er concentrations in the film. GaN films deposited at 800 K were determined to be polycrystalline by x-ray diffraction analysis, and retained their polycrystalline structure after annealing in nitrogen at 1,250 K. The Er-doped films showed optical transmission beginning at about 360 nm, and the Er dose and film purity were determined with Rutherford backscattering spectroscopy. Photoluminescence and cathodoluminescence spectroscopy showed sharp emission lines corresponding to Er{sup 3+} intra 4f{sup n} shell transitions over the range from 9--300 K. At above-bandgap optical and electron excitation, the {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} transition dominate, and are superposed on the yellow band emission. The infrared emission line at 1,543 nm, corresponding to the Er {sup 4}I{sub 13/2} to {sup 4}I{sub 5/2} transition is also observed.

  20. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  1. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  2. Postdeposition relaxation of internal stress in sputter-grown thin films caused by ion bombardment

    NASA Astrophysics Data System (ADS)

    Nowak, R.; Yoshida, F.; Morgiel, J.; Major, B.

    1999-01-01

    A hitherto unreported postdeposition method of relaxing ultrahigh internal stresses prevailing in sputter-grown thin films is the subject of the present research. A significant reduction of stress has been confirmed by x-ray diffraction and independent substrate deflection measurements for HfN films treated with Si+ ions of various energies (450 keV, 500 keV, and 1.1 MeV). The particular sequence of the performed experiments has allowed us to deduce the most likely scenario of the resulting stress relaxation. We argue that the observed reduction of internal stress had been caused by structural changes, namely the transport of interstitial defects occurring within the thermal spikes induced by ion bombardment and an increase in vacancy concentration. Simple theoretical considerations proved that the existence of an amorphous silicon interlayer formed right under the HfN film during the bombardment cannot be the cause of the observed stress relaxation. The employed Auger electron spectroscopy, transmission electron microscopy, and x-ray diffraction technique confirmed that the ion bombardment did not seriously affect either the composition, dislocation structure, or texture of nitride films. The relative softening of HfN after ion bombardment was found to be caused by amorphization of the substrate directly under the film. The penetration of incident particles deeper than predicted by a numerical simulation was attributed to a distinct crystallographic texture determined experimentally for HfN films. It was confirmed that modification with Si+ ions does not affect the resistivity of HfN films.

  3. Electrical conductivity of the films grown by ballistic deposition of rodlike particles

    NASA Astrophysics Data System (ADS)

    Sharafedini, Elham; Hamzehpour, Hossein; Masoudi, S. Farhad; Sahimi, Muhammad

    2015-12-01

    Using extensive Monte Carlo simulations, we study the growth of films by ballistic deposition of rodlike particles with various sizes on a one-dimensional substrate. Particles are deposited over an initially flat substrate, which leads to the formation of a porous film with rough surface. The surface width and the corresponding scaling exponents α and β and, hence, the dynamic exponent z are calculated. Also studied is the time evolution of the porosity of the material and its dependence on the particles' size. The frequency-dependent electrical conductivity of the film and its dependence on the size of the particles and the porosity are also studied. The morphology of the films, as characterized by its surface width, follows three types of evolution before reaching its ultimate structure. At short times, film growth is close to the random deposition model with the growth exponent β1 ≈ 1/2. At intermediate times, the surface width grows more slowly with a growth exponent of β2 ≈ 1/3. Finally, at long times, the width saturates and is characterized by a roughness exponent α ≈ 1/2. The results also indicate that even if the film is grown with particles of various sizes, the universality class of the model remains unchanged. The films' porosity grows rapidly with the time, before eventually saturating. As the size of the particles increases, the saturation porosity ultimately attains a value of ϕ s = 0.5 . The frequency-dependent effective conductivity σe is a decreasing function of the deposited particles' size, as well as the porosity. The dc conductivity depends on the particle size through a power law. As is the case with a wide variety of disordered materials, the effective conductivity depends on the frequency through a power law.

  4. Continuous spin reorientation transition in epitaxially grown antiferromagnetic NiO thin films

    SciTech Connect

    Li, J.; Arenholz, E.; Meng, Y.; Tan, A.; Park, J.; Jin, E.; Son, H.; Wu, J.; Jenkins, C. A.; Scholl, A.; Hwang, Chanyong; Qiu, Z. Q.

    2011-03-01

    Fe/NiO/MgO/Ag(001) films were grown epitaxially, and the Fe and NiO spin orientations were determined using x-ray magnetic dichroism. We find that the NiO spins are aligned perpendicularly to the in-plane Fe spins. Analyzing both the in-plane and out-of-plane spin components of the NiO layer, we demonstrate unambiguously that the antiferromagnetic NiO spins undergo a continuous spin reorientation transition from the in-plane to out-of-plane directions with increasing of the MgO thickness.

  5. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  6. Lutetium-doped EuO films grown by molecular-beam epitaxy

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Hollaender, B.; Schubert, J.; Shen, K. M.; Mannhart, J.; Schlom, D. G.

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  7. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Buršík, J.; Kužel, R.; Knížek, K.; Drbohlav, I.

    2013-07-01

    Thin films of Ba2Zn2Fe12O22 (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO3(1 1 1) (ST) single crystal substrates using epitaxial SrFe12O19 (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO3 substrate and both hexaferrite phases.

  8. Semiconductor Film Grown on a Circular Substrate: Predictive Modeling of Lattice-Misfit Stresses

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Nicolics, J.; Khatibi, G.; Lederer, M.

    2016-03-01

    An effective and physically meaningful analytical predictive model is developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed in the analysis. The addressed stresses include the interfacial shearing stress, responsible for the occurrence and growth of dislocations, as well as for possible delaminations and the cohesive strength of a buffering material, if any. Normal radial and circumferential (tangential) stresses acting in the film cross-sections and responsible for its short- and long-term strength (fracture toughness) are also addressed. The analysis is geared to the GaN technology.

  9. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.

    PubMed

    Wang, Yu; Zheng, Yi; Xu, Xiangfan; Dubuisson, Emilie; Bao, Qiaoliang; Lu, Jiong; Loh, Kian Ping

    2011-12-27

    The separation of chemical vapor deposited (CVD) graphene from the metallic catalyst it is grown on, followed by a subsequent transfer to a dielectric substrate, is currently the adopted method for device fabrication. Most transfer techniques use a chemical etching method to dissolve the metal catalysts, thus imposing high material cost in large-scale fabrication. Here, we demonstrate a highly efficient, nondestructive electrochemical route for the delamination of CVD graphene film from metal surfaces. The electrochemically delaminated graphene films are continuous over 95% of the surface and exhibit increasingly better electronic quality after several growth cycles on the reused copper catalyst, due to the suppression of quasi-periodical nanoripples induced by copper step edges. The electrochemical delamination process affords the advantages of high efficiency, low-cost recyclability, and minimal use of etching chemicals.

  10. In situ-grown hexagonal silicon nanocrystals in silicon carbide-based films

    PubMed Central

    2012-01-01

    Silicon nanocrystals (Si-NCs) were grown in situ in carbide-based film using a plasma-enhanced chemical vapor deposition method. High-resolution transmission electron microscopy indicates that these nanocrystallites were embedded in an amorphous silicon carbide-based matrix. Electron diffraction pattern analyses revealed that the crystallites have a hexagonal-wurtzite silicon phase structure. The peak position of the photoluminescence can be controlled within a wavelength of 500 to 650 nm by adjusting the flow rate of the silane gas. We suggest that this phenomenon is attributed to the quantum confinement effect of hexagonal Si-NCs in silicon carbide-based film with a change in the sizes and emission states of the NCs. PMID:23171576

  11. Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film

    SciTech Connect

    Yousefi, Ramin; Kamaluddin, Burhanuddin; Ghoranneviss, Mahmood; Hajakbari, Fatemeh

    2009-07-07

    In this paper, we report ZnO nanowires grown on AlN thin film deposited on glass as substrate by physical vapour deposition. The temperature of substrates was kept between 600 deg. C and 500 deg. C during the growth. The typical average diameters of the obtained nanowires on substrate at 600 deg. C and 500 deg. C was about 57 nm and 22 nm, respectively with several micrometers in lengths. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into ZnO nanowires for sample at high temperature zone. In the photoluminescence spectra two emission bands appeared, one related to ultraviolet emission with a strong peak at 380-382 nm, and another related to deep level emission with a weak peak at 510 nm.

  12. Structural evolution of platinum thin films grown by atomic layer deposition

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Bent, Stacey; Johnson, Richard; Clemens, Bruce; Brennan, Sean; Toney, Mike F.

    2014-08-14

    The structural properties of Pt films grown by atomic layer deposition (ALD) are investigated with synchrotron based x-ray scattering and x-ray diffraction techniques. Using grazing incidence small angle scattering, we measure the lateral growth rate of the Pt islands to be 1.0 Å/cycle. High resolution x-ray diffraction reveals that the in-plane strain of the Pt lattice undergoes a transition from compressive strain to tensile strain when the individual islands coalescence into a continuous film. This transition to tensile strain is attributed to the lateral expansion that occurs when neighboring islands merge to reduce their surface energy. Using 2D grazing incidence x-ray diffraction, we show that the lattice orientation becomes more (111) oriented during deposition, with a sharp transition occurring during coalescence. Pt ALD performed at a lower deposition temperature (250 °C) is shown to result in significantly more randomly oriented grains.

  13. Chemical structure of microcrystalline CdTe films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Hernández-Calderón, I.; Jiménez-Sandoval, S.; Peña, J. L.; Sailer, V.

    1990-01-01

    We have applied X-ray photoemission and Auger spectroscopy techniques to the study of the stoichiometric properties of CdTe thin films grown by RF sputtering. The microcrystalline films were deposited on glass substrates held at temperatures between 50 and 200°C. They contain a mixture of the cubic (zinc-blende) and hexagonal (wurtzite) phases which are nearly stoichiometric. By using bulk and surface sensitive photoemission geometries it is shown that a tellurium oxide overlayer is always formed after exposure to air. A simple calculation shows that this overlayer is at most 10 Å thick. Cadmium seems to be insensitive to the presence of oxygen, as demonstrated by the absence of shifted Cd peaks in the X-ray spectra. It is shown that the low kinetic energy features in the Auger spectra ( <100 eV) are very sensitive to the oxide overlayer and contamination.

  14. Chemical structure of microcrystalline CdTe films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Hernández-Calderón, I.; Jiménez-Sandoval, S.; Peña, J. L.; Sailer, V.

    1988-01-01

    We have applied X-ray photoemission and Auger spectroscopy techniques to the study of the stoichiometric properties of CdTe thin films grown by RF sputtering. The microcrystalline films were deposited on glass substrates held at temperatures between 50 and 200°C. They contain a mixture of the cubic (zinc-blende) and hexagonal (wurtzite) phases which are nearly stoichiometric. By using bulk and surface sensitive photoemission geometries it is shown that a tellurium oxide overlayer is always formed after exposure to air. A simple calculation shows that this overlayer is at most 10 Å thick. Cadmium seems to be insensitive to the presence of oxygen, as demonstrated by the absence of shifted Cd peaks in the X-ray spectra. It is shown that the low kinetic energy features in the Auger spectra ( <100 eV) are very sensitive to the oxide overlayer and contamination.

  15. Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles.

    PubMed

    Lopez-Santos, C; Alvarez, R; Garcia-Valenzuela, A; Rico, V; Loeffler, M; Gonzalez-Elipe, A R; Palmero, A

    2016-09-30

    Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2.

  16. Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles

    NASA Astrophysics Data System (ADS)

    Lopez-Santos, C.; Alvarez, R.; Garcia-Valenzuela, A.; Rico, V.; Loeffler, M.; Gonzalez-Elipe, A. R.; Palmero, A.

    2016-09-01

    Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2.

  17. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.

    PubMed

    Wang, Yu; Zheng, Yi; Xu, Xiangfan; Dubuisson, Emilie; Bao, Qiaoliang; Lu, Jiong; Loh, Kian Ping

    2011-12-27

    The separation of chemical vapor deposited (CVD) graphene from the metallic catalyst it is grown on, followed by a subsequent transfer to a dielectric substrate, is currently the adopted method for device fabrication. Most transfer techniques use a chemical etching method to dissolve the metal catalysts, thus imposing high material cost in large-scale fabrication. Here, we demonstrate a highly efficient, nondestructive electrochemical route for the delamination of CVD graphene film from metal surfaces. The electrochemically delaminated graphene films are continuous over 95% of the surface and exhibit increasingly better electronic quality after several growth cycles on the reused copper catalyst, due to the suppression of quasi-periodical nanoripples induced by copper step edges. The electrochemical delamination process affords the advantages of high efficiency, low-cost recyclability, and minimal use of etching chemicals. PMID:22034835

  18. Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles.

    PubMed

    Lopez-Santos, C; Alvarez, R; Garcia-Valenzuela, A; Rico, V; Loeffler, M; Gonzalez-Elipe, A R; Palmero, A

    2016-09-30

    Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2. PMID:27535651

  19. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  20. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2015-12-01

    Titanium doped tungsten oxide (Ti:WO3) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O2 atmosphere. Ti:WO3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10-3-5.0 × 10-3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm2) and tungsten (3 W/cm2) were kept constant. Ti:WO3 films deposited at an oxygen pressure of 5 × 10-3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm2/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: -22.01 mC/cm2, Qa: 17.72 mC/cm2), reversibility (80%) and methylene blue decomposition rate (-1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO3 films.

  1. Crystal structure and energy gap of CdTe thin films grown by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Jiménez-Sandoval, S.; Meléndez-Lira, M.; Hernández-Calderón, I.

    1992-11-01

    We have investigated the influence of structural characteristics on the band gap of rf sputtered CdTe thin films grown at substrate temperatures in the 69-232 °C range. The results of scanning electron microscopy and x-ray diffraction studies indicated that the films are a polycrystalline mixture of cubic and hexagonal phases with preferential growth of columnar type parallel to the cubic [111] direction. The band gap of the films was obtained from photoreflectance spectroscopy experiments carried out at room temperature. It was found that the films had a band gap larger than that of CdTe single crystals. This result has been correlated with the existence of lattice strain, quantum size effects, and hexagonal phase regions. By using theoretical models it was possible to estimate the contribution to the band gap shift due to strain and quantum size effects obtaining results in good agreement with the experiment. The study of annealed samples indicated that the effects of thermal treatments were to promote the change of the hexagonal phase to cubic, increase grain size, and shift the band gap towards lower energies reducing its difference with respect to that of single crystals.

  2. Magnetic anisotropy and its microstructural origin in epitaxially grown SmCo thin films.

    SciTech Connect

    Benaissa, M.

    1998-04-15

    Microstructural features and magnetic behavior of epitaxially grown SmCo thin films with very high in-plane anisotropy are presented. Transmission electron microscopy was used to characterize the microstructure while magnetic measurements were performed using dc and SQUID magnetometers. Two substrate orientations were studied, i.e., MgO(100)/Cr(100)/SmCo(11{bar 2}0) and MgO(110)/Cr(211)/SmCo(1{bar 1}00). In the former, the SmCo(11{bar 2}0) film shows a bicrystalline microstructure, whereas in the latter, a uniaxial one is observed. Both microstructure consist of grains with a mixture of SmCo{sub 3} , Sm{sub 2}Co{sub 7} and SmCo{sub 3} polytypoids. A deviation from the c-axes was observed in the in-plane anisotropy of the SmCo(11{bar 2}0) thin film. A strong exchange interaction between the grains would, in principle, explain the observed deviation. On the other hand, both SmCo(11{bar 2}0) and (1{bar 1}00) thin films show very high coercivity values with pinning-type characteristics. Possible coercivity mechanisms related to intergranular exchange interactions and local variation in magnetocrystalline anisotropy constants are discussed.

  3. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  4. Synthesis and characterization of hexagonal ferrite Sr1.8Sm0.2Co2Ni1.50Fe10.50O22/PST thin films for high frequency application

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Ashiq, Muhammad Naeem; Asif Iqbal, M.; Karamat, Nazia; Azhar Khan, M.; Sadiq, Imran; Ijaz, Sana; Shakir, Imran

    2015-11-01

    Y-type hexagonal ferrite (Sr1.8Sm0.2Co2Ni1.50 Fe10.50O22) was prepared by a normal microemulsion route. The ferrite/polymer composites thin films are formed at different ferrite ratios in pure polystyrene matrix. The X-ray diffraction analysis shows broad peak at low angles which is due to the PST and the peaks for Y-type ferrite are also observed in composite samples. The peaks become more intense and show less broadening with increasing concentration of ferrite which suggests that crystallinity is improved with the addition of ferrite. DC resistivity of the composites samples is lower than that of the pure PST and decreases by increasing ferrite filler into the polymer. This decrease of resistivity is mainly due to the addition of comparatively less resistive ferrite into the highly insulating polymer matrix of PST. The observed increase in the dielectric constant (permittivity) with increasing concentration ratio of ferrites is mainly due to the electron exchange between Fe2+↔Fe3++e- which consequently results in enhancement of electric polarization as well as dielectric constant. The existence of resonances peaks in the dielectric loss tangent spectra is due to the fact when the external applied frequency becomes equal to the jumping frequency of electrons between Fe2+ and Fe3+. The increasing behavior of the dielectric constant, dielectric loss and AC conductivity with increasing ferrite ratio in PST matrix proposes their versatile use in different technological applications especially for electromagnetic shielding.

  5. Electronic properties of high-temperature superconducting thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, Daniel; Cloetta, D.; Margaritondo, Giorgio; Pavuna, Davor

    2002-11-01

    We use a pulsed laser deposition (PLD) setup to grow ultra-thin films of high temperature superconductors (HTSC) and transfer them in-situ into a photoemission chamber. Photoemission measurements on such films allow us to study non-cleavable materials, but can also give insights into aspects never measured before, like the influence of strain on the low energy electronic structure. Systematic studies of many different materials grown as films showed that Bi2Sr2CaCu2O8+x, Bi2Sr2Cu1O6+x, Bi2Sr2Ca2Cu3O10+x and La2-xSrxCuO4 films exhibit a conductor-like Fermi edge, but materials containing chains (such as YBa2Cu3O7-x) are prone to very rapid surface degradation, possibly related to critical oxygen loss at the surface. Among HTSC materials, La2-xSrxCuO4 is extremely interesting because of its rather simple structure and the fact that its critical temperature Tc can be enhanced by epitaxial strain. Here we present our first high resolution angular resolved photoemission spectroscopy (ARPES) results on 8 unit-cell thin La2-xSrxCuO4 films on SrLaAlO4 [001] substrates. Due to the lattice mismatch, such films are compressed in the copper oxygen planes and expanded in the c-axis direction. Results show a surprisingly modified Fermi surface compared to the one of non-strained samples.

  6. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Ott, J.; Mäkelä, M.; Arsenovich, T.; Gädda, A.; Peltola, T.; Tuovinen, E.; Luukka, P.; Tuominen, E.; Junkes, A.; Niinistö, J.; Ritala, M.

    2016-09-01

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al2O3 field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO2, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al2O3 field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al2O3 provides equally low effective surface recombination velocity as thermally oxidized Si/SiO2 interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few μm of physical size required in ultra-fine pitch pixel detectors.

  7. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    DOE PAGESBeta

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; Kisslinger, K.; and Wang, G. -C.

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the firstmore » report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.« less

  8. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111)

    SciTech Connect

    Davydenko, A. V. Kozlov, A. G.; Chebotkevich, L. A.

    2014-10-14

    We compared magnetic properties of epitaxial Co(111) films grown on microstep- and macrostep-bunched vicinal Si(111) substrates. A surface of the microstep-bunched Si(111) substrate represents regular array of step-bunches with height of 1.7 nm divided from each other by flat microterraces with a width of 34 nm. A surface of the macrostep-bunched Si(111) substrate is constituted by macrostep bunches with a height of 75–85 nm divided by atomically flat macroterraces. The average sum width of a macrostep bunch and a macroterrace is 2.3 μm. While in-plane magnetic anisotropy was spatially uniform in Co(111) films grown on the microstep-bunched Si(111), periodic macromodulation of the topography of the Si(111) substrate induced spatial modulation of in-plane magnetic anisotropy in Co(111) film grown on the macrostep-bunched Si(111) surface. The energy of uniaxial magnetic anisotropy in the areas of the Co(111) film deposited on the Si(111) macrosteps was higher more than by the order of magnitude than the energy of the magnetic anisotropy in the areas grown on macroterraces. Magnetization reversal in the areas with different energy of the magnetic anisotropy occurred in different magnetic fields. We showed the possibility of obtaining high density of domain walls in Co(111) film grown on the macrostep-bunched Si(111) by tuning the spatial step density of the Si(111) substrate.

  9. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Wang, K.; Liu, Yanwen; Wang, Weiyi; Meyer, N.; Bao, L. H.; He, L.; Lang, M. R.; Chen, Z. G.; Che, X. Y.; Post, K.; Zou, J.; Basov, D. N.; Wang, K. L.; Xiu, Faxian

    2013-07-01

    We report high-quality topological insulator Bi2Te3 thin films grown on muscovite mica substrates by molecular beam epitaxy. The topographic and structural analysis revealed that the Bi2Te3 thin films exhibited atomically smooth terraces over a large area and a high crystalline quality. Both weak antilocalization effect and quantum oscillations were observed in the magnetotransport of the relatively thin samples. A phase coherence length of 277 nm for a 6 nm thin film and a high surface mobility of 0.58 m2 V-1 s-1 for a 4 nm thin film were achieved. These results confirm that the thin films grown on mica are of high quality.

  10. Growth mechanism of CuZnInSe2 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, Ya Hsin; Yang, Chu Shou; Wu, Chia Hsing; Chiu, Jai Wei; Yang, Min De; Wu, Chih-Hung

    2013-09-01

    CuZnInSe2 (CZIS) has potential application in solar cell for absorption layer, and give an advantage to change the band gap from CuInSe2 (1.02 eV) to ZnSe (2.67 eV). Using molecular beam epitaxy technology, the CZIS thin films were grown via CuInSe (CIS) and ZnSe base. In the case of CIS, thin films were grown on Mo-coated soda lime glass with various zinc flux. CIS was transformed into chalcopyrite and sphalerite coexisting CZIS easily but it is difficult to transform into the pure sphalerite CZIS. Zn/(Zn+In+Cu) ratio has limited to approximate 36 at% and the excess-Zn played a catalyst role. In the case of ZnSe base, which was grown on GaAs (001), various In and Cu flux defined as the TIn series and TCu series, respectively. There are four types of compound in the TIn series and TCu series, including ZnSe, InxSey, ZnIn2Se4 (ZIS) and CZIS. In the TIn series under the lowest In and Cu flux, selenium (Se) were randomly combined with cations to form the CZIS. When TIn is increased in this moment, the CZIS was transformed into ZIS. In the TCu series, CZIS demonstrated via In-rich ZIS (Zn(In, Cu)Se) and InxSey base ((Zn, Cu)InSe). It is chalcopyrite and sphalerite coexisting structure in the medium TCu region. In the high TCu region, it is transformed into the Zn-poor and Cu-rich CZIS.

  11. Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Roffi, Teuku Muhammad; Nozaki, Shinji; Uchida, Kazuo

    2016-10-01

    Nickel oxide (NiO) thin films were grown by atmospheric-pressure metal organic chemical vapor deposition (APMOCVD). Growth was carried out using various growth parameters, including the growth temperature, the input precursor (O2/Ni) ratio, and the type of substrate material. Effects of the growth parameters on the structural and electrical properties of the films were investigated. X-ray diffraction analysis revealed that the crystal structure and quality were strongly affected by the growth temperature and the type of substrate material. At an optimized growth temperature, single-crystalline NiO films were grown on MgO(100) and MgO(111) substrates in a cube-on-cube orientation relationship, while on an Al2O3(001) substrate, the film was grown in the NiO[111] direction. The use of MgO substrates successfully suppressed the formation of twin defects, which have been frequently reported in the growth of NiO. The difference in the formation of the twin defects on MgO and Al2O3 substrates was discussed. It was observed that the resistivity dependence on crystal quality was affected by the choice of substrate material. The effects of the precursor ratio on the transmittance and resistivity of the films were also investigated. Improved transparency in the visible wavelength region and higher conductivity were found in films grown with higher O2/Ni ratios.

  12. Tribological and Adhesion Properties of CVD Diamond Films Grown on Steel with a Cr-N Interlayer

    NASA Astrophysics Data System (ADS)

    Laikhtman, A.; Rapoport, L.; Perfilyev, V.; Moshkovich, A.; Akhvlediani, R.; Hoffman, A.

    2009-07-01

    In the present work we investigate friction and adhesion properties of microcrystalline diamond films grown on steel substrates with a Cr-N interlayer prepared at 500° C and 800° C. Scratch tests were performed at indentation loads of 1-4 N and sliding velocity of 0.08 mm/s. The friction coefficient and wear loss were assessed. The diamond film structure and composition are analyzed using different microscopic and spectroscopic techniques. The effect of the diamond structure on adhesion of the deposited diamond films to the substrates, as well as the friction coefficient and wear were evaluated. Continuous, good crystalline quality diamond films with a similar phase content and surface morphology were obtained on both, high and low temperature nitridated substrates, provide similar tribological properties of films. Thus, the temperature of interlayer preparation does not affect the friction coefficient and the size of wear profiles. Substantially different results were obtained when evaluating the adhesion properties of diamond films to the steel substrate. It was found that the diamond film deposited on the Cr-N interlayer prepared at 800° C shows the best adhesion. The diamond film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. Weak adhesion was observed for the diamond film grown on the Cr-N interlayer prepared at a lower temperature (500° C) for which cracking and delamination of the films took place at loads of 1 N-1.2 N.

  13. Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature

    SciTech Connect

    Lu, J. G.; Bie, X.; Wang, Y. P.; Gong, L.; Ye, Z. Z.

    2011-05-15

    Bilayer films consisting of Ga-doped ZnO (GZO) and Cu layers were grown at room temperature by magnetron sputtering. The structural, electrical, and optical properties of GZO/Cu bilayer films were investigated in detail. The crystallinity and transparent-conductive properties of the films were correlated with the Cu layer thickness. The GZO/Cu bilayer film with the Cu layer thickness of 7.8 nm exhibited a low resistivity of 7.6x10{sup -5} {Omega} cm and an average visible transmittance of 74%. The reflectance was up to 65% in the near-infrared region for this film. The transparent conductive and near-infrared reflective GZO/Cu bilayer films could be readily deposited at room temperature. The GZO/Cu bilayer films were thermally stable when annealed at temperatures as high as 500 deg. C.

  14. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Hojabri, Alireza

    2016-09-01

    Zirconium oxide thin films were grown successfully by thermal annealing of zirconium thin films deposited on quartz and silicon substrates by direct current magnetron sputtering technique. The structural and optical properties in relation to thermal annealing times were investigated. The X-ray diffraction patterns revealed that structure of films changes from amorphous to crystalline by increase of annealing times in range 60-240 min. The composition of films was determined by Rutherford back scattering spectroscopy. Atomic force microscopy results exhibited that surface morphology and roughness of films depend on the annealing time. The refractive index of the films was calculated using Swanepoel's method. The optical band gap energy of annealed films decreased from 5.50 to 5.34 eV with increasing thermal annealing time.

  15. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    NASA Astrophysics Data System (ADS)

    Chason, E.; Karlson, M.; Colin, J. J.; Magnfält, D.; Sarakinos, K.; Abadias, G.

    2016-04-01

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  16. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  17. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  18. Structural and Electronic Properties of GaN Films Grown on Sapphire.

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Botchkarev, A.; Kim, W.; Aktas, O.; Salvador, A.; Sverdlov, B.; Morkoc, H.; Tsen, S.-C. Y.; Smith, D. J.

    1996-03-01

    The structural characteristics of GaN films grown on sapphire substrates by molecular beam epitaxy (MBE) have been investigated using high-resolution synchrotron x-ray diffraction and electron microscopy, and compared to their electrical and optical properties. We find remarkable correspondence between the in-plane structural order (coherence length and mosaic spread) and the electrical and optical properties. Contrary to common belief, our observations show unequivocally that the out-of-plane structural features, which are considerably better developed than the in-plane counterparts, can not be used for determining the material quality with respect to their optical and electrical activity. In particular, the (00l) mosaic spread is not a good indicator of film quality. The structural correlations of the GaN film, the AlN buffer laryer and the sapphire substrate are also explored and compared to their growth conditions. The issue of in-plane stacking fault (hcp - fcc) is also addressed using x-ray scans along the (10l) direction. Work supported by the US Department of Energy, Division of Materials Science under contract No. DEAC0276CH00016, by NSF Grant DMR-9314326, by the Office of Naval Research with M. Yoder and Dr. Y. S. Park as monitors, and by the Air Force Office of Scientific Research with Dr. G. L. Witt as the monitor. H. M. was funded by AFOSR under a URRP program.

  19. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.

    PubMed

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  20. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmgrown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600 °C has been studied. x-ray diffraction (XRD) measurements revealed an (011) out-of-plane textured growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  1. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    PubMed

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  2. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    PubMed

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications. PMID:27420568

  3. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  4. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix Till

    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic alpha-phase to the beta-phase occurs at 313 K. The magnetic state of the beta-phase has remained controversial. A second order transition to the paramagnetic gamma-phase takes place at 398 K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of alpha- and beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3 is demonstrated to be effective for patterning MnAs. We show

  5. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  6. Ultrafast structural dynamics of LaVO3 thin films grown by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Lapano, Jason; Stoica, Vladimir; Zhang, Lei; Zhang, Hai-Tian; Akamatsu, Hirofumi; Eaton, Craig; Gopalan, Venkatraman; Freeland, John; Wen, Haidan; Engel-Herbert, Roman

    LaVO3, with a partially full d-shell is expected to be metallic, but due to electron-electron interactions a gap emerges and the ground state is a Mott insulator. Such effects are a strong function of the bonding geometry, and particularly the V-O-V bond angle. Controlling these structural effects on the ultrafast time scale can lead to control over the underlying electronic ground state. Here we report the ultrafast structural dynamics of 25 and 50 nm thick LaVO3 thin films grown by the hybrid molecular beam epitaxy technique on SrTiO3 when excited across the bandgap by 800 nm light. Using time-resolved x-ray diffraction on the 100 ps time scale at Sector 7 of the Advanced Photon Source, we directly measured the structural changes with atomic accuracy by monitoring integer Bragg diffraction peaks and find a large out-of-plane strain of 0.18% upon optical excitation; the recovery time is ~1 ns for the 25 nm film and ~2 ns for the 50 nm film, consistent with the thermal transport from the film to the substrate. Further, we will discuss the response of the oxygen octahedral rotation patterns indicated by changes of the half-order diffraction peaks. Understanding such ultrafast structural deformation is important for optimizing optical excitations to create new metastable phases starting from a Mott insulator. This work was supported by the Department of Energy under Grant DE-SC0012375, and DE-AC02-06CH11357.

  7. Optical properties of metal oxynitride thin films grown with atmospheric plasma deposition

    NASA Astrophysics Data System (ADS)

    Hovish, Michael Q.; Dauskardt, Reinhold H.

    2016-10-01

    Thin films of tantalum oxynitride (TaO x N y ) and titanium oxynitride (TiO x N y ) are deposited using atmospheric plasma deposition and a suite of optical properties are reported. Tantalum and titanium ethoxide are introduced into the afterglow of a radio-frequency capacitively coupled plasma, facilitating the growth of oxynitride films on silicon and polycarbonate at temperatures below 180 °C. The plasma power and nitrogen flow within the plasma are varied between 60 and 120 W and between 0.1 and 0.3 LPM respectively. We use spectroscopic ellipsometry to show that the optical properties of the metal oxynitride films grown in this study are comparable to those synthesized with sol-gel methods. Measurement of both the extinction coefficient and the transmission on polycarbonate substrates indicates good transparency in the visible wavelengths of light. Additionally, the refractive index increases when increasing the number of reactive nitrogen species within the discharge. We use x-ray photoelectron spectroscopy to correlate the higher indexes observed at large secondary gas flows to the presence of metal oxynitride bonding. Single layer anti-reflection coatings are deposited on silicon, with a five-fold and seven-fold reduction in reflection for TaO x N y and TiO x N y coatings, respectively. In total, we have found that the modulation of nitrogen concentration within the plasma discharge results in good control over optical constants. In addition, we observe similarities between films deposited with atmospheric plasma and those reported for sol-gel, indicating an alternative processing route where solution chemistries are currently applied.

  8. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    SciTech Connect

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-11-26

    We report the highest mobility values above 2000 cm{sup 2}/Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  9. Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Ye-Liang; Que, Yan-De; Gao, Hong-Jun

    2015-07-01

    An efficient method based on atomic force microscopy (AFM) has been developed to characterize silicon intercalated graphene grown on single crystalline Ir(111) thin films. By combining analyses of the phase image, force curves, and friction-force mapping, acquired by AFM, the locations and coverages of graphene and silicon oxide can be well distinguished. We can also demonstrate that silicon atoms have been successfully intercalated between graphene and the substrate. Our method gives an efficient and simple way to characterize graphene samples with interacted atoms and is very helpful for future applications of graphene-based devices in the modern microelectronic industry, where AFM is already widely used. Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600 and 2011CB932700), the National Natural Science Foundation of China (Grant Nos. 61222112, 61390501 and 51325204), and Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  10. Synthesis of nanocrystalline Cu2ZnSnS4 thin films grown by the spray-pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Singh, Joginder; Rajaram, P.

    2015-08-01

    Spray pyrolysis was used to deposit Cu2ZnSnS4 (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  11. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  12. Characteristics of Fluorine-doped tin oxide thin films grown by Streaming process for Electrodeless Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Khalilzadeh-Rezaie, Farnood; Cleary, Justin W.; Oladeji, Isaiah O.; Suu, Koukou; Schoenfeld, Winston V.; Peale, Robert E.; Awodugba, Ayodeji O.

    2015-04-01

    This work investigated the characteristics of SnO2: F films grown by Streaming Process for Electrodeless Electrochemical Deposition (SPEED). Stannic chloride (SnCl4) and ammonium fluoride (NH4 F) was dissolved in a mixture of deionized water and organic solvents. The preheated substrate temperature was varied between 450 and 530° C. High quality SnO2: F films were grown at all the substrate temperatures studied. The typical film thickness was 250 nm. XRD shows that the grown films are polycrystalline SnO2 with a tetragonal crystal structure. The average optical transmission of the films was around 93% throughout the wavelength of 400 to 1000 nm. The lowest electrical resistivity achieved was 6 x 10-4 Ω cm. The Hall measurements showed that the film is an n-type semiconductor, with the highest carrier mobility of 8.3 cm2/V.s, and concentration of 1 x 1021 cm-3. The direct band gap was determined to be 4 eV from the transmittance spectrum.

  13. Epitaxial NiO (1 0 0) and NiO (1 1 1) films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lindahl, E.; Lu, J.; Ottosson, M.; Carlsson, J.-O.

    2009-08-01

    Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al 2O 3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al 2O 3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02-0.05° in the rocking curve measurements.

  14. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  15. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  16. Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint

    SciTech Connect

    Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

    2012-06-01

    We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

  17. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch (~3.2%) and thermal expansion coefficient difference (~7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  18. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kushvaha, S. S. Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D.

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  19. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    SciTech Connect

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-07-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10{sup -4} and 6 x 10{sup -4} {Omega} cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10{sup -3} {Omega}{sup -1} for ITO higher than 0.55 x 10{sup -3} {Omega}{sup -1} for FTO.

  20. Electrical properties of undoped GaN films grown by maskless epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Jeon, Dae-Woo; Lee, In-Hwan; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Yakimov, E. B.

    2013-02-01

    Electrical properties, deep traps spectra, microcathodoluminescence (MCL) spectra measurements, MCL imaging, and electron beam induced current (EBIC) imaging were performed for undoped GaN films grown by metalorganic chemical vapor deposition using maskless epitaxial lateral overgrowth on basal plane sapphire. The films showed a low dislocation density of ˜108 cm-2 in the laterally overgrown wings and an order of magnitude higher dislocation density in vertical growth seed regions, as determined by MCL and EBIC imaging. The polarity of EBIC signal measurements and the room temperature capacitance-voltage characteristics suggested that the high-dislocation-density seed regions were high-resistivity p-type, with the Fermi level pinned near Ev + 0.4 eV, as determined by admittance spectroscopy. The wing regions were n-type, with low residual donor concentration of some 1014 cm-3 near the surface. The donor concentration further decreased upon movement towards the sapphire substrate. Some possible explanations of the observed effects are discussed.

  1. Evidence for rhombohedral boron nitride in cubic boron nitride films grown by ion-assisted deposition

    SciTech Connect

    Medlin, D.L.; Friedmann, T.A.; Mirkarimi, P.B.; Mills, M.J.; McCarty, K.F. )

    1994-09-15

    We present high-resolution transmission electron-microscopic observations of the [ital sp][sup 2]-bonded material that remains with the [ital sp][sup 3]-bonded cubic boron nitride (cBN) in films grown by ion-assisted deposition. These observations show regions of [ital sp][sup 2]-bonded material that are in a three-layer stacking configuration rather than the two-layer configuration of hexagonal boron nitride. Measurement of the lattice fringe angles shows that the observed three-layer stacking is consistent with the metastable, rhombohedral structure (rBN). Significantly, rBN allows for a diffusionless pathway for cBN synthesis under high pressure, unlike the high-activation-energy route that is required to directly convert the hexagonal phase to cBN. This low-energy pathway is considered in relation to recent work in the literature indicating that ion-induced compressive stress plays a critical role in the synthesis of thin-film cBN.

  2. Low temperature electron transport in phosphorus-doped ZnO films grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Hao, M. R.; Guo, W.; Heeg, T.; Schlom, D. G.; Shen, W. Z.; Pan, X. Q.

    2012-07-01

    Low temperature magneto-transport properties and electron dephasing mechanisms of phosphorus-doped ZnO thin films grown on (1 1 1) Si substrates with Lu2O3 buffer layers using pulsed laser deposition were investigated in detail by quantum interference and weak localization theories under magnetic fields up to 10 T. The dephasing length follows the temperature dependence with an index p≈1.6 at higher temperatures indicating electron-electron interaction, yet becomes saturated at lower temperatures. Consistent with photoluminescence measurements and the multi-band simulation of the electron concentration, such behavior was associated with the dislocation densities obtained from x-ray diffraction and mobility fittings, where charged edge dislocations acting as inelastic Coulomb scattering centers were affirmed responsible for electron dephasing. Owing to the temperature independence of the dislocation density, the phosphorus-doped ZnO film maintained a Hall mobility of 4.5 cm2 V-1 s-1 at 4 K.

  3. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  4. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  5. Low Sheet Resistivity of Transparent Ga-Doped ZnO Film Grown by Atmospheric Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Takemoto, Yujin; Oshima, Minoru; Yoshino, Kenji; Toyota, Kouji; Inaba, Koichiro; Haga, Ken-ichi; Tokudome, Koichi

    2011-08-01

    Ga-doped ZnO film on polyethylene terephthalate film was successfully grown at 150 °C by conventional atmospheric spray pyrolysis using diethylzinc-based solution. The samples had an average optical transmittance of more than 80% and were strongly a-axis orientated according to the result of optical transmittance and X-ray diffraction analyses, respectively. The n-type Ga-doped ZnO films had a low sheet resistivity of 250 Ω/square at an optimal Ga content of 1 at. % upon UV irradiation.

  6. Electron backscatter diffraction analysis applied to [0 0 1] magnetite thin films grown on MgO substrates

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Zhou, Y.; Murphy, S.; Mücklich, F.; Hartmann, U.; Shvets, I. V.

    2007-09-01

    Electron backscatter diffraction (EBSD) analysis is applied to [0 0 1] oriented magnetite thin films grown on MgO substrates. A high image quality of the Kikuchi patterns was achieved enabling multi-phase scans. Several types of magnetite thin films were analyzed; one as-grown and the others after different annealing steps in oxygen atmosphere. From the EBSD mappings, we learn that the optimum orientation in [0 0 1]-direction is not yet achieved for the as-grown sample, but develops upon oxygen treatment. Furthermore, the distribution of misorientation angles within the investigated area (=1 grain) is found to change during the annealing steps. After 3 min of annealing, most of the misorientations around 30°-40° have vanished, and some islands with high misorientation angles remain, which may play a role as antiferromagnetic pinning centers.

  7. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  8. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  9. RBS and PIXE analysis of chlorine contamination in ALD-Grown TiN films on silicon

    SciTech Connect

    Meersschaut, J.; Witters, T.; Kaeyhkoe, M.; Lenka, H. P.; Vandervorst, W.; Zhao, Q.; Vantomme, A.

    2013-04-19

    The performance, strengths and limitations of RBS and PIXE for the characterization of trace amounts of Cl in TiN thin films are critically compared. The chlorine atomic concentration in ALD grown TiN thin films on Si is determined for samples grown at temperatures ranging from 350 Degree-Sign C to 550 Degree-Sign C. We show that routine Rutherford backscattering spectrometry measurements (1.5 MeV He{sup +}) and PIXE measurements (1.5 MeV H{sup +}) on 20 nm thick TiN films allow one to determine the Cl content down to 0.3 at% with an absolute statistical accuracy reaching 0.03 at%. Possible improvements to push the sensitivity limit for both approaches are proposed.

  10. Structural properties of SrO thin films grown by molecular beam epitaxy on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Heydemann, V. D.; Fisher, P.; Skowronski, M.; Salvador, P. A.

    2006-12-01

    SrO films were grown on LaAlO3 substrates by molecular beam epitaxy and characterized using reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD). The evolution of the RHEED pattern is discussed as a function of film thickness. 500Å thick SrO films were relaxed and exhibited RHEED patterns indicative of an atomically smooth surface having uniform terrace heights. Films had the epitaxial relationship (001)SrO‖(001)LaAlO3; [010]SrO‖[110]LaAlO3. This 45° in-plane rotation minimizes mismatch and leads to films of high crystalline quality, as verified by Kikuchi lines in the RHEED patterns and narrow rocking curves of the (002) XRD peak.

  11. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    SciTech Connect

    Morse, K.; Balooch, M.; Hamza, A.V.; Belak, J.

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  12. Structural and magnetic properties of SmCo-based magnetic films grown by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Vishnuraj, R.; Arout Chelvane, J.; Kamat, S. V.; Hsu, Jen-Hwa

    2015-07-01

    Sub-micron thick Sm-Co films (200 and 300 nm) with selective phase composition are grown on Si (100) substrates by electron-beam evaporation using Sm-lean alloy targets such as Sm4Co96 and Sm8Co92. The structural and magnetic properties of Sm-Co films are characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and super-conducting quantum interference device (SQUID) magnetometer. The Sm-Co films obtained with the Sm4Co96 target exhibit Sm2Co17 as a prominent phase; while the films produced with the Sm8Co92 target show Sm2Co7 as a major phase. Both the Sm-Co films reveal granular morphology; however, the estimated grain size values are slightly lower in the case of Sm2Co7 films, irrespective of their thicknesses. Coercivity (Hc) values of 1.48 and 0.9 kOe are achieved for the as-grown 200-nm thick Sm2Co17 and Sm2Co7-films. Temperature-dependent magnetization studies confirm that the demagnetization behaviors of these films are consistent with respect to the identified phase composition. Upon rapid thermal annealing, maximum Hc value of 8.4 kOe is achieved for the 200 nm thick Sm2Co17-films. As far as e-beam evaporated Sm-Co films are concerned, this Hc value is one of the best values reported so far.

  13. Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si(001) substrates

    SciTech Connect

    McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Dhamdhere, Ajit; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2013-01-15

    Epitaxial strontium titanate (STO) films have been grown by atomic layer deposition (ALD) on Si(001) substrates with a thin STO buffer layer grown by molecular beam epitaxy (MBE). Four unit cells of STO grown by MBE serve as the surface template for ALD growth. The STO films grown by ALD are crystalline as-deposited with minimal, if any, amorphous SiO{sub x} layer at the STO-Si interface. The growth of STO was achieved using bis(triisopropylcyclopentadienyl)-strontium, titanium tetraisopropoxide, and water as the coreactants at a substrate temperature of 250 Degree-Sign C. In situ x-ray photoelectron spectroscopy (XPS) analysis revealed that the ALD process did not induce additional Si-O bonding at the STO-Si interface. Postdeposition XPS analysis also revealed sporadic carbon incorporation in the as-deposited films. However, annealing at a temperature of 250 Degree-Sign C for 30 min in moderate to high vacuum (10{sup -6}-10{sup -9} Torr) removed the carbon species. Higher annealing temperatures (>275 Degree-Sign C) gave rise to a small increase in Si-O bonding, as indicated by XPS, but no reduced Ti species were observed. X-ray diffraction revealed that the as-deposited STO films were c-axis oriented and fully crystalline. A rocking curve around the STO(002) reflection gave a full width at half maximum of 0.30 Degree-Sign {+-} 0.06 Degree-Sign for film thicknesses ranging from 5 to 25 nm. Cross-sectional transmission electron microscopy revealed that the STO films were continuous with conformal growth to the substrate and smooth interfaces between the ALD- and MBE-grown STO. Overall, the results indicate that thick, crystalline STO can be grown on Si(001) substrates by ALD with minimal formation of an amorphous SiO{sub x} layer using a four-unit-cell STO buffer layer grown by MBE to serve as the surface template.

  14. Ferrite microwave electronics Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  15. Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy

    SciTech Connect

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B.; Roul, Basanta

    2014-11-28

    We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device.

  16. Interfacially engineered oxygen octahedral rotations and their impact on strain relief in coherently grown SrRu O3 films

    NASA Astrophysics Data System (ADS)

    Kan, Daisuke; Wakabayashi, Yusuke; Tajiri, Hiroo; Shimakawa, Yuichi

    2016-07-01

    We report synchrotron x-ray diffraction investigations of interfacially engineered oxygen octahedral rotations and their impact on strain relief in perovskite SrRu O3 films. We show that octahedral rotations with distinct patterns and magnitudes can be accommodated into coherently grown films. The SrRu O3 film grown directly on the GdSc O3 substrate has the Ru O6 octahedral rotation with the a-b+c- pattern in the Glazer notation and the rotation angles of αrot=6.6 ±0 .2∘ , βrot=5.5 ±0 .2∘ , and γrot=3.6 ±0 .2∘ . On the other hand, when a 1-nm-thick BaTi O3 layer without Ti O6 rotations is inserted between the SrRu O3 and GdSc O3 , the SrRu O3 has the Ru O6 rotation with a-b0c+ , and αrot=5.6 ±0 .8∘ and γrot=3.6 ±0 .8∘ . These results indicate that there are some degrees of freedom in the octahedral rotations accommodated in SrRu O3 depending on the interface structure and that the γrot rotations play the important roles in the film's structural properties when the rotation about the [010] pc axis is blocked. We also found that the strain relief in the film is influenced by the interfacially engineered octahedral rotations. The interfacial BaTi O3 layer results in the in-plane periodic lattice modulation in the t-SRO film, allowing for the anisotropic relief of the substrate-induced strain. The results highlight the importance of the interface structure as a factor, determining not only octahedral rotations in coherently grown SRO films but also the strain reliefs in them.

  17. Structural, optical and electrical properties of chemically grown Pb 1- xFe xSe nanoparticle thin films

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Asha; Varadarajan, E.; Srivastava, P.; Sehgal, H. K.

    2008-04-01

    Single phase Pb 1- xFe xSe ( 0.00≤x≤0.07) thin films, with typical rocksalt structure, are grown by the chemical bath deposition method. An additional segregated phase of Fe 2O 3 is observed in the x≥0.08 films. The average grain size in the films grown at a fixed bath temperature (Tb) is observed to remain constant with increase in Fe concentration from x=0.00 to x=0.07. A decrease in Tb, for fixed x, results in a decrease in grain size in the films. The Tb induced decrease in grain size is seen to result in an increase of direct optical band gap (Eg) in films with the same x. In the typical case of x=0.06 films, decrease in grain size from 9 nm to 3 nm due to change in Tb from 85 to 55 ∘C, results in an increase in Eg from 2.09 eV to 2.89 eV. The blue shift is attributed to enhanced quantum confinement in the nanograins. However, at a fixed Tb, while grain size remains constant with increase in x, Eg is observed to decrease. Eg is seen to decrease from 2.20 to 1.84 eV with change in x from 0.02 to 0.07 in Tb of 85 ∘C films. This decrease is attributed to tailoring of Eg due to alloying between PbSe (Ebulk=0.28 eV) and FeSe (Ebulk=0.14 eV) in the single-phase nanoparticle films of Pb 1- xFe xSe. Resistivity decreases while Hall mobility increases with the increase in x ( 0.00≤x≤0.06) in the films.

  18. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    SciTech Connect

    Chen, Xinchun Kato, Takahisa

    2014-01-28

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ∼ 0.51 and β ∼ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ∼ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface “polishing” process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ∼9–10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp{sup 2}-bonded a–C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ∼0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N{sub 2} atmosphere. An extremely low friction coefficient of ∼0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  19. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath.

    PubMed

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  20. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-09-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability.

  1. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    PubMed Central

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  2. Surface structural analysis of LiF(100) thin films grown on Pt(111)

    SciTech Connect

    Roberts, J.G.; Van Hove, M.A.; Somorjai, G.A.

    2002-08-29

    The surface structure of a multilayer LiF(100) thin film grown on Pt(111) from the vapor has been determined by the automated tensor low energy electron diffraction (LEED) method. The final structure, which refined to a Pendry R-factor (RP) of 0.24, had a surface corrugation (D1) of 0.24+-0.04 Angstrom due to the Li+ being displaced towards the bulk, leaving the initially coplanar F - unshifted. A similar intralayer corrugation due to the movement of the Li+ was also observed in the layer immediately under the surface layer, although to a lesser degree: D2=0.07+-0.04 Angstrom. This asymmetric relaxation resulted in the reduction of the first interlayer spacing, d(F2-Li1), to 1.77+-0.0 6 Angstrom from the ideal value of 2.01 Angstrom. The second interlayer spacing, d(Li3-F2), was within error bars of the bulk value, 2.01 Angstrom.

  3. Electrical properties of scandium nitride epitaxial films grown on (100) magnesium oxide substrates by molecular beam epitaxy

    SciTech Connect

    Ohgaki, Takeshi; Watanabe, Ken; Adachi, Yutaka; Sakaguchi, Isao; Hishita, Shunichi; Ohashi, Naoki; Haneda, Hajime

    2013-09-07

    Scandium nitride (ScN) films were grown on (100) MgO single crystals by a molecular beam epitaxy method. The effects of growth conditions, including [Sc]/[N] ratio, growth temperature, and nitrogen radical state, on the electrical properties of the ScN films were studied. The ScN films comprised many small columnar grains. Hall coefficient measurements confirmed that the ScN films were highly degenerate n-type semiconductors and that the carrier concentration of the ScN films was sensitive to the growth temperature and the nitrogen radical states during the film growth. The carrier concentrations of the ScN films ranged from 10{sup 19}–10{sup 21} cm{sup −3} while the Hall mobilities ranged from 50–130 cm{sup 2}·V{sup −1}·s{sup −1} for undoped films. The temperature-dependent Hall coefficient measurements showed that the carrier concentration is nearly independent of temperature, indicating that the change in resistivity with temperature is explained by a change in the Hall mobility. The temperature-dependence of the Hall mobility was strongly affected by the growth conditions.

  4. Fundamental reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition

    SciTech Connect

    Yamada, Hiroshi

    2008-01-15

    The reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition (RIBD) with in situ pyrolytic-gas passivation (PGP) using N{sub 2}O and NF{sub 3} was investigated. RIBD uses low-energy-controlled reactive, ionized species and potentializes low-temperature film growth. Although the oxide films were grown at a low temperature of 150 deg. C, their fundamental indices of reliability, such as the time-dependent dielectric breakdown lifetime and interface state density, were almost equivalent to those of oxide films grown at 850 deg. C using a furnace. This is probably due to localized interfacial N and F atoms. The number density of interfacial N atoms was about seven times larger than that for the furnace-grown oxide films, and this is a key factor for improving the reliability through the compensation of residual inconsistent-state bonding sites.

  5. Transferring MBE-grown topological insulator films to arbitrary substrates and metal-insulator transition via Dirac gap.

    PubMed

    Bansal, Namrata; Cho, Myung Rae; Brahlek, Matthew; Koirala, Nikesh; Horibe, Yoichi; Chen, Jing; Wu, Weida; Park, Yun Daniel; Oh, Seongshik

    2014-03-12

    Mechanical exfoliation of bulk crystals has been widely used to obtain thin topological insulator (TI) flakes for device fabrication. However, such a process produces only microsized flakes that are highly irregular in shape and thickness. In this work, we developed a process to transfer the entire area of TI Bi2Se3 thin films grown epitaxially on Al2O3 and SiO2 to arbitrary substrates, maintaining their pristine morphology and crystallinity. Transport measurements show that these transferred films have lower carrier concentrations and comparable or higher mobilities than before the transfer. Furthermore, using this process we demonstrated a clear metal-insulator transition in an ultrathin Bi2Se3 film by gate-tuning its Fermi level into the hybridization gap formed at the Dirac point. The ability to transfer large area TI films to any substrate will facilitate fabrication of TI heterostructure devices, which will help explore exotic phenomena such as Majorana fermions and topological magnetoelectricity.

  6. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  7. Correlation of Crystalline and Structural Properties of C60 Thin Films Grown at Various Temperature with Charge Carrier Mobility

    SciTech Connect

    Singh,T.; Sarciftci, N.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H.

    2007-01-01

    Transistors fabricated from C{sub 60} films grown by hot wall epitaxy at higher substrate temperature, showed an order of magnitude increased charge carrier mobility up to 6 cm{sup 2}/V s. In this letter, the authors present an extensive study of morphology and crystallinity of the fullerene films using atomic force microscopy and grazing-incidence x-ray diffraction. A clear correlation of crystalline quality of the C{sub 60} film and charge carrier mobility was found. A higher substrate temperature leads to a single crystal-like faceted fullerene crystals. The high crystalline quality solely brings a drastic improvement in the charge carrier mobility. A gate voltage independent mobility is also observed in these devices which can be attributed to the highly conjugated nature of the C{sub 60} thin film.

  8. Superior electrical properties of crystalline Er{sub 2}O{sub 3} films epitaxially grown on Si substrates

    SciTech Connect

    Chen, S.; Zhu, Y.Y.; Xu, R.; Wu, Y.Q.; Yang, X.J.; Fan, Y.L.; Lu, F.; Jiang, Z.M.; Zou, J.

    2006-05-29

    Crystalline Er{sub 2}O{sub 3} thin films were epitaxially grown on Si (001) substrates. The dielectric constant of the film with an equivalent oxide thickness of 2.0 nm is 14.4. The leakage current density as small as 1.6x10{sup -4} A/cm{sup 2} at a reversed bias voltage of -1 V has been measured. Atomically sharp Er{sub 2}O{sub 3}/Si interface, superior electrical properties, and good time stability of the Er{sub 2}O{sub 3} thin film indicate that crystalline Er{sub 2}O{sub 3} thin film can be an ideal candidate of future electronic devices.

  9. The microstructure, optical and electrical property of CdZnTe thick films grown from a CSS method

    NASA Astrophysics Data System (ADS)

    Zhang, Yuelu; Wang, Linjun; Xu, Run; Huang, Jian; Meng, Hua; Tao, Jun; Zhang, Jijun; Min, Jiahua; Shen, Yue

    2015-12-01

    Polycrystalline CdZnTe thick films with an average grain size of 30 μm and thickness of 270 μm were successfully grown on SnO2:F (FTO)-coated glass substrates by close-spaced sublimation method. Electrical properties and UV response of CdZnTe thick films after Br-MeOH etching and ZnCl2 annealing treatment were investigated. By means of the photo-current measurements, the value of mobility-lifetime (μτ) products for CdZnTe films were firstly reported. The results showed that Br-MeOH etching significantly improved UV detection sensitivity of CdZnTe thick films, and made the surface distribution of UV sensitivity more homogeneous. It was also found that a ZnCl2 annealing process did not improve the electrical properties.

  10. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  11. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Lutsev, L. V.; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S.

    2016-05-01

    Synthesis of nanosized yttrium iron garnet (Y3Fe5O12, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10-5. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  12. Enhancement of critical current density in YBa2Cu3O7-dgr thin films grown using PLD on YSZ (001) surface modified with Ag nano-dots

    NASA Astrophysics Data System (ADS)

    Ionescu, M.; Li, A. H.; Zhao, Y.; Liu, H. K.; Crisan, A.

    2004-07-01

    Y123 thin films were grown by pulsed laser deposition (PLD) on YSZ (001) substrate. Prior to the film deposition, a discontinuous layer of Ag was deposited on the substrate, also using PLD, in the form of separate islands. Atomic force microscopy (AFM) investigation of the Ag layer showed that its morphology consisted of self-assembled islands of nanometre size, randomly distributed on the surface of the substrate, called nano-dots. The Y123 superconducting films grown on such a surface were characterized using AFM, x-ray diffraction, secondary electron microscopy, ac susceptibility and dc magnetization. The results show that there is no significant difference in surface morphology, crystallographic orientation, phase composition or superconducting transition temperature between the Y123 films grown on YSZ (001) with an Ag nano-dots layer and a control Y123 film grown on a virgin YSZ (001) surface. On the other hand, at 77 K, the magnetic critical current density ( J_c^m ) was three times higher for the Y123 film grown on YSZ with the modified (001) surface than for the film grown on YSZ with a virgin (001) surface. At 5 K the enhancement of J_c^m was approximately seven times, at both low and high fields. This suggests an increase in pinning, caused presumably by point defects formed in the Y123 film above the Ag islands.

  13. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N₂-Plasma Grown Ultrananocrystalline Diamond Films.

    PubMed

    Chang, Ting-Hsun; Hsieh, Ping-Yen; Kunuku, Srinivasu; Lou, Shiu-Cheng; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan; Tai, Nyan-Hwa

    2015-12-16

    An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/μm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/μm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

  14. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L.

    2016-09-01

    The pulsed laser deposition (PLD) technique is used to grow Al-doped ZnO (AZO) thin films at 500 ° C on silicon substrates under vacuum or oxygen gas background from ablating AZO nanoparticle targets synthesized via the sol-gel process. The structural, morphological and optical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) techniques. XRD and TEM images show that AZO powder has a wurtzite-type structure and is composed of small prismatic-like shape nanoparticles with an average size of 30nm. The structural properties of the AZO films grown under oxygen show no significant changes compared to those of the film grown under vacuum. However, the optical properties show a dependence on the growth conditions of the AZO films. Highly c -axis-oriented AZO thin films were obtained with grain size ˜ 15 nm. The stress in the AZO films is tensile as measured from the c -parameter. The dielectric function, the refractive index and the extinction coefficient as a function of the photon energy for the AZO films were determined by using spectroscopic ellipsometry measurements in the photon energy region from 1 to 6eV. The band gap energy was observed to slightly decrease in the presence of the O2 gas background and this may be attributed to the stress. The surface and volume energy loss functions are calculated and exhibit different behaviors in the energy range 1-6eV. Refractive indices of 1.9-2.1 in the visible region were obtained for the AZO films. Also, the electronic carrier concentration appears to be related to the presence of O2 during the growth process.

  15. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  16. Long Length, High-Density Carbon Nanotube Film Grown by Slope Control of Temperature Profile for Applications in Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Kawabata, Akio; Murakami, Tomo; Nihei, Mizuhisa; Yokoyama, Naoki

    2013-11-01

    We have developed a new growth method for a film of dense, vertically aligned carbon nanotubes (CNTs). We varied the slope of the growth temperature profile between 450 and 800 °C. By using the method with an Fe/Ti catalyst, the filling factor of the CNT film was measured to be 0.28, which is 20 times denser than that in the case where conventional CVD growth is utilized. We name this growth method the slope control of temperature profile (STEP) growth. Another feature of CNT films obtained by STEP growth is their mirror like surfaces. This allows for the measurement of the thermal conductivity by a pulse optical heating thermoreflectance method. The maximum thermal conductivity of the STEP-grown CNT film was 260 W m-1 K-1, which is higher than those of a solder and Si. This result suggests that STEP-grown CNT films are effective heat dissipation materials and can be used as thermal interface material (TIM) and thermal through silicon via (TSV).

  17. Structure and magnetism of Fe thin films grown on Rh(001) studied by spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Sawada, M.; Harasawa, A.; Kimura, A.; Kakizaki, A.

    2001-06-01

    Bulk Fe is known to be a bcc structure at room temperature and ferromagnetic below 920 K. On the other hand Fe films grown on non-magnetic substrates show a variety of structures and magnetism depending on the degree of the lattice constant (a0) difference between substrate and a bulk bcc Fe (a0=2.87 Å). On Au(001) (a0=4.07 Å) and Ag(001), Fe films grow in bcc structure and are ferromagnetic due to the small lattice mismatch to the Fe(110). On Cu(001) and Co(001), Fe films thinner than 5 ML reveal a face centred tetragonal (fct) structure and ferromagnetism, while in 6-10 ML region Fe films show fcc structure and only the topmost few layers were found to be ferromagnetic. The origin of this complicated magnetic behavior has been considered due to the lattice mismatch at the interface and investigated by a first principle calculation of the total energy and magnetic moments [1]. In this report, we present the structural and electronic properties of the Fe films epitaxially grown on a Rh(001) surface. .

  18. Surface structure of tetrahedral-coordinated amorphous diamond-like carbon films grown by pulsed laser deposition

    SciTech Connect

    Mercer, T.W.; DiNardo, N.J. |; Martinez-Miranda, L.J.; Fang, F.; Friedmann, T.A.; Sullivan, J.P.; Siegal, M.P.

    1994-12-31

    The structure and composition of tetrahedral-coordinated amorphous diamond-like carbon films (a-tC) grown by pulsed laser deposition (PLD) of graphite has been studied with atomic force microscopy (AFM). The nanometer-scale surface structure has been studied as a function of growth parameters (e.g., laser energy density and film thickness) using contact-mode and tapping-mode AFM. Although the surfaces were found to be generally smooth, they exhibited reproducible structural features on several size scales which correlate with the variation of laser energy and th excited ion etching.

  19. Room temperature weak ferromagnetism in Sn1-xMnxSe2 2D films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dong, Sining; Liu, Xinyu; Li, Xiang; Kanzyuba, Vasily; Yoo, Taehee; Rouvimov, Sergei; Vishwanath, Suresh; Xing, Huili G.; Jena, Debdeep; Dobrowolska, Margaret; Furdyna, Jacek K.

    2016-03-01

    We discuss growth and magnetic properties of high-quality two dimensional (2D) Sn1-xMnxSe2 films. Thin films of this 2D ternary alloy with a wide range of Mn concentrations were successfully grown by molecular beam epitaxy. Mn concentrations up to x ≈ 0.60 were achieved without destroying the crystal structure of the parent SnSe2 2D system. Most important, the specimens show clear weak ferromagnetic behavior above room temperature, which should be of interest for 2D spintronic applications.

  20. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  1. Strain effects in epitaxial Mn{sub 2}O{sub 3} thin film grown on MgO(100)

    SciTech Connect

    Dang Duc Dung; Duong Van Thiet; Duong Anh Tuan; Cho, Sunglae

    2013-05-07

    We report on the epitaxial growth and magnetic properties of Mn{sub 2}O{sub 3} thin films grown on MgO(001) substrate by molecular beam epitaxy. We observed the reduction in binding energy of Mn valence states, the increase in satellite separation up to 12.7 eV, and the smaller band gap of 3.32 eV. In addition, the antiferromagnetic ordering below 90 K in bulk changed to ferrimagnetic up to 175 K. The results were possibly to be explained by a lattice mismatch strain on Mn{sub 2}O{sub 3} film on MgO(001) substrate.

  2. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of “stirring” defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700 °C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  3. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  4. Enhancement of supercapacitance property of electrochemically deposited MnO2 thin films grown in acidic medium

    NASA Astrophysics Data System (ADS)

    Jana, S. K.; Rao, V. P.; Banerjee, S.

    2014-02-01

    In this communication we present supercapacitance property of MnO2 thin-films which are fabricated on stainless steel (SS) substrate by electro-deposition method carried out in different pH of the electrolyte. A significant improvement of the device performance of acid mediated grown (AMG) MnO2 over normal MnO2 (grown in neutral medium) has been achieved. We have also investigated role of interfacial structure on the internal resistance of the device material. AMG MnO2 film exhibits superior device performance with specific capacitance of 652 F/g which is 2 times better than that obtained in normal MnO2 and also energy density of 90.69 Wh/kg.

  5. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Tuzcuoglu, H.; Gabor, M. S.; Petrisor, T.; Tiusan, C.; Zighem, F.; Chérif, S. M.; Moch, P.

    2014-01-01

    10 nm and 50 nm Co2FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta, while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10-3 and 1.3×10-3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively).

  6. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    NASA Astrophysics Data System (ADS)

    Fedoseeva, Yu. V.; Pozdnyakov, G. A.; Okotrub, A. V.; Kanygin, M. A.; Nastaushev, Yu. V.; Vilkov, O. Y.; Bulusheva, L. G.

    2016-11-01

    Since amorphous oxygenated hydrocarbon (COxHy) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of COxHy films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the COxHy films, deposited at 300 and 500 °C, were mainly composed of the sp2-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  7. Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Vinod; Purohit, L. P.; Swart, H. C.; Kroon, R. E.

    2016-10-01

    Zinc sulphide (ZnS) films are of great importance for applications in various optoelectronic devices. ZnS thin films were grown on glass, indium tin oxide (ITO) and Corning glass substrates by radio-frequency magnetron sputtering at a temperature of 373 K and a comparative study of the structural, optical and electrical properties was performed using X-ray diffraction (XRD), scanning electron microscopy, optical and current-voltage (I-V) measurements. The XRD patterns showed that the sputtered thin films exhibited good crystallinity with the (111) peak around 2θ=28.3° indicating preferential orientation of the cubic structure. The maximum strain and most densely packed grains were obtained for the Corning glass substrate. The transmittance spectra of the films were measured in the wavelength range from 200 to 800 nm, showing that the films are about 77% transparent in the visible region. A slight change of 3.50 eV to 3.54 eV was found for the bandgap of the films deposited on different substrates. The ZnS thin films deposited on Corning glass show better crystallinity, morphology and I-V characteristics than that deposited on ordinary glass and ITO substrates.

  8. Effect of Parallel Magnetic Field on Superconductivity of Ultrathin Metal Films Grown on a Cleaved GaAs Surface

    NASA Astrophysics Data System (ADS)

    Sekihara, Takayuki; Miyake, Takahiro; Masutomi, Ryuichi; Okamoto, Tohru

    2015-06-01

    The parallel-magnetic-field H|| dependence of the superconducting transition temperature Tc is studied for ultrathin films of In, Bi, and Al grown on GaAs(110). In the case of In films in the monolayer regime, Tc exhibits a quadratic-like H|| dependence, which is one order of magnitude stronger than that previously observed in monolayer Pb films by the present authors [Phys. Rev. Lett. 111, 057005 (2013)]. The results are well reproduced by a model developed for an inhomogeneous two-dimensional superconducting state in the presence of a moderate Rashba spin-orbit interaction. The Rashba spin splitting is estimated to be 0.04 eV, which is much smaller than that expected for monolayer Pb films. In a few-monolayer Bi film, the suppression of Tc with increasing H|| is comparable to that in monolayer Pb films. On the other hand, much stronger suppression, which is attributed to the Pauli paramagnetic effect, was observed for the Al film.

  9. Nucleation and stochiometry dependence of rutile-TiO2 thin films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Constantin, Costel; Sun, Kai; Feenstra, R. M.

    2008-03-01

    Considerable interest has been shown of late in transition-metal oxides. One case is the titanium dioxide system, which can have applications as a high-k dielectric gate insulator for Si-based devicesootnotetextZ. J. Luo et al., Appl. Phys. Lett. 79, 2803. In this study, rutile-TiO2 thin films were grown on GaN(0001) substrates by oxygen plasma-assisted molecular beam epitaxy. Two sets of films were grown, one in which the initial GaN surface is prepared WITH the pseudo 1x1 Ga-rich surface reconstruction, and the other set, WITHOUT the pseudo 1x1. On top of these two type of surfaces, the rutile-TiO2 thin films were grown at Ts˜ 600 ^oC, and with a thickness ˜ 40 - 50 nm. During growth, reflection high-energy electron diffraction indicated a reversible stoichiometry transition from O-rich to Ti-rich growth. Post-growth x-ray diffraction measurements performed on the samples WITHOUT the GaN pseudo 1x1, show the presence of additional peaks at 2θ = 52.9^o, which implies the existence of additional phases. In addition, the high-resolution transmission electron microscopy performed on these samples show a high degree of disorder, as compared to the samples prepared WITH the pseudo 1x1. Work supported by ONR.

  10. Single-crystal p-i-n-Si thin-film solar cells grown on Si substrate by sputter epitaxy

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang; Tatebe, Kyohei

    2015-08-01

    An intrinsic sputter-epitaxial (SE) Si film with a thickness of 1000 nm and a 50-nm-thick n+ SE-Si film were successfully grown as the light-absorbing layer and emitter layer, respectively, on a heavily doped p-Si(100) wafer to form the p-i-n junction of a solar cell (SC). Heavily doped n+ SE-Si with an electron concentration n of 3 × 1020 cm-3 was grown by cosputtering of Sb with Si. The characteristics of SE-Si grown at 310 °C was investigated in relation to annealing temperature. The oxygen concentration in SE-Si was ˜1018 cm-3, which was found to originate from the gas released in the chamber. Oxygen-induced thermal donors then became the source of n in the film, and n was reduced to 1 × 1016 cm-3 after forming-gas annealing at 700 °C because the thermal donors were neutralized by hydrogen. The SC exhibited a maximum internal quantum efficiency of 73.7%.

  11. Defects in Ga(In)NAs thin films grown by atomic H-assisted molecular beam epitaxy

    SciTech Connect

    Shimizu, Yukiko; Mura, Yusuke; Uedono, Akira; Okada, Yoshitaka

    2006-09-15

    The vacancy-type defects in Ga{sub 1-y}In{sub y}N{sub x}As{sub 1-x} dilute nitride films grown by atomic H-assisted molecular beam epitaxy (H-MBE) were investigated. The positron annihilation measurements showed that the densities of vacancy-type defects in GaN{sub x}As{sub 1-x} (x=0%-1.3%) films grown under an optimized atomic H flux were as low as that for a liquid encapsulated Czochralski (LEC) GaAs substrate. Further, the influence of vacancy-type defects on the crystal quality and optical properties were studied by x-ray diffraction and photoluminescence (PL) measurements. The integrated PL intensity at 77 K drastically decreased as N composition was increased, but we found no clear correlation between the density or volume of vacancy defects and optical properties, and the S parameters were nearly constant at a value of {approx}0.516 in all Ga{sub 1-y}In{sub y}N{sub x}As{sub 1-x} films grown by our H-MBE technique.

  12. Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant

    NASA Astrophysics Data System (ADS)

    Park, Hong Bae; Cho, Moonju; Park, Jaehoo; Lee, Suk Woo; Hwang, Cheol Seong; Kim, Jong-Pyo; Lee, Jong-Ho; Lee, Nae-In; Kang, Ho-Kyu; Lee, Jong-Cheol; Oh, Se-Jung

    2003-09-01

    HfO2 gate dielectric thin-films were deposited on Si wafers using an atomic-layer deposition (ALD) technique with HfCl4 and either H2O or O3 as the precursor and oxidant, respectively. Although the ALD reactions using either H2O or O3 were successfully confirmed at a deposition temperature of 300 °C, the structural and electrical properties of the HfO2 films grown using the two oxidants were quite different. The stronger oxidation power of the O3 compared to H2O increased the oxygen concentration in the HfO2 film and the rate of interfacial SiO2 formation even at the as-deposited state. Because of the larger oxygen concentration, the decrease in the capacitance density of the film grown with O3 after rapid thermal annealing at 750 °C under N2 atmosphere was slightly larger than that of the HfO2 film grown with H2O. Apart from this weakness, all the other electrical properties, including the fixed charge density, the interface trap density, the leakage current density and the hysteresis in the capacitance-voltage plot of the film grown with O3 were superior to those of the film grown with H2O. Therefore, O3 appears to be a better oxidant for the HfO2 film growth using the ALD method.

  13. Semiconductor-insulator transition in VO{sub 2} (B) thin films grown by pulsed laser deposition

    SciTech Connect

    Rúa, Armando; Díaz, Ramón D.; Lysenko, Sergiy; Fernández, Félix E.

    2015-09-28

    Thin films of B-phase VO{sub 2} were grown by pulsed-laser deposition on glass and (100)-cut MgO substrates in a temperature range from 375 to 425 °C and at higher gas pressures than usual for this technique. The films were strongly oriented, with ab-planes parallel to the substrate surface. Detailed study of surface morphology through Atomic Force Microscopy images suggest significant differences in evolution as a function of growth temperature for films on the two types of substrates. Measurements of electrical conductivities through cooling-heating cycles from room temperature to 120 K showed changes of five orders of magnitude, with steeper changes between room temperature and ∼150 K, which corresponds with the extended and reversible phase transition known to occur for this material. At lower temperatures conductivities exhibited Arrhenius behavior, indicating that no further structural change was occurring and that conduction is thermally activated. In this lower temperature range, conductivity of the samples can be described by the near-neighbor hopping model. No hysteresis was found between the cooling and heating braches of the cycles, which is at variance with previous results published for VO{sub 2} (B). This apparent lack of hysteresis for thin films grown in the manner described and the large conductivity variation as a function of temperature observed for the samples suggests this material could be of interest for infrared sensing applications.

  14. Room temperature ferromagnetism in epitaxial Cr{sub 2}O{sub 3} thin films grown on r-sapphire

    SciTech Connect

    Punugupati, Sandhyarani Narayan, Jagdish; Hunte, Frank

    2015-05-21

    We report on the epitaxial growth and magnetic properties of Cr{sub 2}O{sub 3} thin films grown on r-sapphire substrate using pulsed laser deposition. The X-ray diffraction (XRD) (2θ and Φ) and TEM characterization confirm that the films are grown epitaxially. The r-plane (011{sup ¯}2) of Cr{sub 2}O{sub 3} grows on r-plane of sapphire. The epitaxial relations can be written as [011{sup ¯}2] Cr{sub 2}O{sub 3} ‖ [011{sup ¯}2] Al{sub 2}O{sub 3} (out-of-plane) and [1{sup ¯}1{sup ¯}20] Cr{sub 2}O{sub 3} ‖ [1{sup ¯}1{sup ¯}20] Al{sub 2}O{sub 3} (in-plane). The as-deposited films showed ferromagnetic behavior up to 400 K but ferromagnetism almost vanishes with oxygen annealing. The Raman spectroscopy data together with strain measurements using high resolution XRD indicate that ferromagnetism in r-Cr{sub 2}O{sub 3} thin films is due to the strain caused by defects, such as oxygen vacancies.

  15. Embedded polytypes in Bi2Sr2-xLaxCuO6 thin films grown by laser ablation

    NASA Astrophysics Data System (ADS)

    Cancellieri, C.; Lin, P. H.; Ariosa, D.; Pavuna, D.

    2007-11-01

    We investigate the presence of secondary phases in La-doped Bi-2201 thin films grown by laser ablation. The cation ratios in the target material, the oxygen pressure, and the substrate temperature during the deposition are the main parameters determining the presence of diluted intergrowth and/or polytype aggregates. A statistical model of random intergrowth is used to analyze the x-ray diffraction (XRD) anomalies caused by hidden defects and to characterize the latter. A detailed structural XRD refinement on oriented aggregates allows us to identify the guest phase as a Bi deficient phase, Bi-1201. The occurrence of this particular embedded polytype is accompanied by a global Bi deficiency introduced in the films by the growing process and/or by the annealing treatment. The presence of La favors the Bi-1201 formation mostly as La-rich c -axis oriented aggregates. Bi excess in the target material improves considerably the crystallographic structure of Bi-2201, avoids intergrowth formation, but does not prevent the phase separation of Bi-1201 in La-doped thin films. We also investigate the influence of the deposition parameters on the type of intergrowth as well as their variation with La doping. This work introduces a specific methodology for optimizing the growth of thin films grown by laser ablation, which applies to layered oxides that admit polytypes with close formation enthalpies in their phase diagram.

  16. Low resistivity aluminum nitride: Carbon (AlN:C) films grown by metal organic chemical vapor deposition

    SciTech Connect

    Wongchotiqul, K.; Chen, N.; Zhang, D.P.; Tang, X.; Spencer, M.G.

    1996-11-01

    Low resistivity single crystal aluminum nitride-carbon (AlN:C) films were grown by metal organic chemical vapor deposition (MOCVD). The growth system used ammonia (NH{sub 3}), trimethylaluminum (TMA), hydrogen (H{sub 2}), and propane (C{sub 3}H{sub 8}) precursors. Films produced with high partial pressure of propane during growth exhibited high conductivity. Van der Paw measurements indicated that the resistivity of the as grown films changed dramatically from 10{sup 8} ohm-cm for unintentionally doped samples to less than .2 ohm-cm for partial pressures of propane greater than 0.5 {times} 10{sup {minus}3} torr. Reflection electron diffraction (RHEED) measurements performed in situ just after film growth indicated that the material is single crystal up to a propane partial pressure of 2.5 {times} 10{sup {minus}3} torr. P-n junctions of n-type 6H-SiC and p-type AlN:C were fabricated, blue emission (centered at 490 nm) was observed from the heterojunction under forward bias.

  17. Surface morphology and lattice misfit in YIG and La:YIG films grown by LPE method on GGG substrate

    SciTech Connect

    Choi, D.Y.; Chung, S.J.

    1998-12-31

    Y{sub 3}Fe{sub 5}O{sub 12}(YIG) and La-doped YIG films were grown on the (111) GGG substrate using the PbO-B{sub 2}O{sub 3} flux system. Pb, La incorporation and lattice misfit and annealing behaviors were studied. In the case of LPE growth of YIG film, lead ions from flux are substituted inevitably, and they play an important role in controlling film misfit. For a complete lattice matching, high supercooling is necessary in pure YIG growth, but this induces high defect concentration. In this experiment, La ions were added in the solution to sufficiently increase lattice parameter of the film grown under low supercooling. The concentration of substituted Pb and La were increased as the growth temperature was lowered and growth rate increased. The effective distribution coefficient of La was about 0.2 at a supercooling of 30 C. The optimum growth conditions which bring about very small misfit were determined by measuring the misfit by double crystal diffractometer. Strain distributions of pre-annealed and annealed samples were investigated by triple crystal diffractometer.

  18. KCl ultra-thin films with polar and non-polar surfaces grown on Si(111)7 × 7

    PubMed Central

    Beinik, Igor; Barth, Clemens; Hanbücken, Margrit; Masson, Laurence

    2015-01-01

    The growth of ultra-thin KCl films on the Si(111)7 × 7 reconstructed surface has been investigated as a function of KCl coverage and substrate temperature. The structure and morphology of the films were characterized by means of scanning tunneling microscopy (STM) under ultra-high vacuum (UHV) conditions. Detailed analysis of the atomically resolved STM images of islands grown at room and high temperatures (400 K–430 K) revealed the presence of KCl(001) and KCl(111) islands with the ratio between both structures depending on the growth temperature. At room temperature, the growth of the first layer, which covers the initial Si(111)7 × 7 surface, contains double/triple atomic layers of KCl(001) with a small fraction of KCl(111) islands. The high temperature growth promotes the appearance of large KCl(111) areas, which are built up by three atomic layers. At room and high temperatures, flat and atomically well-defined ultra-thin KCl films can be grown on the Si(111)7 × 7 substrate. The formation of the above mentioned (111) polar films is interpreted as a result of the thermally activated dissociative adsorption of KCl molecules on Si(111)7 × 7, which produces an excess of potassium on the Si surface. PMID:25650038

  19. High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target.

    PubMed

    Shen, Kun-Ching; Wang, Tzu-Yu; Wuu, Dong-Sing; Horng, Ray-Hua

    2012-07-01

    High indium compositions InGaN films were grown on sapphires using low temperature pulse laser deposition (PLD) with a dual-compositing target. This target was used to overcome the obstacle in the InGaN growth by PLD due to the difficulty of target preparation, and provided a co-deposition reaction, where InGaN grains generated from the indium and GaN vapors deposit on sapphire surface and then act as nucleation seeds to promote further InGaN growth. The effects of co-deposition on growth mechanisms, surface morphology, and electrical properties of films were thoroughly investigated and the results clearly show promise for the development of high indium InGaN films using PLD technique with dual-compositing targets. PMID:22772213

  20. High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target.

    PubMed

    Shen, Kun-Ching; Wang, Tzu-Yu; Wuu, Dong-Sing; Horng, Ray-Hua

    2012-07-01

    High indium compositions InGaN films were grown on sapphires using low temperature pulse laser deposition (PLD) with a dual-compositing target. This target was used to overcome the obstacle in the InGaN growth by PLD due to the difficulty of target preparation, and provided a co-deposition reaction, where InGaN grains generated from the indium and GaN vapors deposit on sapphire surface and then act as nucleation seeds to promote further InGaN growth. The effects of co-deposition on growth mechanisms, surface morphology, and electrical properties of films were thoroughly investigated and the results clearly show promise for the development of high indium InGaN films using PLD technique with dual-compositing targets.

  1. AlN thin films grown on epitaxial 3C-SiC (100) for piezoelectric resonant devices

    SciTech Connect

    Lin, Chih-Ming; Senesky, Debbie G.; Pisano, Albert P.; Lien, Wei-Cheng; Felmetsger, Valery V.; Hopcroft, Matthew A.

    2010-10-04

    Highly c-axis oriented heteroepitaxial aluminum nitride (AlN) films were grown on epitaxial cubic silicon carbide (3C-SiC) layers on Si (100) substrates using alternating current reactive magnetron sputtering at temperatures between approximately 300-450 deg. C. The AlN films were characterized by x-ray diffraction, scanning electron microscope, and transmission electron microscopy. A two-port surface acoustic wave device was fabricated on the AlN/3C-SiC/Si composite structure, and an expected Rayleigh mode exhibited a high acoustic velocity of 5200 m/s. The results demonstrate the potential of utilizing AlN films on epitaxial 3C-SiC layers to create piezoelectric resonant devices.

  2. Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moon, Tae-Hyoung; Ham, Moon-Ho; Myoung, Jae-Min

    2005-03-01

    We present the annealing effects on nanochemistry and electrical properties in HfO2 dielectrics grown by metalorganic molecular-beam epitaxy. After the postannealing treatment of HfO2 films in the temperature range of 600-800°C, the thicknesses and chemical states of the films were examined by high-resolution transmission electron microscopy and angle-resolved x-ray photoelectron spectroscopy. By comparing the line shapes of core-level spectra for the samples with different annealing temperatures, the concentrations of SiO and Hf-silicate with high dielectric constant are found to be highest for HfO2 film annealed at 700°C. This result supports that the accumulation capacitance of the sample annealed at 700°C is not deteriorated in spite of a steep increase in interfacial layer thickness compared with that of the sample annealed at 600°C.

  3. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    DOE PAGESBeta

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; Dindar, Amir; Fuentes-Hernandez, Canek; Kim, Hyungchul; Cullen, David A.; Kippelen, Bernard; Graham, Samuel

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less

  4. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    SciTech Connect

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; Dindar, Amir; Fuentes-Hernandez, Canek; Kim, Hyungchul; Cullen, David A.; Kippelen, Bernard; Graham, Samuel

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  5. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    NASA Astrophysics Data System (ADS)

    Bulusu, A.; Singh, A.; Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kim, H.; Cullen, D.; Kippelen, B.; Graham, S.

    2015-08-01

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  6. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  7. Magnetic properties of nano-patterned GaMnAs films grown on ZnCdSe buffer layers

    NASA Astrophysics Data System (ADS)

    Dong, Sining; Li, Xiang; Kanzyuba, Vasily; Yoo, Taehee; Liu, Xinyu; Dobrowolska, Malgorzata; Furdyna, Jacek

    Magnetic semiconductor nanostructures are attracting intense attention, both because of their fundamental physical properties, and because of the promise which they hold for building smaller, faster and more energy-efficient devices. In this study we report successful MBE growth of GaMnAs films on the GaAs (100) substrates with ZnCdSe buffer layers, which results in perpendicular magnetic easy axis in the GaMnAs films. The GaMnAs/ZnCdSe films have been etched into nano-stripe shapes with various widths below 200nm by e-beam lithography, which resulted in a new geometry of interest for perpendicular magnetic recording. Magnetic anisotropy of as-grown GaMnAs films and nano-stripes was then studied by SQUID magnetometry. The results indicate that the GaMnAs films consist of magnetic domains with magnetization normal to the film plane, having rather high coercivety, which survives after nanofabrication. This is also confirmed by the dynamics of the domain motion as shown by AC susceptibility measurements. These findings are of interest for understanding the magnetic anisotropy mechanisms in GaMnAs and its domain structures, as well as for designing of nano-sized spintronic devices which require hard ferromagnetic behavior with perpendicular easy axes. This work was supported by the National Science Foundation Grant DMR1400432.

  8. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    SciTech Connect

    Bulusu, A.; Singh, A.; Kim, H.; Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kippelen, B.; Cullen, D.; Graham, S.

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al{sub 2}O{sub 3})/hafnium oxide (HfO{sub 2}) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiN{sub x} layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  9. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Terasaki, I.; Karppinen, M.

    2016-11-01

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  10. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films.

    PubMed

    Tripathi, T S; Terasaki, I; Karppinen, M

    2016-11-30

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  11. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2005-10-31

    Using a dual molecular-beam epitaxy (MBE)-pulsed laser deposition (PLD) ultrahigh vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along the <100> directions; the film roughness and mound separation increase with film thickness. In PLD with high kinetic energy, well-defined pyramidal mounds are not observed and the morphology rather resembles that of an ion-etched Ge(001) surface. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. We attribute these differences to the higher yield of defect generation by energetic species in PLD.

  12. Magnetic properties of Sm-Co thin films grown on MgO(100) deposited from a single alloy target

    SciTech Connect

    Verhagen, T. G. A.; Boltje, D. B.; Ruitenbeek, J. M. van; Aarts, J.

    2014-08-07

    We have grown epitaxial Sm-Co thin films by sputter deposition from a single alloy target with a nominal SmCo{sub 5} composition on Cr(100)-buffered MgO(100) single-crystal substrates. By varying the Ar gas pressure, we can change the composition of the film from a SmCo{sub 5}-like to a Sm{sub 2}Co{sub 7}-like phase. The composition, crystal structure, morphology, and magnetic properties of these films have been determined using Rutherford Backscattering, X-ray diffraction, and magnetization measurements. We find that we can grow films with, at room temperature, coercive fields as high as 3.3 T, but with a remanent magnetization which is lower than can be expected from the texturing. This appears to be due to the Sm content of the films, which is higher than expected from the content of the target, even at the lowest possible sputtering pressures. Moreover, we find relatively large variations of film properties using targets of nominally the same composition. At low temperatures, the coercive fields increase, as expected for these hard magnets, but in the magnetization, we observe a strong background signal from the paramagnetic impurities in the MgO substrates.

  13. Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films

    NASA Astrophysics Data System (ADS)

    Yang, Y. J.; Yang, M. M.; Luo, Z. L.; Hu, C. S.; Bao, J.; Huang, H. L.; Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G.; Chen, X. C.; Pan, G. Q.; Jiang, T.; Liu, Y. K.; Li, X. G.; Gao, C.

    2014-05-01

    A series of ZnxFe3-xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.

  14. Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films

    SciTech Connect

    Yang, Y. J.; Bao, J.; Gao, C. E-mail: cgao@ustc.edu.cn; Yang, M. M.; Luo, Z. L. E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q.; Huang, H. L.; Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G.; Jiang, T.; Liu, Y. K.; Li, X. G.

    2014-05-07

    A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.

  15. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    PubMed

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  16. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  17. Synthesis and properties of ZnS-EuS films grown from volatile complex compounds

    SciTech Connect

    Bessergenev, V.G.; Ivanova, E.N.; Kovalevskaya, Y.A.

    1997-10-01

    Deposition and characterization of films of ZnS, EuS and ZnS:Eu are described. The films have been prepared by chemical vapor deposition using new volatile complex compounds, dithiocarbamates of Zn and Eu, as precursors. Characterization includes X-ray diffraction, chemical analysis of the film composition, Raman spectroscopy, ellipsometry, and spectrophotometry. The spatial chemical homogeneity of the films has been determined using a recently developed method of differential dissolution and found to be uniform. Doping of ZnS by Eu with dopant concentration up to 0.3 at.% has been achieved. Effects of Eu doping on structural and optical properties of the films are presented.

  18. Crystallization of bismuth titanate and bismuth silicate grown as thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Harjuoja, Jenni; Väyrynen, Samuli; Putkonen, Matti; Niinistö, Lauri; Rauhala, Eero

    2006-01-01

    Bismuth silicate and bismuth titanate thin films were deposited by atomic layer deposition (ALD). A novel approach with pulsing of two Bi-precursors was studied to control the Si/Bi atomic ratio in bismuth silicate thin films. The crystallization of compounds formed in the Bi 2O 3-SiO 2 and Bi 2O 3-TiO 2 systems was investigated. Control of the stoichiometry of Bi-Si-O thin films was studied when deposited on Si(1 0 0) and crystallization was studied for films on sapphire and MgO-, ZrO 2- and YSZ-buffered Si(1 0 0). The Bi-Ti-O thin films were deposited on Si(1 0 0) substrate. Both Bi-Si-O and Bi-Ti-O thin films were amorphous after deposition. Highly a-axis oriented Bi 2SiO 5 thin films were obtained when the Bi-Si-O thin films deposited on MgO-buffered Si(1 0 0) were annealed at 800 °C in nitrogen. The full-width half-maximum values for 200 peak were also studied. An excess of bismuth was found to improve the crystallization of Bi-Ti-O thin films and the best crystallinity was observed with Ti/Bi atomic ratio of 0.28 for films annealed at nitrogen at 1000 °C. Roughness of the thin films as well as the concentration depth distribution were also examined.

  19. Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazra, D.; Tsavdaris, N.; Jebari, S.; Grimm, A.; Blanchet, F.; Mercier, F.; Blanquet, E.; Chapelier, C.; Hofheinz, M.

    2016-10-01

    Niobium nitride (NbN) is widely used in high-frequency superconducting electronics circuits because it has one of the highest superconducting transition temperatures ({T}{{c}}˜ 16.5 {{K}}) and largest gap among conventional superconductors. In its thin-film form, the T c of NbN is very sensitive to growth conditions and it still remains a challenge to grow NbN thin films (below 50 nm) with high T c. Here, we report on the superconducting properties of NbN thin films grown by high-temperature chemical vapor deposition (HTCVD). Transport measurements reveal significantly lower disorder than previously reported, characterized by a Ioffe-Regel parameter ({k}{{F}}{\\ell }) ˜ 12. Accordingly we observe {T}{{c}}˜ 17.06 {{K}} (point of 50% of normal state resistance), the highest value reported so far for films of thickness 50 nm or less, indicating that HTCVD could be particularly useful for growing high quality NbN thin films.

  20. Structural properties of strained YBa2Cu3O6+x superconducting films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ariosa, Daniel; Abrecht, M.; Pavuna, Davor; Onellion, Marshall

    2000-09-01

    In YBa2Cu3O6+x compound the tetragonal to orthorhombic transition occurs around x equals 0.3, followed by a continuum variation of lattice parameters. Hence both, the structural and superconducting properties, depend upon the oxygen content in CuO chains. Conversely, the epitaxial stress, exerted by the substrate on YBCO films, modified the lattice parameters influencing the oxygen stability in the chains. The understanding of this mechanism is essential when growing epitaxial films for in- situ photoemission studies as well as for tunneling experiments, since the oxygen stability up to the top surface unit-cell is a central issue. We have studied this effect on c-axis oriented YBCO films grown by laser ablation on (001) STO single crystals. Accurate x-ray diffraction analysis of thick films (t GRT 500 angstrom) indicates the presence of two distinct layers, one strained and the other relaxed. Detailed analysis shows that the relaxed layer is as well oxidized as bulk samples, while the strained one is oxygen deficient. Furthermore, despite an oxygen content of about x equals 0.65, the strained layer is in the tetragonal phase (in bulk, the tetragonal phase exists for x < 0.3). We discuss these results in terms of competition between the chemical pressure induced by oxygen inclusion in the chains, and the uniaxial stress within the film.

  1. Thickness-Dependent Properties of YBCO Films Grown on GZO/CLO-Buffered NiW Substrates

    NASA Astrophysics Data System (ADS)

    Malmivirta, M.; Huhtinen, H.; Zhao, Y.; Grivel, J.-C.; Paturi, P.

    2016-07-01

    To study the role of novel Gd_2 Zr_2 O_7 /Ce_{0.9} La_{0.1} O_2 buffer layer structure on a biaxially textured NiW substrate, a set of YBa_2 Cu_3 O_{7-δ } (YBCO) films with different thicknesses were prepared by pulsed laser deposition (PLD). Interface imperfections as well as thickness-dependent structural properties were observed in the YBCO thin films. The structure is also reflected into the improved superconducting properties with the highest critical current densities in films with intermediate thicknesses. Therefore, it can be concluded that the existing buffer layers need more optimization before they can be successfully used for films with various thicknesses. This issue is linked to the extremely susceptible growth method of PLD when compared to the commonly used chemical deposition methods. Nevertheless, PLD-grown films can give a hint on what to concentrate to be able to further improve the buffer layer structures for future coated conductor technologies.

  2. Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Arredondo, C. A.; Vallejo, W.

    2016-03-01

    This work presents the results of synthesis and characterization of polycrystalline n-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity (σ) was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and σ versus T measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap (Eg) of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

  3. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    SciTech Connect

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y.; Amin, N.

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  4. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  5. Compositional inhomogeneities in AlGaN thin films grown by molecular beam epitaxy: Effect on MSM UV photodetectors

    NASA Astrophysics Data System (ADS)

    Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.

    2016-10-01

    Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal

  6. Ferroelectric properties and crystalline structures of BaMgF{sub 4} thin films grown on Pt(111)/SiO{sub 2}/Si(100)

    SciTech Connect

    Moriwaki, Masashi; Aizawa, Koji; Tokumitsu, Eisuke; Ishiwara, Hiroshi

    1997-07-01

    Crystalline quality and ferroelectric properties of (120)-oriented BaMgF{sub 4}(BMF) films grown on Pt(111)/SiO{sub 2}/Si(100) and n-Si(111) substrates have been investigated. The BaMgF{sub 4} films grown on Pt(111) have large and flat grains, while the films on Si(111) have small grains. The C-V curve of BaMgF{sub 4}/Pt(111)/SiO{sub 2}/Si(100) diodes showed a hysteresis loop with a memory window of 3.8V.

  7. X-ray analysis of strain distribution in two-step grown epitaxial SrTiO{sub 3} thin films

    SciTech Connect

    Panomsuwan, Gasidit E-mail: g.panomsuwan@gmail.com; Takai, Osamu; Saito, Nagahiro

    2014-08-04

    Epitaxial SrTiO{sub 3} (STO) thin films were grown on (001)-oriented LaAlO{sub 3} (LAO) substrates using a two-step growth method by ion beam sputter deposition. An STO buffer layer was initially grown on the LAO substrate at a low temperature of 150 °C prior to growing the STO main layer at 750 °C. The thickness of the STO buffer layer was varied at 3, 6, and 10 nm, while the total film thickness was kept constant at approximately 110 nm. According to x-ray structural analysis, we show that the STO buffer layer plays an essential role in controlling the strain in the STO layer grown subsequently. It is found that the strains in the STO films are more relaxed with an increase in buffer layer thickness. Moreover, the strain distribution in two-step grown STO films becomes more homogeneous across the film thickness when compared to that in directly grown STO film.

  8. Microstructures and phase evolution in YBa 2Cu 3O 7- x films grown on various substrates fabricated via a non-fluorine sol-gel route

    NASA Astrophysics Data System (ADS)

    Li, A. H.; Ionescu, M.; Liu, H. K.; Shi, D. L.; Wang, X. L.; Peng, X.; Collings, E. W.

    2005-10-01

    YBa2Cu3O7-x films were grown on polycrystalline Ag and single crystalline YSZ, SrTiO3, and MgO substrates using non-fluorine sol-gel and spin coating methods. The effects of heat treatment conditions on the phase evolution and microstructures were investigated using optical microscope, X-ray diffraction, and atomic force microscope. For Ag substrates, Y123 phase started to form at 750 °C and higher sintering temperatures improved the degree of (0 0 1) texture. Mirror-like surfaces without any cracks were achieved for sintering at 750-900 °C. However, voids were observed for films grown on the Ag substrates at temperatures higher than 810 °C and their size and density increased as the temperature increased. For the films grown on single crystal substrates sintered at 800 °C, numerous microcracks with large crack widths were observed, while cracking is less of a problem for films grown on Ag substrates. Epitaxial films without any cracks were achieved for films grown on single crystalline substrates under optimized conditions. Possible mechanism for the formation of cracks is discussed.

  9. Microstructure investigation and magnetic study of permalloy thin films grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lamrani, Sabrina; Guittoum, Abderrahim; Schäfer, Rudolf; Pofahl, Stefan; Neu, Volker; Hemmous, Messaoud; Benbrahim, Nassima

    2016-06-01

    We study the effect of thickness on the structural and magnetic properties of permalloy thin films, evaporated on glass substrate. The films thicknesses range from 16 to 90 nm. From X-ray diffraction spectra analysis, we show that the thinner films present a "1,1,1" preferred orientation. However, the thicker films exhibit a random orientation. The grains size increases and the lattice parameter decreases with increasing thickness. The magnetic force microscopy observations display cross-tie walls features only for the two thicker films (60 and 90 nm thick films). The magnetic microstructure, carried out by Kerr microscopy technique, shows the presence of magnetic domains changing with the direction of applied magnetic field. The coercive field, Hc, was found to decrease from 6.5 for 16 to 1.75 Oe for 90 nm. All these results will be discussed and correlated.

  10. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-01

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp3-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N2+ and Ar+ ions is a key to selectively discriminate non-sp3 BN phases. At low acceleration voltage values, the sp2-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  11. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  12. Investigation of thin films of organic-based magnets grown by physical vapor deposition

    SciTech Connect

    Kao, C. Y.; Lu, Y.; Li, B.; Yoo, J.-W.; Epstein, A. J.

    2014-10-06

    Thin films of organic-based magnet, V[TCNE]{sub x} (TCNE: tetracyanoethylene), were deposited by physical vapor deposition (PVD) based reactive evaporation. The growth conditions were studied in detail. A saturated composition of V[TCNE]{sub ∼1.9} was determined by optimizing the growth condition. Two sets of films with different V to TCNE ratios were characterized. Both films were magnetic ordered up to 400 K and held coercive field of 60 Oe at room temperature. With the presence of excess vanadium within the film, the increase of defects created by PVD results in significant change in electronic property.

  13. Resistive switching phenomena of HfO2 films grown by MOCVD for resistive switching memory devices

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Dong; Yun, Min Ju; Kim, Sungho

    2016-08-01

    The resistive switching phenomena of HfO2 films grown by using metal organic chemical vapor deposition (MOCVD) was studied for the application of resistive random access memory (ReRAM) devices. In the fabricated Pt/HfO2/TiN memory cells, bipolar resistive switching characteristics were observed, and the set and reset states were measured to be as low as 7 μA and 4 μA, respectively, at V READ = 1 V. Regarding the resistive switching performance, stable resistive switching (RS) performance was observed under 40 repetitive dc cycles with small variations of set/reset voltages and the currents and good retention characteristics of over 105 s in both the low-resistance state (LRS) and the high-resistance state (HRS). These results show the possibility of using MOCVDgrown HfO2 films as a promising resistive switching materials for ReRAM applications.

  14. Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition

    SciTech Connect

    Jacimovic, J; Gaal, R; Magrez, Arnaud; Forro, Laszlo; Regmi, Murari; Eres, Gyula

    2013-01-01

    The temperature dependent resistivity and thermo-electric power of Cr-N codoped TiO2 were compared with that of single element N and Cr doped and undoped TiO2 using epitaxial anatase thin films grown by pulsed laser deposition on (100) LaAlO3 substrates. The resistivity plots and especially the thermoelectric power data confirm that codoping is not a simple sum of single element doping. However, the negative sign of the Seebeck coefficient indicates electron dominated transport independent of doping. The narrowing distinction among the effects of different doping methods combined with increasing resistivity of the films with improving crystalline quality of TiO2 suggest that structural defects play a critical role in the doping process.

  15. Canted stripe phase evolution due to a spin reorientation transition in Fe films grown on Ag(001) vicinal surface

    NASA Astrophysics Data System (ADS)

    Dąbrowski, M.; Cinal, M.; Przybylski, M.; Chen, G.; N'Diaye, A. T.; Schmid, A. K.; Kirschner, J.

    2016-02-01

    The evolution of the domain structure with the thickness of bcc Fe films deposited on the Ag(116) vicinal surface is studied by spin-polarized low-energy electron microscopy. We show that a spin reorientation transition proceeds via two mechanisms: continuous rotation of magnetization within the vertical plane perpendicular to the steps and discontinuous reorientation of the in-plane component of magnetization, leading to splitting of the domains. In contrast to previously investigated systems with stripe domains, we reveal that in the case of a vicinal ferromagnetic surface, the domain width increases while changing the orientation of the magnetization from a canted out-of-plane state into an in-plane state. A theoretical model developed in this work successfully describes the domain structure behavior observed in our experiments and can be equally applied to other ferromagnetic films grown on vicinal surfaces.

  16. Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

    SciTech Connect

    Chan, J.; Fu, T.; Cheung, N.W.; Ross, J.; Newman, N.; Rubin, M.

    1993-04-01

    Crystalline aluminum nitride (AlN) thin films were formed on various substrates by using RF magnetron sputtering of an A1 target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AlN/(111) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 C, while the crystallinity of AlN/(0001) A1{sub 2}O{sub 3} samples improved from 700 to 850 C. The optical absorption characteristics of the AlN/(0001) A1{sub 2}O{sub 3} films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

  17. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  18. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Sharma, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-11-01

    This paper presents effect of low temperature annealing on the physical properties of ZnO thin films for photovoltaic applications. The thin films of thickness 50 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing radio frequency magnetron sputtering technique followed by thermal annealing within low temperature range 150-450 °C. These as-grown and annealed films were subjected to the X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of the as-grown ZnO film was also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the films have wurtzite structure of hexagonal phase with preferred orientation (1 0 0) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in detail. The optical band gap was found in the range 3.30-3.52 eV and observed to decrease with annealing temperature except 150 °C. The current-voltage characteristics show that the films exhibit approximately ohmic behavior. The SEM studies show that the films are uniform, homogeneous and free from crystal defects and voids. The experimental results reveal that ZnO thin films may be used as alternative materials for eco-friendly buffer layer to the thin film solar cell applications.

  19. Investigation of nanostructured transparent conductive films grown by rotational-sequential-sputtering

    SciTech Connect

    Lu, Jong-Hong Chen, Bo-Ying; Wang, Chih-Hsuan

    2014-03-15

    This study fabricates three types of nanostructured conductive transparent films using a rotational-sequential-sputtering method. These films include (1) TiO{sub 2}/indium-tin oxide (ITO) and SiO{sub x}/ITO nanomultilayer films, the optical refractive indices of which can be manipulated in the range of 2.42–1.63 at a wavelength of 550 nm with a controlled resistivity range of 1 × 10{sup −3} to 2 × 10{sup −4} Ω·cm. (2) Multilayer ITO films are deposited on polyethylene terephthalate substrates, providing good flexibility and resistivity as low as 5 × 10{sup −4} Ω·cm. Finally, (3) ultrathin ITO films ranging from subnanometer to a few nanometers in thickness enable exploration of ITO film growth and thermal stability. X-ray reflection characterization provides a rapid, non-destructive method to measure the single-layer thicknesses of the nanomultilayer films and ultrathin ITO films at subnanoscale resolution.

  20. Reflective films and expression of light-regulated genes in field-grown apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective films are used in orchard management to improve fruit coloration. Numerous physiological studies on the effects of application of these films have been conducted, including variation of angles of light incidence and reflection, spectral determination of reflected light and effects on pho...

  1. Heteroepitaxial Film Silicon Solar Cell Grown on Ni-W Foils

    SciTech Connect

    Wee, S. H.; Cantoni, C.; Fanning, T. R.; Teplin, C. W.; Bogorin, D. F.; Bornstein, J.; Bowers, K.; Schroeter, P.; Hasoon, F.; Branz, H. M.; Paranthaman, M. P.; Goyal, A.

    2012-03-01

    Heteroepitaxial semiconductor films on low-cost, flexible metal foil templates are a potential route to inexpensive, high-efficiency solar cells. Here, we report epitaxial growth of Si films on low-cost, flexible, biaxially-textured Ni-W substrates. A robust buffer architecture comprised of multiple epitaxial oxide layers has been developed to grow high quality, heteroepitaxial Si films without any undesired reaction between the Si film and the metal substrate and with a single biaxial texture. XRD analysis including {omega}-scans, {phi}-scans, and pole figures confirms that the buffers and silicon are all epitaxial, with excellent cube-on-cube epitaxy. A photo-conversion efficiency of 1.1% is demonstrated from a proof-of-concept heteroepitaxial film Si solar cell.

  2. Metastable fcc-Fe film epitaxially grown on Cu(100) single-crystal underlayer

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Shimamoto, Kohei; Futamoto, Masaaki

    2013-05-01

    Fe film of 40 nm thickness is prepared on fcc-Cu(100) single-crystal underlayer at room temperature by ultra-high vacuum molecular beam epitaxy. The film growth and the detailed structure are investigated by reflection high-energy electron diffraction, cross-sectional high-resolution transmission electron microscopy (HR-TEM), and x-ray diffraction (XRD). An Fe single-crystal with metastable fcc structure nucleates on the underlayer. The HR-TEM shows that fcc lattice is formed from the Fe/Cu interface up to the film surface. A large number of misfit dislocations are introduced around the Fe/Cu interface due to an accommodation of lattice mismatch. Dislocations exist up to the film near surface. The lattice constant is estimated by XRD to be a = 0.3607 nm. The film shows a ferromagnetic property, which reflects the property of fcc-Fe crystal with high-spin ferromagnetic state.

  3. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    SciTech Connect

    Valente, Anne-Marie; Eremeev, Grigory V.; Spradlin, Joshua K.; Phillips, H. Lawrence; Reece, Charles E.; Cao, C.; Proslier, Thomas; Tao, T.

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  4. Boron nitride phosphide thin films grown on quartz substrate by hot-filament and plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xu, S. Y.; Han, G. R.

    2004-10-01

    Boron nitride phosphide films are, for the first time, grown on transparent quartz substrate by hot filament and radio-frequency plasma co-assisted chemical vapor deposition technique. XPS, XRD, SEM, and UV measurements are performed to study the chemical composition, crystallization, microstructure, and optical absorption, respectively. A centipede-like microstructure and undulating ground morphology on the film surface are observed, and their growth mechanism is speculated upon. The chemical composition is determined as BN1-xPx, whose characteristic XRD peak is preliminarily identified. The optical band gap can be modulated between 5.52 eV and 3.74 eV, simply by adjusting the phosphorus content in BN1-xPx through modifying the PH3 flux during the film-deposition process. The merits of the BN1-xPx film, such as high ultraviolet photoelectric sensitivity with negligible sensitivity in the visible region, modifiable wide optical band gap, and good adhesion on transparent substrate, suggest potential applications for ultraviolet photo-electronics.

  5. The mechanism of sputter-induced epitaxy modification in YBCO (001) films grown on MgO (001) substrates

    SciTech Connect

    Huang, Y.; Vuchic, B.V.; Carmody, M.; Baldo, P.M.; Merkle, K.L.; Buchholz, D.B.; Mahajan, S.; Lei, J.S.; Markworth, P.R.; Chang, R.P.; Marks, L.D.

    1998-12-01

    The sputter-induced epitaxy change of in-plane orientation occurring in YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (001) thin films grown on MgO (001) substrates by pulsed organo-metallic beam epitaxy (POMBE) is investigated by a series of film growth and characterization experiments, including RBS and TEM. The factors influencing the orientation change are systematically studied. The experimental results suggest that the substrate surface morphology change caused by the ion sputtering and the Ar ion implantation in the substrate surface layer are not the major factors that affect the orientation change. Instead, the implantation of W ions, which come from the hot filament of the ion gun, and the initial Ba deposition layer in the YBCO film growth play the most important roles in controlling the epitaxy orientation change. Microstructure studies show that a Ba{sub x}Mg{sub 1{minus}x}O buffer layer is formed on top of the sputtered substrate surface due to Ba diffusion into the W implanted layer. It is believed that the formation of this buffer layer relieves the large lattice mismatch and changes the YBCO film from the 45{degree} oriented growth to the 0{degree} oriented growth. {copyright} {ital 1998 Materials Research Society.}

  6. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition

    SciTech Connect

    Rai, R. C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M. L.

    2012-04-01

    We report the surface, structural, electronic, and optical properties of the epitaxial ZnO thin films grown on (0001) sapphire substrate at 600 deg. C by an electron-beam deposition technique. ZnO thin films have been deposited in an oxygen environment and post-deposition annealed to improve the stoichiometry and the crystal quality. In order to investigate the free exciton binding energy and the temperature dependence of the energy bandgap, we carried out variable temperature (78-450 K) transmittance measurements on ZnO thin films. The absorption data below the energy bandgap have been modeled with the Urbach tail and a free exciton, while the data above the gap have been modeled with the charge transfer excitations. The exciton binding energy is measured to be E{sub 0}= 64 {+-} 7 meV, and the energy band gaps of the ZnO film are measured to be E{sub g}-tilde 3.51 and 3.48 eV at 78 and 300 K, respectively. The temperature dependence of the energy gap has been fitted with the Varshni model to extract the fitting parameters {alpha}= 0.00020 {+-} 0.00002 eV/K, {beta}= 325 {+-} 20 K, and E{sub g} (T = 0 K) = 3.516 {+-} 0.0002 eV.

  7. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  8. Atomic-layer-deposited Al2O3 thin films with thin SiO2 layers grown by in situ O3 oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Keun; Hwang, Cheol Seong

    2004-08-01

    The growth, thermal annealing behaviors, and electrical properties of Al2O3 thin films grown by atomic layer deposition (ALD) on bare (100)Si and various oxidized Si wafers, by in situ O3 oxidation at 400°C and ex situ rapid thermal annealing (RTA) under O2 atmosphere at 900°C, were investigated. The ALD process was performed using Al(CH3)3 and high concentration of O3(400gm3). The high oxidation potential of O3 oxidized the Si surface at a very early stage of film growth and eliminated the incubation period even on a bare Si surface. The as-grown Al2O3 films had excess oxygen in the films, which diffused to the film Si interface and increased the interfacial layer by oxidizing the Si substrates during postannealing. The Al2O3 films grown on a bare Si substrate had the highest concentration of excess oxygen which resulted in the largest increase in the interfacial layer thickness during postannealing. As a result, the initial oxidation of the Si wafer did not significantly decrease the capacitance density compared to the films grown on a nonoxidized Si wafer at the as-deposited and postannealed states. Therefore, the Al2O3 layers grown using a high concentration of O3 oxidant on the in situ O3 oxidized Si wafers showed real high-k gate dielectric performance although the dielectric constants of the Al2O3 films were rather small (˜9) compared to other high-k gate dielectric films.

  9. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  10. Electrical and Optical Properties of ZnO Films Grown on GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Yuldashev, Shavkat U.; Panin, Gennady N.; Choi, Sung Woo; Yalishev, Vadim Sh.; Nosova, Ludmila A.; Ryu, Min Ki; Lee, Sanghern; Jang, Min Su; Chung, Kwan Soo; Kang, Tae Won

    2003-06-01

    Undoped ZnO films were deposited on GaAs substrates by conventional rf magnetron sputtering technique. After thermal annealing at temperatures of 500°C and higher for 20 min, the Hall coefficient of ZnO films on GaAs substrate becomes positive. The long-time annealing of 550 min at a temperature of 400°C also converts the sign of the Hall coefficient to positive. X-ray microanalysis shows that the diffusion of Zn atoms into the GaAs substrate and Ga atoms from the GaAs substrate into the ZnO film during thermal annealing occurs. The results of Hall measurements were analyzed by using the two-layer model of conductivity. It was shown that the positive sign of the Hall coefficient for the annealed ZnO film on the GaAs substrate is due to p-type conductivity of the GaAs substrate as a result of the diffusion of the Zn atoms from ZnO film into the GaAs substrate. With increasing annealing temperature or annealing time the ZnO films become more n-type due to the diffusion of Ga atoms from the GaAs substrate into the ZnO film.

  11. Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification.

    PubMed

    Boura, C; Menu, P; Payan, E; Picart, C; Voegel, J C; Muller, S; Stoltz, J F

    2003-09-01

    Endothelial cell seeding constitutes an appreciated method to improve blood compatibility of small-diameter vascular grafts. In this study, we report the development of a simple innovative technique based on multilayered polyelectrolyte films as cell adhesive substrates. Polyelectrolyte multilayered films ending by poly(sodium-4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) or poly(L-glutamic acid)/poly(D-lysine) (PGA/PDL) could enhance cell adhesion by modification of the physico-chemical properties of the surface. The biological responses of human umbilical vein endothelial cells seeded on the polyelectrolyte multilayer films, on PDL or PAH monolayers, and on control surfaces, were evaluated in terms of initial attachment, growth, cellular metabolic activity, endothelial phenotype, and adhesion. The results showed that polyelectrolyte multilayers neither induce cytotoxic effects nor alter the phenotype of the endothelial cells. The polyelectrolyte multilayered films enhanced initial cell attachment as compared to the polyelectrolyte monolayer. Cell growth observed on the films was similar to that on TCPS. Among the different coating tested, the film ending by PSS/PAH exhibited an excellent cellular biocompatibility and appeared to be the most interesting surface in terms of cellular adhesion and growth. Such films could be used to cover hydrophobic (cell resistant) substrates in order to promote cell colonization, thereby constituting an excellent material for endothelial cell seeding.

  12. Surface-Morphology-Induced Hydrophobicity of Fluorocarbon Films Grown by a Simultaneous Etching and Deposition Process

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, C. S.; Huang, Y. Y.; Chin, T. S.

    2015-08-01

    Development of facile methods to prepare hydrophobic films is of great important. We report fluorocarbon films deposited by a simple plasma-assisted chemical vapor deposition method using C3F8 and C2H2 with extra Ar and/or O2 gases. The surface characteristics of the films were examined by scanning electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. The hydrophobic and oleophobic properties of the films were evaluated by measurements of static contact angle. The results showed that the film deposited with C3F8, C2H2, Ar, and O2 exhibited a water contact angle of 114°, hexadecane contact angle of 45°, and transmittance of 94.5%. Photoelectron spectra further revealed that the films contained mainly CF and CF2 bonds and thus a high F/C ratio. Introduction of O2 increased the F/C ratio, which combined with the stripe-like surface of the films achieved better hydrophobicity.

  13. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    SciTech Connect

    Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  14. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  15. High-quality Bi{sub 2}Te{sub 3} thin films grown on mica substrates for potential optoelectronic applications

    SciTech Connect

    Wang, K.; Bao, L. H.; Liu Yanwen; Wang Weiyi; Xiu Faxian; Meyer, N.; Che, X. Y.; He, L.; Lang, M. R.; Wang, K. L.; Chen, Z. G.; Post, K.; Basov, D. N.; Zou, J.

    2013-07-15

    We report high-quality topological insulator Bi{sub 2}Te{sub 3} thin films grown on muscovite mica substrates by molecular beam epitaxy. The topographic and structural analysis revealed that the Bi{sub 2}Te{sub 3} thin films exhibited atomically smooth terraces over a large area and a high crystalline quality. Both weak antilocalization effect and quantum oscillations were observed in the magnetotransport of the relatively thin samples. A phase coherence length of 277 nm for a 6 nm thin film and a high surface mobility of 0.58 m{sup 2} V{sup -1} s{sup -1} for a 4 nm thin film were achieved. These results confirm that the thin films grown on mica are of high quality.

  16. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  17. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  18. Magnetically modulated refractive index of a magnetic fluid film based on cigar-shaped ferrite submicron particles

    NASA Astrophysics Data System (ADS)

    Mormile, P.; Petti, L.; Rippa, M.; Guo, J.; Song, W.; Zhou, J.

    2010-10-01

    Light beam propagation at a prism-magnetic fluid film interface is experimentally studied. The magnetic fluid is made through dispersion of synthesized cigar-shaped sub-micron particles of Fe2O3 in an oil solution. This was injected into a glass cell with an active area of 10mm2 and a depth ranging from 10 microns to 30 microns whose base is a glass microscope slide and on the top it was covered with a glass prism. The set up was developed by one of the authors to measure light switching at a prism-liquid crystal interface in a previous publication.1 Polarized Light (TE or TM) from a He-Ne laser impinges at the prism-magnetic film interface. The external reflected light is detected by a photodiode connected to a data acquisition system. Since the properties of the magnetic fluid can be modulated by external magnetic fields, we investigated the effects of the magnetic field on the refractive index of the magnetic fluid. For our magnetic fluid, the reflection of light has been investigated as a function of particles concentration and thickness of the films with a wavelength of 633nm and both TE and TM polarization, and applied magnetic fields up to 25 Oe. It was found that the intensity of reflected light increases with increasing magnetic field up to 4 times the initial value, and saturates at 20 Oe for TE light, while decreases with increasing magnetic field up to 4 times less for TM light with the same saturation value. Moreover, under a given magnetic field, the output light increases with the increasing film thickness in TE polarization, and decreases with the increasing film thickness in TM case. The refractive index of the magnetic fluid depends on the concentration of the dilute oil-based magnetic fluid under zero field. These behaviors are explained in terms of the organization of the submicron particles when the magnetic field is applied.2 The cigar-shaped sub-micron particles are oriented along their long axis to form an organized mesostructure. The

  19. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  20. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering

    SciTech Connect

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-10-15

    X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate while a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)

  1. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect

    Seo, Won-Oh; Kim, Jihyun; Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol; Kim, Donghwan

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2 MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  2. Pseudo capacitive performance of copper oxide thin films grown by RF sputtering

    SciTech Connect

    Reddy, B. Purusottam; Ganesh, K. Sivajee; Hussain, O. M.

    2015-06-24

    Thin films of Copper Oxide were prepared by radio frequency magnetron sputtering on steel substrates maintained at 250°C under different RF powers ranging from 150W to 250W by keeping the sputtering pressure at 5.7×10{sup −3} mbar and O{sub 2}:Ar ratio of 1:7. The influence of RF power on the pseudo capacitive performance of thin films was studied. The X-ray diffraction studies and Raman studies indicates that all the thin films exhibits CuO phase. The electrochemical studies was done by using three electrode configuration with platinum as reference electrode. From the cyclic voltammetry studies a high rate pseudocapacitance of 227 mFcm{sup −2} at 0.5 mVs{sup −1} and 77% of capacity retention after 1000 cycles was obtained for the CuO thin films prepared at an RF power of 220W.

  3. Characterization of CdZnS thin film grown by using different capping agents

    NASA Astrophysics Data System (ADS)

    Shrivastava, R.; Shrivastava, S. C.; Singh, R. S.; Singh, A. K.

    2015-03-01

    In this paper, a comparative study of CdZnS nano-crystalline films with two different capping agents, CTAB and TSC, deposited by chemical bath deposition method has been made using x-ray diffraction, scanning electron microscope, transmission electron microscopy and atomic frequency microscopy. The structure of CdZnS nano-crystalline films with capping agents CTAB and TSC was observed by XRD technique and found to be both hexagonal and cubic. SEM micrographs show the cabbage-like structure of CdZnS nano-crystalline films when prepared in the presence of capping agents. The AFM image shows the presence of nanorods in the samples. The TEM diffraction pattern indicates a nano-crystalline structure with the presence of various crystal planes. Elemental analysis has also been made and it has been found that no impurity was present in the film.

  4. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  5. Conductivity of Thin Films Based on Single-Walled Carbon Nanotubes Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Russakov, D. M.; Lomakin, M. V.; Chirkova, I. M.; Shandakov, S. D.

    2015-03-01

    Electrical and optical properties of thin films of single-walled carbon nanotubes (SWCNT) obtained by aerosol chemical vapor deposition using ethanol, ferrocene, and sulfur are studied. Structural and geometrical characteristics of the synthesis products are determined by the methods of Raman spectroscopy and transmission electron microscopy. The effect of sulfur on the properties of the SWCNTs and thin films based on them is found.

  6. Influence of nitrogen background pressure on structure of niobium nitride films grown by pulsed laser deposition

    SciTech Connect

    Ashraf H. Farha, Ali O. Er, Yüksel Ufuktepe, Ganapati Myneni, Hani E. Elsayed-Ali

    2011-12-01

    Depositions of niobium nitride thin films on Nb using pulsed laser deposition (PLD) with different nitrogen background pressures (10.7 to 66.7 Pa) have been performed. The effect of nitrogen pressure on NbN formation in this process was examined. The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and energy dispersive X-ray (EDX) analysis. Hexagonal {beta}-Nb{sub 2}N and cubic {delta}-NbN phases resulted when growth was performed in low nitrogen background pressures. With an increase in nitrogen pressure, NbN films grew in single hexagonal {beta}-Nb{sub 2}N phase. The formation of the hexagonal texture during the film growth was studied. The c/a ratio of the hexagonal {beta}-Nb{sub 2}N unit cell parameter increases with increasing nitrogen pressure. Furthermore, the N:Nb ratio has a strong influence on the lattice parameter of the {delta}-NbN, where the highest value was achieved for this ratio was 1.19. It was found that increasing nitrogen background pressure leads to change in the phase structure of the NbN film. With increasing nitrogen pressure, the film structure changes from hexagonal to a mixed phase and then back to a hexagonal phase.

  7. Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition.

    PubMed

    György, E; Toricelli, P; Socol, G; Iliescu, M; Mayer, I; Mihailescu, I N; Bigi, A; Werckman, J

    2004-11-01

    Mn(2+)-doped carbonated hydroxyapatite (Mn-CHA) thin films were obtained by pulsed laser deposition on Ti substrates. The results of the performed complementary diagnostic techniques, X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy investigations indicate that the films are crystalline with a Ca/P ratio of about 1.64-1.66. The optimum conditions, when nearly stoichiometric crystalline thin films were deposited, were found to be 10 Pa oxygen pressure, 400 degrees C substrate temperature, and postdeposition heat treatment in water vapors at the same substrate temperature. The films were seeded with L929 fibroblast and hFOB1.19 osteoblast cells and subjected to in vitro tests. Both fibroblast and osteoblast cells have a good adherence on the Mn-CHA film and on the Ti or polystyrene references. Proliferation and viability tests showed that osteoblast cells growth on Mn-CHA-coated Ti was enhanced as compared to uncoated pure Ti surfaces. Caspase-1 activity was not affected significantly by the material, showing that Mn-CHA does not induce apoptosis of cultured cells. These results demonstrate that Mn-CHA films on Ti should provoke a faster osteointegration of the coated implants as compared to pure Ti. (c) 2004 Wiley Periodicals, Inc. J Biomed Mater Res 71A: 353-358, 2004.

  8. High hole concentration Li-doped NiZnO thin films grown by photo-assisted metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Dong, X.; Ma, Z. Z.; Zhang, Y. T.; Wu, B.; Zhuang, S. W.; Zhang, B. L.; Li, W. C.; Du, G. T.

    2016-11-01

    High hole concentration Li-doped NiZnO thin films were grown by metal-organic chemical vapor deposition (MOCVD). The crystalline, optical, electrical, and morphological characteristics of the NiZnO films were studied as a function of lithium content. The resistance of the films decreased and the hole concentration greatly increased with increasing lithium content. However, the crystalline and optical properties were observed to degrade as the lithium content was increased. To relieve the degradation, a photo-assisted MOCVD method was used in order to restrict this degradation and this represents a new way to obtain stable high hole concentration NiZnO films.

  9. Conduction-type control of Ge films grown on (NH 4) 2S-treated GaAs by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Inada, M.; Fujishima, T.; Umezu, I.; Sugimura, A.; Yamada, S.

    2001-07-01

    We have performed epitaxial growth of Ge films on (NH 4) 2S-treated GaAs (0 0 1) substrates under various growth temperatures using molecular beam epitaxy. We confirmed that this sulfur passivation is quite effective for preventing the oxidation of GaAs surface. Thus, the Ge films were grown epitaxially on GaAs substrate without thermal cleaning. The electric properties of Ge films were investigated using Hall measurement and it was found that the conduction type of Ge films can be controlled by growth temperature. The Ga-S bond is thought to be the key for conduction type control, although the details are not identified yet.

  10. Composition dependence of the photochemical reduction of Ag+ by as-grown Pb(ZrxTi1-x)O3 films on indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Jiang, Chunxiang; Dong, Wen; Zheng, Fengang; Fang, Liang; Su, Xiaodong; Shen, Mingrong

    2013-09-01

    Photochemical growth of metal particles on ferroelectric films has usually been found to depend on polarization effect solely. This research exploits the interplay of the film/electrode interface barrier and depolarization field on the photoreduction of Ag+ to Ag onto Pb(Zr,Ti)O3 (PZT) films deposited on indium tin oxide (ITO) electrodes. Ag nanoparticles are observed on the as-grown polycrystalline PZT films without poling, while the particle size and density are closely related to the concentration of Zr in PZT and the poling direction. The enhancement on the photoelectrochemical properties of the ITO/PZT photocathode by the decoration of Ag nanoparticles is finally demonstrated.

  11. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film. PMID:27483897

  12. Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Luna, L. Molina; Hopkins, P. E.

    2015-06-01

    We have investigated the thermoelectric properties of 2% Al-doped ZnO (AZO) thin films depending on the postdeposition cooling atmosphere [in oxygen pressure (AZO-O) or vacuum (AZO-V)]. Thin films were grown by pulsed laser deposition on sapphire () substrates at various deposition temperatures ( to ). All films were c-axis oriented. The electrical conductivity of AZO-V thin films was higher than that of AZO-O thin films across the whole temperature range from 300 K to 600 K, due to the optimal carrier concentration () of AZO-V samples. Furthermore, the thermoelectric performance of AZO-V films increased with the deposition temperature; for instance, the highest power factor of and dimensionless figure of merit of 0.07 at 600 K were found for AZO-V thin film deposited at.

  13. Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films

    SciTech Connect

    Kumbhar, S.S.; Mahadik, M.A.; Mohite, V.S.; Hunge, Y.M.; Rajpure, K.Y.; Bhosale, C.H.

    2015-07-15

    Graphical abstract: The Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) thin films were prepared by spray pyrolysis technique onto the quartz substrates. The composition x = 0.4 shows the formation of the compact grain structure and highest saturation magnetization of 143 emu/cm{sup 3}. - Highlights: • Synthesis of nanocrystalline Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} thin films. • Influence of Ni substitution on physicochemical properties. • Electrical conductivity arises mainly from the grain boundary. • The highest saturation magnetization is 143 emu/cm{sup 3} for x = 0.4. - Abstract: The Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} thin films have been prepared using a simple spray pyrolysis technique. The X-ray diffraction studies reveal that, the films are polycrystalline with spinel structure. The lattice parameters vary in the range of 8.35–8.48 Å with composition (x) obeying Vegard’s rule. SEM and AFM studies show that the surface of the films exhibit a smooth, compact and a pin hole free morphology. Raman spectra indicate first order Raman active modes; A{sub 1g} (λ = 334 cm{sup −1}); E{sub g} (λ = 148 cm{sup −1}) and T{sub 2g} (λ = 699) of the Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4}. The investigation on dielectric constant, dielectric loss tangent and ac conductivity was carried out in the frequency range 20 Hz–1 MHz at room temperature. The linear nature of the AC conductivity shows small polaron type of hopping mechanism. The saturation magnetization increases up to x = 0.4 (143 emu/cm{sup 3}), which decreases for higher x.

  14. Enhanced photocatalytic performance in atomic layer deposition grown TiO{sub 2} thin films via hydrogen plasma treatment

    SciTech Connect

    Sasinska, Alexander; Singh, Trilok; Wang, Shuangzhou; Mathur, Sanjay; Kraehnert, Ralph

    2015-01-15

    The authors report the effect of hydrogen plasma treatment on TiO{sub 2} thin films grown by atomic layer deposition as an effective approach for modifying the photoanode materials in order to enhance their photoelectrochemical performance. Hydrogen plasma treated TiO{sub 2} thin films showed an improved absorption in the visible spectrum probably due to surface reduction. XPS analysis confirmed the formation of Ti{sup 3+} states upon plasma treatment. Hydrogen plasma treatment of TiO{sub 2} films enhanced the measured photocurrent densities by a factor of 8 (1 mA/cm{sup 2} at 0.8 V versus normal hydrogen electrode) when compared to untreated TiO{sub 2} (0.12 mA/cm{sup 2}). The enhancement in photocurrent is attributed to the formation of localized electronic states in mid band-gap region, which facilitate efficient separation and transportation of photo excited charge carriers in the UV region of electromagnetic spectrum.

  15. Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zastrow, S.; Gooth, J.; Boehnert, T.; Heiderich, S.; Toellner, W.; Heimann, S.; Schulz, S.; Nielsch, K.

    2013-03-01

    Sb2Te3 has recently been an object of intensive research since its promising applicability in thermoelectric, in phase-change memory devices and as a topological insulator. In this work, we report highly textured Sb2Te3 thin films, grown by atomic layer deposition on Si/SiO2 wafers based on the reaction of SbCl3 and (Et3Si)2Te. The low deposition temperature at 80 °C allows the pre-patterning of the Sb2Te3 by standard lithography processes. A platform to characterize the Seebeck coefficient S, the electrical conductivity σ as well as the Hall coefficient RH on the same film has been developed. Comparing all temperature-dependent transport properties, three different conductive regions in the temperature range of 50-400 K are found. Room temperature values of S = 146 × 10-6 VK-1, σ = 104 Sm-1 and mobility µ = 270.5 × 10-4 m2 V-1 s-1 are determined. The low carrier concentration in the range of n = 2.4 × 1018 cm-3 at 300 K quantifies the low defect content of the Sb2Te3 thin films.

  16. Thickness dependence of spin Hall angle of Au grown on Y3F e5O12 epitaxial films

    NASA Astrophysics Data System (ADS)

    Brangham, Jack T.; Meng, Keng-Yuan; Yang, Angela S.; Gallagher, James C.; Esser, Bryan D.; White, Shane P.; Yu, Sisheng; McComb, David W.; Hammel, P. Chris; Yang, Fengyuan

    2016-08-01

    We measure the spin Hall angle in Au layers of 5-100 nm thicknesses by spin pumping from Y3F e5O12 epitaxial films grown by ultrahigh vacuum, off-axis sputtering. We observe a striking increase in the spin Hall angle for Au layers thinner than the measured spin diffusion length of 12.6 nm. In particular, the 5 nm Au layer shows a large spin Hall angle of 0.087, compared to those of 0.016 and 0.017 for the 50 and 100 nm Au layers, respectively, suggesting that the top surface plays a dominant role in spin Hall physics when the spin current is able to reach it. Other spin pumping related parameters, including Gilbert damping enhancement, interfacial spin mixing conductance, and spin current are also determined for Au layers of various thicknesses. Given the pervasive role of ultrathin films in electrical and spin transport applications, this result emphasizes the importance of considering the impact of the top surface and reveals the possibility of tuning critical spin parameters by film thickness.

  17. Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature

    SciTech Connect

    Lee, Gyeong Beom; Han, Gwon Deok; Shim, Joon Hyung; Choi, Byoung-Ho

    2015-01-15

    ZnO is an attractive material for use in various technological products such as phosphors, gas sensors, and transparent conductors. Recently, aluminum-doped zinc oxide has received attention as a potential replacement for indium tin oxide, which is one of the transparent conductive oxides used in flat panel displays, organic light-emitting diodes, and organic solar cells. In this study, the characteristics of ZnO films deposited on polycarbonate (PC) substrates by atomic layer deposition (ALD) are investigated for various process temperatures. The growth mechanism of these films was investigated at low process temperatures using x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). XRD and XPS were used to determine the preferred orientation and chemical composition of the films, respectively. Furthermore, the difference of the deposition mechanisms on an amorphous organic material, i.e., PC substrate and an inorganic material such as silicon was discussed from the viewpoint of the diffusion and deposition of precursors. The structure of the films was also investigated by chemical analysis in order to determine the effect of growth temperature on the films deposited by ALD.

  18. Structure and roughness analysis of thin epitaxial Pd films grown on Cu/Si(111) surface

    NASA Astrophysics Data System (ADS)

    Davydenko, A. V.; Kozlov, A. G.; Ognev, A. V.; Stebliy, M. E.; Chebotkevich, L. A.

    2016-10-01

    We investigated growth processes of epitaxial Pd(111) films on Cu(10 ML)/Si(111) substrate. We found three stages of growth. In the first stage, up to Pd thickness of 2.6 ML, the Pd film is the most disordered. Most of the strains in the Pd film relax in this stage. In the second stage, in the thickness interval from 2.6 to 13 ML, the roughness of the Pd does not change significantly and the Pd grows in a layer-by-layer like mode. During the second stage, the lattice parameter of the Pd film gradually increases to volume value. With increasing coverage after 13 ML, in the third stage, the lattice parameter does not change, but the roughness of the Pd films increases rapidly. Pd islands grow in height and in lateral size. Epitaxial growth of Pd on Cu(10 ML)/Si(111) substrate is compared with the growth of Pd on Cu(111) single crystal; the results obtained are discussed.

  19. Advanced functional oxide thin films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Millon, E.

    2013-08-01

    Pulsed-laser deposition is now a largely used growth method to prepare functional and multifunctional oxide films for application in microelectronics, spintronics, optics, materials for energy… The functional properties of such oxide films are strongly depending on the crystalline structure, and on the chemical composition through the local environment of cationic species surrounded by oxygen. While large oxygen deficiency cannot be obtained by classical growth method or in bulk state, oxide films with a high content of oxygen vacancies may be obtained by PLD. For oxide systems presenting possible stable sub-oxides, the formation of oxygen vacancies is linked to a decrease of the cationic valence state. A complete reduction can be observed leading to particular electronic properties: the case of TiOx (1.5 < x < 2) will be therefore presented and discussed. When no thermodynamically stable sub-oxides can be involved, the large oxygen deficiency may lead to the formation of nanocomposite films constituted by a metallic phase embedded in a stoichiometric oxide matrix. This phase separation induced by the control of oxygen pressure during the growth is in particular evidenced on Ga2Ox (2.1 < x < 3) films and their related physical (electrical and optical) properties are discussed.

  20. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  1. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  2. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  3. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  4. Thickness dependent transport and magnetotransport in CSD grown La{sub 0.7}Pb{sub 0.3}MnO{sub 3} manganite films

    SciTech Connect

    Solanki, P.S.; Doshi, R.R.; Khachar, U.D.; Choudhary, R.J.; Kuberkar, D.G.

    2011-07-15

    Highlights: {yields} Thickness dependent transport and MR of CSD grown La{sub 0.7}Pb{sub 0.3}MnO{sub 3} manganite films. {yields} Chemical Solution Deposition (CSD) is the low cost, simple and easy to handle. {yields} Prominent strain effect in lower thickness films. {yields} 3D lattice strain and microstructure govern the transport and MR in the films. {yields} Low temperature resistivity minima is also affected by 3D lattice strain. -- Abstract: We report the effect of film thickness on transport and magnetotransport in La{sub 0.7}Pb{sub 0.3}MnO{sub 3} (LPMO) manganite films grown on single crystalline LaAlO{sub 3} substrate using chemical solution deposition (CSD) technique. AFM measurements show the island type grain growth responsible for the strain at the film-substrate interface, while structural studies using XRD shows the presence of thickness dependent compressive strain in the films which modifies the transport and magnetotransport in LPMO/LAO films. The observation of low temperature resistivity minima behavior in all the LPMO films has been explained in the context of electron-electron scattering mechanism. The ZFC-FC magnetization measurements show the glassy state behavior below T{sub min}.

  5. Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films

    SciTech Connect

    Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Riviere, J.-P.

    2009-12-01

    Nitrogen-doped titanium dioxide semiconductor photocatalytic thin films have been deposited by unbalanced reactive magnetron physical vapor deposition on glass substrates for self-cleaning applications. In order to increase the photocatalytic efficiency of the titania coatings, it is important to enhance the catalysts absorption of light from the solar spectra. Bearing this fact in mind, a reduction in the titania semiconductor band-gap has been attempted by using nitrogen doping from a coreactive gas mixture of N{sub 2}:O{sub 2} during the titanium sputtering process. Rutherford backscattering spectroscopy was used in order to assess the composition of the titania thin films, whereas heavy-ion elastic recoil detection analysis granted the evaluation of the doping level of nitrogen. X-ray photoelectron spectroscopy provided valuable information about the cation-anion binding within the semiconductor lattice. The as-deposited thin films were mostly amorphous, however, after a thermal annealing in vacuum at 500 deg. C the crystalline polymorph anatase and rutile phases have been developed, yielding an enhancement in the crystallinity. Spectroscopic ellipsometry experiments enabled the determination the refractive index of the thin films as a function of the wavelength, while from the optical transmittance it was possible to estimate the semiconductor indirect band-gap of these coatings, which has been proven to decrease as the N-doping increases. The photocatalytic performance of the titania films has been characterized by the degradation rate of an organic reactive dye under UV/visible irradiation. It has been found that for a certain critical limit of 1.19 at. % of nitrogen doping in the titania anatase crystalline lattice enhances the photocatalytic behavior of the thin films and it is in accordance with the observed semiconductor band-gap narrowing to 3.18 eV. By doping the titania lattice with nitrogen, the photocatalytic activity is enhanced under both UV and

  6. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  7. Multiferroic YCrO3 thin films grown on glass substrate: Resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Son, Jong Yeog

    2016-01-01

    Polycrystalline YCrO3 thin films were deposited on (111) Pt/Ta/glass substrates by pulsed laser deposition. The YCrO3 thin films exhibited good ferroelectric properties with remnant polarization of about 5 µC/cm2. Large leakage current was observed by I- V curve and ferroelectric hysteresis loop. The YCrO3 resistive random access memory (RRAM) capacitor showed unipolar switching behaviors with SET and RESET voltages higher than those of general NiO RRAM capacitors. [Figure not available: see fulltext.

  8. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  9. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  10. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  11. Microstructure characterization of InAs{sub 0.93}Sb{sub 0.07} films grown by ramp-cooled liquid phase epitaxy

    SciTech Connect

    Deng, H.Y.; Hong, X.K.; Fang, W.Z.; Dai, N. . E-mail: ndai@mail.sitp.ac.cn

    2007-03-15

    InAs{sub 0.93}Sb{sub 0.07} alloy thin films were grown by ramp-cooled liquid phase epitaxy on (100) InAs substrate using horizontally sliding multi-wells graphite boats. The systematic microstructural characterizations of the epi-grown films were analyzed by X-ray diffraction, scanning electronic microscopy and energy dispersive spectra. Four typical surface morphologies of the films were observed, which depend sensitively on growth parameters such as the growth temperature, the substrate etching time, the flux of the hydrogen, and the cooling range and rate. The film shows high crystal perfection with (100) orientation, as evidenced by X-ray measurement. The crystal quality of the epilayer was evaluated by the X-ray double axes diffraction, and the dislocation density was estimated through fitting the (200) and (400) rocking curves by Gaussian lineshape.

  12. Influence of a TiN interlayer on the microstructure and mechanical properties of hydroxyapatite films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Colis, Silviu; Arens, Simona; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-04-01

    Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.

  13. Interface study between nanostructured tantalum nitride films and carbon nanotubes grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Bouchet-Fabre, B.; Pinault, M.; Foy, E.; Hugon, M. C.; Minéa, T.; Mayne-L'Hermite, M.

    2014-10-01

    We present the role of nitrogen content in tantalum nitride ultra-thin buffers, on the carbon nanotubes (CNTs) growth by chemical vapour deposition at 850 °C, assisted by ferrocene as catalyst source. Tantalum nitride (TaNx) films with a very large range of concentration x = [0, 1.8] and various nanostructures, from amorphous Ta(N) to Ta3N5, were deposited by Highly Pulsed Plasma Magnetron Sputtering. The buffer films are characterized after heat treatment at 850 °C, and after the CNT growth, by wide angle X-ray scattering in grazing incidence and scanning electron microscopy. The CNT diameter explored by transition electron microscopy shows an all-out value for under stoichiometric thin films (Ta1-N1-δ, Ta3-N5-δ) and a minimum value just above the stoichiometric phases (Ta1-N1+δ, Ta3-N5+δ). Firstly one shows that the buffer films under the heat treatment present surface modification highly dependent on their initial state, which influences the catalyst particles diffusion. Secondly at the stoichiometric TaN phase we show that a specific ternary phase FeTa2O6 is formed at the interface CNT/buffer, not present in the other cases, leading to a special CNT growth condition.

  14. Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration

    2016-03-01

    Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity

  15. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  16. High photoactivity in ultrathin as-grown hematite films prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey; Becker, Nicholas; Riha, Shannon; Martinson, Alex; Elam, Jeffrey; Pellin, Michael; Proslier, Thomas

    2013-03-01

    Nanostructured hematite (α-Fe2O3) has been widely studied for use in a variety of thin film applications including solar energy conversion, water oxidation, catalysis, and gas sensing. Among established deposition methods, atomic layer deposition (ALD) is a leading technique for large-scale, controlled synthesis of a wide range of nanostructured materials. In this work, ALD of Fe2O3 is demonstrated using FeCl3 and H2O precursors at growth temperatures between 200 -350° C. Self-limiting growth of Fe2O3 is observed with a growth rate of ~ 0 . 06 nm/cycle. As-deposited, films are nanocrystalline with low Cl impurities and a mixture of α- and γ-Fe2O3. Post-deposition annealing in O2 leads to phase-pure hematite with increased out-of-plane grain size. Photoelectrochemical measurements under simulated solar illumination reveal high photoactivity toward water oxidation in both as-deposited and post-annealed films. Planar films deposited at low temperature (235°C) exhibit remarkably high photocurrent densities ~ 0 . 71 mA/cm2 at 1.53 V vs. the reversible hydrogen electrode (RHE) without further processing. Films annealed in air at 500°C show current densities of up to 0.84 mA/cm2 (1.53V vs. RHE). This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357 and by the American Recovery and Reinvestment Act (ARRA) through the US Department of Energy, Office of High Energy Physics.

  17. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  18. Spin-resolved photoemssion study of epitaxially grown MoSe2 and WSe2 thin films.

    PubMed

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; Fanciulli, Mauro; Muff, Stefan; Hugo Dil, J; Shen, Zhi-Xun; Hussain, Zahid

    2016-11-16

    Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin-orbit coupling. We report a spin-resolved photoemission study of MoSe2 and WSe2 thin film samples epitaxially grown on a bilayer graphene substrate. We only found spin polarization in the single- and trilayer samples-not in the bilayer sample-mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricate coupling between the spin and orbital degrees of freedom in this class of material. PMID:27617696

  19. Spin-resolved photoemssion study of epitaxially grown MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; Fanciulli, Mauro; Muff, Stefan; Dil, J. Hugo; Shen, Zhi-Xun; Hussain, Zahid

    2016-11-01

    Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin-orbit coupling. We report a spin-resolved photoemission study of MoSe2 and WSe2 thin film samples epitaxially grown on a bilayer graphene substrate. We only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricate coupling between the spin and orbital degrees of freedom in this class of material.

  20. Ferroelectric properties of (Ba,Sr)TiO3 thin films grown on YBa2Cu3O7 layers

    NASA Astrophysics Data System (ADS)

    Tao, K.; Hao, Z.; Xu, B.; Chen, B.; Miao, J.; Yang, H.; Zhao, B. R.

    2003-09-01

    Ferroelectric and superconductor bilayers of Ba1-xSrxTiO3(BST)/YBa2Cu3 O7 (YBCO) are grown on (001) SrTiO3 substrates by magnetron sputtering and pulsed laser deposition. The BST thin films exhibit typical ferroelectric behavior in their hysteresis loops. Capacitance-voltage curves are measured. From the capacitance, a dielectric constant of 1250 is obtained. The current-voltage curve is fitted to investigate the mechanism of leakage. The Schottky barrier height at the Ag/BST interface is calculated to be 0.521 eV. The trapped level Et in BST is estimated to be 0.335 eV below the conduction-band edge. An energy band diagram of the Ag/BST/YBCO structure is proposed to explain the experimental results.

  1. Synthesis of nanocrystalline Cu{sub 2}ZnSnS{sub 4} thin films grown by the spray-pyrolysis technique

    SciTech Connect

    Chandel, Tarun Singh, Joginder; Rajaram, P.

    2015-08-28

    Spray pyrolysis was used to deposit Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  2. Effect of laser fluence on electrical properties of (Sr0.75,La0.25)TiO3 thin films grown by pulsed-laser-deposition.

    PubMed

    Eom, Kitae; Kim, Taemin; Seo, Jiwon; Choi, Jaedu; Lee, Jaichan

    2014-11-01

    We have grown Sr0.75La0.25TiO3 (SLTO) thin films using pulsed laser deposition (PLD) with various laser energy fluences. We investigated the effect of energy fluence on the compositions of SLTO films. The stoichiometry of SLTO films was controlled by adjusting the laser energy density. At low energy densities below 1.0 J/cm2, SLTO films become non-stoichiometric with Ti deficiency. The Ti deficiency increases with decreasing the laser energy fluence. We have also investigated the effect of laser energy fluence on the electrical properties of the thin films. The electrical resistivity and carrier density intimately depend on the laser energy fluence as a result of the non-stoichiometry. After eliminating the effect of oxygen vacancies by post-annealing, the electrical properties are dependent on the cation stoichiometry in the oxide films.

  3. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    SciTech Connect

    Verma, Shweta Rao, B. T.; Detty, A. P.; Kukreja, L. M.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  4. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  5. Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates

    NASA Technical Reports Server (NTRS)

    Steckl, A. J.; Roth, M. D.; Powell, J. A.; Larkin, D. J.

    1993-01-01

    The surface of 3C SiC films grown on 6H SiC substrates has been studied by atomic probe microscopy in air. Atomic-scale images of the 3C SiC surface have been obtained by STM which confirm the 111 line type orientation of the cubic 3C layer grown on the 0001 plane type surface of the hexagonal 6H substrate. The nearest-neighbor atomic spacing for the 3C layer has been measured to be 3.29 +/- 0.2 A, which is within 7 percent of the bulk value. Shallow terraces in the 3C layer have been observed by STM to separate regions of very smooth growth in the vicinity of the 3C nucleation point from considerably rougher 3C surface regions. These terraces are oriented at right angles to the growth direction. Atomic force microscopy has been used to study etch pits present on the 6H substrate due to high temperature HCl cleaning prior to CVD growth of the 3C layer. The etch pits have hexagonal symmetry and vary in depth from 50 nm to 1 micron.

  6. Bandedge optical properties of MBE grown GaAsBi films measured by photoluminescence and photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, M.; Lewis, R. B.; Andrews, J. J.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; O'Leary, S. K.; Tiedje, T.

    2015-09-01

    The bandedge optical properties of GaAsBi films, as thick as 470 nm, with Bi content varying from 0.7% Bi to 2.8% Bi grown by molecular beam epitaxy on GaAs substrates are measured by photoluminescence (PL) and photothermal deflection spectroscopy (PDS). The PDS spectra were fit with a modified Fernelius model which takes into account multiple reflections within the GaAsBi layer and GaAs substrate. Three undoped samples and two samples that are degenerately doped with silicon are studied. The undoped samples show a clear Urbach absorption edge with a composition dependent bandgap that decreases by 56 meV/% Bi and a composition independent Urbach slope parameter of 25 meV due to absorption by Bi cluster states near the valence band. The doped samples show a long absorption tail possibly due to absorption by gap states and free carriers in addition to a Burstein-Moss bandgap shift. PL of the undoped samples shows a lower energy emission peak due to defects not observed in the usually available thin samples (50 nm or less) grown under similar conditions.

  7. Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique

    SciTech Connect

    Krajewski, Tomasz A. Dybko, Krzysztof; Luka, Grzegorz; Wachnicki, Lukasz; Kopalko, Krzysztof; Paszkowicz, Wojciech; Guziewicz, Elzbieta

    2015-07-21

    In this work, the analysis of the temperature-dependent electrical conductivity of highly crystalline zinc oxide (ZnO) thin films obtained by the Atomic Layer Deposition (ALD) method is performed. It is deduced that the most important scattering mechanisms are: scattering by ionized defects (at low temperatures) as well as by phonons (mainly optical ones) at higher temperatures. Nevertheless, the role of grain boundaries in the carrier mobility limitation ought to be included as well. These conclusions are based on theoretical analysis and temperature-dependent Hall mobility measurements. The presented results prove that existing models can explain the mobility behavior in the ALD-ZnO films, being helpful for understanding their transport properties, which are strongly related both to the crystalline quality of deposited ZnO material and defects in its lattice.

  8. Manganese phosphide thin films and nanorods grown on gallium phosphide and on glass substrates

    NASA Astrophysics Data System (ADS)

    Nateghi, N.; Lambert-Milot, S.; Ménard, D.; Masut, R. A.

    2016-05-01

    We report a simple and fast route to grow ferromagnetic manganese phosphide polycrystalline films and nanorods on GaP and on glass substrates using metalorganic vapor phase deposition. Increasing the growth temperature (≥600 °C) and growth time (≥30 min) results in nucleation of secondary MnP crystals on the primary grains. The secondary crystals grow faster along a specific direction of orthorhombic MnP (c-axis) and form long rods (up to ~10 μm) whose diameters are in the nanoscale (20-100 nm). The nanorods can be easily detached from the glass substrate. The films exhibit ferromagnetic behavior with a range of transition temperatures, depending on the growth conditions.

  9. Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Krajewski, Tomasz A.; Dybko, Krzysztof; Luka, Grzegorz; Wachnicki, Lukasz; Kopalko, Krzysztof; Paszkowicz, Wojciech; Godlewski, Marek; Guziewicz, Elzbieta

    2015-07-01

    In this work, the analysis of the temperature-dependent electrical conductivity of highly crystalline zinc oxide (ZnO) thin films obtained by the Atomic Layer Deposition (ALD) method is performed. It is deduced that the most important scattering mechanisms are: scattering by ionized defects (at low temperatures) as well as by phonons (mainly optical ones) at higher temperatures. Nevertheless, the role of grain boundaries in the carrier mobility limitation ought to be included as well. These conclusions are based on theoretical analysis and temperature-dependent Hall mobility measurements. The presented results prove that existing models can explain the mobility behavior in the ALD-ZnO films, being helpful for understanding their transport properties, which are strongly related both to the crystalline quality of deposited ZnO material and defects in its lattice.

  10. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  11. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors

    NASA Astrophysics Data System (ADS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-09-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT-graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT-graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene-CNT/Si solar cells reveal power conversion efficiencies up to 8.50%.

  12. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.

    PubMed

    Driessen, Marion; Merkel, Benjamin; Reber, Stefan

    2011-09-01

    Crystalline silicon thin film (cSiTF) solar cells based on the epitaxial wafer-equivalent (EpiWE) concept combine advantages of wafer-based and thin film silicon solar cells. In this paper two processes beyond the standard process sequence for cSiTF cell fabrication are described. The first provides an alternative to wet chemical saw damage removal by chemical vapor etching (CVE) with hydrogen chloride in-situ prior to epitaxial deposition. This application decreases the number of process and handling steps. Solar cells fabricated with different etching processes achieved efficiencies up to 14.7%. 1300 degrees C etching temperature led to better cell results than 1200 degrees C. The second investigated process aims for an improvement of cell efficiency by implementation of a reflecting interlayer between substrate and active solar cell. Some characteristics of epitaxial lateral overgrowth (ELO) of a patterned silicon dioxide film in a lab-type reactor constructed at Fraunhofer ISE are described and first solar cell results are presented.

  13. Fluence dependent electrical conductivity in aluminium thin films grown by infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Martínez-Tong, Daniel E.; Sanz, Mikel; Oujja, Mohamed; Marco, José F.; Ezquerra, Tiberio A.; Castillejo, Marta

    2016-11-01

    We studied the effect of laser fluence on the morphology, composition, structure and electric conductivity of deposits generated by pulsed laser ablation of a metallic aluminium target in vacuum using a Q-switched Nd:YAG laser (1064 nm, 15 ns). Upon irradiation for one hour at a repetition rate of 10 Hz, a smooth layer of several tens of nanometres, as revealed by atomic force microscopy (AFM) was deposited on glass. Surface chemical composition was determined by X-ray photoelectron spectroscopy, and to study the conductivity of deposits both I-V curves and conductive-AFM measurements were performed. Irradiation at fluences around 2.7 J/cm2 resulted in deposition of amorphous aluminium oxide films. Differently, at higher fluences above 7 J/cm2, the films are constituted by metallic aluminium. Optical emission spectroscopy revealed that highly ionized species are more abundant in the ablation plumes generated at higher fluences. The results demonstrate the possibility to control by PLD the metal or dielectric character of the films.

  14. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  15. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  16. Properties of anodic oxides grown on a hafnium-tantalum-titanium thin film library

    NASA Astrophysics Data System (ADS)

    Ionut Mardare, Andrei; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-02-01

    A ternary thin film combinatorial materials library of the valve metal system Hf-Ta-Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott-Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

  17. Characterisation of nano-crystalline titanium dioxide films grown by atmospheric pressure plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Paulmier, Thierry; Bell, John M.; Fredericks, Peter M.

    2006-01-01

    A new atmospheric pressure plasma electrolytic process has been developed for the deposition of TiO II crystalline thin films on metal substrate. Contrary to the other deposition techniques, the process occurs in a liquid precursor, composed of titanium tetraisopropoxide and absolute ethanol. A plasma discharge is created and confined around the cathode in a superheated vapour sheath surrounded by the liquid phase, inducing the production of a thin TiO II coating at the surface of the cathode. Because of the flexibility of the operating parameters, this technology allows the rapid deposition of thin films with a wide range of structural and physical properties. This process enables therefore the production of nanocrystalline titania films with adjustable morphology and structure (anatase, rutile) by adjusting the operating voltage, current intensity, the treatment time and calcination temperature. The analysis of the structure and composition of these TiO II coatings have been carried out by Scanning Electron Microscopy, Transmission Electron Microscopy, Raman spectroscopy, X-ray Photoelectron Spectroscopy and X-Ray Diffraction. A thorough study has been performed to understand the influence of the operating parameters on the properties and structure of the coatings.

  18. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  19. Comparative study of Hg xCd 1-xTe films grown on CdTe thin films previously deposited from two different techniques

    NASA Astrophysics Data System (ADS)

    Ali, A.; Abbas Shah, N.; Maqsood, A.

    2009-04-01

    High quality cadmium telluride (CdTe) thin films were grown on glass substrates with two different techniques, two evaporation source (TES) and closed space sublimation (CSS). Further to the above mercury telluride (HgTe) was then deposited by using single source on both CdTe thin films for obtaining Hg xCd 1-xTe samples. The crystalline structure of the Hg xCd 1-xTe sample grown from CSS-CdTe showed the preferential (1 1 1) orientation with smoother and larger grain size than those of TES-CdTe. The optical transmission for TES-CdTe sample was above 90% in the 1000-1500 nm range whereas it was significantly below 80% for CSS-CdTe sample. The optical transmission for TES-Hg xCd 1-xTe and CSS-Hg xCd 1-xTe was ˜60%. The resistivity at room temperature of TES-CdTe and CSS-CdTe was ˜3.33×10 9 Ω cm and ˜2.20×10 8 Ω cm, respectively, while the resistivity of TES-Hg xCd 1-xTe and CSS-Hg xCd 1-xTe samples was ˜1.73 Ω cm and ˜5.34×10 5 Ω cm, respectively. The comparative study of ternary compound prepared with the above techniques has been carried out for the first time.

  20. Effect of oxygen surfactant on the magnetic and structural properties of Co films grown on Cu(110)

    SciTech Connect

    Ling, W.L.; Qiu, Z.Q.; Takeuchi, O.; Ogletree, D.F.; Salmeron, M.

    2000-04-13

    It was found that atomically flat Co(110) film could be grown on Cu(110) using O as a surfactant. To obtain detailed knowledge on the effect of O on the growth, as well as on the magnetic properties of Co overlayer, we carried out an investigation on this system using Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED), Surface Magneto-Optic Kerr Effect (SMOKE), and Scanning Tunneling Microscopy (STM). With O as a surfactant, the initial growth of Co (< 1 ML) results in a flat monolayer structure. When the Co is thicker than 1 ML, three-dimensional clusters begin to form. These clusters become ordered islands at 3 ML Co and coalesce at about 5 ML Co. Above 5 ML Co, layer-by-layer growth resumes. No Cu segregation is observed. SMOKE studies at room temperature show that the Co film is magnetic above about 5 ML Co, with the magnetization easy axis along the [001] direction. On the other hand, without using oxygen as a surfactant, Co grows three-dimensionally on Cu(110). The Co overlayer has its easy magnetization axis along the [001] direction, but the onset of the magnetization was observed at 11 ML Co at room temperature.

  1. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion

    2016-02-01

    Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  2. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    PubMed Central

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  3. Effect of oxygen surfactant on the magnetic and structural properties of Co films grown on Cu(110)

    SciTech Connect

    Ling, W. L.; Qiu, Z. Q.; Takeuchi, O.; Ogletree, D. F.; Salmeron, M.

    2001-01-01

    It was found that atomically flat Co(110) films could be grown on Cu(110) using O as a surfactant. To obtain detailed knowledge on the effect of O on the growth, as well as on the magnetic properties of Co overlayer, we carried out an investigation on this system using Auger electron spectroscopy, low-energy electron diffraction, surface magneto-optic Kerr effect (SMOKE), and scanning tunneling microscopy. With O as a surfactant, the initial growth of Co (<1 ML) results in a flat monolayer structure. When the Co is thicker than 1 ML, three-dimensional clusters begin to form. These clusters become ordered islands at 3 ML Co and coalesce at {approx}5 ML Co. Above 5 ML Co, layer-by-layer growth resumes. No significant Cu segregation is observed. SMOKE studies at room temperature show that the Co film is magnetic above {approx}5 ML Co, with the magnetization easy axis along the [001] direction. On the other hand, without using oxygen as a surfactant, Co grows three-dimensionally on Cu(110). The Co overlayer has its easy magnetization axis along the [001] direction, but the onset of the magnetization was observed at 11 ML Co at room temperature.

  4. Photovoltaic properties of Bi2FeCrO6 films epitaxially grown on (100)-oriented silicon substrates.

    PubMed

    Nechache, R; Huang, W; Li, S; Rosei, F

    2016-02-14

    We demonstrate the promising potential of using perovskite Bi2FeCrO6 (BFCO) for niche applications in photovoltaics (PV) (e.g. self-powered sensors that simultaneously exploit PV conversion and multiferroic properties) or as a complement to mature PV technologies like silicon. BFCO thin films were epitaxially grown on silicon substrates using an MgO buffer layer. Piezoresponse force microscopy measurements revealed that the tensile strained BFCO phase exhibits a polarization predominantly oriented through the in-plane direction. The semiconducting bandgap of the ordered BFCO phase combined with ferroelectric properties, opens the possibility of a ferroelectric PV efficiency above 2% in a thin film device and the use of ferroelectric materials simultaneously as solar absorber layers and carrier separators in PV devices. A large short circuit photocurrent density of 13.8 mA cm(-2) and a photovoltage output of 0.5 V are typically obtained at FF of 38% for BFCO devices fabricated on silicon. We believe that the reduced photovoltage is due to the low diffusion length of photogenerated charge carriers in the BFCO material where the ferroelectric domains are predominately oriented in-plane and thus do not contribute efficiently to the photocharge separation process.

  5. Structural properties of Bi2-xMnxSe3 thin films grown via molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-01

    The effects of Mn doping on the structural properties of the topological insulator Bi2Se3 in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn2+ substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  6. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-05-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect.

  7. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering.

    PubMed

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-05-04

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect.

  8. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH{sub 4}/Ar plasma

    SciTech Connect

    Sankaran, K. J.; Tai, N. H. E-mail: nhtai@mse.nthu.edu.tw; Huang, B. R.; Saravanan, A.; Lin, I. N. E-mail: nhtai@mse.nthu.edu.tw

    2014-10-28

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH{sub 4} and Ar under different negative bias voltages ranging from −50 to −200 V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under −200 V, the electron field emission (EFE) process can be turned on at a field as small as 4.08 V/μm, attaining a EFE current density as large as 3.19 mA/cm{sup 2} at an applied field of 8.64 V/μm. But the films grown without bias (0 V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH{sub 4}/Ar plasma due to large applied bias voltage of −200 V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  9. Defect Analysis in III-V Semiconductor Thin Films Grown by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Schulte, Kevin Louis

    Hydride vapor phase epitaxy (HVPE) is an epitaxial growth technique renowned for its ability to grow III-V semiconductors at high growth rates using lower cost reagents compared to metal-organic vapor phase epitaxy (MOVPE), the current industry standard. Recent interest in III-V photovoltaics has led to increased attention on HVPE. While the technique came to maturity in the 70s, much is unknown about how defects incorporate in HVPE-grown materials. Further understanding of how defects incorporate in III-V materials grown by HVPE is necessary to facilitate wider adoption of the technique. This information would inform strategies for minimizing and eliminating defects in HVPE materials, allowing for the formation of high performance devices. This investigation presents a study of multiple defects in III-V semiconductors grown by HVPE in the context of specific device applications, spanning point defects comprised of individual atoms to extended defects which propagate throughout the crystal. The incorporation of the arsenic anti-site defect, AsGa, intrinsic point defect was studied in high growth rate GaAs layers with potential photovoltaic applications. Relationships between growth conditions and incorporation of AsGa in GaAs epilayers were determined. The incorporation of AsGa depended strongly on the growth conditions employed, and a model was developed to predict the concentration of anti-site defects as a function of those growth conditions. Dislocations and anti-phase domain boundaries (APDBs), two types of extended defects, were investigated in the heteroepitaxial GaAs/Ge system. It was found that the use of 6° miscut substrates and specific growth temperatures led to elimination of APDBs. Dislocation densities were reduced through the use of high growth temperatures. The third and final application investigated was the growth of InxGa1-xAs metamorphic buffer layers (MBLs) by HVPE. The relationships between the growth conditions and the alloy composition

  10. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  11. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films.

    PubMed

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-04-21

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.

  12. Improved structural properties and crystal coherence of superconducting NdBa2Cu3O7-δ films grown by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Schmauder, T.; Saleh, S. A.; Rast, S.; Pavuna, D.

    2000-11-01

    We report on improved structural, crystallographic and electrical properties of epitaxial NdBa2Cu3O7-δ (NBCO) films grown on SrTiO3 by `off-axis' pulsed laser deposition (PLD). Transport and XRD studies show that the c-axis-oriented epitaxial films, with critical temperatures of 90-92 K, are mono phase and single-crystalline. Furthermore, very smooth, almost outgrowth-free surfaces and crystal coherences of up to 0.8 µm (to our knowledge the best value ever reported for high-Tc films) were obtained.

  13. Photoluminescence of GaAs films grown by vacuum chemical epitaxy

    SciTech Connect

    Bernussi, A.A.; Barreto, C.L.; Carvalho, M.M.G.; Motisuke, P.

    1988-08-01

    GaAs layers grown by vacuum chemical epitaxy (VCE) are investigated by low-temperature photoluminescence. A qualitative relation between the growth parameters and the shallow-impurity-incorporation mechanism is established. It was observed that the predominant shallow acceptor is carbon, and its incorporation during the growth process decreases with the As:Ga ratio, increases with growth temperature until 750 /sup 0/C, and then it diminishes. In this work we compare the characteristics observed in the VCE system with those in conventional molecular-beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD). Our results show that this system contains some advantages from both the MBE and MOCVD systems. The photoluminescence spectra also show that at low As:Ga ratios the generation of As vacancies or its complexes is strongly enhanced.

  14. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  15. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  16. Optical properties of hydrogenated amorphous carbon films grown from methane plasma

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Lanford, W. A.

    1985-01-01

    A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined.

  17. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere. PMID:25852391

  18. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  19. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

  20. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    SciTech Connect

    Kalkofen, Bodo Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P.; Garke, Bernd; Lisker, Marco; Gargouri, Hassan

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  1. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone

    NASA Astrophysics Data System (ADS)

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-02-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti3+ ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti3+ ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

  2. Optical and electrical characterization of CIGS thin films grown by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    In this paper, the electrochemical impedance spectroscopy was handled to study the electrochemical attitude of quaternary alloy Cu (In, Ga) Se2/Na2SO4 electrolyte interface. Subsequently, an annealing treatment was performed at various temperatures (250-400 °C). The material features of Cu (In, Ga) Se2 films are controlled by the percentage of gallium content. XRD studies showed three favorite orientations along the (112), (220), and (116) planes for all samples. The morphological and chemical composition studies exhibited Ga/(Ga + In) ratio ranging from 0.27 to 0.32, and RMS surface roughness was in the range 54.2-77.8 nm, respectively. The optical band gap energy of the CIGS alloys can be strongly controlled by adjusting gallium and indium concentrations. EIS measurement has been modeled by using an equivalent circuit. Mott-Schottky plot illustrates p-type conductivity of CIGS film with a carrier concentration around 1016 cm-3, a flat band potential V fb ranging from -0.68 to -0.57 V, and depletion layer thickness rises from 0.24 to 0.36 μm.

  3. TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Farstad, M. H.; Ragazzon, D.; Grönbeck, H.; Strømsheim, M. D.; Stavrakas, C.; Gustafson, J.; Sandell, A.; Borg, A.

    2016-07-01

    The growth of ultrathin TiOx (0≤x≤2) films on Pd(100) and Pd(111) surfaces by chemical vapor deposition (CVD), using Titanium(IV)isopropoxide (TTIP) as precursor, has been investigated by high resolution photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. Three different TiOx phases and one Pd-Ti alloy phase have been identified for both surfaces. The Pd-Ti alloy phase is observed at the initial stages of film growth. Density functional theory (DFT) calculations for Pd(100) and Pd(111) suggest that Ti is alloyed into the second layer of the substrate. Increasing the TTIP dose yields a wetting layer comprising Ti2 + species (TiOx, x ∼0.75). On Pd(100), this phase exhibits a mixture of structures with (3 × 5) and (4 × 5) periodicity with respect to the Pd(100) substrate, while an incommensurate structure is formed on Pd(111). Most importantly, on both surfaces this phase consists of a zigzag pattern similar to observations on other reactive metal surfaces. Further increase in coverage results in growth of a fully oxidized (TiO2) phase on top of the partially oxidized layer. Preliminary investigations indicate that the fully oxidized phase on both Pd(100) and Pd(111) may be the TiO2(B) phase.

  4. Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Cho, Chungyeon; Wallace, Kevin L.; Hagen, David A.; Stevens, Bart; Regev, Oren; Grunlan, Jaime C.

    2015-05-01

    In an effort to speed up the layer-by-layer (LbL) deposition technique, electrophoretic deposition (EPD) is employed with weak polyelectrolytes and clay nanoplatelets. The introduction of an electric field results in nearly an order of magnitude increase in thickness relative to conventional LbL deposition for a given number of deposited layers. A higher clay concentration also results with the EPD-LbL process, which produces higher modulus and strength with fewer deposited layers. A 20 quadlayer (QL) assembly of linear polyethyleneimine (LPEI)/poly(acrylic acid)/LPEI/clay has an elastic modulus of 45 GPa, tensile strength of 70 MPa, and thickness of 4.4 μm. Traditional LbL requires 40 QL to achieve the same thickness, with lower modulus and strength. This study reveals how these films grow and maintain a highly ordered nanobrick wall structure that is commonly associated with LbL deposition. Fewer layers required to achieve improved properties will open up many new opportunities for this multifunctional thin film deposition technique.

  5. Crystalline silicon germanium films grown on crystalline silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Kojima, Yuji; Isomura, Masao

    2015-08-01

    We researched on crystalline silicon-germanium films (c-SiGe) for bottom cells of silicon-based multijunction solar cells. We conducted the epitaxial crystal growth of SiGe with approximately 75% Ge fraction due to solid phase crystallization (SPC) from amorphous silicon-germanium (a-SiGe) precursors on n-type (100) Si substrates. We evaluated the preparation conditions of a-SiGe precursors for the SPC epitaxial growth. The epitaxial growth was successfully conducted and (100)-oriented c-SiGe films were formed. The epitaxial growth was effectively promoted in the a-SiGe precursors prepared at the substrate temperature from 250 to 300 °C, but is not sufficiently promoted in the a-SiGe precursors prepared below 250 °C. The density of a-SiGe precursors is relatively low at the substrate temperature below 250 °C, and the low-density structures cause the impurity incorporation from the air-exposed surface. The impurities are probably the main cause of disturbance of the epitaxial growth. On the other hand, the random crystallization occurred in the SPC of the a-SiGe precursors prepared at 350 °C. The precursors have the slightly crystallized structure and are not suitable for the SPC.

  6. Effect of growth temperature on magnetic and electronic properties of epitaxially grown MnAs thin films on GaAs(100) substrates

    SciTech Connect

    Song, J. H.; Cui, Y.; Ketterson, J. B.

    2013-05-07

    We grew epitaxial MnAs thin films on GaAs(100) substrates using molecular-beam epitaxy and investigated the growth temperature dependences of their physical properties. With increasing growth temperature from 200 Degree-Sign C to 350 Degree-Sign C, the crystal orientation of the film changed from type-A to type-B. The Curie temperatures of all type-B samples were {approx}346 K, while the type-A sample showed a lower bulk-like value of {approx}318 K, indicating an improvement in magnetic properties. Samples grown at above 550 Degree-Sign C exhibited semiconducting behavior, whereas the lower temperature grown samples show metallic behavior as expected. Our results indicate that growth temperature plays an important role in determining the crystal structure, magnetic, and electrical-transport properties of MnAs/GaAs(100) thin films.

  7. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  8. Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using HfO2 ceramic target

    SciTech Connect

    Aguirre, B.; Vemuri, R. S.; Zubia, David; Engelhard, Mark H.; Shutthanandan, V.; Kamala Bharathi, K.; Ramana, Chintalapalle V.

    2011-01-01

    Hafnium oxide (HfO₂) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(100) substrates under varying growth temperature (Ts). HfO₂ ceramic target has been employed for sputtering while varying the Ts from room temperature to 500⁰C during deposition. The effect of Ts on the growth and microstructure of deposited HfO₂ films has been studied using grazing incidence x-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO₂ films. Structural characterization indicates that the HfO₂ films grown at Ts<200 ⁰C are amorphous while films grown at Ts>200 ⁰C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts=200 ⁰C. Nanocrystalline HfO₂ films crystallized in a monoclinic structure with a (-111) orientation. XPS measurements indicated the high surface-chemical quality and stoichiometric nature of the grown HfO₂ films. An interface layer (IL) formation occurs due to reaction at the HfO₂-Si interface for HfO₂ films deposited at Ts>200 ⁰C. The thickness of IL increases with increasing Ts. XPS and EDS at the HfO₂-Si cross-section indicate the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts.

  9. Data storage applications based on LiCoO2 thin films grown on Al2O3 and Si substrates

    NASA Astrophysics Data System (ADS)

    Svoukis, E.; Mihailescu, C. N.; Mai, V. H.; Schneegans, O.; Breza, K.; Lioutas, C.; Giapintzakis, J.

    2016-09-01

    In this study, LiCoO2 thin films were investigated for data storage applications based on scanning probe mediated approaches. LiCoO2, compared to other materials proposed for scanning probe mediated nanoscale patterning, is highly stable and exhibits reversible electrochemical surface modifications. LiCoO2 thin films have been grown by pulsed laser deposition on Al2O3 and Si substrates over a range of deposition temperatures. The crystal structure and the microstructure of the films has been inferred through in- and out-of-plane X-ray diffraction studies and high-resolution transmission electron microscopy, respectively. The influence of the film deposition temperature on the surface electrical properties of the LiCoO2 films is discussed along with the relevant mechanism of surface resistance modification.

  10. Stress-induced VO{sub 2} films with M2 monoclinic phase stable at room temperature grown by inductively coupled plasma-assisted reactive sputtering

    SciTech Connect

    Okimura, Kunio; Watanabe, Tomo; Sakai, Joe

    2012-04-01

    We report on growth of VO{sub 2} films with M2 monoclinic phase stable at room temperature under atmospheric pressure. The films were grown on quartz glass and Si substrates by using an inductively coupled plasma-assisted reactive sputtering method. XRD-sin{sup 2}{Psi} measurements revealed that the films with M2 phase are under compressive stress in contrast to tensile stress of films with M1 phase. Scanning electron microscopy observations revealed characteristic crystal grain aspects with formation of periodical twin structure of M2 phase. Structural phase transition from M2 to tetragonal phases, accompanied by a resistance change, was confirmed to occur as the temperature rises. Growth of VO{sub 2} films composed of M2 phase crystalline is of strong interest for clarifying nature of Mott transition of strongly correlated materials.

  11. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature

    NASA Astrophysics Data System (ADS)

    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Yasui, Kanji; Hashim, Abdul Manaf

    2015-01-01

    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end facets and were highly oriented towards the c-axis direction. Photoluminescence (PL) spectra of the hydrothermal layers were composed of the ultraviolet (UV) emission (370 to 380 nm) and the visible emission (481 to 491 nm), and the intensity ratio of the former emission ( I UV) to the latter emission ( I VIS) changed, depending on both the molarity of the solution and temperature. It is surprising that all the Hall mobilities for the hydrothermal ZnO layers were significantly larger than those for their corresponding CVD seed films. It was also found that, for the hydrothermal films grown at 70°C to 90°C, the molarity dependences of I UV/ I VIS resembled those of mobilities, implying that the mobility in the film is affected by the structural defects. The highest mobility of 166 cm2/Vs was achieved on the hydrothermal film with the carrier concentration of 1.65 × 1017 cm-3 grown from the aqueous solution of 40 mM at 70°C.

  12. High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature.

    PubMed

    Jayah, Nurul Azzyaty; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Yasui, Kanji; Hashim, Abdul Manaf

    2015-01-01

    Hydrothermal zinc oxide (ZnO) thick films were successfully grown on the chemical vapor deposition (CVD)-grown thick ZnO seed layers on a-plane sapphire substrates using the aqueous solution of zinc nitrate dehydrate (Zn(NO3)2). The use of the CVD ZnO seed layers with the flat surfaces seems to be a key technique for obtaining thick films instead of vertically aligned nanostructures as reported in many literatures. All the hydrothermal ZnO layers showed the large grains with hexagonal end facets and were highly oriented towards the c-axis direction. Photoluminescence (PL) spectra of the hydrothermal layers were composed of the ultraviolet (UV) emission (370 to 380 nm) and the visible emission (481 to 491 nm), and the intensity ratio of the former emission (I UV) to the latter emission (I VIS) changed, depending on both the molarity of the solution and temperature. It is surprising that all the Hall mobilities for the hydrothermal ZnO layers were significantly larger than those for their corresponding CVD seed films. It was also found that, for the hydrothermal films grown at 70°C to 90°C, the molarity dependences of I UV/I VIS resembled those of mobilities, implying that the mobility in the film is affected by the structural defects. The highest mobility of 166 cm(2)/Vs was achieved on the hydrothermal film with the carrier concentration of 1.65 × 10(17) cm(-3) grown from the aqueous solution of 40 mM at 70°C.

  13. Synthesis of LECBD grown cluster assembled SeO 2 thin films

    NASA Astrophysics Data System (ADS)

    Rath, S.; Das, K.; Sarangi, S. N.; Dash, A. K.; Ray, S. K.; Sahu, S. N.

    2006-12-01

    Cluster assembled selenium oxide (SeO 2) thin films, as a function of oxygen flow pressure (OFP) have been synthesized by a low energy cluster beam deposition (LECBD) technique. The OFP dependent surface morphology leading to well separated nanoclusters (size ranging from 50 to 200 nm) and fractal features are confirmed from transmission electron microscopic (TEM) measurements. A diffusion limited aggregation (DLA) mediated fractal growth with dimension as 1.71 ± 0.01 has been observed for high OFP (60 mbar). Structural analysis by glancing angle X-ray diffraction (GXRD) and selected area diffraction (SAD) studies identify the presence of tetragonal phase SeO 2 in the deposit. Micro-Raman studies indicate the shifts in bending and stretching vibrational phonon modes in cluster assembled SeO 2 as compared to their bulk counter part due to the phonon confinement effect.

  14. Intermodulation distortion measurements of MgB2 thin films grown by HPCVD

    NASA Astrophysics Data System (ADS)

    Cifariello, G.; Aurino, M.; di Gennaro, E.; Lamura, G.; Orgiani, P.; Villegier, J.-C.; Xi, X. X.; Andreone, A.

    2006-06-01

    The two tone intermodulation distortion (IMD) arising in MgB2 thin films synthesized by hybrid physical-chemical vapour deposition (HPCVD) is studied in order to probe the influence of the two bands on the symmetry of the gap function. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10, are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, IMD versus temperature data show the intrinsic s-wave behaviour expected for this compound

  15. Formation of pyramid-like nanostructures in MBE grown Si films on Si(001)

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Garzon, L.; Rodriguez-Cañas, E.; Munuera, Carmen; Esteban-Betegon, F.; Varela del Arco, Maria; Ocal, Carmen; Alonso, Maria; Ruiz, Ana

    2010-01-01

    The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometric scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks and square pit (inverted pyramids) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nano-scale entities (islands or pits) display certain self assembly and ordering, concerning size, shape and spacing. Film growth sequence follows the islands-coalescence-2D growth pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature.

  16. The properties of gallium oxide thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Li, Fuguo; Dai, Bo; Jia, Zhitai; Xie, Wenlin; Xu, Tong; Lu, Xiaoli; Tao, Xutang; Zhang, Jincheng; Hao, Yue

    2015-12-01

    Ga2O3 films were deposited on MgAl6O10(1 0 0) substrates by means of pulsed laser deposition (PLD). The influence of oxygen pressure on crystal quality, surface morphology and transmittance were investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM) and spectrophotometer. The results showed that the grain size increased, the surface roughness and FWHM of X-ray rocking curve reduced with the oxygen pressure decreasing. Furthermore, the photoluminescence spectra were recorded as a function of excitation power and temperature. A blue shift of the visible luminescence at higher excitation power was observed, indicating that donor-acceptor transitions were responsible for the visible emissions. The thermal quenching of the blue and green bands corresponded to the activation energies of 0.028 eV, 0.037 eV and 0.034 eV, respectively.

  17. Interplay between as grown defects and heavy ion induced defects in YBCO films

    SciTech Connect

    Crescio, E.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Camerlingo, C.; Monaco, A.; Nappi, C.; Cuttone, G.; Rovelli, A.

    1999-04-20

    The dominating pinning mechanism in YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin film has been investigated by means of resistivity and ac susceptibility measurements and by structural characterizations. The aim of the work is to determine optimal pinning conditions in order to prevent the field-induced drop of the critical current density. The Clem and Sanchez model is used to extract critical current values from the susceptibility data. In this framework, the role of columnar-like defects is extensively studied. The formation of columnar pins was promoted by a suitable modification in the preparation process. In addition, columnar tracks of different density were induced by Au-ion irradiation. Analysis of the critical current dependence on the magnetic field reveals that linearly-correlated defects are effective in improving the vortex lattice stability in matching regions of field and temperature.

  18. Comparative study of LiMn 2O 4 thin film cathode grown at high, medium and low temperatures by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tang, S. B.; Lai, M. O.; Lu, L.; Tripathy, S.

    2006-12-01

    LiMn 2O 4 thin films with different crystallizations were respectively grown at high, medium and low temperatures by pulsed laser deposition (PLD). Structures, morphologies and electrochemical properties of these three types of thin films were comparatively studied. Films grown at high temperature (⩾873 K) possessed flat and smooth surfaces and were highly crystallized with different textures and crystal sizes depending on the deposition pressure of oxygen. However, films deposited at low temperature (473 K) had rough surfaces with amorphous characteristics. At medium temperature (673 K), the film was found to consist mainly of nano-crystals less than 100 nm with relatively loose and rough surfaces, but very dense as observed from the cross-section. The film deposited at 873 K and 100 mTorr of oxygen showed an initial discharge capacity of 54.3 μAh/cm 2 μm and decayed at 0.28% per cycle, while the amorphous film had an initial discharge capacity of 20.2 μAh/cm 2 μm and a loss rate of 0.29% per cycle. Compared with the highly crystallized and the amorphous films, nano-crystalline film exhibited higher potential, more capacity and much better cycling stability. As high as 61 μAh/cm 2 μm of discharge capacity can be achieved with an average decaying rate of only 0.032% per cycle up to 500 cycles. The excellent performance of nano-crystalline film was correlated to its microstructures in the present study.

  19. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    NASA Astrophysics Data System (ADS)

    Mammadov, E.; Haneta, M.; Toyota, H.; Uchitomi, N.

    2011-03-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ~ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ~ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  20. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    NASA Astrophysics Data System (ADS)

    Fulger, Manuela; Mihalache, Maria; Ohai, Dumitru; Fulger, Stefan; Valeca, Serban Constantin

    2011-08-01

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  1. Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lukco, Dorothy; Cytron, Sheldon J.

    2004-01-01

    An investigation was conducted to examine the friction and wear behavior of the two types of oxide ceramic films furnished by the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) under Space Act Agreement SAA3 567. These two types of oxide ceramics were grown on 55Ni-45Ti (60 wt% Ni and 40 wt% Ti) substrates: one was a TiO2 with no other species (designated the B film) and the other was a TiO2 with additional species (designated the G film). Unidirectional ball-on-disk sliding friction experiments were conducted with the oxide films in contact with sapphire at 296 K (23 C) in approx. 50-percent relative humidity laboratory air in this investigation. All material characterization and sliding friction experiments were conducted at the NASA Glenn Research Center. The results indicate that both films greatly improve the surface characteristics of 55Ni-45Ti, enhancing its tribological characteristics. Both films decreased the coefficient of friction by a factor of 4 and increased wear resistance by a two-figure factor, though the B film was superior to the G film in wear resistance and endurance life. The levels of coefficient of friction and wear resistance of both films in sliding contact with sapphire were acceptable for NASA and Department of Defense tribological applications. The decrease in friction and increase in wear resistance will contribute to longer wear life for parts, lower energy consumption, reduced related breakdowns, decreased maintenance costs, and increased reliability.

  2. Thin Silicon-Dioxide Films Grown on Silicon by Low Temperature Plasma Anodization and Rapid Thermal Processing: AN Electrostructural Analysis.

    NASA Astrophysics Data System (ADS)

    Nelson, Scott Alan

    1988-06-01

    Capacitance-voltage (CV) techniques and x-ray photoelectron spectroscopy (XPS) have been used to study the electrical and structural properties of thin (< 200A) SiO_2 films grown on silicon by two reduced thermal load (RTL) processes, RF plasma anodization and rapid thermal processing (RTP), and compare them to furnace oxides. The electrical quality and structural characteristics of the thin films have been monitored as a function of process conditions and parameters. In particular, the plasma process has been studied and an optimal process configuration established which produces oxides with midgap interface state densities of 1 times 10^{11} eV^{-1} cm^ {-2}, Q_{ox} values of 1 times 10 ^{11} cm^{ -2}, and breakdown fields of 13 MV/cm. X-ray photoelectron spectroscopy has been used to compare the average SiO_4 tetrahedral ring structures and the suboxide content of the ~3 nm thick interfacial region of the plasma and rapid thermal oxides and significant structural differences have been identified. By correlating these structural differences with measured electrical differences the structural causes of some of the electrical characteristics found to be particularly prominent in plasma and RTP oxides have been identified. In plasma oxides larger amounts of silicon dangling bonds, P_{b} centers at the Si-SiO_2 interface have been identified as the source of a localized peak of interface states found at 0.3 eV above the silicon valence band. The larger P_{b} center density is probably caused by radiation damage from hot electrons and photons from the plasma, as evidenced by increased numbers of P_{b} centers in oxides grown in higher power and higher voltage plasmas, and by incomplete oxidation of the interface, as evidenced by a decreased P_{b} center density with increased oxidant flux via increased bias current density. Low temperature, 800-850C, rapid thermal annealing of the plasma oxides relieves localized compressive interfacial strain, apparently by allowing

  3. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ∼5 × 10{sup −8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup −3}, resistivity of 66.733–12.758 Ω cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup −1} s{sup −1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  4. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  5. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  6. Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chong, Fayun; Cao, Yingying; Subhan, Fazle; Wang, Qianru; Yu, Jianfeng; Zhang, Maosheng; Luo, Liwen; Ren, Wei; Chen, Xi; Yan, Zifeng

    2013-12-01

    In this work, oriented ZnO nanorods (ZNRs) were in situ hydrothermally grown on a porous polyaniline (PANI) film to function as a solid-phase microextraction (SPME) coating. Scanning electron microscopy (SEM) study revealed that the majority of oriented ZNRs grew from pores of PANI matrix, which protected the ZNRs from easily peeling off during operation. Furthermore, in this process, a thin layer of PANI was found to cover the ZNRs, which can enlarge the effective surface area of the composite coating. This ZNRs/PANI composite coating combined the merits of both ZNRs and PANI and, thus, has several advantages over that of sole PANI film and ZNRs coating such as improved extraction efficiency for benzene homologues, enhanced mechanical stability and longer service life (over 150 cycles of SPME-GC operation). Coupled with gas chromatography-flame ionization detector (GC-FID), the optimized SPME-GC-FID method was used for the analysis of six benzene homologues in water samples. The calibration curves were linear from 1 to 1000μgL(-1) for each analyte, and the limits of detection were between 0.001 and 0.024μgL(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 1.3-6.8% and 5.3-11.2%, respectively. The spiked recoveries at 100 and 5μgL(-1) for three environmental water samples were in the range of 79.8-115.4% and 73.7-117.4%, respectively.

  7. Impact of LT-GaAs layers on crystalline properties of the epitaxial GaAs films grown by MBE on Si substrates

    NASA Astrophysics Data System (ADS)

    Petrushkov, M. O.; Putyato, M. A.; Gutakovsky, A. K.; Preobrazhenskii, V. V.; Loshkarev, I. D.; Emelyanov, E. A.; Semyagin, B. R.; Vasev, A. V.

    2016-08-01

    GaAs films with low-temperature GaAs (LT-GaAs) layers were grown by molecular beam epitaxy (MBE) method on vicinal (001) Si substrates oriented 6° off towards [110]. The grown structures were different with the thickness of LT-GaAs layers and its arrangement in the film. The processes of epitaxial layers nucleation and growth were controlled by reflection high energy electron diffraction (RHEED) method. Investigations of crystalline properties of the grown structures were carried out by the methods of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystalline perfection of the GaAs films with LT-GaAs layers and the GaAs films without ones was comparable. It was found that in the LT- GaAs/Si layers the arsenic clusters are formed, as it occurs in the LT-GaAs/GaAs system without dislocation. It is shown that large clusters are formed mainly on the dislocations. However, the clusters have practically no effect on the density and the propagation path of threading dislocations. With increasing thickness of LT-GaAs layer the dislocations are partly bent along the LT-GaAs/GaAs interface due to the presence of stresses.

  8. An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response

    NASA Astrophysics Data System (ADS)

    Orapunt, Farida; Tay, Li-Lin; Lockwood, David J.; Baribeau, Jean-Marc; Noël, Mario; Zwinkels, Joanne C.; O'Leary, Stephen K.

    2016-02-01

    A number of thin silicon films are deposited on crystalline silicon, native oxidized crystalline silicon, and optical quality fused quartz substrates through the use of ultra-high-vacuum evaporation at growth temperatures ranging from 98 to 572 °C. An analysis of their grazing incidence X-ray diffraction and Raman spectra indicates that a phase transition, from amorphous-to-crystalline, occurs as the growth temperature is increased. Through a peak decomposition process, applied to the Raman spectroscopy results, the crystalline volume fractions associated with these samples are plotted as a function of the growth temperature for the different substrates considered. It is noted that the samples grown on the crystalline silicon substrates have the lowest crystallanity onset temperature, whereas those grown on the optical quality fused quartz substrates have the highest crystallanity onset temperature; the samples grown on the native oxidized crystalline silicon substrates have a crystallanity onset temperature between these two limits. These resultant dependencies on the growth temperature provide a quantitative means of characterizing the amorphous-to-crystalline phase transition within these thin silicon films. It is noted that the thin silicon film grown on an optical quality fused quartz substrate at 572 °C, possessing an 83% crystalline volume fraction, exhibits an optical absorption spectrum which is quite distinct from that associated with the other thin silicon films. We suggest that this is due to the onset of sufficient long-range order in the film for wave-vector conservation to apply, at least partially. Finally, we use a semi-classical optical absorption analysis to study how this phase transition, from amorphous-to-crystalline, impacts the spectral dependence of the optical absorption coefficient.

  9. CdTeOx to CdTeO3 structural phase transition in as-grown polycrystalline films by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Carmona-Rodríguez, J.; Lozada-Morales, R.; Jiménez-Sandoval, O.; Rodríguez-Melgarejo, F.; Meléndez-Lira, M.; Jiménez-Sandoval, S. J.

    2008-06-01

    Polycrystalline thin films of CdTeOx (x <3) and CdTeO3 were grown at 400 °C by rf-reactive sputtering. The CdTe oxide films were elaborated in an Ar-O2 atmosphere using different oxygen flow rates in the 5-11 SCCM (SCCM denotes cubic centimeter per minute at STP) range. The structural properties of the samples were studied by x-ray diffraction and micro-Raman spectroscopy. The diffraction patterns show that the films grown with oxygen flows between 5 and 10.5 SCCM present a crystalline structure similar to that of pure CdTe films, that is, a mixture of cubic zinc-blende-type and hexagonal wurtzite-type structures. However, the diffraction patterns of samples grown under an oxygen flow rate of 11 SCCM are strikingly different and in agreement with that of cubic CdTeO3, indicating that a structural phase transition was achieved. These results are in accordance with those obtained by micro-Raman spectroscopy, where the spectra of the CdTeOx samples grown with oxygen flows below 11 SCCM show an intense LO CdTe-like peak at 166 cm-1, which is no longer observable for the CdTeO3 sample. Instead, the Raman spectrum in this case is dominated by two broad bands in the 550-800 cm-1 range, which have been ascribed to the vibrational modes of TeO3 structural subunits. The optical properties, as determined by optical absorption and photoreflectance spectroscopies, are in correspondence with the structural and chemical changes induced by the incorporation of oxygen. The band gap varied between 1.55 and 3.3 eV, the last value corresponding to CdTeO3 films.

  10. Fabricating superconducting interfaces between artificially grown LaAlO{sub 3} and SrTiO{sub 3} thin films

    SciTech Connect

    Li, Danfeng Gariglio, Stefano; Cancellieri, Claudia; Fête, Alexandre; Stornaiuolo, Daniela; Triscone, Jean-Marc

    2014-01-01

    Realization of a fully metallic two-dimensional electron gas (2DEG) at the interface between artificially grown LaAlO{sub 3} and SrTiO{sub 3} thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO{sub 3} and SrTiO{sub 3} thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO{sub 3} termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO{sub 3}/SrTiO{sub 3} interface is due to the nanoscale SrO segregation occurring on the SrTiO{sub 3} film surface during the growth and the associated defects in the SrTiO{sub 3} film. By adopting an extremely high SrTiO{sub 3} growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO{sub 3} layers and artificially grown SrTiO{sub 3} thin films. This study paves the way to the realization of functional LaAlO{sub 3}/SrTiO{sub 3} superlattices and/or artificial LaAlO{sub 3}/SrTiO{sub 3} interfaces on other substrates.

  11. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  12. Atomic rearrangement at the interface of annealed ZnSe films grown on vicinal Si(001) substrates

    SciTech Connect

    Romano, L.T.; Bringans, R.D.; Knall, J.; Biegelsen, D.K.; Garcia, A.; Northrup, J.E. ); O'Keefe, M.A. )

    1994-08-15

    Significant atomic rearrangement at the interface was found to take place after post-growth annealing treatments of epitaxial ZnSe on As-passivated Si(001) substrates which were tilted by 4[degree] towards the [1[bar 1]0] direction. The thermal stability of the ZnSe/As:Si interface was studied by rapid thermal annealing at temperatures up to 960 [degree]C after growing an epitaxial GaAs cap layer to prevent evaporation of the ZnSe during the anneals. The ZnSe/As:Si interface was examined by high-resolution electron microscopy. After an anneal at 900 [degree]C the ZnSe/As:Si interface transformed from an atomically smooth interface found in the as-grown films to a facetted structure with [l brace]111[r brace]-oriented sidewalls that extended preferentially in the [1[bar 1]0] direction. The 60[degree] dislocations that were previously observed along this direc- tion combined into closely spaced pairs or into Lomer dislocations which were associated with the facets. We present a model for the atomic structure of the facetted interface which is consistent with the experimental data and satisfies electron-counting considerations. Total-energy calculations of the ZnSe/As:Si(001) interface were compared with those for the [l brace]111[r brace] interfaces seen after facetting.

  13. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  14. Surface sulfurization on MBE-grown Cu(In1-x,Gax)Se2 thin films and devices

    NASA Astrophysics Data System (ADS)

    Khatri, Ishwor; Matsuyama, Isamu; Yamaguchi, Hiroshi; Fukai, Hirofumi; Nakada, Tokio

    2015-08-01

    Molecular beam epitaxy (MBE) grown Cu(In1-x,Gax)Se2 (CIGS) thin films were sulfurized at temperatures of 450-550 °C for 30 min in a 10% H2S-N2 mixture gas. The micro-roughness together with the S diffusion in the CIGS surfaces increased with increasing sulfurization temperature. Both near-band-edge PL intensity and decay time of the CIGS absorber layer enhanced after sulfurization. PL sub-peak around 80 meV below the main peak almost disappeared after sulfurization above 500 °C, which is expected due to the occupation of Se vacancies (Vse) with S. The open-circuit voltage (Voc), hence conversion efficiency, improved after sulfurization. The photovoltaic performance of the solar cells was consistent with PL intensity. Moreover, it is found for the first time from the SIMS analysis that the Cu atoms were depleted at the surface of CIGS layer after sulfurization, which could result in the improved Voc.

  15. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    PubMed

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-01

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance.

  16. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    SciTech Connect

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  17. Observation of intrinsic Josephson effects in tetragonally synthesized single-crystalline NdBa2Cu3O6.65 films grown by tri-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yun, Kyung Sung; Hatano, Takeshi; Arisawa, Shunichi; Ishii, Akira; Wang, Huabing; Yamashita, Tsutomu; Iguchi, Ienari; Kawasaki, Masashi; Koinuma, Hideomi

    2008-07-01

    In this work twin-free tetragonal NdBa2Cu3O7-δ films were fabricated that exhibited superconductivity with sufficient anisotropy which produced intrinsic Josephson junction (IJJ) characteristics in the films. The intrinsic Josephson effects (IJEs) were observed in oxygen-deficient single-crystalline NdBa2Cu3O6.65 (NBCO) films grown on SrTiO3 (STO) substrates, using tri-phase epitaxy (TPE). The single-crystalline nature of NBCO films on well-matched STO substrates, and the precisely controlled oxygen content of the films, lead to the IJEs of the thin films. Furthermore, the films exhibit high anisotropy and clear multiple-branch structures, with hysteresis observed in the current-voltage characteristics. Periodic Josephson vortex-flow resistance oscillations were also observed for a magnetic field higher than 64 kOe, which was applied normal to the junctions. These results strongly support the single-crystal nature of TPE films, which play an important role in both the fundamental study and the practical applications of high-frequency devices.

  18. Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate.

    PubMed

    Xu, Ji-Ping; Zhang, Rong-Jun; Chen, Zhi-Hui; Wang, Zi-Yi; Zhang, Fan; Yu, Xiang; Jiang, An-Quan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2014-01-01

    The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.

  19. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3

    SciTech Connect

    Hawley, Marilyn E; Biegalski, Michael D; Schlom, Darrell G

    2008-01-01

    Strained epitaxial SrTiO{sub 3} films were grown on orthorhombic (101) DyScO{sub 3} substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 {angstrom} were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 {angstrom}. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018{sup o}). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700{sup o}C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO{sub 3} films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films.

  20. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    SciTech Connect

    Ubale, A.U.; Bargal, A.N.

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  1. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Lopez, Thomas; Laur, Jean-Pierre; Brunet, Magali

    2014-10-01

    Low-profile soft ferrite films constitute a competitive solution for the integration of micro-inductors on silicon in low-power medium frequency dc-dc conversion applications. The high resistivity of soft ferrites is indeed a major advantage for operating frequencies in the range of 5‒10 MHz. We have studied several soft ferrites, including commercial ferrite films and ferrites made in-house. Test inductors were fabricated at a wafer level using micro-machining and assembling techniques. The proposed process is based on a sintered ferrite core placed between thick electroplated copper windings. The low-profile ferrite cores of 1.2  ×  2.6  ×  0.1 mm3 were produced by two methods using green tape-cast films or ferrite powders. This article presents the magnetic characterization of the fabricated ferrite cores, cut and printed in a rectangular shape and sintered at different temperatures. Comparisons are made in order to find the best material for the core that can offer micro-inductors a high inductance in the range of 200-1000 nH at 6 MHz, and that generate the smallest losses. Thanks to a test inductor, it is demonstrated that with a commercial ferrite core, an inductance density of 215 nH mm-2 up to 6 MHz could be reached. Extracted losses at 6 MHz, under 10 mT are in the range of 0.7 to 2.5 W cm-3.

  2. Distinct magnetism in ultrathin epitaxial NiFe2O4 films on MgAl2O4 and SrTiO3 single crystalline substrates

    NASA Astrophysics Data System (ADS)

    Foerster, Michael; Rebled, José Manuel; Estradé, Sònia; Sánchez, Florencio; Peiró, Francesca; Fontcuberta, Josep

    2011-10-01

    Spinel ferrites are being considered for advanced spintronic applications. Here, we report on the magnetic properties of ultrathin (3-37 nm) epitaxial films of NiFe2O4 (NFO) on MgAl2O4 (MAO) and SrTiO3 (STO) single crystalline substrates. It is found that NFO films on STO display superparamagnetic response down to 50 K, whereas films grown on MAO display ferrimagnetic response up to room temperature. Microstructural information indicates that this distinct response can be attributed to the different growth mechanisms of the spinel ferrite on the isostructural MAO substrate (two-dimensional growth) and the perovskite STO (Volmer-Weber three-dimensional growth). We discuss the reasons for this distinct behavior and its relevance for the integration of ferrites in epitaxial heterostructures for tunnel devices.

  3. Single-Crystalline CaMoO3 and SrMoO3 Films Grown by Pulsed Laser Deposition in a Reductive Atmosphere

    NASA Astrophysics Data System (ADS)

    Radetinac, Aldin; Takahashi, Kei S.; Alff, Lambert; Kawasaki, Masashi; Tokura, Yoshinori

    2010-07-01

    Single-crystalline thin films of CaMoO3 and SrMoO3 with a Mo4+ state perovskite structure have been epitaxially grown by pulsed-laser deposition from Mo6+ state ceramic targets. Phase-pure films were obtained on nearly lattice-matched perovskite substrates using argon gas flow during the deposition. Transport properties of the films are consistent with those of paramagnetic and metallic phases, whereas the residual resistivities are far lower than those reported previously for films and bulk polycrystals. These results indicate that this growth method can be useful for exploring the interfaces and junction properties of 4d and 5d transition metal oxides that are unstable in a conventional oxidative atmosphere.

  4. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process

    PubMed Central

    2014-01-01

    Stacked precursors of Cu-Zn-Sn-S were grown by radio frequency sputtering and annealed in a furnace with Se metals to form thin-film solar cell materials of Cu2ZnSn(S,Se)4 (CZTSSe). The samples have different absorber layer thickness of 1 to 2 μm and show conversion efficiencies up to 8.06%. Conductive atomic force microscopy and Kelvin probe force microscopy were used to explore the local electrical properties of the surface of CZTSSe thin films. The high-efficiency CZTSSe thin film exhibits significantly positive bending of surface potential around the grain boundaries. Dominant current paths along the grain boundaries are also observed. The surface electrical parameters of potential and current lead to potential solar cell applications using CZTSSe thin films, which may be an alternative choice of Cu(In,Ga)Se2. PACS number: 08.37.-d; 61.72.Mm; 71.35.-y PMID:24397924

  5. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2016-05-01

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  6. Variation of bandgap with oxygen ambient pressure in Mg xZn 1- xO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Bhattacharya, P.; Mallik, K.; Rajagopalan, S.; Kukreja, L. M.; Rustagi, K. C.

    2001-03-01

    Thin films of Mg xZn 1- xO were grown by pulsed laser deposition technique at various oxygen background pressures in the range of 10 -2-10 -5 Torr on single crystal (0001) alumina substrates. The films were found to be c-axis oriented with a high crystalline quality having FWHM of rocking curve of about 0.16°. The bandgap of Mg xZn 1- xO thin films was found to increase from 3.45 to 3.78 eV with decrease of oxygen pressure from 10 -2 to 10 -5 Torr during the deposition. This has been attributed to the increase in the Mg concentration in the films on decreasing the O 2 pressure.

  7. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  8. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester J.; Creange, Nicole C.; Sun, Kai; Giri, Ashutosh; Donovan, Brian F.; Constantin, Costel; Hopkins, Patrick E.

    2015-02-01

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga2O3) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga2O3 films of different thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga2O3 films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga2O3 grown via this technique (8.8 ± 3.4 W m-1 K-1) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga2O3 film resulting from phonon scattering at the β-Ga2O3/GaN interface and thermal transport across the β-Ga2O3/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga2O3 and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.

  9. Microstructural and magneto-transport characterization of Bi2SexTe3-x topological insulator thin films grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jin, Zhenghe; Kumar, Raj; Hunte, Frank; Narayan, Jay; Kim, Ki Wook; North Carolina State University Team

    Bi2SexTe3-x topological insulator thin films were grown on Al2O3 (0001) substrate by pulsed laser deposition (PLD). XRD and other structural characterization measurements confirm the growth of the textured Bi2SexTe3-x thin films on Al2O3 substrate. The magneto-transport properties of thick and thin Þlms were investigated to study the effect of thickness on the topological insulator properties of the Bi2SexTe3 - x films. A pronounced semiconducting behavior with a highly insulating ground state was observed in the resistivity vs. temperature data. The presence of the weak anti-localization (WAL) effect with a sharp cusp in the magnetoresistance measurements confirms the 2-D surface transport originating from the TSS in Bi2SexTe3-x TI films. A high fraction of surface transport is observed in the Bi2SexTe3-x TI thin films which decreases in Bi2SexTe3-x TI thick films. The Cosine (θ) dependence of the WAL effect supports the observation of a high proportion of 2-D surface state contribution to overall transport properties of the Bi2SexTe3-x TI thin films. Our results show promise that high quality Bi2SexTe3-x TI thin films with significant surface transport can be grown by PLD method to exploit the exotic properties of the surface transport in future generation spintronic devices. This work was supported, in part, by National Science Foundation ECCS-1306400 and FAME.

  10. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Nam, Taewook; Lee, Chang Wan; Kim, Hyun Jae; Kim, Hyungjun

    2014-03-01

    The growth characteristics and electrical and optical properties of gallium-doped ZnO (GZO) grown by thermal atomic layer deposition (Th-ALD) and plasma-enhanced atomic layer deposition (PE-ALD) were investigated as a function of key growth parameters including the growth temperature. While GZO films are generally deposited at high growth temperatures above 300 °C, room temperature deposition is possible using PE-ALD. The chemical properties of the films were analyzed by X-ray photoelectron spectroscopy and their electrical properties including the carrier concentration, mobility, and resistivity were investigated by Hall measurements. The lowest resistivity of 1.49 × 10-3 Ω cm was obtained for the Th-ALD GZO film grown at 300 °C. The transmittance was enhanced to over 85% in the visible light range when Ga was doped on a ZnO film. In addition, a GZO bottom-gated thin film transistor (TFT) was fabricated and exhibited good electrical properties.

  11. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    SciTech Connect

    Belmeguenai, M. Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2014-01-28

    10 nm and 50 nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup −3} and 1.3×10{sup −3} for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  12. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-10-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm‑2 · eV‑1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process.

  13. High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe2 Films on Insulating Substrates.

    PubMed

    Rhyee, Jong-Soo; Kwon, Junyeon; Dak, Piyush; Kim, Jin Hee; Kim, Seung Min; Park, Jozeph; Hong, Young Ki; Song, Won Geun; Omkaram, Inturu; Alam, Muhammad A; Kim, Sunkook

    2016-03-23

    Large-area and highly crystalline CVD-grown multilayer MoSe2 films exhibit a well-defined crystal structure (2H phase) and large grains reaching several hundred micrometers. Multilayer MoSe2 transistors exhibit high mobility up to 121 cm(2) V(-1) s(-1) and excellent mechanical stability. These results suggest that high mobility materials will be indispensable for various future applications such as high-resolution displays and human-centric soft electronics.

  14. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    PubMed Central

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-01-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493

  15. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1-xRuO3-buffered SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Yao, Yingbang; Chen, Long; Wang, Zhihong; Alshareef, Husam; Zhang, X. X.

    2012-06-01

    (001)-oriented BiFeO3 (BFO) thin films were grown on SrxCa1-xRuO3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO3-buffer layers exhibited minimal electrical leakage while films grown on Sr0.33Ca0.67RuO3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed.

  16. Stoichiometry of LaAlO{sub 3} films grown on SrTiO{sub 3} by pulsed laser deposition

    SciTech Connect

    Golalikhani, M.; Lei, Q. Y.; Xi, X. X.; Chen, G.; Spanier, J. E.; Ghassemi, H.; Johnson, C. L.; Taheri, M. L.

    2013-07-14

    We have studied the stoichiometry of epitaxial LaAlO{sub 3} thin films on SrTiO{sub 3} substrate grown by pulsed laser deposition as a function of laser energy density and oxygen pressure during the film growth. Both x-ray diffraction ({theta}-2{theta} scan and reciprocal space mapping) and transmission electron microscopy (geometric phase analysis) revealed a change of lattice constant in the film with the distance from the substrate. Combined with composition analysis using x-ray fluorescence we found that the nominal unit-cell volume expanded when the LaAlO{sub 3} film was La-rich, but remained near the bulk value when the film was La-poor or stoichiometric. La excess was found in all the films deposited in oxygen pressures lower than 10{sup -2} Torr. We conclude that the discussion of LaAlO{sub 3}/SrTiO{sub 3} interfacial properties should include the effects of cation off-stoichiometry in the LaAlO{sub 3} films when the deposition is conducted under low oxygen pressures.

  17. High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells.

    PubMed

    Yuan, Shuai; Qiu, Zhiwen; Gao, Chaomin; Zhang, Hailiang; Jiang, Yanan; Li, Cuncheng; Yu, Jinghua; Cao, Bingqiang

    2016-08-31

    The performance of organolead halide perovskites based solar cells has been enhanced dramatically due to the morphology control of the perovskite films. In this paper, we present a fast solvent-assisted molecule inserting (S-AMI) strategy to grow high-quality perovskite film, in which the methylammonium iodide/2-propanol (MAI/IPA) solution is spin-coated onto a dimethylformamide (DMF) wetted mixed lead halide (PbX2) precursor film. The DMF can help the inserting of MAI molecules into the PbX2 precursor film and provide a solvent environment to help the grain growth of the perovskite film. The perovskite film grown by the S-AMI approach shows large and well-oriented grains and long carrier lifetime due to the reduced grain boundary. Solar cells constructed with these perovskite films yield an average efficiency over 17% along with a high average fill factor of 80%. Moreover, these unsealed solar cell devices exhibit good stability in an ambient atmosphere. PMID:27526617

  18. High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells.

    PubMed

    Yuan, Shuai; Qiu, Zhiwen; Gao, Chaomin; Zhang, Hailiang; Jiang, Yanan; Li, Cuncheng; Yu, Jinghua; Cao, Bingqiang

    2016-08-31

    The performance of organolead halide perovskites based solar cells has been enhanced dramatically due to the morphology control of the perovskite films. In this paper, we present a fast solvent-assisted molecule inserting (S-AMI) strategy to grow high-quality perovskite film, in which the methylammonium iodide/2-propanol (MAI/IPA) solution is spin-coated onto a dimethylformamide (DMF) wetted mixed lead halide (PbX2) precursor film. The DMF can help the inserting of MAI molecules into the PbX2 precursor film and provide a solvent environment to help the grain growth of the perovskite film. The perovskite film grown by the S-AMI approach shows large and well-oriented grains and long carrier lifetime due to the reduced grain boundary. Solar cells constructed with these perovskite films yield an average efficiency over 17% along with a high average fill factor of 80%. Moreover, these unsealed solar cell devices exhibit good stability in an ambient atmosphere.

  19. Hexagonal phase-pure wide band gap ɛ-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xia, Xiaochuan; Chen, Yuanpeng; Feng, Qiuju; Liang, Hongwei; Tao, Pengcheng; Xu, Mengxiang; Du, Guotong

    2016-05-01

    In this paper, hexagonal structure phase-pure wide-band gap ɛ-Ga2O3 films were grown by metal organic chemical vapor deposition on 6H-SiC substrates. The ɛ-Ga2O3 films with good crystal quality were verified by high-resolution X-ray diffraction. The out-of-plane epitaxial relationship between ɛ-Ga2O3 films and 6H-SiC substrates is confirmed to be ɛ-Ga2O3 (0001)//6H-SiC (0001), and the in-plane epitaxial relationship is also confirmed to be ɛ-Ga2O3 ⟨ 11 2 ¯ 0 ⟩//6H-SiC ⟨ 11 2 ¯ 0 ⟩. The SEM and AFM images show that the ɛ-Ga2O3 films are uniform and flat. The ɛ-Ga2O3 films are thermally stable up to approximately 800 °C and begin to transform into β-phase Ga2O3 at 850 °C. Then, they are completely converted to β-Ga2O3 films under 900 °C. The high-quality ɛ-Ga2O3 films with hexagonal structure have potential application in the optoelectronic field.

  20. Characterisation of epitaxial TiO 2 thin films grown on MgO(0 0 1) using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mitchell, D. R. G.; Attard, D. J.; Triani, G.

    2005-11-01

    Thin films of TiO 2 have been deposited onto MgO(0 0 1) substrates using atomic layer deposition at 300 °C. Plan and cross-sectional transmission electron microscopy (TEM), X-ray diffraction and atomic force microscopy have been used to understand the nature of the films. X-ray and electron diffraction showed that a polycrystalline, epitaxial anatase film was produced. The c-axis of the anatase was parallel to the MgO(0 0 1) surface with two orientational variants at right angles to each other in the plane of the film, each aligned with an MgO cube axis. Plan-view and cross-sectional TEM showed that the grain structure of the film reflected this orientation relationship, with the grain morphology comprising two sets of roughly tetragonal grains. Also present was a small fraction of equiaxed, anatase grains which were randomly oriented. Roughness measurement using atomic force microscopy showed that the epitaxial anatase films were quite smooth, in comparison to equivalent non-aligned films grown on silicon.

  1. Structural investigation of InGaAsN films grown on pseudo-lattice-matched InGaAs substrates by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kongjaeng, Pornsiri; Sanorpim, Sakuntam; Yamamoto, Takahisa; Ono, Wataru; Nakajima, Fumio; Katayama, Ryuji; Onabe, Kentaro

    2007-01-01

    The use of the nearly lattice-matched In xGa 1-xAs pseudo-substrate has been explored for the growth of In xGa 1-xAs 1-yN y with higher In ( x) contents by metalorganic vapor phase epitaxy (MOVPE). As compared with the quality of high In-containing In 0.3Ga 0.7As 0.98N 0.02 films grown directly on GaAs substrates, the growth on In 0.2Ga 0.8As pseudo-lattice-matched substrates yielded good structural quality films. The number of misfit dislocations investigated by cross-sectional transmission electron microscopy was found to be reduced in the InGaAsN grown layer. Furthermore, higher optical quality In 0.3Ga 0.7As 0.98N 0.02 films with the bandgap of 1.01 eV were grown on the In 0.2Ga 0.8As pseudo-lattice-matched substrate. This study shows that the use of the In xGa 1-xAs pseudo-lattice-matched substrate is an effective method to fabricate a thick lattice-matched InGaAsN layers with higher optical and structural qualities necessary for the development of the multijunction (MJ) solar cells.

  2. Reduced threading dislocation densities in high-T/N-rich grown InN films by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Loitsch, Bernhard; Schuster, Fabian; Stutzmann, Martin; Koblmueller, Gregor

    2013-02-04

    We explore the effect of growth kinetics on the structural properties of In-polar InN films on GaN templates grown near the thermal dissociation limit by plasma-assisted molecular beam epitaxy. Unlike the common growth temperature limit (T Almost-Equal-To 500 Degree-Sign C) for In-polar InN grown under In-rich conditions, slightly N-rich conditions are demonstrated to shift the available growth temperature window to much higher temperatures (by >50 Degree-Sign C). InN films grown in this high-T/N-rich regime show significantly reduced off-axis X-ray diffraction rocking curve peak widths and record low threading dislocation densities (TDD {approx} 4 Multiplication-Sign 10{sup 9} cm{sup -2}) even for film thicknesses <1 {mu}m, as compared to state of the art In-rich growth. The reduction of TDD is attributed to more effective TD inclination and annihilation under N-rich growth, delineating prospective routes for improved InN-based materials.

  3. Luminescent characteristics of Se-doped ZnGa2O4:Mn thin film phosphors grown by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Jeong, J. H.; Bae, J. S.; Choi, B. C.; Yi, S. S.; Holloway, P. H.

    2004-07-01

    Mn-doped ZnGa2O4-xSex (x=0.00, 0.025, 0.05, 0.075 and 0.10) thin film phosphors have been grown using pulsed laser ablation under various growth conditions. Structural characterization was carried out on a series of ZnGa2O4-xSex:Mn2+ films grown on MgO(100) substrates using Zn-rich ceramic targets. Zn-rich ceramic targets were prepared to compensate for loss of vaporization of Zn during deposition. The oxygen pressure was fixed at 100 mTorr and the substrate temperatures were varied from 500 to 700 °C. Luminescence results indicated that MgO (100) is a promising substrate for the growth of high-quality of ZnGa2O4-xSex:Mn2+ films. The crystallinity and surface roughness of the ZnGa2O4-xSex:Mn2+ films are highly dependent on the growth conditions, in particular on the substrate temperature and composition ratio of targets. The crystallinity of the films improved with Se doping. Incorporation of Se into the ZnGa2O4 lattice led to a remarkable increase of photoluminescence. The highest green emission intensity was observed with ZnGa2O3.925Se0.075:Mn2+ films whose brightness was increased by a factor of 3.1 in comparison with that of ZnGa2O4:Mn2+ films. This phosphor is promising for application in flat panel displays. .

  4. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  5. Film Thickness Dependence of Crystal Structure in 100-Oriented Epitaxial Pb(Zr0.65Ti0.35)O3 Films Grown on Single-Crystal Substrates with Different Thermal Expansion Coefficients

    NASA Astrophysics Data System (ADS)

    Ehara, Yoshitaka; Yasui, Shintaro; Ishii, Koji; Funakubo, Hiroshi

    2012-09-01

    100-oriented epitaxial Pb(Zr0.65Ti0.35)O3 films with various film thicknesses from 0.1 to 3 µm were grown on (100)cSrRuO3 ∥ (100)SrTiO3 and (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrates. The out-of-plane/in-plane lattice parameter ratio of the films on the CaF2 substrates was larger than that on the SrTiO3 substrates up to 1.1 µm film thickness, while (90°-α) (α was defined as the internal tilt angle) was almost 0°. Results of analysis of Raman spectra and piezoresponse images suggest that the 1.1-µm-thick film grown on the (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrate had tetragonal symmetry with a polar-axis orientation. Moreover, the saturation polarization values of the films measured from P-E hysteresis loops correspond to the two Ps values estimated from the thermodynamic theory, assuming the change in the polar direction due to the symmetry change to tetragonal, and from the crystal distortion in tetragonal symmetry. This can be explained by the large compressive stress from the CaF2 substrate having a large thermal expansion coefficient.

  6. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  7. Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ficek, Mateusz; Sankaran, Kamatchi J.; Ryl, Jacek; Bogdanowicz, Robert; Lin, I.-Nan; Haenen, Ken; Darowicki, Kazimierz

    2016-06-01

    The influence of N2 concentration (1%-8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS-NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 ± 0.25 at 550 nm) and extinction coefficient (0.05 ± 0.02 at 550 nm) with a transmittance of 60%. The optical investigation was supported by the molecular and atomic data delivered by Raman studies, bright field transmission electron microscopy imaging, and X-ray photoelectron spectroscopy diagnostics. Those results revealed that while the films grown in CH4/H2 plasma contained micron-sized diamond grains, the films grown using CH4/H2/(4%)N2 plasma exhibited ultranano-sized diamond grains along with n-diamond and i-carbon clusters, which were surrounded by amorphous carbon grain boundaries.

  8. Characterization of single crystal films of molybdenum (011) grown by molecular beam epitaxy on sapphire (112¯0) and studied by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Świȩch, W.; Mundschau, M.; Flynn, C. P.

    1999-08-01

    Films of molybdenum grown on the (112¯0) plane of sapphire (Al 2O 3) are characterized using low-energy microscopy and low-energy electron diffraction. Stress fields observed on the Mo surface originate at dislocations and at miscut steps of the buried molybdenum-alumina vicinal interface. As-grown films contain small-angle grain boundaries. These are largely eliminated upon heating to 1700 K as edge dislocations that form the boundaries become extremely mobile. Edge dislocations attract and annihilate one another, and the small-angle grain boundaries disappear. Mobility of edge dislocations is correlated with rapid diffusion of carbon, which apparently pins dislocations up to temperatures that allow diffusion of carbon from dislocations into the bulk. The main contaminants of the Mo surface are carbon, oxygen and carbon monoxide. The most stable impurities are carbides that persist to 1700 K. Oxygen promotes bunching of monatomic steps into groups of two, three and four. Electron beams dissociate CO with energy less than 1 eV and deposit residues of carbon. Fairly ideal single crystal films of Mo produced by annealing exhibit monatomic surface step and terrace structure, and a minimum of dislocations. The quality of surfaces on these films exceeds that of typical single crystal bulk samples and is well suited for fundamental studies in surface science.

  9. Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition.

    PubMed

    Chang, Yuan-Ming; Shieh, Jiann; Chu, Pei-Yuan; Lee, Hsin-Yi; Lin, Chih-Ming; Juang, Jenh-Yih

    2011-11-01

    Room-temperature ultraviolet (UV) luminescence was investigated for the atomic layer deposited ZnO films grown on silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma. For films deposited at 200 °C, an intensive UV emission corresponding to free-exciton recombination (~3.31 eV) was observed with a nearly complete suppression of the defect-associated broad visible range emission peak. On the other hand, for ZnO films grown at 25 °C, albeit the appearance of the defect-associated visible emission, the UV emission peak was observed to shift by ~60 meV to near the direct band edge (3.37 eV) recombination emission. The high-resolution transmission electron microscopy (HRTEM) showed that the ZnO films obtained at 25 °C were consisting of ZnO nanocrystals with a mean radius of 2 nm embedded in a largely amorphous matrix. Because the Bohr radius of free-exictons in bulk ZnO is ~2.3 nm, the size confinement effect may have occurred and resulted in the observed direct band edge electron-hole recombination. Additionally, the results also demonstrate order of magnitude enhancement in emission efficiency for the ZnO/Si-NP structure, as compared to that of ZnO directly deposited on Si substrate under the same conditions.

  10. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  11. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition.

    PubMed

    Ahlawat, Anju; Mishra, Dileep K; Sathe, V G; Kumar, Ravi; Sharma, T K

    2013-01-16

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu(3)Ti(4)O(12) is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu(3)Ti(4)O(12).

  12. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Mishra, Dileep K.; Sathe, V. G.; Kumar, Ravi; Sharma, T. K.

    2013-01-01

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu3Ti4O12 is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu3Ti4O12.

  13. Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    NASA Astrophysics Data System (ADS)

    Schilirò, Emanuela; Lo Nigro, Raffaella; Fiorenza, Patrick; Roccaforte, Fabrizio

    2016-07-01

    This letter reports on the negative charge trapping in Al2O3 thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al2O3 film (1 × 1012 cm-2) occurs upon high positive bias stress (>10V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1eV. The results provide indications on the possible nature of the trapping defects and, hence, on the strategies to improve this technology for 4H-SiC devices.

  14. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    SciTech Connect

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D.; Luysberg, M.

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  15. Positive magnetoresistance in ferromagnetic Nd-doped In{sub 2}O{sub 3} thin films grown by pulse laser deposition

    SciTech Connect

    Xing, G. Z. Yi, J. B.; Li, S.; Yan, F.; Wu, T.

    2014-05-19

    We report the magnetic and magnetotransport properties of (In{sub 0.985}Nd{sub 0.015}){sub 2}O{sub 2.89} thin films grown by pulse laser deposition. The clear magnetization hysteresis loops with the complementary magnetic domain structure reveal the intrinsic room temperature ferromagnetism in the as-prepared films. The strong sp-f exchange interaction as a result of the rare earth doping is discussed as the origin of the magnetotransport behaviours. A positive magnetoresistance (∼29.2%) was observed at 5 K and ascribed to the strong ferromagnetic sp-f exchange interaction in (In{sub 0.985}Nd{sub 0.015}){sub 2}O{sub 2.89} thin films due to a large Zeeman splitting in an external magnetic field of 50 KOe.

  16. Structural properties of InN films grown on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Cho, Yong Jin; Brandt, Oliver; Kaganer, Vladimir M.; Ramsteiner, Manfred; Riechert, Henning; Korytov, Maxim; Albrecht, Martin

    2012-04-09

    We study the impact of substrate temperature and layer thickness on the morphological and structural properties of InN films directly grown on O-face ZnO(0001) substrates by plasma-assisted molecular beam epitaxy. With increasing substrate temperature, an interfacial reaction between InN and ZnO takes place that eventually results in the formation of cubic In{sub 2}O{sub 3} and voids. The properties of the InN films, however, are found to be unaffected by this reaction for substrate temperatures less than 550 deg. C. In fact, both the morphological and the structural quality of InN improve with increasing substrate temperature in the range from 350 to 500 deg. C. High quality films with low threading dislocation densities are demonstrated.

  17. Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection

    NASA Astrophysics Data System (ADS)

    Tokunaga, H.; Waki, I.; Yamaguchi, A.; Akutsu, N.; Matsumoto, K.

    1998-06-01

    We developed a novel atmospheric pressure horizontal MOCVD system (SR2000) for the growth of III-nitride film. This system was designed for high-speed gas flow in order to suppress thermal convection and undesirable reactant gas reaction. We have grown Mg-doped GaN films using SR2000. We studied the bis-cyclopentadienyl magnesium (Cp 2Mg) flow rate dependence and growth temperature ( Tg) dependence of Mg-doped GaN. As a result, we have obtained p-type GaN film with hole carrier density of 8×10 17 cm -3 with a mobility of 7.5 cm 2/(V s) at the growth condition with Cp 2Mg flow rate of 0.1 μmol/min at Tg of 1025°C.

  18. Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3.

    PubMed

    May, Kevin J; Fenning, David P; Ming, Tian; Hong, Wesley T; Lee, Dongkyu; Stoerzinger, Kelsey A; Biegalski, Michael D; Kolpak, Alexie M; Shao-Horn, Yang

    2015-03-19

    The performance of photoelectrodes can be modified by changing the material chemistry, geometry, and interface engineering. Specifically, nanoscale active layers can facilitate the collection of charge carriers. In heterostructure devices, the multiple material interfaces are particularly important, which at present are not well understood for oxides. Here, we report a detailed study of ultrathin (2-25 nm) LaFeO3 films grown epitaxially on Nb-doped SrTiO3. The films exhibit thickness-dependence with sensitivity to less than 10 nm in both the through-plane charge transfer conductivity and in the potential-dependent photoresponse. Supplementing photoelectrochemical measurements with X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and electrochemical impedance spectroscopy, we construct a band model that accounts for this thickness dependence via a shifting valence-band offset at the film-substrate interface and the potential-dependent overlap of the depletion regions present at both the film-substrate and film-electrolyte interfaces. These results illustrate the utility of using active layer thickness and film-substrate interactions to tune the performance of photoelectrodes, providing insight for the design of efficient heterostructure oxide photoelectrochemical devices. PMID:26262856

  19. A scanning tunneling microscopy study of the structure of thin oxide films grown on Ni(111) single crystal surfaces by anodic polarization in acid electrolyte

    NASA Astrophysics Data System (ADS)

    Maurice, V.; Talah, H.; Marcus, P.

    1994-03-01

    Scanning tunneling microscopy has been used to study ex situ (in air) the thin oxide films (passive films) grown on Ni(111) by anodic polarization at +550, +650 and +750 mV/SHE in 0.05 M H 2SO 4. Atomic resolution imaging demonstrates the crystalline character of the oxide film and the epitaxy with the substrate. Two levels of roughening with respect to the non-polarized surfaces are observed: on a mesoscopic scale and on the atomic scale. The roughening on the mesoscopic scale increases with higher polarization potentials. The observed roughness is attributed to the result of the competition between metal dissolution and nucleation and growth of the oxide film. The roughening on the atomic scale is independent of the polarization potential. It is evidenced by the formation of a stepped crystalline lattice whose parameters fit those of a (111)-oriented NiO surface. The presence of steps indicates a tilt of (8 ± 5)° of the surface of the film with respect to the (111) orientation. The possible epitaxial relationships resulting from the surface tilt are discussed. Local variations of the film thickness at the step edges are likely to result from the surface tilt and may constitute preferential sites for the local breakdown of passivity.

  20. Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3.

    PubMed

    May, Kevin J; Fenning, David P; Ming, Tian; Hong, Wesley T; Lee, Dongkyu; Stoerzinger, Kelsey A; Biegalski, Michael D; Kolpak, Alexie M; Shao-Horn, Yang

    2015-03-19

    The performance of photoelectrodes can be modified by changing the material chemistry, geometry, and interface engineering. Specifically, nanoscale active layers can facilitate the collection of charge carriers. In heterostructure devices, the multiple material interfaces are particularly important, which at present are not well understood for oxides. Here, we report a detailed study of ultrathin (2-25 nm) LaFeO3 films grown epitaxially on Nb-doped SrTiO3. The films exhibit thickness-dependence with sensitivity to less than 10 nm in both the through-plane charge transfer conductivity and in the potential-dependent photoresponse. Supplementing photoelectrochemical measurements with X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and electrochemical impedance spectroscopy, we construct a band model that accounts for this thickness dependence via a shifting valence-band offset at the film-substrate interface and the potential-dependent overlap of the depletion regions present at both the film-substrate and film-electrolyte interfaces. These results illustrate the utility of using active layer thickness and film-substrate interactions to tune the performance of photoelectrodes, providing insight for the design of efficient heterostructure oxide photoelectrochemical devices.