Science.gov

Sample records for ferrite films grown

  1. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  2. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  3. Ferrite thin films for microwave applications

    SciTech Connect

    Zaquine, I.; Benazizi, H.; Mage, J.C.

    1988-11-15

    Production of ferrite thin films is the key to integration of microwave ferrite devices (circulators for phased array antennas, for instance). The interesting materials are the usual microwave ferrites: garnets, lithium ferrites, barium hexaferrites. The required thicknesses are a few tens of micrometers, and it will be important to achieve high deposition rates. Different substrates can be used: silicon and alumina both with and without metallization. The films were deposited by rf sputtering from a single target. The as-deposited films are amorphous and therefore require careful annealing in oxygen atmosphere. The sputtered films are a few micrometers thick on 4 in. substrates. The optimum annealing temperature was found by trying to obtain the highest possible magnetization for each ferrite. The precision on the value of magnetization is limited by the precision on the thickness of the film. We obtain magnetization values slightly lower than the target's. The ferromagnetic resonance linewidth was measured on toroids from 5 to 18 GHz.

  4. Ferrite thin films for microwave applications

    NASA Astrophysics Data System (ADS)

    Zaquine, I.; Benazizi, H.; Mage, J. C.

    1988-11-01

    This paper describes the preparation and the properties of thin (a few micron-thick) ferrite films for microwave applications. The films were deposited by RF sputtering from a single ferrite target on two different 4-in-thick substrates, silicon and alumina, both bare and metallized. The as-deposited films were amorphous, requiring careful annealing in oxygen atmosphere. The optimum annealing temperature was determined by obtaining the highest possible magnetization for each ferrite. The conditions of microwave measurements are described together with the results.

  5. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    SciTech Connect

    Harris,V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms.

  6. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (NixFe3-xO4, x≤1) films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pachauri, Neha; Khodadadi, Behrouz; Singh, Amit V.; Mohammadi, Jamileh Beik; Martens, Richard L.; LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim; Gupta, Arunava

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl2O4 substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (NixFe3-xO4 where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline NixFe3-xO4 films. The out-of-plane lattice constant (c) obtained for Ni0.8Fe2.2O4 film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni0.8Fe2.2O4 film as compared to the other two compositions. A comprehensive frequency (5-40 GHz) and temperature (10-300 K) dependent FMR study of the Ni0.8Fe2.2O4 sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization Ms. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (Hres) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni0.8Fe2.2O4 sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  7. Pulsed-laser deposition of crystalline cobalt ferrite thin films at lower temperatures

    NASA Astrophysics Data System (ADS)

    Jiles, David; Raghunathan, Arun; Nlebedim, Ikenna; Snyder, John

    2010-03-01

    Cobalt ferrite thin films have been proposed for various engineering applications due to their exceptional magnetic, magnetoelastic, magnetotransport, magnetooptical properties. In this research, cobalt ferrite thin films were grown on SiO2/Si(100) substrates using pulsed-laser deposition (PLD) technique at substrate temperatures ranging from 250 C to 600 C. It has been shown in this study, that polycrystalline films with (111)-preferred orientation can be prepared at substrate temperatures as low as 250 C, as opposed to a report of optimum 600 C substrate temperature [1]. Thermal expansion mismatch between the film and substrate was found to have a substantial effect on the magnetic properties of the cobalt ferrite films, due to the large magnetoelastic coupling of cobalt ferrite. The growth of crystalline cobalt ferrite films at such low temperatures indicates the potential to use cobalt ferrite for MEMS devices and sensor applications [2] including integration with a wider range of multilayered device structures. This research was supported by the UK EPSRC (EP/D057094) and the US NSF (DMR-0402716). [1] J. Zhou et. al, Applied Surface Sciences, 253 (2007), p. 7456. [2] J. A. Paulsen et. al., Journal of Applied Physics, 97 (2005), p. 044502.

  8. Substrate temperature and oxygen pressure dependence of pulsed laser-deposited Sr ferrite films

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; O'Neill, M.; Atkinson, R.; Salter, I. W.; Gerber, R.

    1996-01-01

    The effect of substrate temperature and oxygen pressure on the microstructure, magnetic and magneto-optical properties of Sr ferrite (SrM) films grown on (001) single-crystal sapphire substrates by pulsed laser deposition has been investigated. Polycrystalline SrM films with perpendicular magnetic anisotropy could be prepared under a wide range of oxygen pressures and relatively high temperatures, sufficient to crystallise the material. However, an almost exclusive c-axis orientation normal to the film plane could be attained only at a narrow operational window centered at 0.1 mbar and 840°C. The magneto-optical properties of the films were comparable to those of the bulk barium hexaferrite single-crystal material. In addition, results obtained by atomic force microscopy provide convincing evidence that the growth of Sr ferrite on sapphire takes place by a spiral growth mechanism.

  9. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.; Sahoo, Subasa C.; Prasad, Shiva; Venkataramani, N.; Bohra, Murtaza; Krishnan, R.

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  10. Structural and magnetic studies of Cr doped nickel ferrite thin films

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Heda, N. L.; Tiwari, Shailja; Bapna, Komal; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.

    2016-05-01

    We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700˚C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Si (111). It turns out that structural and magnetic properties of these two films are correlated.

  11. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    methods have been used to produce in-plane c-axis (IPCA) oriented barium ferrite (BaM) films on o-plane (1120) sapphire substrates with low microwave ...New magnetic materials and phenomena for radar and microwave signal processing devices - bulk and thin film ferrites and metallic films 6. AUTHOR(S...excitation properties in delay line structures. (173 words) 14. SUBJECT TERMS Microwave ferrites , yttrium iron garnet, hexagonal ferrites

  12. Thin-film ferrites vapor deposited by one-step process in vacuum

    NASA Technical Reports Server (NTRS)

    Hacskaylo, M.

    1966-01-01

    Thin-film ferrites are formed by vapor deposition of a mixture of powdered ferrites and powdered boron oxide at controlled temperatures in a vacuum chamber. These films are used in memory devices for computers and as thin-film inductors in communications and telemetry systems.

  13. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  14. Fabrication of ultrathin Ni-Zn ferrite films using electron cyclotron resonance sputtering method

    SciTech Connect

    Tanaka, Terumitsu; Kurisu, Hiroki; Matsuura, Mitsuru; Shimosato, Yoshihiro; Okada, Shigenobu; Oshiro, Kazunori; Fujimori, Hirotaka; Yamamoto, Setsuo

    2006-04-15

    Well-crystallized Ni-Zn ferrite (Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4}) highly oriented ultrathin films were obtained at a substrate temperature of 200 deg. C by a reactive sputtering method utilizing electron cyclotron resonance microwave plasma, which is very effective to crystallize oxide or nitride materials without heat treatment. Thin films of Ni-Zn ferrite deposited on a MgO (100) underlayer showed an intense X-ray-diffraction peak of (400) from the Ni-Zn ferrite as compared to similar films deposited directly onto thermally oxidized Si substrates. A 1.5-nm-thick Ni-Zn ferrite film, which corresponds to twice the lattice constant for bulk Ni-Zn ferrite, crystallized on a MgO (100) underlayer.

  15. Diamond films grown from fullerene precursors

    SciTech Connect

    Gruen, D.M.; Zuiker, C.D.; Krauss, A.R.

    1995-07-01

    Fullerene precursors have been shown to result in the growth of diamond films from argon microwave plasmas. In contradistinction to most diamond films grown using conventional methane-hydrogen mixtures, the fullerene-generated films are nanocrystalline and smooth on the nanometer scale. They have recently been shown to have friction coefficients approaching the values of natural diamond. It is clearly important to understand the development of surface morphology during film growth from fullerene precursors and to elucidate the factors leading to surface roughness when hydrogen is present in the chemical vapor deposition (CVD) gas mixtures. To achieve these goals, we are measuring surface reflectivity of diamond films growing on silicon substrates over a wide range of plasma processing conditions. A model for the interpretation of the laser interferometric data has been developed, which allows one to determine film growth rate, rms surface roughness, and bulk losses due to scattering and absorption. The rms roughness values determined by reflectivity are in good agreement with atomic force microscope (AFM) measurements. A number of techniques, including high-resolution transmission electron microscopy (HRTEM) and near-edge x-ray absorption find structure (NEXAFS) measurements, have been used to characterize the films. A mechanism for diamond-film growth involving the C{sub 2} molecule as a growth species will be presented. The mechanism is based on (1) the observation that the optical emission spectra of the fullerene- containing plasmas are dominated by the Swan bands of C{sub 2} and (2) the ability of C{sub 2} to insert directly into C-H and C-C bonds with low activation barriers, as shown by recent theoretical calculations of reactions of C{sub 2} with carbon clusters.

  16. Realization of hexagonal barium ferrite thick films on Si substrates using a screen printing technique

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Smith, Ian; Geiler, Anton L.; Vittoria, Carmine; Zagorodnii, Volodymyr; Celinski, Zbigniew; Harris, Vincent G.

    2008-05-01

    Hexagonal barium ferrite thick films (50-200 µm) have been deposited on Si and Al2O3/Si substrates using a screen printing technique. X-ray diffractometry, scanning electron microscopy and magnetometry were used to characterize and correlate the ferrite films' microstructure and magnetic properties. The experiments indicated that an Al2O3 underlayer was effective in preventing silicon diffusion into the barium ferrite films during a final sintering treatment at temperatures above 1100 °C. A two-stage sintering process allowed a reasonable tradeoff between mechanical and magnetic properties. This work reveals the feasibility of fabrication of thick ferrite films on large substrates (up to 25 mm in diameter) for future planar microwave devices compatible with semiconductor integrated circuits processing.

  17. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  18. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    SciTech Connect

    Buršík, J.; Kužel, R.; Knížek, K.; Drbohlav, I.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.

  19. Thickness dependence of the preferred orientation of Mn-Zn ferrite thin films deposited by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-07-01

    The thickness dependence of the preferred orientation of the Cu or Ti added Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion-beam sputtering was investigated. A mosaic target, consisting of a single-crystal (110) Mn-Zn ferrite with a metal strip on it, was employed as the target. The (hhh) preferred orientation, formed at the initial growth stage, of the Cu added Mn-Zn ferrite film changed to the (h00) preferred orientation with increasing film thickness, while the initially formed (h00) preferred orientation of the Ti added one was enhanced with increasing film thickness. Such different behaviors were discussed in terms of the surface energy and the preferred growth orientation of the ferrite film. The thickness dependence of magnetic properties of the ferrite films was also investigated.

  20. Application of domain structures elements of ferrite-garnet films for transport of magnetic microparticles

    NASA Astrophysics Data System (ADS)

    Gorobets, Yu. I.; Dzhezherya, Yu. I.; Melnichuk, I. A.; Cherepov, S. V.; Kuz', A. P.

    2010-12-01

    The physical background of the device for the transportation of magnetic microparticles which is using a domain structure of garnete-ferrite films with easy-plane anisotropy are developed and experimentally proved in the present paper. The proposed device can be used in microbiology, medicine, and genetic engineering.

  1. Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film.

    PubMed

    Chai, Guozhi; Phuoc, Nguyen N; Ong, C K

    2012-01-01

    Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange coupling between ferrimagnet and ferromagnet is assumed to play a key role on the omnidirectional rotatable anisotropy.

  2. Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film

    PubMed Central

    Chai, Guozhi; Phuoc, Nguyen N.; Ong, C. K.

    2012-01-01

    Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange coupling between ferrimagnet and ferromagnet is assumed to play a key role on the omnidirectional rotatable anisotropy. PMID:23145323

  3. Columnar grown copper films on polyimides strained beyond 100%

    PubMed Central

    Sun, Jeong-Yun; Lee, Hae-Ryung; Hwan Oh, Kyu

    2015-01-01

    Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains on a polyimide (PI) substrate. The columnar grown copper films (CGC films) were deposited by regulating radio frequency (RF) sputtering powers. CGC films were able to sustain their electrical conductivity at strains above 100%. Instead of ultimate electrical discontinuity by channel crack propagation, CGC films maintained their conductivity by forming ligament structures, or a ‘conductive net,’ through trapped micro-cracks. XRD, AFM and in situ SEM analysis were used to investigate these stretchable conductors. PMID:26337668

  4. Highly resistive Mn-Zn ferrite films prepared from aqueous solution for GHz conducted noise suppressors

    NASA Astrophysics Data System (ADS)

    Matsushita, Nobuhiro; Abe, Tatsunobu; Kondo, Koichi; Yoshida, Shigeyoshi; Abe, Masanori

    2005-05-01

    We have prepared Mn-Zn ferrite films (MnxZnyFezO4.00-δ: 0.23film resistivity ρ increased as the amount of Fe content z decreased and very high surface resistance R>108Ω/sq was attained for the film having z<2.6. The deposited Mn-Zn ferrite films had a large saturation magnetization Ms=380-460emu/cm3 and relatively low coercivity Hc=11-29Oe. The Mn-Zn ferrite films contacted to a microstrip line (50Ω) exhibited very large transmission loss ΔPloss per thickness t, ΔPloss/t, of about 10 times larger than that of commercialized composite sheet. They exhibited sufficiently low reflection coefficient S11<-10dB. These films were applicable as noise current suppressors deposited on an interlayer of multilayer printed circuit boards.

  5. Yttria-Stabilized Zirconia Ceramic Deposition on SS430 Ferritic Steel Grown by PLD - Pulsed Laser Deposition Method

    NASA Astrophysics Data System (ADS)

    Khalid Rivai, Abu; Mardiyanto; Agusutrisno; Suharyadi, Edi

    2017-01-01

    Development of high temperature materials are one of the key issues for the deployment of advanced nuclear reactors due to higher temperature operation. One of the candidate materials for that purpose is ceramic-coated ferritic steel that one of the functions is to be a thermal barrier coating (TBC). Thin films of YSZ (Ytrria-Stabilized Zirconia) ceramic have been deposited on a SS430 ferritic steel using Pulsed Laser Deposition (PLD) at Center For Science and Technology of Advanced Materials laboratory – National Nuclear Energy Agency of Indonesia (BATAN). The thin film was deposited with the chamber pressure range of 200-225 mTorr, the substrate temperature of 800oC, and the number of laser shots of 3×104, 6×104 and 9×104. Afterward, the samples were analyzed using Scanning Electron Microscope – Energy Dispersive X-ray Spectroscope (SEM-EDS), X-Ray Diffractometer (XRD), Atomic Force Microscope (AFM) and Vickers hardness tester. The results showed that the YSZ could homogeneously and sticky deposited on the surface of the ferritic steel. The surfaces were very smoothly formed with the surface roughness was in the range of 70 nm. Furthermore, thickness, composition of Zr4+ dan Y3+, the crystallinity, and hardness property was increased with the increasing the number of the shots.

  6. Room temperature ferrimagnetism and low temperature disorder effects in zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Raghavan, Lisha; Pookat, Geetha; Thomas, Hysen; Ojha, Sunil; Avasthi, D. K.; Anantharaman, M. R.

    2015-07-01

    Zinc ferrite is a normal spinel and antiferromagnetic in nature with a Neel temperature of 10 K in the micron regime. It exhibits interesting features like superparamagnetism, spin glass and ferrimagnetism in the nano-regime. These anomalies make zinc ferrite striking among various other spinels. Further, in the thin film form, the magnetic properties are dependent on preparative techniques, annealing and deposition parameters. In the present work, zinc ferrite thin films were prepared by RF sputtering. The films were annealed at 400° C and 600° C. The thickness and composition of films were estimated by employing Rutherford Backscattering Spectrometry (RBS). The structural and microstructural studies conducted using Glancing X Ray Diffractometer (GXRD) and Transmission Electron Microscope (TEM) indicates the formation of a spinel phase and grain growth was observed with annealing. Magnetic measurements were carried out using a Superconducting Quantum Interferometer Device-Vibrating Sample Magnetometry (SQUID VSM). The films were found to be ferrimagnetic at room temperature and Field Cooling-Zero Field Cooling (FC-ZFC) studies indicate the presence of disorders.

  7. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  8. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  9. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    SciTech Connect

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Highly economic solution precursor route capable of producing films/coating even for mass scale production. Black-Right-Pointing-Pointer Pure spinel phase ZnFe{sub 2}O{sub 4} porous, immobilized films deposited in single step. Black-Right-Pointing-Pointer Parameter optimization yields access to nanostructuring in SPPS method. Black-Right-Pointing-Pointer The ecofriendly immobilized ferrite films were active under solar radiation. Black-Right-Pointing-Pointer Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH {<=} 10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH {approx} 8.0, yielded pure cubic phase ZnFe{sub 2}O{sub 4} film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of {approx}1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  10. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  11. Al substituted Ba ferrite films with high coercivity and excellent squareness for low noise perpendicular recording layer

    NASA Astrophysics Data System (ADS)

    Feng, J.; Matsushita, N.; Watanabe, K.; Nakagawa, S.; Naoe, M.

    1999-04-01

    Al substituted BaM (Al-BaM) ferrite films with composition of BaAlxFe12-xO19 (x=0,1,2) were deposited using facing targets sputtering apparatus on SiOx/Si wafers with a Pt seed layer. A postannealing process is necessary to crystallize the films. It was confirmed that the substrate temperature Ts is also one of the important parameters for the magnetic properties of the postannealed films. Al-BaM ferrite films exhibit the Ts dependence of magnetic properties different from that of simple BaM ones. With increase of the Al content x in Al-BaM ferrite films, 4πMs decreased, while Hc and the anisotropy field HA increased. It was found that acicular shape grains formed more easily in Al-BaM ferrite films than in simple BaM ones. The squareness S⊥ increased largely by substitution of Al for Fe. The Al-BaM ferrite films with high Hc⊥ (˜3 kOe) and large S⊥(˜0.9) may be applicable as perpendicular magnetic recording layers with low noise level.

  12. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films

    SciTech Connect

    Simoes, A.Z.; Riccardi, C.S.; Dos Santos, M.L.; Garcia, F. Gonzalez; Longo, E.; Varela, J.A.

    2009-08-05

    Bismuth ferrite thin films were deposited on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N{sub 2} and O{sub 2}) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.

  13. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    DTIC Science & Technology

    2006-11-01

    kPMHHkHf 042, ππ γ += , 2 where γ/2π = 2.8 MHz/Oe is the gyromagnetic ratio, M0 is the saturation magnetization of the ferromagnetic material, and...measured by the frequency meter. Using typical values for high-quality magnetic films of yttrium-iron garnet ( YIG ) 4πM0 = 1750 Oe, H0 = 100 Oe... MAGNETIC SENSOR FOR DETECTION OF GROUND VEHICLES BASED ON MICROWAVE SPIN WAVE GENERATION IN FERRITE FILMS A. Slavin*, and V. Tiberkevich

  14. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  15. Structure and conductivity of epitaxial thin films of barium ferrite and its hydrated form BaFeO2.5‑x+δ (OH)2x

    NASA Astrophysics Data System (ADS)

    Anitha Sukkurji, Parvathy; Molinari, Alan; Benes, Alexander; Loho, Christoph; Sai Kiran Chakravadhanula, Venkata; Garlapati, Suresh Kumar; Kruk, Robert; Clemens, Oliver

    2017-03-01

    Barium ferrite and its hydrated form (BaFeO2.5‑x+δ (OH)2x , BFO) is an interesting cathode material for protonic ceramic fuel cells (PCFC) due to its potential to be both, conducting for electrons and protons. We report on the fabrication of almost epitaxially grown thin films (22 nm) of barium ferrite BaFeO~2.5 (BFO) on Nb-doped SrTiO3 substrates via pulsed laser deposition (PLD), followed by treatment under inert, and subsequently wet inert atmospheres to induce water (respectively proton) incorporation. Microstructure, chemical composition and conducting properties are investigated for the BFO films and their hydrated forms, highlighting the influence of hydration on the conductivity characteristics between ~200–290 K. We find that water incorporation gives a strong enhancement of the conductivity to ~10‑9 S cm‑1 compared to argon annealed films, inducing electronic and protonic charge carriers at the same time. In comparison to bulk powders, proton conductivity is found to be strongly suppressed in such thin hydrated BFO films, pointing towards the influence of strain on the conductivity, which is evaluated based on a detailed investigation by high-resolution transmission electron microscopy.

  16. Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition

    SciTech Connect

    Sorescu, Monica; Diamandescu, L.; Swaminathan, R.; McHenry, M.E.; Feder, M.

    2005-05-15

    Laser ablation deposition has been used to synthesize nanoscale ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon(100) substrates. Films produced by laser ablation at room temperature were annealed at 550 deg. C for 1 h. Other films were deposited directly at a 550 deg. C substrate temperature without subsequent annealing. Complementary x-ray diffraction and superconducting quantum interference device magnetometry measurements helped identify the optimum laser ablation deposition conditions for obtaining the desired nanoferrite structures. From the hysteresis loops at 300 and 10 K we identified the paramagnetic or ferromagnetic behavior of the films. The zero field cooled-field cooled (ZFC-FC) magnetization, M(T), curves yielded the value of the blocking temperature in both NiZn and Zn ferrite systems.

  17. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-01

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (˜90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  18. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-28

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  19. Electromagnetic Wave Shieding Effectiveness of Carbon Fiber Sheet Coated Ferrite Film by Microwave-Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae

    The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.

  20. Carbon films grown from plasma on III-V semiconductors

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Warner, J. D.; Liu, D. C.

    1985-01-01

    Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies.

  1. Solution grown PbS nanoparticle films [rapid communication

    NASA Astrophysics Data System (ADS)

    Joshi, Rakesh K.; Kanjilal, Aloke; Sehgal, H. K.

    2004-01-01

    Lead sulfide (PbS) nanoparticle films were chemically grown on glass, quartz and silicon substrates. Structure and size of PbS nanoparticles were characterized by X-ray diffraction and transmission electron microscopy (TEM), respectively. Large optical band gap has been observed in these films. The decreases in dc-conductivity, Hall mobility and carrier concentration with reducing grain size were also examined. Heterojunctions of p-PbS/n-Si were fabricated and photovoltaic effect was observed in these self-assembled heterojunctions.

  2. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-03-01

    We investigated the effects of additives on the preferred orientation of the Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion beam sputtering. A mosaic target, consisting of a single crystal (100) Mn-Zn ferrite with a metal strip on it, was employed as the target. The preferred orientation of the ferrite films was (hhh) for the target with or without Fe and Zn additives, and (h00) for Ti addition. In the case of Cu addition, a weak (311) orientation appeared with a strong (hhh) preferred orientation. The origin of the changes in the preferred orientation with different additives was discussed. The easy axis of magnetization, however, lay in the direction parallel to the film plane due to large shape anisotropy, irrespective of the preferred orientation.

  3. Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Jiang, Zhengyi; Wei, Dongbin; Gong, Dianyao; Cheng, Xiawei; Zhao, Jingwei; Luo, Suzhen; Jiang, Laizhu

    2016-10-01

    The aim of this study is to investigate the effect of zinc dialkyl dithio phosphate (ZDDP) films on sticking during hot rolling of a ferritic stainless steel strip. The surface characterization and crack propagation of the oxide scale are very important for understanding the mechanism of the sticking. The high-temperature oxidation of one typical ferritic stainless was conducted at 1373 K (1100 °C) for understanding its microstructure and surface morphology. Hot-rolling tests of a ferritic stainless steel strip show that no obvious cracks among the oxide scale were observed with the application of ZDDP. A finite element method model was constructed with taking into consideration different crack size ratios among the oxide scale, surface profile, and ZDDP films. The simulation results show that the width of the crack tends to be reduced with the introduction of ZDDP films, which is beneficial for improving sticking.

  4. Polymetallic citric complexes as precursors for spray-pyrolysis deposition of thin ferrite films

    NASA Astrophysics Data System (ADS)

    Milanova, M.; Koleva, I.; Todorovska, R.; Zaharieva, J.; Кostadinov, M.; Todorovsky, D.

    2011-06-01

    Thin films of ferrites of the type M IIFe 2O 4 (M = Cu, Mg, Zn) are prepared by spray-pyrolysis using ethylene glycol solutions of mixed-metal citric complexes of the respective metals at substrate temperature between 350 °C and 450 °C and post-deposition annealing at 480-750 °C in air. Phase composition, crystal structure, morphology and adhesion of the obtained films (40-400 nm in thickness) are studied by X-ray diffraction, SEM, energy dispersive X-ray microanalysis and AFM. Single phase dense uniform films with grains from 30-100 nm (M = Cu, Mg) to 0.15-2 μm (M = Zn) are obtained.

  5. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping

    NASA Astrophysics Data System (ADS)

    Sharma, Deepanshu; Khare, Neeraj

    2016-08-01

    In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

  6. Role of vacancies in transport and magnetic properties of nickel ferrite thin films

    SciTech Connect

    Anjum, S.; Rumaiz, A.; Jaffari, G.H.; Rafique, M.S.; Sha, S.I.

    2010-06-15

    Nickel ferrite thin films were synthesized by pulsed laser deposition. It was determined that the monotonic increase in saturation magnetization and the non-monotonic increase in electrical conductivity depend on the oxygen partial pressure during the growth of the thin films. A substantial reduction in magnetization was found which ranged between 0.4% and 40% of the bulk value as the oxygen partial pressure increased from 0.2 x 10{sup -6} Torr to 500 mTorr during the deposition of the films. There was a three orders of magnitude increase in conductivity for the sample prepared under the most oxygen deficient environment (partial pressure of oxygen 0.2 x 10{sup -6} Torr). These variations in saturation magnetization and conductivity are described within the framework of cation/oxygen vacancies in an inverse spinel nickel ferrite structure. The changes in the electronic structure due to the presence of the vacancies were investigated using x-ray photoelectron spectroscopy, which confirmed the formation of lower valent Ni for the samples prepared in an oxygen deficient atmosphere.

  7. Persistent conductive footprints of 109° domain walls in bismuth ferrite films

    SciTech Connect

    Stolichnov, I.; Iwanowska, M.; Colla, E.; Setter, N.; Ziegler, B.; Gaponenko, I.; Paruch, P.; Huijben, M.; Rijnders, G.

    2014-03-31

    Using conductive and piezoforce microscopy, we reveal a complex picture of electronic transport at weakly conductive 109° domain walls in bismuth ferrite films. Even once initial ferroelectric stripe domains are changed/erased, persistent conductive paths signal the original domain wall position. The conduction at such domain wall “footprints” is activated by domain movement and decays rapidly with time, but can be re-activated by opposite polarity voltage. The observed phenomena represent true leakage conduction rather than merely displacement currents. We propose a scenario of hopping transport in combination with thermionic injection over interfacial barriers controlled by the ferroelectric polarization.

  8. Enhancement of rotatable anisotropy in ferrite doped FeNi thin film with oblique sputtering

    NASA Astrophysics Data System (ADS)

    Zhou, Cai; Jiang, Changjun; Zhao, Zhong

    2015-07-01

    Rotatable anisotropy of stripe domain (SD) was investigated in a ferrite doped FeNi thin film with different oblique angles. Rotation of SD under an in-plane magnetic field was observed by magnetic force microscopy, suggesting the existence of rotatable anisotropy. A rotatable anisotropy field Hrot was derived from the fitting curves of the in-plane resonance field versus the angle between the orientation of easy axis and applied field. As the oblique angle increases, an increase of Hrot from 305 Oe to 468 Oe was observed and the perpendicular anisotropy increased as well, indicating a correlation between rotatable anisotropy and perpendicular anisotropy.

  9. Effects of Ethylenediamine Tetraacetic Acid on the Texture and Magnetic Properties of Barium Ferrite Films

    NASA Astrophysics Data System (ADS)

    Li, Fang; Zhang, Wanli; Peng, Bin; Zhang, Wenxu

    2012-08-01

    M-type barium ferrite thin films with hexagonal platelets on sapphire were fabricated by spin-coating of precursors. Fourier-transform infrared spectra indicated that bonds between the metal and oxygen were formed at about 500°C. X-ray diffraction showed that the films had preferred c-axis orientation. Surface morphology of the film was investigated by scanning electron microscopy. Textures of the films were influenced by the amount of ethylenediamine tetraacetic acid (EDTA). The film with the least pores and the most c-axis-textured platelet hexagonal grains was obtained when the ratio of EDTA to metal ions was 1.0. At the same time, the magnetic hysteresis loops in directions parallel and perpendicular to the film plane demonstrated that the films were almost isotropic. The maximum coercive forces of 43.23 kA/m in plane and 54.70 kA/m out of plane were achieved when the ratio of the amount of EDTA to metal ions was 0.5. The highest in-plane remanence ratio was 0.32 when the ratio of EDTA to metal ions was 1.5, while the highest out-of-plane value was 0.28 in the other two cases.

  10. Growth and crystallographic feature-dependent characterization of spinel zinc ferrite thin films by RF sputtering.

    PubMed

    Liang, Yuan-Chang; Hsia, Hao-Yuan

    2013-12-19

    ZnFe2O4 (ZFO) thin films exhibiting varying crystallographic features ((222)-epitaxially, (400)-epitaxially, and randomly oriented films) were grown on various substrates by radio-frequency magnetron sputtering. The type of substrate used profoundly affected the surface topography of the resulting ZFO films. The surface of the ZFO (222) epilayer was dense and exhibited small rectangular surface grains; however, the ZFO (400) epilayer exhibited small grooves. The surface of the randomly oriented ZFO thin film exhibited distinct three-dimensional island-like grains that demonstrated considerable surface roughness. Magnetization-temperature curves revealed that the ZFO thin films exhibited a spin-glass transition temperature of approximately 40 K. The crystallographic orientation of the ZFO thin films strongly affected magnetic anisotropy. The ZFO (222) epitaxy exhibited the strongest magnetic anisotropy, whereas the randomly oriented ZFO thin film exhibited no clear magnetic anisotropy.

  11. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  12. Integration of microwave termination based on TaN thin films on ferrite substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Ji, Liang; Kolodzey, James

    2015-10-01

    Integration of microwave discrete devices such as isolators and circulators is highly desired for radar and communication platforms and in particular as components used in transmit and receive (T/R) modules. In those applications, Tantalum nitride (TaN) films are widely used as a surface mounted termination to improve the reliability and performance. In the current work, TaN thin films were directly deposited on polycrystalline ferrite substrate (Ni0.3Zn0.7Fe2O4) to be integrated with isolators or circulators. The deposition conditions were first optimized to obtain suitable sheet resistance and near zero temperature coefficients of resistance (TCR). Next a 50 Ω microwave termination was designed and fabricated using standard photolithography techniques. Broadband measurements show that the terminator has a low voltage standing wave ratio (VSWR) of less than 1.20 in the frequency range of DC-20 GHz. The measured resistance was between 48 and 54 Ω.

  13. Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films

    SciTech Connect

    Inoue, Jun-ichiro; Yanagihara, Hideto; Kita, Eiji; Niizeki, Tomohiko; Itoh, Hiroyoshi

    2014-02-15

    We develop an electron theory for the t{sub 2g} electrons of Co{sup 2+} ions to clarify the perpendicular magnetic anisotropy (PMA) mechanism of Co-ferrite thin films by considering the spin-orbit interaction (SOI) and crystal-field (CF) potentials induced by the local symmetry around the Co ions and the global tetragonal symmetry of the film. Uniaxial and in-plane MA constants K{sub u} and K{sub 1} at 0 K, respectively, are calculated for various values of SOI and CF. We show that reasonable parameter values explain the observed PMA and that the orbital moment for the in-plane magnetization reduces to nearly half of that of the out-of-plane magnetization.

  14. Properties of Diamond Composite Films Grown on Iron Surfaces

    DTIC Science & Technology

    1991-01-22

    surface area is designed to be approximately 50 -75 % of the total substrate surface . Figure 2 depicts a cross sectional view of the diamond and 3...in OFFICE OF NAVAL RESEARCH Grant # N0001489Jl848 R&T Code 413n003 Technical Report No. 2 Properties of Diamond Composite Films grown on Iron... Surfaces bv T.P. Ona ano k.P.H. Chanq Preoared tor DIuoiicatlon in the Applied Physics Letters D TIC 0% ELECTE Northwestern University FEBO41991 Department

  15. Atomically flat nickel film grown on synthetic mica

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2016-07-01

    We have grown nickel heteroepitaxially on muscovite and synthetic mica in vacuo for use as substrates for scanning probe microscopy (SPM) and graphene formation. We have determined annealing conditions that could generate atomically flat surfaces (with rms surface roughness of less than 1 nm). Owing to accelerated degradation at temperatures above 600 °C, muscovite mica was unsuitable as a substrate at high growth temperatures. Thermally stable synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2], on the other hand, was found to be stable at 800 °C and successfully employed for the formation of atomically flat films.

  16. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  17. Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang

    2016-06-01

    Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m-1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

  18. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  19. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  20. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  1. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  2. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2016-12-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+y-x Fe2-2y Sn y O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ (y = 0.1)- and Sn4+ (y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ (y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is found to

  3. Spin-spray deposited NiZn-Ferrite films exhibiting μr' > 50 at GHz range

    NASA Astrophysics Data System (ADS)

    Obi, Ogheneyunume; Liu, Ming; Lou, Jing; Stoute, Stephen; Xing, Xing; Sun, Nian X.; Warzywoda, Juliusz; Sacco, Albert; Oates, Daniel E.; Dionne, Gerald F.

    2011-04-01

    Ni0.27ZnxFe2.73-xO4 (with x = 0.03-0.1) thin films with high real permeability μr' in the GHz range were fabricated by the spin spray process onto glass substrates in the presence of an external magnetic field of 360 Oe. These films exhibit high permeabilities that exceeded the Snoek limit for bulk NiZn-ferrite films and those previously reported for spin spray deposited ferrites. The NiZn-ferrite film with x = 0.06 is low in magnetic losses, having tanδm (μr″/μr') ˜ 0.027 from 1 to 1.5 GHz, and a high ferromagnetic resonance (FMR) frequency of 2.7 GHz, while the x = 0.1 film exhibited a high μr' of ˜50 and μr″ > 50 at 1 GHz. These properties are ideal for microwave applications such as antennas, inductors and electromagnetic interference (EMI) suppression in the GHz range.

  4. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    Ferrites Lithium Ferrite Magnetostatic Wave Garnets Epitaxy Yttrium Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite Microwave Signal Processing...epitaxial ferrit ( materials for use in microwave and millirreter-wave signal processing devices. The major emphasis has been on multiple layer...overall objective of this research is to develop epitaxial single crystal ferrite films suitable for microwave and millimeter-wave signal processing at

  5. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  6. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    PubMed Central

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  7. Analysis of the broadband chaotic spin-wave excitations in an active ring oscillator based on a metalized ferrite film

    NASA Astrophysics Data System (ADS)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.

    2016-11-01

    This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.

  8. Fabrication of a Common-mode Noise Filter for Balanced-mode Signal Transmission using Mn-Zn Ferrite Particle/Polyimide Composite Thick Film

    NASA Astrophysics Data System (ADS)

    Sato, Toshiro; Kokai, Takahiro; Moroishi, Masashi; Yamasawa, Kiyohito; Sakuma, Toshiyuki; Karasawa, Hiroki; Hirasawa, Koichi

    To develop a common-mode noise filter for balanced-mode digital signal interfaces such as USB ver. 2 and IEEE 1394, a Mn-Zn ferrite/Polyimide composite thick film was fabricated and applied to the filter device. The polycrystalline Mn-Zn ferrite powder and polyimide precursor liquid solution were used as the starting materials for the composite thick film. The composite film had a large imaginary part of complex permeability at high frequencies over 1GHz, and high permittivity. The common-mode noise filter using the composite film exhibited the common-mode suppression of over 10dB in the frequency range over 1GHz.

  9. Fabrication of a Zn-Ferrite Thick Film Planar Power Inductor for DC-DC Converter LSI Package

    NASA Astrophysics Data System (ADS)

    Okazaki, Shinya; Takeuchi, Asako; Takeshima, Akihiro; Sonehara, Makoto; Sato, Toshiro; Matsushita, Nobuhiro

    In order to realize the “POL (Point of Load)” dc-dc converter for LSIs, a Zn-ferrite thick film planar power inductor embedded in LSI package has been fabricated and evaluated in this study. 10 μm thick spin-sprayed Zn ferrite film with a high saturation magnetization of 0.57 T was introduced to the magnetic core for planer power inductor consisting of a 20 μm thick, 650 μm square, 2-turn inner copper spiral coil sandwiched by top and bottom magnetic core. Zn ferrite film had a natural resonance frequency of 500 MHz and a static relative permeability of 80. The planar power inductor with a footprint of 850×850 μm exhibited a 10 nH inductance and a quality factor of 20 at 100 MHz. The degradation of inductance owing to the superimposed dc current of 2A was 17%. The planar power inductor will be applied to low-voltage converter with hundreds megahertz switching operation in the future.

  10. Investigation of Hexagonal Ferrite Film Growth Techniques for Millimeter-Wave Systems Applications.

    DTIC Science & Technology

    1987-03-15

    hexagonal ferrite compounds. The approach was twofold: to synthesize lattice-matched substrate materials and to explore epitaxial growth methods which...poly-crystal garnet or spinel ferrites find widespread use as tunable microwave filters and resonators in applica- tions ranging from test equipment...REFERENCES 1. W. H. von Aulock, ed., Handbook of Microwave Ferrite Materials, Academic Press, NY. 2. R. 0. Savage et al., J. App1. Phys., 36: 873 (1965

  11. The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brooks, Charles M.

    Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBEgrown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ˜2 W˙m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals

  12. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  13. Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films

    SciTech Connect

    Krishnan, P.S. Sanakara R.; Aguiar, Jeffery A.; Ramasse, Q. M.; Kepaptsoglou, D. M.; Liang, W. I.; Chu, Y. H.; Browning, Nigel D.; Munroe, Paul R.; Nagarajan, Valanoor

    2015-01-01

    Strain engineering of epitaxial ferroelectrics has emerged as a powerful method to tailor the electromechanical response of these materials, although the effect of strain at the atomic scale and the interplay between lattice displacements and electronic structure changes are not yet fully understood. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we systematically probe the role of epitaxial strain in mixed phase bismuth ferrite thin films. Electron energy loss O K and Fe L2,3 edge spectra acquired across the rhombohedral (R)-tetragonal (T) phase boundary reveal progressive, and systematic changes, in electronic structure going from one phase to the other. The comparison of the acquired spectra, with theoretical simulations using DFT, suggests a breakage in the structural symmetry across the boundary due to the simultaneous presence of increasing epitaxial strain and off- axial symmetry in the T phase. This implies that the imposed epitaxial strain plays a significant role in not only changing the crystal-field geometry, but also the bonding environment surrounding the central iron cation at the interface thus providing new insights and a possible link to understand how the imposed strain could perturb magnetic ordering in the T phase BFO.

  14. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-07-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe2O4 nanoparticles has been estimated to be 6.5 nm. It is assumed that the thin film of organic-ceramic hybrid matrix (TMBHPET:CoFe2O4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe2O4/Al) has been investigated at three different frequencies of the AC applied voltage ( V rms 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity 560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30-99 % RH), small hysteresis ( 2.3 %), and relatively quicker response and recovery times ( 12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  15. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  16. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2017-01-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  17. Y1Ba2Cu3O7-δ thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takano, Satoshi; Hayashi, Noriki; Okuda, Shigeru; Hitosuyanagi, Hajime

    1989-12-01

    Y1Ba2Cu3O7-δ thin films were grown on (100)MgO and polycrystalline YSZ substrates by RF magnetron sputtering. We measured the magnetic field dependence of Jc of these films. The films grown on MgO with Jc of 4.0x106, 2.9 x106 and 1.5x104 A/cm2 at OT showed 7.1x105 A/cm2 at 8T, 1x104 A/cm2 at 20T and 1.1x103 A/cm2 at 5 T, respectively . We could attain a c-axis oriented film with a Jc of 1.2x104 A/cm2 on YSZ polycrystalline substrate, however, it showed greater degradation than the films grown on MgO in Jc with magnetic field.

  18. Y 1Ba 2Cu 3O 7-δ thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takano, Satoshi; Hayashi, Noriki; Okuda, Shigeru; Hitosuyanagi, Hajime

    1989-12-01

    Y 1Ba 2Cu 3O 7-δ thin films were grown on (100)MgO and polycrystalline YSZ substrates by RF magnetron sputtering. We measured the magnetic field dependence of Jc of these films. The films grown on MgO with Jc of 4.0x10 6, 2.9 x10 6 and 1.5x10 4 A/cm 2 at OT showed 7.1x10 5 A/cm 2 at 8T, 1x10 4 A/cm 2 at 20T and 1.1x10 3 A/cm 2 at 5 T, respectively . We could attain a c-axis oriented film with a Jc of 1.2x10 4 A/cm 2 on YSZ polycrystalline substrate, however, it showed greater degradation than the films grown on MgO in Jc with magnetic field.

  19. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  20. Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong

    2011-04-01

    Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 {mu}m, a saturation magnetization of 150 emu/cm{sup 3}, and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

  1. Pb"1"-"xFe"xS nanoparticle films grown from acidic chemical bath [rapid communication

    NASA Astrophysics Data System (ADS)

    Joshi, Rakesh K.; Subbaraju, G. V.; Sharma, Renu; Sehgal, H. K.

    2004-12-01

    Pb 1- xFe xS ( x=0.25, 0.50, 0.75) films were grown from an acidic chemical bath. Nanoparticle films were structurally characterized by XRD and TEM. Optical band gap of films is observed to vary from 1.65 to 1.42 eV with increase in their iron concentration from x=0.25 to 0.75 in the films. Increased optical band gap of the ternary films compared to the estimated bulk value is attributed to quantum confinement in the nanocrystals deposited on solid substrates.

  2. Characterization of hot wall grown silver phthalocyanine films

    NASA Astrophysics Data System (ADS)

    Gupta, Himani; Bedi, R. K.; Mahajan, Aman

    2007-10-01

    Silver phthalocyanine (AgPc) has attracted considerable interest because of its outstanding chemical stability, optical and electrical properties, and wide variety of potential applications in modern optical recording and optoelectronic devices. To improve the performance of devices based on AgPc, hot wall technique has been used to grow thin layers of AgPc onto the glass substrates kept at different temperatures in a vacuum of 10-5Torr. The films so obtained are annealed and studied for structural, electrical, and optical characterization. The x-ray diffraction and scanning electron microscopy pattern of these films show a crystalline behavior of films. The films deposited at higher substrate temperature suggest the formation of more ordered and crystalline films. An analysis of optical absorption measurements on the films indicates that the interband transition energies lie in the range 4.1-4.13eV.

  3. Thickness-dependent optical properties in compressively strained BiFeO{sub 3}/LaAlO{sub 3} films grown by pulsed laser deposition

    SciTech Connect

    Duan, Zhihua; Jiang, Kai; Wu, Jiada; Sun, Jian; Hu, Zhigao; Chu, Junhao

    2014-03-01

    Graphical abstract: - Highlights: • BFO with various thicknesses was grown on LAO substrates by pulsed laser deposition. • The structure and compressive strains were clarified via Raman scattering. • The charge transfer excitation was blue shifted with increasing compressive strain. • The compressive strain affects the distortion of Fe{sup 3+} local environment and O 2p states. - Abstract: Bismuth ferrite (BiFeO{sub 3}) films with various thicknesses were epitaxially grown on LaAlO{sub 3} substrates by pulsed laser deposition. The X-ray diffraction and Raman scattering spectra reveal that the films were highly (11{sup ¯}1) oriented with the single phase. With increasing the thickness, the compressive strain decreases and the strain ratios between the film and bulk crystal are evaluated to be 1.75, 1.57, and 1. Moreover, the compressive strain induces band gap shrinkage from 2.7 to 2.65 eV, while the charge transfer transition energy increases from 3.5 to 4.1 eV. It could be due to the shift of O 2p states and the variation of local Fe{sup 3+} crystal field.

  4. Micromagnetics and microstructure of epitaxially grown Co and Co-Cr films for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Krishnan, K. M.; Takeuchi, T.; Hirayama, Y.; Donnet, D. M.; Honda, Y.; Futamoto, M.

    1994-07-01

    Highly c-axis oriented, single crystal films of Co(1-x)Cr(x) (0 less than or equal to x less than 0.3) have been grown epitaxially on mica substrates by e-beam evaporation. Films grown on Ru underlayers have an average grain size of 50-80 nm, negligibe fcc content, and very narrow c-axis dispersions. For Co films (x = 0), the as-grown magnetization structure are mainly 180 degree domain walls with a uniform distribution of cross-ties for thinner samples (less than or equal to 300 Angstrom), while thicker (greater than 400 Angstrom) ones show stripe domains. These images were analyzed in detail to measure the wall widths and associated energy densities for as-grown, remanent, and ac-magnetized samples. As expected, the magnetic properties of these films are composition dependent. However, for any Cr concentration, these films exhibit the largest saturation magnetization when compared with either sputtered or evaporated samples. This enhancement can be attributed to a nanometer-scale segregation of Cr, which in these samples could be particularly aided by the diffusion on the close-packed planes of the films with very narrow c-axis dispersions. Preliminary x-ray microanalysis and NMR data support this interpretation.

  5. Anomalous capacitance change in low-temperature grown ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Seo, O.; Kim, H.; Jo, J.

    2010-10-01

    We studied capacitance-voltage characteristics of ZnO thin-film transistors (TFT's), grown by metalorganic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at 450 °C and the other at 350 °C. ZnO grown at 450 °C showed smooth capacitance profile with electron density of 1.5×1020 cm-3. In contrast, ZnO grown at 350 °C showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the SiO2 interface. Current-voltage and capacitance-voltage data support that our ZnO films have anisotropic conductivity.

  6. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  7. Growth and atomic structure of tellurium thin films grown on Bi2Te3

    NASA Astrophysics Data System (ADS)

    Okuyama, Yuma; Sugiyama, Yuya; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Hirahara, Toru

    2017-03-01

    We have grown tellurium (Te) thin films on Bi2Te3 and investigated the atomic structure. From low-energy electron diffraction (LEED) measurements, we found that the Te films are [10 1 bar0]-oriented with six domains. A detailed analysis of the reflection high-energy electron diffraction (RHEED) pattern revealed that the films are strained with the in-plane lattice constant compressed by ∼1.5% compared to the bulk value due to the epitaxy between Te and Bi2Te3. These films will be interesting systems to investigate the predicted topological phases that occur in strained Te.

  8. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    SciTech Connect

    Pathan, H.M.; Lokhande, C.D. . E-mail: l_chandrakant@yahoo.com; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan . E-mail: shhan@hanyang.ac.kr

    2005-06-15

    Indium sulphide (In{sub 2}S{sub 3}) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In{sub 2}S{sub 3} thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study.

  9. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  10. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  11. Mechanism of Charge Transport in Cobalt and Iron Phthalocyanine Thin Films Grown by Molecular Beam Epitaxy

    SciTech Connect

    Kumar, Arvind; Samanta, Soumen; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2011-12-12

    Cobalt phthalocyanine (CoPc), iron phthalocyanine (FePc) and their composite (CoPc-FePc) films have been grown by molecular beam epitaxy (MBE). Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscope (SEM) studies showed that composite films has better structural ordering compared to individual CoPc and FePc films. The temperature dependence of resistivity (in the temperature range 25 K- 100 K) showed that composite films are metallic, while individual CoPc and FePc films are in the critical regime of metal-to-insulator (M-I) transition The composite films show very high mobility of 110 cm{sup 2} V{sup -1} s{sup -1} at room temperature i.e. nearly two order of magnitude higher compared to pure CoPc and FePc films.

  12. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGES

    Craciun, D.; Socol, G.; Lambers, E.; ...

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  13. Effect of Heat Treatments on the Structural and Magnetic Properties of La-Co Substituted Strontium Ferrite Films

    NASA Astrophysics Data System (ADS)

    Hui, Yajuan; Cheng, Weiming; Lin, Gengqi; Miao, Xiangshui

    2014-09-01

    A sputter-deposited strontium ferrite film with perpendicular anisotropy has been developed. The film, composed of La0.33Sr0.67Co0.25Fe11.75O19, has been fabricated directly on quartz glass substrates by radio frequency magnetron sputtering with various heat treatments. The structural and magnetic property dependence of those films on heat treatments has also been studied. The optimized condition is the heat treatment of in situ heating at 400°C and post-annealing at 850°C-900°C. When post-annealing temperature exceeds 900°C, parasitic phases of γ-Fe2O3 and LaFeO3 appear and gradually increase; meanwhile, the magneto plumbite phase gradually decreases. High c-axis perpendicularly oriented films with the coercivity (4148 Oe), remanence squareness ratio (0.89) and perpendicular magnetic anisotropy energy density (1.65 × 106 erg/cm3) are achieved, which is attributed to the single magneto plumbite phase with compact platelet grains and almost complete (0 0 l) texture of the c-axis normal to the film plane.

  14. Thin YBCO films on ? (001) substrates grown by injection MOCVD

    NASA Astrophysics Data System (ADS)

    Abrutis, A.; Sénateur, J. P.; Weiss, F.; Kubilius, V.; Bigelyte, V.; Saltyte, Z.; Vengalis, B.; Jukna, A.

    1997-12-01

    YBCO thin (about 0953-2048/10/12/021/img10) films were deposited at 0953-2048/10/12/021/img11 on 0953-2048/10/12/021/img12 (001) by single-source injection CVD. Precisely controlled microamounts of organometallic 0953-2048/10/12/021/img13-diketonates dissolved in an organic solvent were injected sequentially into the evaporator by means of a computer-driven injector and the resultant vapour was transported into the deposition zone. The influence of the vapour phase composition on films' properties was investigated. A mixture of 0953-2048/10/12/021/img14 and 0953-2048/10/12/021/img15-oriented YBCO crystallites exists in all deposited films and its ratio depends on the vapour phase composition. For both a and c perpendicular crystallites only 0953-2048/10/12/021/img16 in-plane orientation with respect to substrate axes was found. Bidirectional twinning was established in the crystallites of both types. 0953-2048/10/12/021/img17 of the films (about 90 K) was almost independent of the vapour phase composition in the studied range. However, the critical current density 0953-2048/10/12/021/img18 depended clearly on the vapour phase composition in relation to the 0953-2048/10/12/021/img19 ratio variation. 0953-2048/10/12/021/img18 of the films varied in the range 0953-2048/10/12/021/img21.

  15. Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Zheng, Liang; Deng, Jiangxia; Zheng, Peng; Wu, Qiong; Deng, Longjiang; Qin, Huibin

    2016-09-01

    In this work, hexagonal barium ferrite thin films have been deposited on Pt/MgO(111) substrates by pulsed laser deposition. The anneal temperature dependence of crystal structures, extents of diffusion and magnetic properties have been studied. X-ray diffraction patterns reveal that the crystal structure changes from the hexagonal to the spinel when the anneal temperature increases. The texture with c-axis perpendicular to the film plane and the small c-axis dispersion angles (△ɵc) have been obtained in the film annealed at 950 °C for 10 h. Both the X-ray photoelectron spectroscopy profiles and energy dispersive spectrometer show that the diffusions of Mg2+and Fe3+cations are more obvious when the annealing temperature is higher than 950 °C. The film annealed at 950 °C show anisotropic and hard magnetic properties. The magnetic properties of film annealed at 1050 °C are soft. In order to study the cation diffusions between thin film and substrate, the concentration profiles of cations (Ba2+, Fe3+, Mg2+) have been measured by XPS for a thin film with a thickness of 130 nm annealed at 950°C and 1050°C, as shown in Fig. 3. When Ta is 950°C, as shown in Fig. 3(a), diffusions between the film and the substrate are scarcely detected. However, obvious inter-diffusions have been found for Mg2+ cation and Fe3+ cation when it is annealed at 1050°C. An obvious diffusion has not been found for Ba2+ cation at both annealing temperatures.

  16. The influence of Cd doping on the microstructure and optical properties of nanocrystalline copper ferrite thin films

    SciTech Connect

    El-Hagary, M.; Matar, A.; Shaaban, E.R.; Emam-Ismail, M.

    2013-06-01

    Highlights: ► The structural and optical properties of Cu{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} thin films were studied. ► The micro structural parameters of the films have been determined. ► The room temperature reflectance and transmittance data are analyzed. ► The refractive index and energy gap are determined. ► The single oscillator parameters were calculated. - Abstract: Nanocrystalline thin films of mixed Cu–Cd ferrites, Cu{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 1), were deposited by electron beam evaporation technique. The films were annealed at 450 °C for 1 h. The effect of Cd doping on the structural and optical properties of the deposited films has been investigated by using X-ray diffraction (XRD) and optical spectrophotometry. XRD patterns of the annealed films show spinal cubic structure. The lattice parameter was found to increase with the increase of cadmium concentration. The crystallite size of the films was found to vary from 8 nm to 30 nm. The optical transition was found to be direct and indirect transitions with energy gaps decrease from 2.466 (x = 0) to 2.00 (x = 1) eV and from 2.148 (x = 0) to 1.824 (x = 1) eV, respectively. The refractive index dispersion of the films was found to increase with Cd content and discussed in terms of the Wemple–DiDomenico single oscillator model.

  17. Friction and wear performance of diamondlike carbon films grown in various source gas plasmas

    SciTech Connect

    Erdemir, A.; Nilufer, I. B.; Eryilmaz, O. L.; Beschliesser, M.; Fenske, G. R.

    2000-01-18

    In this study, the authors investigated the effects of various source gases (methane, ethane, ethylene, and acetylene) on the friction and wear performance of diamondlike carbon (DLC) films prepared in a plasma enhanced chemical vapor deposition (PECVD) system. Films were deposited on AISI H13 steel substrates and tested in a pin-on-disk machine against DLC-coated M50 balls in dry nitrogen. They found a close correlation between friction coefficient and source gas composition. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios exhibited lower friction coefficients and higher wear resistance than films grown in source gases with lower hydrogen-to-carbon (H/C) ratios. The lowest friction coefficient (0.014) was achieved with a film derived from methane with an WC ratio of 4, whereas the coefficient of films derived from acetylene (H/C = 1) was of 0.15. Similar correlations were observed for wear rates. Specifically, films derived from gases with lower H/C values were worn out and the substrate material was exposed, whereas films from methane and ethane remained intact and wore at rates that were nearly two orders of magnitude lower than films obtained from acetylene.

  18. Pure electron-electron dephasing in percolative aluminum ultrathin film grown by molecular beam epitaxy.

    PubMed

    Lin, Shih-Wei; Wu, Yue-Han; Chang, Li; Liang, Chi-Te; Lin, Sheng-Di

    2015-01-01

    We have successfully grown ultrathin continuous aluminum film by molecular beam epitaxy. This percolative aluminum film is single crystalline and strain free as characterized by transmission electron microscopy and atomic force microscopy. The weak anti-localization effect is observed in the temperature range of 1.4 to 10 K with this sample, and it reveals that, for the first time, the dephasing is purely caused by electron-electron inelastic scattering in aluminum.

  19. Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices

    PubMed Central

    Moyer, Jarrett A.; Gao, Ran; Schiffer, Peter; Martin, Lane W.

    2015-01-01

    The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growth mode before progressing to a 2D growth mode. Films grown in the 2D-like and 3D-to-2D growth modes are atomically flat and partially strained, while films grown in the island growth mode are terminated in islands and fully relaxed. We find that the optimal structural, transport, and magnetic properties are obtained for films grown on the 2D-like/3D-to-2D growth regime boundary. The viability for including such thin films in perovskite-based all-oxide devices is demonstrated by growing a Fe3O4/La0.7Sr0.3MnO3 spin valve epitaxially on SrTiO3. PMID:26030835

  20. Structural and morphological properties of ITO thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2015-10-01

    Physical properties of transparent and conducting indium tin oxide (ITO) thin films grown by radiofrequency (RF) magnetron sputtering are studied systematically by changing deposition time. The X-ray diffraction (XRD) data indicate polycrystalline thin films with grain orientations predominantly along the (2 2 2) and (4 0 0) directions. From atomic force microscopy (AFM) it is found that by increasing the deposition time, the roughness of the film increases. Scanning electron microscopy (SEM) images show a network of a high-porosity interconnected nanoparticles, which approximately have a pore size ranging between 20 and 30 nm. Optical measurements suggest an average transmission of 80 % for the ITO films. Sheet resistances are investigated using four-point probes, which imply that by increasing the film thickness the resistivities of the films decrease to 2.43 × 10-5 Ω cm.

  1. Structure, magnetic, and microwave properties of thick Ba-hexaferrite films epitaxially grown on GaN/Al2O3 substrates

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Yang, A.; Mahalingam, K.; Averett, K. L.; Gao, J.; Brown, G. J.; Vittoria, C.; Harris, V. G.

    2010-06-01

    Thick barium hexaferrite [BaOṡ(Fe2O3)6] films, having the magnetoplumbite structure (i.e., Ba M), were epitaxially grown on c-axis oriented GaN/Al2O3 substrates by pulsed laser deposition followed by liquid phase epitaxy. X-ray diffraction showed (0,0,2n) crystallographic alignment with pole figure analyses confirming epitaxial growth. High resolution transmission electron microscopy images revealed magnetoplumbite unit cells stacked with limited interfacial mixing. Saturation magnetization, 4πMs, was measured for as-grown films to be 4.1±0.3 kG with a perpendicular magnetic anisotropy field of 16±0.3 kOe. Ferromagnetic resonance linewidth, the peak-to-peak power absorption derivative at 53 GHz, was 86 Oe. These properties will prove enabling for the integration of low loss Ba M ferrite microwave passive devices with active semiconductor circuit elements in systems-on-a-wafer architecture.

  2. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  3. Creatinine biomaterial thin films grown by laser techniques.

    PubMed

    György, E; Axente, E; Mihailescu, I N; Predoi, D; Ciuca, S; Neamtu, J

    2008-03-01

    Creatinine thin films were synthesised by matrix assisted pulsed laser deposition (PLD) techniques for enzyme-based biosensor applications. An UV KrF* (lambda=248 nm, tau approximately 10 ns) excimer laser source was used for the irradiation of the targets at incident fluence values in the 0.3-0.5 J/cm2 range. For the matrix assisted PLD the targets consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. The surface morphology, chemical composition and structure of the obtained biomaterial thin films were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and electron dispersive X-ray spectroscopy as a function of the target preparation procedure and incident laser fluence.

  4. Solid Lubrication of Laser Grown Fluorinated Diamond Thin Films

    DTIC Science & Technology

    1992-01-21

    irradiation of laser beam on the substrate surface 2 Schematic diagram showing laser CVD experimental set- up . 27 A single laser beam (YAG or Excimer) was only...0.05 to 0.2 depending upon temperature, environment, load, speed and presence of foreign material. Todate , ultra-low coefficients of friction (0.02...Laser technology for diamond film fabrication is very new and todate only a handful number of publications are available that address directly on the

  5. BiVO4 thin film photoanodes grown by chemical vapor deposition.

    PubMed

    Alarcón-Lladó, Esther; Chen, Le; Hettick, Mark; Mashouf, Neeka; Lin, Yongjing; Javey, Ali; Ager, Joel W

    2014-01-28

    BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.

  6. Fullerenelike arrangements in carbon nitride thin films grown by direct ion beam sputtering

    SciTech Connect

    Gago, R.; Abrasonis, G.; Muecklich, A.; Moeller, W.; Czigany, Zs.; Radnoczi, G.

    2005-08-15

    Carbon nitride (CN{sub x}) thin films were grown by direct N{sub 2}/Ar ion beam sputtering of a graphite target at moderate substrate temperatures (300-750 K). The resulting microstructure of the films was studied by high-resolution transmission electron microscopy. The images showed the presence of curved basal planes in fullerenelike arrangements. The achievement and evolution of these microstructural features are discussed in terms of nitrogen incorporation, film-forming flux, and ion bombardment effects, thus adding to the understanding of the formation mechanisms of curved graphitic structures in CN{sub x} materials.

  7. Investigation of Annealing Atmospheres on Physical Properties of Cigs Films Grown by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    This study investigated the effect of different annealing conditions (influence of the annealing temperature and atmosphere) on structural, microstructure, optical and electrical properties of electrodeposited CuIn1-xGaxSe2 (CIGS) thin films. X-ray diffraction analysis exhibited all the samples have grown preferentially in the [112] crystal orientation with the chalcopyrite structure and without unwanted secondary CIGS phases. With the increase of annealing temperature, energy band gap of the CIGS film decrease from 1.32 to 1.12eV. The electrical properties of the films distinctly upgraded after annealing in nitrogen+ Se vapor, and worsened when annealed in vacuum.

  8. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    NASA Astrophysics Data System (ADS)

    Mendoza Zélis, P.; Pasquevich, G. A.; Salcedo Rodríguez, K. L.; Sánchez, F. H.; Rodríguez Torres, C. E.

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe2O4) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m3. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies KV =3.1 kJ/m3 and KS =16 μJ/m2.

  9. Properties of phosphorus-doped zinc oxide films grown by pulsed laser deposition

    SciTech Connect

    Li Yuanjie; Liu Zilong; Ren Jiangbo

    2011-05-15

    Electrical and chemical bonding properties of P-doped ZnO thin films grown by pulsed laser deposition on sapphire substrates were systematically characterized utilizing the Hall effect and x-ray photoelectron spectroscopy (XPS) measurements. Oxygen growth pressure and postannealing processing play a great role in the properties of these films. Increasing oxygen growth pressure from 5 to 20 Pa enhanced the resistivity of P-doped ZnO films by three orders of magnitude. P-doped ZnO films grown at 700 deg. C under 20 Pa O{sub 2} exhibited p-type conductivity with hole concentration of 5x10{sup 17} cm{sup -3} and hole mobility of 0.3 cm{sup 2}/V s. Rapid thermal annealing processing decreased the electron density in the P-doped ZnO films. XPS binding energies of P 2s and 2p peaks showed formation of P-O bonds which increased with oxygen pressure in the films. This indicates formation of defect complexes of P dopants occupying zinc sites P{sub Zn} and zinc vacancies V{sub Zn} in the P-doped ZnO films.

  10. RF Magnetron Sputtering Grown Cu2O Film Structural, Morphological, and Electrical Property Dependencies on Substrate Type.

    PubMed

    Ahn, Heejin; Um, Youngho

    2015-03-01

    We investigated the structural, morphological, and electrical properties of cuprous oxide (Cu2O) film dependency on substrate type. Thin films grown using RF magnetron sputtering were characterized by scanning electron microscopy, X-ray diffraction (XRD), and Hall effect measurements. Cu2O thin films were deposited onto sapphire (0001), Si (100), and MgO (110) substrates, and showed Cu2O single phase only, which was confirmed by XRD measurement. Relatively larger compressive strain existed in Cu2O film grown on sapphire and Si, while a smaller tensile strain appeared in Cu2O film grown on MgO. Cu2O thin film crystallite sizes showed a linear dependence on strain. Moreover, film carrier concentration and mobility increased with increasing strain, while resistivity decreased with decreasing strain. Cu2O film strain due to induced strain opens the possibility of controlling structural and electrical properties in device applications.

  11. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer.

    PubMed

    Dong, K F; Deng, J Y; Peng, Y G; Ju, G; Chow, G M; Chen, J S

    2016-09-30

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained.

  12. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    PubMed Central

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-01-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained. PMID:27686046

  13. Structural characterization of InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2015-06-24

    In the present work we have grown InSb thin films on brass substrates, using the electrodeposition technique. The electrochemical baths used in the growth were made up of aqueous solutions of InCl{sub 3} and SbCl{sub 3} mixed together in various proportions. The films grown were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Analysis of X-rays (EDAX). Compositional studies show that stoichiometric InSb films can be prepared from a bath containing 0.05M InCl{sub 3} and 0.04M SbCl{sub 3}. XRD studies reveal that the films grown are polycrystalline having the zinc blende structure with (111) orientation. Crystallite size, dislocation density and strain were calculated using the XRD results. Optical transmission spectra were recorded using an FTIR spectrophotometer. The value of direct band gap was found to be around 0.20 eV for the thin films having the best stoichiometry.

  14. Columnar structured FePt films epitaxially grown on large lattice mismatched intermediate layer

    NASA Astrophysics Data System (ADS)

    Dong, K. F.; Deng, J. Y.; Peng, Y. G.; Ju, G.; Chow, G. M.; Chen, J. S.

    2016-09-01

    The microstructure and magnetic properties of the FePt films grown on large mismatched ZrN (15.7%) intermediate layer were investigated. With using ZrN intermediate layer, FePt 10 nm films exhibited (001) texture except for some weaker FePt (110) texture. Good epitaxial relationships of FePt (001) <100>//ZrN (001) <100>//TiN (001) <100> among FePt and ZrN/TiN were revealed from the transmission electron microscopy (TEM) results. As compared with TiN intermediate layer, although FePt-SiO2-C films grown on ZrN/TiN intermediate layer showed isotropic magnetic properties, the large interfacial energy and lattice mismatch between FePt and ZrN would lead to form columnar structural FePt films with smaller grain size and improved isolation. By doping ZrN into the TiN layer, solid solution of ZrTiN was formed and the lattice constant is increased comparing with TiN and decreased comparing with ZrN. Moreover, FePt-SiO2-C films grown on TiN 2 nm-20 vol.% ZrN/TiN 3 nm intermediate layer showed an improved perpendicular magnetic anisotropy. Simultaneously, columnar structure with smaller grain size retained.

  15. Friction and wear properties of smooth diamond films grown in fullerene-argon plasmas

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Bindal, C.; Zuiker, C.; Krauss, A.R.; Gruen, D.M.

    1995-08-01

    In this study, we describe the growth mechanism and the ultralow friction and wear properties of smooth (20-50 nm rms) diamond films grown in a microwave plasma consisting of Ar and fullerene (the carbon source). The sliding friction coefficients of these films against Si{sub 3}N{sub 4} balls are 0.04 and 0.1 in dry N{sub 2} and air, which are comparable to that of natural diamond sliding against the same pin material, but is lower by factors of 5 to 10 than that afforded by rough diamond films grown in conventional H{sub 2}-CH{sub 4} plasmas. Furthermore, the smooth diamond films produced in this work afforded wear rates to Si{sub 3}N{sub 4} balls that were two to three orders of magnitude lower than those of H{sub 2}-CH{sub 4} grown films. Mechanistically, the ultralow friction and wear properties of the fullerene-derived diamond films correlate well with their initially smooth surface finish and their ability to polish even further during sliding. The wear tracks reach an ultrasmooth (3-6 nm rms) surface finish that results in very little abrasion and ploughing. The nanocrystalline microstructure and exceptionally pure sp{sup 3} bonding in these smooth diamond films were verified by numerous surface and structure analytical methods, including x-ray diffraction, high-resolution AF-S, EELS, NEXAFS, SEM, and TEM. An AFM instrument was used to characterize the topography of the films and rubbing surfaces.

  16. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    NASA Astrophysics Data System (ADS)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  17. Mobility enhanced photoactivity in sol-gel grown epitaxial anatase TiO2 films.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun; Lee, Jaegab; Kang, Bo Soo; Jia, Quanxi; Nastasi, Michael; Noh, Jun Hong; Cho, Chin-Moo; Yoon, Sung Hoon

    2008-03-18

    Epitaxial anatase thin films were grown on single-crystal LaAlO3 substrates by a sol-gel process. The epitaxial relationship between TiO2 and LaAlO3 was found to be [100]TiO2||[100]LaAlO3 and (001)TiO2||(001)LaAlO3 based on X-ray diffraction and a high-resolution transmission electron microscopy. The epitaxial anatase films show significantly improved photocatalytic properties, compared with polycrystalline anatase film on fused silica substrate. The increase in the photocatalytic activity of epitaxial anatase films is explained by enhanced charge carrier mobility, which is traced to the decreased grain boundary density in the epitaxial anatase film.

  18. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates

    NASA Astrophysics Data System (ADS)

    Dai, Guohong; Zhan, Qingfeng; Liu, Yiwei; Yang, Huali; Zhang, Xiaoshan; Chen, Bin; Li, Run-Wei

    2012-03-01

    We investigated on magnetic properties of magnetostrictive Fe81Ga19 films grown on flexible polyethylene terephthalate (PET) substrates under various mechanical strains. The unstrained Fe81Ga19 films exhibit a significant uniaxial magnetic anisotropy due to a residual stress in PET substrates. It was found that the squareness of hysteresis loops can be tuned by an application of strains, inward/compressive or outward/tensile bending of the films. A modified Stoner-Wohlfarth model with considering a distribution of easy axes in polycrystalline films was developed to account for the mechanically tunable magnetic properties in flexible Fe81Ga19 films. These results provide an alternative way to tune mechanically magnetic properties, which is particularly important for developing flexible magnetoelectronic devices.

  19. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  20. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  1. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite microwave Signal Processing Millimeter-Wave 20. ABSTRACT (Continue ani revee arde if necoeermy and...le.’uIfy by block rns.) e objective of this research is to develop new and improved epitauial ferrite materials for use in microwave and millimeter... ferrite films suitable for microwave and millimeter-wave signal processing at frequencies above 1 GHz. The specific tasks are: a. Analyze and develop

  2. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    NASA Astrophysics Data System (ADS)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  3. Effects of Growth Temperature on Epitaxial Thin Films of Vanadium Dioxide Grown by Pulsed Laser Deposition

    SciTech Connect

    Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew

    2011-01-01

    Stoichiometric vanadium dioxide in all of its bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by structural change, induced by various physical and chemical stimuli such as temperature, ultrashort light pulses, electric field, doping or strain. In these applications, the optical qualities of the films are of paramount importance, but are often highly variable depending on fabrication procedure. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving room temperature growth followed by annealing and direct high temperature growth. Strain at the interface of the substrate and the film due to growth at different temperatures leads to significant differences in morphologies and phase transition characteristics. We present a comparative study of the morphologies and switching characteristics of the two films and conclude that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance. Our observation is supported by theoretical and experimental studies of epitaxial growth of semiconductors.

  4. Two-dimensional Covalent Organic Framework Thin Films Grown in Flow.

    PubMed

    Bisbey, Ryan P; DeBlase, Catherine R; Smith, Brian J; Dichtel, William R

    2016-09-14

    Two-dimensional covalent organic frameworks (2D COFs) are crystalline polymer networks whose modular 2D structures and permanent porosity motivate efforts to integrate them into sensing, energy storage, and optoelectronic devices. These applications require forming the material as a thin film instead of a microcrystalline powder, which has been achieved previously by including a substrate in the reaction mixture. This approach suffers from two key drawbacks: COF precipitates form concurrently and contaminate the film, and variable monomer and oligomer concentrations during the polymerization provide poor control over film thickness. Here we address these challenges by growing 2D COF thin films under continuous flow conditions. Initially homogeneous monomer solutions polymerize while pumped through heated tubing for a given residence time, after which they pass over a substrate. When the residence time and conditions are chosen judiciously, 2D COF powders form downstream of the substrate, and the chemical composition of the solution at the substrate remains constant. COF films grown in flow exhibit constant rates of mass deposition, enabling thickness control as well as access to thicker films than are available from previous static growth procedures. Notably, the crystallinity of COF films is observed only at longer residence times, suggesting that oligomeric and polymeric species play an important role in forming the 2D COF lattice. This approach, which we demonstrate for four different frameworks, is both a simple and powerful method to control the formation of COF thin films.

  5. Electrical transport and magnetic properties of epitaxial LSMO films grown on STO substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhao, Yuelei; Su, Tang; Song, Qi; Han, Wei; Shi, Jing

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a very attractive material for spintronics due to its half-metallic ferromagnetic properties. The LSMO films are epitaxially grown on STO (100) substrates using pulsed laser deposition. The effects of substrate temperature, laser power, oxygen pressure, and annealing on the LSMO growth are systematically investigated by the reflection high energy electron diffraction and atomic force microscopy. Under the optimized growth condition, we have achieved atomically flat LSMO thin films with a wide terrace width of more than 5 micro-meters. The electrical transport properties of LSMO thin films of various thicknesses ranging from 8 to 20 monolayers are studied by measuring the resistivity as a function of temperature. We find that the growth condition plays an important role in the critical film thickness for the metal-insulator transition and the Curie temperature. The Ministry of Science and Technology of China.

  6. Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing

    NASA Astrophysics Data System (ADS)

    Li, Wuxia; Fenton, J. C.; Wang, Yiqian; McComb, D. W.; Warburton, P. A.

    2008-11-01

    We have grown tungsten-containing films by focused-ion-beam (FIB)-induced chemical vapor deposition. The films lie close to the metal-insulator transition with an electrical conductivity which changes by less than 5% between room temperature and 7 K. The superconducting transition temperature Tc of the films can be controlled between 5.0 and 6.2 K by varying the ion-beam deposition current. The Tc can be correlated with how far the films are from the metal-insulator transition, showing a nonmonotonic dependence, which is well described by the heuristic model of [Osofsky et al., Phys. Rev. Lett. 87, 197004 (2001)]. Our results suggest that FIB direct-writing of W composites might be a potential approach to fabricate mask-free superconducting devices as well as to explore the role of reduced dimensionality on superconductivity.

  7. p-Type zinc oxide films grown by infrared-light-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hiraide, Toshihiro; Kurumi, Satoshi; Suzuki, Kaoru

    2013-03-01

    In this paper, ZnO films were grown on sapphire (0001) substrates by infrared-light-assisted pulsed-laser deposition (IRA-PLD). In addition, a nitrogen-plasma-assisted (PA-N) system was utilized for effectively doping the acceptor by radio frequency induction coupled plasma (RF-ICP). The effect of IRA-PLD and PA-N systems was investigated by studying the difference in substrate temperature with and without plasma assistance. We found that ZnO films exhibit no exciton emission with PA-N at a high temperature and that an increase in the substrate temperature yields ZnO films with a (002) and c-axis preferred orientation in a nitrogen (N2) gas atmosphere. ZnO films are changed from n-type to p-type at a substrate temperature of 673 K by IRA-PLD with an N2 background atmosphere.

  8. Structural and magnetic properties of epitaxially grown MnAs films on GaAs(110)

    NASA Astrophysics Data System (ADS)

    Kolovos-Vellianitis, D.; Herrmann, C.; Däweritz, L.; Ploog, K. H.

    2005-08-01

    MnAs films were grown by molecular beam epitaxy (MBE) on GaAs(110) substrates, since this orientation was recently identified as promising for the increase of spin lifetimes in semiconductor heterojunctions, which is of interest in spin injection experiments. A single epitaxial orientation was revealed for the MnAs films which consist of both the ferromagnetic, hexagonal α-MnAs and the paramagnetic, orthorhombic β-MnAs phase at room temperature. This phase coexistence could be imaged as a well ordered stripe pattern, whose periodicity depends on the film thickness. The study of the ferromagnetic properties shows a strong influence of the film thickness on the measured coercive fields and saturation magnetizations.

  9. Structural and magnetic properties of epitaxially grown MnAs films on GaAs(110)

    SciTech Connect

    Kolovos-Vellianitis, D.; Herrmann, C.; Daeweritz, L.; Ploog, K.H.

    2005-08-29

    MnAs films were grown by molecular beam epitaxy (MBE) on GaAs(110) substrates, since this orientation was recently identified as promising for the increase of spin lifetimes in semiconductor heterojunctions, which is of interest in spin injection experiments. A single epitaxial orientation was revealed for the MnAs films which consist of both the ferromagnetic, hexagonal {alpha}-MnAs and the paramagnetic, orthorhombic {beta}-MnAs phase at room temperature. This phase coexistence could be imaged as a well ordered stripe pattern, whose periodicity depends on the film thickness. The study of the ferromagnetic properties shows a strong influence of the film thickness on the measured coercive fields and saturation magnetizations.

  10. Physical and tribological properties of diamond films grown in argon-carbon plasmas

    SciTech Connect

    Zuiker, C.; Krauss, A.R.; Gruen, D.M.; Pan, X.; Li, J.C.; Csencsits, R.; Erdemir, A.; Bindal, C.; Fenske, G.

    1995-06-01

    Nanocrystalline diamond films have been deposited using a microwave plasma consisting of argon, 2--10% hydrogen and a carbon precursor such as C{sub 60} or CH{sub 4}. It was found that it is possible to grow the diamond phase with both carbon precursors, although the hydrogen concentration in the plasma was 1--2 orders of magnitude lower than normally required in the absence of the argon. Auger electron spectroscopy, x-ray diffraction measurements and transmission electron microscopy indicate the films are predominantly composed of diamond. Surface roughness, as determined by atomic force microscopy and scanning electron microscopy indicate the nanocrystalline films grown in low hydrogen content plasmas grow exceptionally smooth (30--50 nm) to thicknesses of 10 {mu}m. The smooth nanocrystalline films result in low friction coefficients ({mu}=0.04--0.06) and low average wear rates as determined by pin-on-disk measurements.

  11. Diamond thin films grown by microwave plasma assisted chemical vapor deposition

    SciTech Connect

    Leksono, M.

    1991-09-05

    Undoped and boron doped diamond thin films have been successfully grown by microwave plasma chemical vapor deposition from CH{sub 4}, H{sub 2}, and B{sub 2}H{sub 6}. The films were characterized using x- ray diffraction techniques, Raman and infrared spectroscopies, scanning electron microscopy, secondary ion mass spectrometry, and various electrical measurements. The deposition rates of the diamond films were found to increase with the CH{sub 4} concentration, substrate temperature, and/or pressure, and at 1.0% methane, 900{degrees}C, and 35 Torr, the value was measured to be 0.87 {mu}m/hour. The deposition rate for boron doped diamond films, decreases as the diborane concentration increases. The morphologies of the undoped diamond films are strongly related to the deposition parameters. As the temperature increases from 840 to 925 C, the film morphology changes from cubo-octahedron to cubic structures, while as the CH{sub 4} concentration increases from 0.5 to 1.0%, the morphology changes from triangular (111) faces with a weak preferred orientation to square (100) faces. At 2.0% Ch{sub 4} or higher the films become microcrystalline with cauliflower structures. Scanning electron microscopy analyses also demonstrate that selective deposition of undoped diamond films has been successfully achieved using a lift-off process with a resolution of at least 2 {mu}m. The x-ray diffraction and Raman spectra demonstrate that high quality diamond films have been achieved. The concentration of the nondiamond phases in the films grown at 1.0% CH{sub 4} can be estimated from the Raman spectra to be at less than 0.2% and increases with the CH{sub 4} concentration. The Raman spectra of the boron doped diamond films also indicate that the presence of boron tends to suppress the nondiamond phases in the films. Infrared spectra of the undoped diamond films show very weak CH stretch peaks which suggest that the hydrogen concentration is very low.

  12. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    SciTech Connect

    Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji

    2015-05-15

    The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (V{sub LSSE}) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H∥[11{sup -}0] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of V{sub LSSE} has a linear relationship with the temperature difference (ΔT), giving the relatively large V{sub LSSE} /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.

  13. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji

    2015-05-01

    The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (VLSSE) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H ∥ [ 1 1 ¯ 0 ] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of VLSSE has a linear relationship with the temperature difference (ΔT), giving the relatively large VLSSE /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.

  14. Martensite transformations in Mn2NiGa thin films grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; Neckel, I. T.; Mazzaro, I.; Graff, I. L.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2016-11-01

    The purpose of this work is to investigate the correlation between magnetism and crystallographic structures of Mn2NiGa thin films grown by molecular beam epitaxy on GaAs(1 1 1) and GaAs(0 0 1) surfaces. The films present themselves with thermoelastic martensitic transformations upon cooling, and heating with high-temperature leads to austenite structures exhibiting a preferable (1 1 0) texture. X-ray diffraction measurements performed as a function of temperature reveal three different types of domain variants in the films within a large interval of temperatures. The austenite structures with lattice parameters ranging from 0.574 nm to 0.601 nm undergo volume conserving structural transitions to martensite with a c/a ratio of 1.2. The coexistence of variants with different domain configurations is induced on each GaAs substrate. Although the Curie temperatures (~360 K) are similar for films grown on GaAs(1 1 1) and GaAs (0 0 1) substrates, their saturation magnetizations are respectively 18 kA m-1 and 8 kA m-1 at room temperature and exhibit quite different magnetic irreversibility behaviors. Our results indicate that a multiplicity of possible equivalent variant domains on the GaAs surfaces makes it difficult to stabilize epitaxial films on these substrates.

  15. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  16. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  17. Microwave-assisted nonaqueous sol-gel deposition of different spinel ferrites and barium titanate perovskite thin films.

    PubMed

    Kubli, Martin; Luo, Li; Bilecka, Idalia; Niederberger, Markus

    2010-01-01

    Rapid and selective heating of solvents by microwave irradiation coupled to nonaqueous sol-gel chemistry makes it possible to simultaneously synthesize metal oxide nanoparticles within minutes and deposit them on substrates. The simple immersion of substrates, such as glass slides, in the reaction solution results after microwave heating in the deposition of homogeneous porous thin films whose thickness can be adjusted through the precursor concentration. Here we use such a microwave-assisted nonaqueous sol-gel process for the formation of various spinel ferrite MFe2O4 (M = Fe, Co, Mn, Ni) and BaTiO3 nanoparticles and their deposition as thin films. The approach offers high flexibility with respect to controlling the crystal size by adjusting the reaction time and/or temperature. Based on the example of CoFe2O4 nanoparticles, we show how the crystal size can carefully be tuned from 4 to 8 nm, resulting in a continuous change of the magnetic properties.

  18. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  19. Roughness of CdTe thin films grown on glass by hot wall epitaxy

    NASA Astrophysics Data System (ADS)

    Leal, F. F.; Ferreira, S. O.; Menezes-Sobrinho, I. L.; Faria, T. E.

    2005-01-01

    Cadmium telluride films were grown on glass substrates using the hot wall epitaxy (HWE) technique. The samples were polycrystalline with a preferential (111) orientation. Scanning electron micrographs reveal a grain size between 0.1 and 0.5 µm. The surface morphology of the samples was studied by measuring the roughness profile using a stylus profiler. The roughness as a function of growth time and scale size were investigated to determine the growth and roughness exponents, β and α, respectively. From the results we can conclude that the growth surface has a self-affine character with a roughness exponent α equal to 0.69 ± 0.03 and almost independent of growth time. The growth exponent β was equal to 0.38 ± 0.06. These values agree with that determined previously for CdTe(111) films grown on GaAs(100).

  20. Growth and characterization of polymer thin films grown using molecular layer deposition with heterobifunctional precursors

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary Michael Conway

    In this work, growth of thin polymer films using molecular layer deposition with heterobifunctional precursors is investigated. Several growth phenomena are observed including: loss or gain of reactive sites as a result of precursor reactivity or vapor pressure; precursor diffusion and reaction within the porous polymer film; and crosslinking. Reactions were investigated using quartz crystal microbalance, Fourier transform infrared spectroscopy, and various ex situ techniques. Reactions involving 4-azidophenylisothiocyanate and 4-aminobenzonitrile were shown to stop growth after only a few cycles which is attributed to a loss in reactive sites which was modeled by an exponentially decaying growth rate. Growth of 4-carboxyphenylisothiocyanate with TMA and water was investigated as well. Active site multiplication as a result of the trifunctionality of the TMA molecule was proposed to explain the significantly higher growth rate for TMA/CI films. TMA/H2O/CI films showed the ability to crosslink through aluminum hydroxyl condensation reactions. Upon increasing the reaction temperature, reactant diffusion was observed in the form of mass removal upon TMA exposure. This same phenomena is thought to be occurring in films grown using Diels-Alder reactions in the third section of this thesis. These films showed a strong growth rate dependence upon reactant purge time and growth temperature. FTIR seems to weakly support Diels-Alder reaction, but it appears that the primary film growth mechanism is through CVD-like diffusion and condensation reactions.

  1. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  2. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  3. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    SciTech Connect

    Salas, E.; Jiménez Riobóo, R. J.; Jiménez-Villacorta, F.; Prieto, C.; Sánchez-Marcos, J.; Muñoz-Martín, A.; Prieto, J. E.; Joco, V.

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  4. Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

    SciTech Connect

    Yanagihara, H. Utsumi, Y.; Niizeki, T. Inoue, J.; Kita, Eiji

    2014-05-07

    We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

  5. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  6. Lithium outdiffusion in LiTi2O4 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mesoraca, S.; Kleibeuker, J. E.; Prasad, B.; MacManus-Driscoll, J. L.; Blamire, M. G.

    2016-11-01

    We report surface chemical cation composition analysis of high quality superconducting LiTi2O4 thin films, grown epitaxially on MgAl2O4 (111) substrates by pulsed laser deposition. The superconducting transition temperature of the films was 13.8 K. Surface chemical composition is crucial for the formation of a good metal/insulator interface for integrating LiTi2O4 into full-oxide spin-filtering devices in order to minimize the formation of structural defects and increase the spin polarisation efficiency. In consideration of this, we report a detailed angle resolved x-ray photoelectron spectroscopy analysis. Results show Li segregation at the surface of LiTi2O4 films. We attribute this process due to outdiffusion of Li toward the outermost LiTi2O4 layers.

  7. Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Chou, W. C.; Shen, J. L.

    2017-02-01

    The optical properties of MgxZn1-xO films with x=0.03, 0.06, 0.08, and 0.11 grown by molecular beam epitaxy (MBE) have been studied by temperature-dependent photoluminescence (PL) measurement. It is presented that the full-width at half-maximum (FWHM) of the 12 K PL spectrum of MgZnO films increases with increasing Mg concentration and would deviate significantly from the simulation curve of Schubert model with higher Mg contents. The abnormal broader PL FWHM is inferred from larger compositional fluctuation by incorporating higher Mg contents, which results in larger effect of excitonic localization to induce more significant S-shaped behavior of the PL peak energy with temperature dependence. Additionally, the degree of localization increases as the linear proportion of the PL FWHM, indicating that the excitonic behavior in MgZnO films belong to the strong localization effect.

  8. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  9. Chemical and Magnetic Properties of NiO Thin Films Epitaxially Grown on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, Alberto

    2008-01-01

    Very high quality NiO films have been grown on Fe(001) by means of Molecular Beam Epitaxy. The chemical and magnetic properties of the NiO/Fe(001) interface have been evaluated by means of X-ray Absorption Spectroscopy and X-ray Magnetic Circular Dichroism. Furthermore, combined use of X-ray Magnetic Linear Dichroism and PhotoElectron Emission Microscopy allowed to observe an in-plane uniaxial magnetic anisotropy in very thin NiO films. For NiO films thinner than about 9 atomic layers the NiO magnetic moments align in-plane perpendicular to the Fe substrate magnetization. Above such critical thickness the coupling turns out to be collinear. The effects of thermal treatments, fundamental to produce exchange-biased structures, have also been considered.

  10. Properties of boron-doped ZnO thin films grown by using MOCVD

    NASA Astrophysics Data System (ADS)

    Choi, In-Hwan

    2013-11-01

    Boron-doped ZnO thin films were prepared by using metal organic chemical-vapor deposition (MOCVD) with diethyl zinc and water as precursors and B2H6 as the dopant gas. The effects of the flow rates of H2O and B2H6 on the growth and the electrical properties of boron-doped ZnO thin film were investigated. The maximum carrier concentration and mobility and the minimum resistivity obtained under these experimental conditions were 7 × 1020 /cm3, 42 cm2 /V·sec and 4 × 10-4 Ω·cm, respectively, at room temperature. The electrical properties, growth rates, transmittances, and surface morphologies of the ZnO:B films grown using MOCVD are strongly affected by growth conditions such as the relative flow rates of the precursors and dopant gases and the chamber pressure, and these effects are discussed in detail in this article.

  11. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect

    Fan, J. C.; Zhu, C. Y.; Fung, S.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Skorupa, W.; Anwand, W.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above approx400 deg. C, the films changed from n type to p type. Hole concentration and mobility of approx6x10{sup 17} cm{sup -3} and approx6 cm{sup 2} V{sup -1} s{sup -1} were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the As{sub Zn}-2V{sub Zn} shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  12. A study on the epitaxial Bi2Se3 thin film grown by vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Cheng; Chen, Yu-Sung; Lee, Chao-Chun; Wu, Jen-Kai; Lee, Hsin-Yen; Liang, Chi-Te; Chang, Yuan Huei

    2016-06-01

    We report the growth of high quality Bi2Se3 thin films on Al2O3 substrates by using chemical vapor deposition. From the atomic force microscope, x-ray diffraction and transmission electron microscope measurements we found that the films are of good crystalline quality, have two distinct domains and can be grown epitaxially on the Al2O3 substrate. Carrier concentration in the sample is found to be 1.1 × 1019 cm-3 between T = 2 K to T = 300 K, and electron mobility can reach 954 cm2/V s at T = 2 K. Weak anti-localization effect is observed in the low temperature magneto-transport measurement for the sample which indicates that the thin film has topological surface state.

  13. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  14. Strain-induced spin reorientation of bcc-like iron films grown on Cu(001)

    NASA Astrophysics Data System (ADS)

    Corredor, Edna C.; Arnaudas, José I.; Ciria, Miguel; Lofink, Fabian; Rößler, Stefan; Frömter, Robert; Oepen, Hans Peter

    2014-11-01

    The in-plane orientation of the magnetization vector M in bcc-like Fe(110) films grown on Cu(001) is determined by means of scanning electron microscopy with polarization analysis. For thicknesses of 2 nm, slightly above the fcc/bcc phase transition, it is found that M is oriented along the ⟨110⟩ directions of the Cu(001) substrate. Following the Pitsch orientational relationship these correspond to magnetically hard ⟨ 1 1 ¯1 ⟩ and ⟨ 1 1 ¯2 ⟩ axes of bulk iron. This finding is in strong contrast to the behavior reported for thicker films (above 3 nm) of bcc Fe/Cu(001), where the ⟨100⟩ directions of the substrate are preferred. The role of strain in the iron film is discussed, inferring that the presence of a shear strain is mandatory to explain the spin reorientation via the magnetoelastic contribution to the magnetic anisotropy energy.

  15. RAPID COMMUNICATION: ? thin film bilayers grown by pulsed laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Palmer, S. B.; McK Paul, D.; Lees, M. R.

    1996-09-01

    We have grown superconducting thin films of 0022-3727/29/9/044/img2 (Y-123) on 0022-3727/29/9/044/img3 (PCMO) buffer layers and PCMO overlayers on Y-123 thin films using pulsed laser ablation deposition. For both sets of films below 50 K, the Y-123 layer is superconducting and the zero-field cooled PCMO layer is insulating. The application of a magnetic field of 8 T results in an insulator - metal transition in the PCMO layer. This field-induced conducting state is stable in zero magnetic field at low temperature. The PCMO layer can be returned to an insulating state by annealing above 100 K. This opens the way for the construction of devices incorporating these oxide materials in which the electronic properties of key components such as the substrate or the barrier layer can be switched in a controlled way by the application of a magnetic field.

  16. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    NASA Astrophysics Data System (ADS)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  17. Characterization of nanostructured iron selenide thin films grown by chemical route at room temperature

    SciTech Connect

    Ubale, A.U.; Sakhare, Y.S.; Belkedkar, M.R.; Singh, Arvind

    2013-02-15

    Highlights: ► Nanostructured FeSe thin films were successfully synthesized at room temperature by CBD method. ► The XRD and EDAX characterization confirms nanocrystalline nature of FeSe. ► The SEM and AFM show microporous morphology with nanorods and nanoplates of FeSe. -- Abstract: Iron selenide thin films have been deposited onto glass substrates by using chemical bath deposition technique. Structural characterization of iron selenide thin films was carried out by means of X-ray diffraction and Fourier transforms infrared spectrum. The morphological characterization of FeSe thin film was carried out using scanning electron microscopy and atomic force microscopy, which revealed porous grain morphology of FeSe with some nano rectangular rods and plates grown on it. The as-deposited thin films exhibited optical band gap energy 2.60 eV. The as deposited FeSe thin films are semiconducting in nature with p-type electrical conductivity. The room temperature electrical resistivity is of the order of 1.1 × 10{sup 5} Ω-cm with activation energy 0.26 and 0.95 eV, respectively, in low and high temperature region.

  18. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Mayr, Lukas; Stöger-Pollach, Michael; Klötzer, Bernhard; Penner, Simon

    2015-03-01

    Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films ("YSZ", 8 mol% Y2O3) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  19. Magnetic phases of thin Fe films grown on stepped Cr(001)

    SciTech Connect

    Escorcia-Aparicio, E.J.; Wolfe, J.H.; Choi, H.J.; Ling, W.L.; Kawakami, R.K.; Qiu, Z.Q.

    1999-05-01

    Magnetic phases of Fe films grown on curved Cr(001) with steps parallel to [100] are studied using the surface magneto-optic Kerr effect (SMOKE). We found that the atomic steps (1) induce an in-plane uniaxial magnetic anisotropy with the easy magnetization axis parallel to the step edges, and (2) generate magnetic frustration either inside the Fe film or at the Fe-Cr interface, depending on the Fe film thickness and the vicinal angle. For thickness greater than 35 {Angstrom}, the Fe film forms a single magnetic domain and undergoes an in-plane magnetization switching due to the competition of the step-induced anisotropy and the Fe-Cr interfacial frustration. For thickness less than 35 {Angstrom}, the Fe film forms multiple magnetic domains at low vicinal angle, and transforms into a single domain at high vicinal angle. A magnetic phase diagram in the 30{endash}45 {Angstrom} thickness range was obtained using a wedge-shaped Fe film. {copyright} {ital 1999} {ital The American Physical Society}

  20. Structural properties of highly conductive ultra-nanocrystalline diamond films grown by hot-filament CVD

    NASA Astrophysics Data System (ADS)

    Mertens, M.; Lin, I.-N.; Manoharan, D.; Moeinian, A.; Brühne, K.; Fecht, H. J.

    2017-01-01

    In this work we show the correlation of the electrical conductivity of ultra-nanocrystalline (UNCD) diamond films grown by hot filament chemical vapor deposition (HFCVD) with their structural properties. The substrate temperature, the methane to hydrogen ratio and the pressure are the main factor influencing the growth of conductive UNCD films, which extends from electrical resistive diamond films (<10-4 S/cm) to highly conductive diamond films with a specific conductivity of 300 S/cm. High-resolution-transmission-electron-microscopy (HRTEM) and electron-energy-loss-spectroscopy (EELS) have been done on the highly conductive diamond films, to show the origin of the high electrical conductivity. The HRTEM results show random oriented diamond grains and a large amount of nano-graphite between the diamond crystals. EELS investigations are confirming these results. Raman measurements are correlated with the specific conductivity, which shows structural changes of sp2 carbons bonds as function of conductivity. Hall experiments complete the results, which lead to a model of an electron mobility based conductivity, which is influenced by the structural properties of the grain boundary regions in the ultra-nanocrystalline diamond films.

  1. Characteristics of multivalent impurity doped C 60 films grown by MBE

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Aihara, Tomoyuki; Kawaharazuka, Atsushi; Horikoshi, Yoshiji

    2007-04-01

    Metal-doped C 60 films (aluminum, gallium and germanium) are grown on GaAs and quartz glass substrates by solid source molecular beam epitaxy. Mechanical and optical properties of the films are investigated by Vickers hardness test and photoluminescence (PL) measurement. Vickers hardness values of all the impurity-doped C 60 films are considerably enhanced. PL peaks of the electron transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital states of C 60 molecules are confirmed in Al-doped and Ga-doped C 60 films, but not in Ge-doped C 60 films. Optimized bonding structures of these impurity atoms to C 60 molecules are determined by using ab initio calculations. Stable covalent bonds between impurities and C 60 molecules are verified to be formed. The impurity atoms may act as bridges between C 60 molecules. The distortion of C 60 cages due to the bonding with metals is confirmed. In the Al- and Ga-doped C 60 films, this distortion probably makes the dipole forbidden transition relieved. The binding energies are found to be related to the experimentally determined Vickers hardness.

  2. Magnetism of ultrathin Pd99Fe01 films grown on niobium

    NASA Astrophysics Data System (ADS)

    Uspenskaya, L. S.; Rakhmanov, A. L.; Dorosinskii, L. A.; Bozhko, S. I.; Stolyarov, V. S.; Bolginov, V. V.

    2014-09-01

    Magnetic properties of ultrathin Pd99Fe01 films grown on niobium films are investigated by magneto-optic visualization, SQUID magnetometry, and Hall-voltage measurements in the temperature range from 3 to 40 K. We show that the films are ferromagnetic at thickness larger than 10 nm. The Curie temperature {{T}_{C}} varies from 2 to 40 K with increase of film thickness to 80 nm. The value of spontaneous magnetization of the Pd99Fe01 depends on the PdFe film thickness. The estimated spin polarization is about 4 {{\\mu }_{B}} per Fe ion, which corresponds to the polarization of the Pd3Fe compound. In contrast to the homogenous bulk material, Pd99Fe01 films consist of ferromagnetic nano-clusters in a paramagnetic host, which is confirmed by characteristic features of the magnetization loops and by the increase of critical current density in the adjacent Nb layer. The size of the clusters is estimated as 10 nm, which is in agreement with the 30% increase of the supercurrent observed in the Nb.

  3. Aqueous Solution Preparation, Structure, and Magnetic Properties of Nano-Granular ZnxFe3−xO4 Ferrite Films

    PubMed Central

    2010-01-01

    This paper reports a simple and novel process for preparing nano-granular ZnxFe3−xO4 ferrite films (0 ≤ x ≤ 0.99) on Ag-coated glass substrates in DMAB-Fe(NO3)3-Zn(NO3)2 solutions. The deposition process may be applied in preparing other cations-doped spinel ferrite films. The Zn content x in the ZnxFe3−xO4 films depends linearly on the Zn2+ ion concentration ranging from 0.0 to 1.0 mM in the aqueous solutions. With x increasing from 0 to 0.99, the lattice constant increases from 0.8399 to 0.8464 nm; and the microstructure of the films changes from the non-uniform nano-granules to the fine and uniform nano-granules of 50–60 nm in size. The saturation magnetization of the films first increases from 75 emu/g to the maximum 108 emu/g with x increasing from 0 to 0.33 and then decreases monotonously to 5 emu/g with x increasing from 0.33 to 0.99. Meanwhile, the coercive force decreases monotonously from 116 to 13 Oe. PMID:20730079

  4. Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Nishimura, K.; Shintani, Y.; Hiraki, A.

    2003-07-01

    In the present study, we compare the field emission properties of diamond films grown on ultrasonically scratched and nano-seeded Si substrates. The diamond films were fabricated in a microwave plasma chemical vapor deposition system. It is confirmed that these two kinds of pretreatment methods, scratched or nano-seeded, result in rather different field emission properties. The diamond films grown on the ultrasonically scratched Si substrates present much higher emission current and lower threshold field than those of the films grown on the nano-seeded substrates. Cross-sectional transmission electron microscopy has been employed to evaluate the diamond films, and the field electron emission behaviors are analyzed in relation to the interface structures.

  5. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  6. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices

    PubMed Central

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.

    2017-01-01

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492

  7. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.

    2017-03-01

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.

  8. Planar Hall effect in a single GaMnAs film grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Won, Jaehyuk; Shin, Jinsik; Lee, Sangyeop; Lee, Hakjoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2013-09-01

    We carried out systematic planar Hall effect (PHE) measurements on a layer of GaMnAs grown on a Si substrate. The field scans of the planar Hall resistance (PHR) data obtained at 4 K show a transition behavior, which is similar to the magnetization reorientation process often observed in GaMnAs film grown on a GaAs substrate that has both anisotropies along the <100> and the <110> directions. The dependence of the PHR on the applied field direction revealed the presence of an asymmetry between the <100> and the <110> directions in the magnetic energy of the film. The directions of the magnetic easy axes determined by the PHR value at zero field were about 9° away from the <110> directions. The PHR further shows the absence of the difference in the anisotropy between the <110> directions, indicating no preference of magnetic anisotropy for either the [110] or the [1¯10]direction in the GaMnAs grown on a Si substrate.

  9. Cyclotron resonance in epitaxial Bi1-xSbx films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Thrush, C. M.; Karczewski, G.; Richardson, M. S.; Furdyna, J. K.

    1993-10-01

    The far-infrared magnetotransmission of thin films of semiconducting and semimetallic Bi1-xSbx alloys grown by molecular-beam epitaxy has been measured at fixed photon energies between 2.5 and 21.4 meV in magnetic fields up to 6 T, at T=1.8 K. The samples, grown on BaF2 substrates with composition 0<=x<=22.5%, were monocrystalline, with the trigonal axis perpendicular to the surface plane. The measurements were carried out in Faraday and Voigt geometries, with the magnetic field oriented parallel to binary, bisectrix, and trigonal axes of the films. Cyclotron-resonance lines of both electrons and holes were observed. From them, we establish the composition dependence of the effective-mass tensor, of the direct L-point band gap, and of the energy overlap in the semimetallic samples. We conclude that all band-structure parameters are the same in the films as in bulk Bi1-xSbx alloys, except for the energy overlap, which is increased by 16 meV independently of composition, possibly because of the strain induced by the substrate.

  10. High resolution transmission electron microscopy study of diamond films grown from fullerene precursors

    SciTech Connect

    Luo, J.S.; Gruen, D.M.; Krauss, A.R.

    1995-07-01

    High-resolution transmission electron microscopy (HRTEM) has been used to investigate the microstructure of diamond films grown by plasma-assisted chemical vapor deposition using fullerene precursors. HRTEM observations of as-grown films revealed an array of larger crystals (>200 nm) within a polycrystalline matrix of much smaller crystallites (<20 nm). The randomly oriented small crystallites were nearly free of structural imperfections such as stacking faults or twins, while the larger ones had preferred <110> orientations with respect to the Si (100) substrate and showed evidence of structural defects on the periphery of the crystals. The most common defects were V-shaped {Sigma}9 twin boundaries, which are generally believed to serve as re-entrant sites for diamond nucleation and growth. The observation of growth steps on both (111) and (110) surfaces seems to support a reaction model in which fragments of C{sub 60}, including C{sub 2}, are considered the growth species. In particular, the nanocrystallinity of the films is most likely due to a high carbon cluster density from C{sub 60} fragmentation at or near the diamond surface, which can serve as nucleation sites for the growth of new crystallites.

  11. The temperature dependence of the electrical conductivity in Cu2O thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kudryashov, D.; Gudovskikh, A.; Zelentsov, K.; Mozharov, A.; Babichev, A.; Filimonov, A.

    2016-08-01

    The temperature dependence of the electrical conductivity in Cu2O thin films grown by magnetron sputtering at room temperature under different rf-power was investigated. Calculated activation energy of the conductivity for copper oxide (I) films linearly increases with increase in sputtering power reflecting an increasing in concentration of gap states.

  12. Epitaxially-Grown Europium-Doped Barium Titanate Films on Various Substrates for Red Emission.

    PubMed

    Hwang, Kyu-Seog; Jeon, Young-Sun; Lee, Young-Hwan; Hwangbo, Seung; Kim, Jin-Tae

    2015-10-01

    Intense red photoluminescence under ultraviolet excitation was observed in epitaxially-grown europium-doped perovskite BaTiO3 thin films deposited on the SrTiO3 (100), MgO (100) and sapphire (0001) substrates using metal carboxylate complexes. Precursor films prepared by spin coating were pyrolyzed at 250 °C for 120 min in argon, followed by final annealing at 850 °C for 60 min in argon. Crystallinity and epitaxy of the films were analyzed by X-ray diffraction θ-2θ scan and pole-figure analysis. Photoluminescence of the thin films at room temperature under 254 nm was confirmed by a fluorescent spectrophotometer. The obtained epitaxial BaTiO3 thin films on the SrTiO3 (100) and MgO (100) substrates show an intense red-emission lines at 615 nm corresponding to the (5)D0 --> (7)F2 transitions on Eu(3+) with broad bands at 595 and 650 nm.

  13. Factors that determine the presence of particles in YBCO films grown by PLD

    NASA Astrophysics Data System (ADS)

    Barrales-Guadarrama, V. R.; Rodríguez-Rodríguez, E. M.; Barrales-Guadarrama, R.; Reyes Ayala, N.

    2017-01-01

    The method of growing thin films PLD, is widely used in applications and possesses great potential in thin YBa2Cu3O7-δ films production with outstanding physical properties. However, it is limited in nano and micro technology due to the presence of particles on the surface of the films. This article describes some causes that create these particles. YBa2Cu3O7-δ films have been grown on electrolytic copper used as a variable model the distance target-substrate. The effects are studied through Scanning Electronic Microscopy. It is observed particles with a large variety of shapes and distributions. The results show that ranging the target-substrate distance, the superficial morphology is modified. An evidence of it, is that the evaporation of dB-S = 7 cm, is more coherent that dB-S = 3 cm. Therefore, exist a relation between the morphology and the parameters of growing. Also affect, the structural change that exists among the substrate and the film formation, the substrate preparation and it must not be monocrystalline, these factors define a kinetic and a mechanism of growing that promotes a heterogeneous nucleation.

  14. Electronic and mechanical properties of Ge films grown on glass substrates

    SciTech Connect

    Ahrenkiel, R.K.; Ahrenkiel, S.P.; Al-Jassim, M.M.; Venkatasubramanian, R.

    1997-12-31

    As germanium is closed lattice matched to GaAs, it is a suitable substrate for epitaxial growth. In the quest for inexpensive substrates, thin-film Ge grown on glass is an attractive candidate if suitable grain growth can be achieved. Here the authors will describe Ge films that are deposited by an e-beam evaporator on glass and are approximately 2000 {angstrom} thick. The films were annealed at 500 C and 600 C to improve the quality of the material. The growth was done in three steps with 1000 {angstrom} of Ge, 70 {angstrom} of Sb, and followed by another 1000 {angstrom} of Ge. Sb is an n-type dopant in Ge and is included to enhance grain growth. The best films contained the Sb layer and hole concentrations between 1.4 {times} 10{sup 15} to 1.6 {times} 10{sup 17} cm{sup {minus}3}. The largest hole mobility measured was 30.6 cm{sup 2}/Vs in the 1.4 {times} 10{sup 15} p-type sample. The electron lifetime was measured by ultra-high frequency photoconductive decay and the best lifetimes were in the 30- to 40-ns range. Scanning-electron microscope and transmission-electron microscope studies indicated a polycrystalline grain structure with grain size comparable to the film thickness.

  15. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  16. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  17. Structure Dependence of Magnetic Properties for Annealed GaMnN Films Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jiang, Xian-Zhe; Yang, Xue-Lin; Ji, Cheng; Xing, Hai-Ying; Yang, Zhi-Jian; Wang, Cun-Da; Yu, Tong-Jun; Zhang, Guo-Yi

    2014-06-01

    GaMnN/GaN multilayers and conventional GaMnN single layers are grown by metal-organic chemical vapor deposition. Both kinds of samples show room-temperature ferromagnetism. After thermal annealing, the sample with GaMnN/GaN multilayer structure displays a larger coercivity and better thermal stability compared to the GaMnN single layer. The annealing effects on VGa related defects are observed from photoluminescence measurements. Moreover, a different magnetic behavior is also found in the annealed GaMnN films grown on different (n-type GaN and p-type GaN) templates. These kinds of structure-dependent magnetic behaviors indicate that defects or carriers transformation introduced during annealing may have important effects on the electronic structure of Mn ions and on the ferromagnetism. Our work may be helpful for further understanding the origin of ferromagnetism in GaN-based diluted magnetic semiconductors.

  18. Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jo, Jungyol; Seo, Ogweon; Jeong, Euihyuk; Seo, Hyunseok; Lee, Byeongon; Choi, Yearn-Ik

    2007-04-01

    We studied the transport characteristics of ZnO grown by metal organic chemical vapor deposition (MOCVD) at temperatures between 200 and 500 °C. The crystal quality, measured by X-ray diffraction, improved as the growth temperature increased. However, the mobility measured in the thin-film transistor (TFT) decreased in films grown at higher temperatures. In our experiments, a ZnO TFT grown at 250 °C showed good electrical characteristics, with a 13 cm2 V-1 s-1 mobility and a 103 on/off ratio. We conclude that hydrogen incorporated during MOCVD growth plays an important role in determining the transistor characteristics. This was supported by results of secondary ion mass spectroscopy (SIMS), where a higher hydrogen concentration was observed in films grown at lower temperatures.

  19. The magnetic and chemical structural property of the epitaxially-grown multilayered thin film

    NASA Astrophysics Data System (ADS)

    Lee, Hwachol

    L10 FePt- and Fe-related alloys such as FePtRh, FeRh and FeRhPd have been studied for the high magnetocrystalline anisotropy and magnetic phase transition property for the future application. In this work, the thin film structural and magnetic property is investigated for the selected FePtRh and FeRhPd alloys. The compositionally-modulated L10 FePtRh multilayered structure is grown epitaxially on a-plane Al2O3 with Cr and Pt buffer layer at 600degC growth temperature by DC sputtering technique and examined for the structural, interfacial and magnetic property. For the epitaxially grown L10 [Fe50Pt45Rh5 (FM) (10nm) / Fe50Pt25Rh25 (AFM) (20nm)]x8 superlattice, the magnetically and chemically sharp interface formation between layers was observed in X-ray diffraction, transmission electron microscopy and polarized neutron reflectivity measurements with the negligible exchange bias at room and a slight coupling effect at lower temperature regime. For FeRhPd, the magnetic phase transition of epitaxially-grown 111-oriented Fe46Rh48Pd6 thin film is studied. The applied Rhodium buffer layer on a-plane Al2O3 (11 20) at 600degC shows the extraordinarily high quality of epitaxial film in (111) orientation, where two broad and coherent peak in rocking curve, and Laue oscillations are observed. The epitaxially-grown Pd-doped FeRh on Pt (111) grown at 600degC, 700degC exhibits the co-existing stable L10 (111) and B2 (110) structures and magnetic phase transition around 300degC. On the other hand, the partially-ordered FeRhPd structure grown at 400degC, 500degC shows background high ferromagnetic state over 5K˜350K temperature. For the reduced thickness of Fe46Rh48Pd 6, the ferromagnetic state becomes dominant with a reduced portion of the film undergoing a magnetic phase transition. For some epitaxial FeRhPd film, the spin-glass-like disordered state is also observed in field dependent SQUID measurement. For the tri-layered FeRhPd with thin Pt spacer, the background

  20. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  1. High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC

    NASA Technical Reports Server (NTRS)

    Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.

    1990-01-01

    Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.

  2. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    SciTech Connect

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  3. Lutetium-doped EuO films grown by molecular-beam epitaxy

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Hollaender, B.; Schubert, J.; Shen, K. M.; Mannhart, J.; Schlom, D. G.

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  4. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    NASA Astrophysics Data System (ADS)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  5. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  6. Continuous spin reorientation transition in epitaxially grown antiferromagnetic NiO thin films

    SciTech Connect

    Li, J.; Arenholz, E.; Meng, Y.; Tan, A.; Park, J.; Jin, E.; Son, H.; Wu, J.; Jenkins, C. A.; Scholl, A.; Hwang, Chanyong; Qiu, Z. Q.

    2011-03-01

    Fe/NiO/MgO/Ag(001) films were grown epitaxially, and the Fe and NiO spin orientations were determined using x-ray magnetic dichroism. We find that the NiO spins are aligned perpendicularly to the in-plane Fe spins. Analyzing both the in-plane and out-of-plane spin components of the NiO layer, we demonstrate unambiguously that the antiferromagnetic NiO spins undergo a continuous spin reorientation transition from the in-plane to out-of-plane directions with increasing of the MgO thickness.

  7. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  8. Synthesis and characterization of hexagonal ferrite Sr1.8Sm0.2Co2Ni1.50Fe10.50O22/PST thin films for high frequency application

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Ashiq, Muhammad Naeem; Asif Iqbal, M.; Karamat, Nazia; Azhar Khan, M.; Sadiq, Imran; Ijaz, Sana; Shakir, Imran

    2015-11-01

    Y-type hexagonal ferrite (Sr1.8Sm0.2Co2Ni1.50 Fe10.50O22) was prepared by a normal microemulsion route. The ferrite/polymer composites thin films are formed at different ferrite ratios in pure polystyrene matrix. The X-ray diffraction analysis shows broad peak at low angles which is due to the PST and the peaks for Y-type ferrite are also observed in composite samples. The peaks become more intense and show less broadening with increasing concentration of ferrite which suggests that crystallinity is improved with the addition of ferrite. DC resistivity of the composites samples is lower than that of the pure PST and decreases by increasing ferrite filler into the polymer. This decrease of resistivity is mainly due to the addition of comparatively less resistive ferrite into the highly insulating polymer matrix of PST. The observed increase in the dielectric constant (permittivity) with increasing concentration ratio of ferrites is mainly due to the electron exchange between Fe2+↔Fe3++e- which consequently results in enhancement of electric polarization as well as dielectric constant. The existence of resonances peaks in the dielectric loss tangent spectra is due to the fact when the external applied frequency becomes equal to the jumping frequency of electrons between Fe2+ and Fe3+. The increasing behavior of the dielectric constant, dielectric loss and AC conductivity with increasing ferrite ratio in PST matrix proposes their versatile use in different technological applications especially for electromagnetic shielding.

  9. Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film

    SciTech Connect

    Yousefi, Ramin; Kamaluddin, Burhanuddin; Ghoranneviss, Mahmood; Hajakbari, Fatemeh

    2009-07-07

    In this paper, we report ZnO nanowires grown on AlN thin film deposited on glass as substrate by physical vapour deposition. The temperature of substrates was kept between 600 deg. C and 500 deg. C during the growth. The typical average diameters of the obtained nanowires on substrate at 600 deg. C and 500 deg. C was about 57 nm and 22 nm, respectively with several micrometers in lengths. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into ZnO nanowires for sample at high temperature zone. In the photoluminescence spectra two emission bands appeared, one related to ultraviolet emission with a strong peak at 380-382 nm, and another related to deep level emission with a weak peak at 510 nm.

  10. Semiconductor Film Grown on a Circular Substrate: Predictive Modeling of Lattice-Misfit Stresses

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Nicolics, J.; Khatibi, G.; Lederer, M.

    2016-03-01

    An effective and physically meaningful analytical predictive model is developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed in the analysis. The addressed stresses include the interfacial shearing stress, responsible for the occurrence and growth of dislocations, as well as for possible delaminations and the cohesive strength of a buffering material, if any. Normal radial and circumferential (tangential) stresses acting in the film cross-sections and responsible for its short- and long-term strength (fracture toughness) are also addressed. The analysis is geared to the GaN technology.

  11. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  12. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  13. STM/STS study of graphene directly grown on h-BN films on Cu foils

    NASA Astrophysics Data System (ADS)

    Jang, Won-Jun; Wang, Min; Jang, Seong-Gyu; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Song, Young; Lee, Sungjoo; Sanit Collaboration; Department Of Physics, Korea University Collaboration; Graphene Research Center, Samsung Advanced Institute Of Technology Collaboration

    2013-03-01

    Graphene-based devices on standard SiO2 substrate commonly exhibit inferior characteristics relative to the expected intrinsic properties of graphene, due to the disorder existing at graphene-SiO2 interface. Recently, it has been shown that exfoliated and chemical vapor deposition (CVD) graphene transferred onto hexagonal boron nitride (h-BN) possesses significantly reduced charge inhomogeneity, and yields improved device performance. Here we report the scanning tunneling microscopy (STM) and spectroscopy (STS) results obtained from a graphene layer directly grown on h-BN insulating films on Cu foils. STS measurements illustrate that graphene/h-BN film is charge neutral without electronic perturbation from h-BN/Cu substrate. Corresponding Author

  14. Spectroscopic characterization of high-purity polycrystalline Bi-Te films grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Rapacz, Rafał; Balin, Katarzyna; Nowak, Anna; Szade, Jacek

    2014-09-01

    Thin films of BixTey with various compositions have been grown on Si(100) substrates by thermal evaporation with the use of a Molecular Beam Epitaxy (MBE) system. The growth was performed in the co-deposition mode. The effect of stoichiometry and growth conditions on the structural and electronic properties of the films was studied. Films with compositions corresponding to the compound Bi2Te3 and with compositions rich in Te and Bi were studied. Two different phases which crystallized in the hexagonal family were recognized: trigonal Bi2Te3 with the lattice parameters of a=4.44 Å and c=30.47 Å and hexagonal BiTe with the lattice parameters of a=4.39 Å and c=24.02 Å. The analysis of photoemission from the Bi and Te core levels confirmed the structural studies. The layered structure of BixTey films caused that the found crystal phases are accompanied by layers of pure elements Te or Bi depending on the stoichiometry. Angle dependent photoelectron spectroscopy studies showed the tendency of segregation direction - towards the surface for Te layers and opposite one for metallic Bi.

  15. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  16. Variable range hopping crossover and magnetotransport in PLD grown Sb doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mukherjee, Joynarayan; Mannam, Ramanjaneyulu; Ramachandra Rao, M. S.

    2017-04-01

    We report on the variable range hopping (VRH) crossover in the electrical transport of Sb doped ZnO (SZO) thin film. Structural, chemical, electrical and magnetotransport properties were carried out on SZO thin film grown by pulsed laser deposition. X-photoelectron spectroscopy study confirms the presence of both Sb3+(33%) and Sb5+(67%) states. Sb doped ZnO thin film shows n-type behavior which is attributed to the formation of SbZn and/or SbZn–VZn defect complex. Temperature dependent resistivity measurement showed that in a low temperature regime (< 90 K) transport is governed by the 3D-VRH mechanism. A crossover from 3D-VRH to Efros–Shklovoski VRH was observed around 12 K. Negative magnetoresistance (MR) is observed in the entire temperature range (300–5 K), however, there is an upturn in the MR behavior at 5 K suggesting the existence of a positive component. The MR behavior of Sb doped ZnO thin films is explained by the Khosla and Fischer model.

  17. Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Iyi, N.; Kimura, S.; Chevrier, F.; Devignes, J. M.; Le Gall, H.

    1986-08-01

    Garnet films of nominal composition (Y,Nd)3Ga5O12, were grown on (110) 1°-off Gd3Ga5O12 substrates for investigation of their growth-induced optical anisotropy. Optical birefringence and directions of the electric vectors of polarized rays passing through the films were measured under a polarizing microscope using a Brace-Köhler compensator. The growth-induced anisotropy of these films optically exhibited orthorhombic characteristics with the X, Y, and Z optic elasticity axes coinciding with the [001], [110], and [1¯10] directions, respectively. The crystallographic data obtained by means of single-crystal diffractometry suggested that the cubic crystal system of the garnet film was distorted, though very slightly, to an orthorhombic one with a,b, and c axes that coincided, respectively, with the [1¯10],[001], and [110] of the original cubic cell. In addition, by annealing at 1150 °C, this distortion disappeared and the crystal system reverted to cubic.

  18. Temperature dependence of mechanical stiffness and dissipation in ultrananocrystalline diamond films grown by the HFCVD techinque.

    SciTech Connect

    Adiga, V. P.; Sumant, A. V.; Suresh, S.; Gudeman, C.; Auciello, O.; Carlisle, J. A.; Carpick, R. W.; Materials Science Division; Univ. of Pennsylvania; Innovative Micro Tech.; Advanced Diamond Tech.

    2009-06-01

    We have characterized mechanical properties of ultrananocrystalline diamond (UNCD) thin films grown using the hot filament chemical vapor deposition (HFCVD) technique at 680 C, significantly lower than the conventional growth temperature of -800 C. The films have -4.3% sp{sup 2} content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, -1 {micro}m thick, exhibit a net residual compressive stress of 370 {+-} 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838 {+-} 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum (UHV) conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790 {+-} 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057 {+-} 0.038. The quality factors (Q) of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators.

  19. Characterization of amorphous carbon films grown by pulsed-laser deposition

    SciTech Connect

    Siegal, M.P.; Tallant, D.R.; Barbour, J.C.; Provencio, P.N.; Martinez-Miranda, L.J.; DiNardo, N.J.

    1998-09-01

    Amorphous carbon (a-C) films grow via energetic processes such as pulsed-laser deposition (PLD). The cold-cathode electron emission properties of a-C are promising for flat-panel display and vacuum microelectronics technologies. These ultrahard films consist of a mixture of 3-fold and 4-fold coordinated carbon atoms, resulting in an amorphous material with diamond-like properties. The authors study the structures of a-C films grown at room temperature as a function of PLD energetics using x-ray reflectivity, Raman spectroscopy, high-resolution transmission electron microscopy, and Rutherford backscattering spectrometry. While an understanding of the electron emission mechanism in a-C films remains elusive, the onset of emission is typically preceded by conditioning where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, the authors use the spatially-localized field and current of a scanning tunneling microscope tip. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially-resolved electron energy loss spectroscopy indicates that the predominant bonding configuration changes from predominantly 4-fold to 3-fold coordination.

  20. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2015-12-01

    Titanium doped tungsten oxide (Ti:WO3) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O2 atmosphere. Ti:WO3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10-3-5.0 × 10-3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm2) and tungsten (3 W/cm2) were kept constant. Ti:WO3 films deposited at an oxygen pressure of 5 × 10-3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm2/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: -22.01 mC/cm2, Qa: 17.72 mC/cm2), reversibility (80%) and methylene blue decomposition rate (-1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO3 films.

  1. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  2. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    DOE PAGES

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; ...

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the firstmore » report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.« less

  3. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111)

    SciTech Connect

    Davydenko, A. V. Kozlov, A. G.; Chebotkevich, L. A.

    2014-10-14

    We compared magnetic properties of epitaxial Co(111) films grown on microstep- and macrostep-bunched vicinal Si(111) substrates. A surface of the microstep-bunched Si(111) substrate represents regular array of step-bunches with height of 1.7 nm divided from each other by flat microterraces with a width of 34 nm. A surface of the macrostep-bunched Si(111) substrate is constituted by macrostep bunches with a height of 75–85 nm divided by atomically flat macroterraces. The average sum width of a macrostep bunch and a macroterrace is 2.3 μm. While in-plane magnetic anisotropy was spatially uniform in Co(111) films grown on the microstep-bunched Si(111), periodic macromodulation of the topography of the Si(111) substrate induced spatial modulation of in-plane magnetic anisotropy in Co(111) film grown on the macrostep-bunched Si(111) surface. The energy of uniaxial magnetic anisotropy in the areas of the Co(111) film deposited on the Si(111) macrosteps was higher more than by the order of magnitude than the energy of the magnetic anisotropy in the areas grown on macroterraces. Magnetization reversal in the areas with different energy of the magnetic anisotropy occurred in different magnetic fields. We showed the possibility of obtaining high density of domain walls in Co(111) film grown on the macrostep-bunched Si(111) by tuning the spatial step density of the Si(111) substrate.

  4. Defects Induced by Carbon Contamination in Low-Temperature Epitaxial Silicon Films Grown with Monosilane

    NASA Astrophysics Data System (ADS)

    Sato, Shin'ya; Mizushima, Ichiro; Miyano, Kiyotaka; Sato, Tsutomu; Nakamura, Shin'ichi; Tsunashima, Yoshitaka; Arikado, Tsunetoshi; Uchitomi, Naotaka

    2005-03-01

    The structures of the defects induced by carbon contamination in epitaxial silicon films grown with monosilane (SiH4) on silicon substrates were investigated. A new formation mechanism of defects associated with carbon in silicon epitaxial growth processes is proposed. The carbon contaminants were introduced prior to the growth by chemical vapor deposition (CVD), where the growth chamber was intentionally contaminated with organic materials. The carbon contaminant concentration was changed by adjusting the annealing conditions at temperatures ranging from 900°C to 1100°C. Silicon epitaxial films were grown by CVD at a temperature of 700°C. In this experiment, we found that pits were formed as dominant surface defects under the condition of a relatively low carbon concentration of less than 4.5× 1013 cm-2, while mound defects were formed at a carbon concentration of more than 4.5× 1013 cm-2. These defects can be explained by the formation of silicon carbide (SiC) islands resulting from the carbon contamination.

  5. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Ott, J.; Mäkelä, M.; Arsenovich, T.; Gädda, A.; Peltola, T.; Tuovinen, E.; Luukka, P.; Tuominen, E.; Junkes, A.; Niinistö, J.; Ritala, M.

    2016-09-01

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al2O3 field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO2, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al2O3 field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al2O3 provides equally low effective surface recombination velocity as thermally oxidized Si/SiO2 interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few μm of physical size required in ultra-fine pitch pixel detectors.

  6. Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Roffi, Teuku Muhammad; Nozaki, Shinji; Uchida, Kazuo

    2016-10-01

    Nickel oxide (NiO) thin films were grown by atmospheric-pressure metal organic chemical vapor deposition (APMOCVD). Growth was carried out using various growth parameters, including the growth temperature, the input precursor (O2/Ni) ratio, and the type of substrate material. Effects of the growth parameters on the structural and electrical properties of the films were investigated. X-ray diffraction analysis revealed that the crystal structure and quality were strongly affected by the growth temperature and the type of substrate material. At an optimized growth temperature, single-crystalline NiO films were grown on MgO(100) and MgO(111) substrates in a cube-on-cube orientation relationship, while on an Al2O3(001) substrate, the film was grown in the NiO[111] direction. The use of MgO substrates successfully suppressed the formation of twin defects, which have been frequently reported in the growth of NiO. The difference in the formation of the twin defects on MgO and Al2O3 substrates was discussed. It was observed that the resistivity dependence on crystal quality was affected by the choice of substrate material. The effects of the precursor ratio on the transmittance and resistivity of the films were also investigated. Improved transparency in the visible wavelength region and higher conductivity were found in films grown with higher O2/Ni ratios.

  7. The structural state of epitaxial GaP films of different polarities grown on misoriented Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Loshkarev, I. D.; Vasilenko, A. P.; Trukhanov, E. M.; Kolesnikov, A. V.; Putyato, M. A.; Esin, M. Yu.; Petrushkov, M. O.

    2017-02-01

    The structure of GaP films grown by molecular-beam epitaxy on vicinal Si(1113) substrates has been studied by X-ray diffraction. It is established that the crystalline lattice of a pseudomorphic film rotates about the <110> axis toward increasing deviation from the singular orientation, while the subsequent relaxation leads to rotation in the opposite direction. This is valid for the films of both (001) and (001¯) polarities. Differences between the surface morphologies of relaxed and pseudomorphic GaP films are revealed.

  8. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Hojabri, Alireza

    2016-09-01

    Zirconium oxide thin films were grown successfully by thermal annealing of zirconium thin films deposited on quartz and silicon substrates by direct current magnetron sputtering technique. The structural and optical properties in relation to thermal annealing times were investigated. The X-ray diffraction patterns revealed that structure of films changes from amorphous to crystalline by increase of annealing times in range 60-240 min. The composition of films was determined by Rutherford back scattering spectroscopy. Atomic force microscopy results exhibited that surface morphology and roughness of films depend on the annealing time. The refractive index of the films was calculated using Swanepoel's method. The optical band gap energy of annealed films decreased from 5.50 to 5.34 eV with increasing thermal annealing time.

  9. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature

    PubMed Central

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2011-01-01

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm3 at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO3 (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (−E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10−12 sm−1. PMID:21901050

  10. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature.

    PubMed

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2011-08-08

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).

  11. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    PubMed Central

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-01-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100–300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900–2,500 cm2 V−1 s−1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact. PMID:26658923

  12. Continuous and nanostructured TiO2 films grown by dc sputtering magnetron.

    PubMed

    Sánchez, O; Vergara, L; Font, A Climent; de Melo, O; Sanz, R; Hernández-Vélez, M

    2012-12-01

    The growth of Anatase nanostructured films using dc reactive magnetron sputtering and post-annealing treatment is reported. TiO2 has been deposited on Porous Anodic Alumina Films used as templates which were previously grown in phosphoric acid solution and etched to modify their pore diameters. This synthesis via results in the formation of vertically aligned and spatially ordered TiO2 nanostructures replicating the underlying template. Previously, the growth optimization of TiO2 thin films deposited by dc magnetron sputtering on flat silicon substrates was done. The crystalline structure and Ti in-depth concentration profile were determined by grazing incidence X-ray diffraction and Rutherford backscattering spectrometry, respectively. The surface morphology of the samples was explored by mean of a Field Emission Gun scanning electron microscope. Optical properties of the nanostructured samples were studied by using the reflectance spectra received in the UV-visible range. In these spectra different band gap values and complex light absorption features were observed.

  13. Reproducibility and off-stoichiometry issues in nickelate thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Preziosi, Daniele; Sander, Anke; Barthélémy, Agnès; Bibes, Manuel

    2017-01-01

    Rare-earth nickelates are strongly correlated oxides displaying a metal-to-insulator transition at a temperature tunable by the rare-earth ionic radius. In PrNiO3 and NdNiO3, the transition is very sharp and shows an hysteretic behavior akin to a first-order transition. Both the temperature at which the transition occurs and the associated resistivity change are extremely sensitive to doping and therefore to off-stoichiometry issues that may arise during thin film growth. Here we report that strong deviations in the transport properties of NdNiO3 films can arise in films grown consecutively under nominally identical conditions by pulsed laser deposition; some samples show a well-developed transition with a resistivity change of up to five orders of magnitude while others are metallic down to low temperatures. Through a detailed analysis of in-situ X-ray photoelectron spectroscopy data, we relate this behavior to large levels of cationic off-stoichoimetry that also translate in changes in the Ni valence and bandwidth. Finally, we demonstrate that this lack of reproducibility can be remarkably alleviated by using single-phase NdNiO3 targets.

  14. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang-Chih; Chang, Huan-Pu; Lo, Fang-Yu; Yeh, Yu-Ting; Department of Physics, National Taiwan Normal University Collaboration

    Zinc Oxide (ZnO) nanostructures have potential applications in nano-electro-mechanical systems (NEMS) due to their unique physical properties. ZnO is also an excellent lubricant and hence a promising candidate for protective coatings in NEMS. By means of atomic force microscopy (AFM), we have investigated the frictional properties of ZnO thin films prepared by pulsed laser deposition technique. In addition, UV illumination is used to convert the surface wettability of ZnO thin films from being more hydrophobic to superhydrophilic via the photo-catalyst effect. We found that the frictional properties of the UV illuminated, superhydrophilic ZnO surface are strongly dependent on the environment humidity. While for hydrophobic ZnO, no such dependence is found. The observed frictional behaviors can be explained by the interplay between the surface roughness, environmental humidity and the presence of nanoscale capillary condensation forming between surface asperities at the tip-ZnO contact. Our results might find applications in future ZnO related NEMS. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition.

  15. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  16. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    NASA Astrophysics Data System (ADS)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  17. Electrical Conduction Mechanism in Chemical Vapour Deposition Grown Multi-Wall Carbon Nanotubes Film.

    PubMed

    Al-Hazmi, F S

    2015-07-01

    Multi-walled carbon nanotubes are interesting systems where different aspects of conduction are observed, mostly due to their low dimensionalities and small dimensions. Electrical conduction mechanism in multi wall carbon nanotubes film is studied. The studied multi-walled nanotubes are grown by a low pressure chemical vapour deposition system. To understand the conduction mechanism in these nanotubes, temperature dependence of conductivity of the multi wall nanotubes film over a temperature range of (400-200 K) is studied. On the basis of the results, one may suggest the thermally activated conduction mechanism for the temperature range (400-300 K). The low temperature data is fitted with the hopping conduction for the transport of charge carriers in the temperature range of 300-200 K. This hopping conduction mechanism is characterized by variable range hopping (VRH), which shows complete agreement with the Mott's type of VRH mechanism. Applying this model, a number of Mott's parameters such as density of states, hopping distance, hopping energy are calculated. The calculated values of all the studied parameters matches well the reported results on other multi-wall nanotubes film.

  18. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  19. Structural Properties Characterized by the Film Thickness and Annealing Temperature for La2O3 Films Grown by Atomic Layer Deposition.

    PubMed

    Wang, Xing; Liu, Hongxia; Zhao, Lu; Fei, Chenxi; Feng, Xingyao; Chen, Shupeng; Wang, Yongte

    2017-12-01

    La2O3 films were grown on Si substrates by atomic layer deposition technique with different thickness. Crystallization characteristics of the La2O3 films were analyzed by grazing incidence X-ray diffraction after post-deposition rapid thermal annealing treatments at several annealing temperatures. It was found that the crystallization behaviors of the La2O3 films are affected by the film thickness and annealing temperatures as a relationship with the diffusion of Si substrate. Compared with the amorphous La2O3 films, the crystallized films were observed to be more unstable due to the hygroscopicity of La2O3. Besides, the impacts of crystallization characteristics on the bandgap and refractive index of the La2O3 films were also investigated by X-ray photoelectron spectroscopy and spectroscopic ellipsometry, respectively.

  20. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  1. Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition

    NASA Astrophysics Data System (ADS)

    Jung, Dae Ho; So, Hyeon Seob; Ko, Kun Hee; Park, Jun Woo; Lee, Hosun; Nguyen, Trang Thi Thu; Yoon, Seokhyun

    2016-12-01

    VO2 thin films were grown on a-, c-, m-, and r-plane sapphire and SiO2/Si substrates under identical conditions by using RF sputtering deposition from a VO2 target. The structural and the morphological properties of all VO2 films were investigated. The grain sizes of the VO2 films varied between 268 nm and 355 nm depending on the substrate's orientation. The electrical and the optical properties of all VO2 thin films were examined in detail. The metal-insulator transition temperature (TMI) varied with the substrate's orientation. The (200)/(bar 211 )-oriented VO2 films on the a-plane sapphire showed the lowest TMI of about 329.3 K (56.3 °C) while the (020)/(002)-VO2 films on the c-plane sapphire displayed the highest TMI of about 339.6 K (66.6 °C). The VO2 films showed reversible changes in the resistivity as large as 1.19 × 105 and a hysteresis of 2 K upon traversing the transition temperature. The variations observed in the TMI with respect to the substrate's orientation were due to changes in the lattice strain and the grain size distribution. Raman spectroscopy showed that metal (rutile) - insulator (monoclinic) transitions occurred via the M2 phase for VO2 films on the c-plane substrate rather than the direct M1 to rutile transition. The shifts in the phonon frequencies of the VO2 film grown on various sapphire substrates were explained in terms of the strain along the V-V atomic bond direction (cR). Our work shows a possible correlation between the transition parameters ( e.g., TMI, sharpness, and hysteresis width) and the width ( σ) of the grain size distribution. It also shows a possible correlation between the TMI and the resistivities at the insulating and the metallic phases for VO2 films grown on various sapphire substrates.

  2. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    SciTech Connect

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-11-26

    We report the highest mobility values above 2000 cm{sup 2}/Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  3. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    PubMed

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  4. Biomass yield and composition of sweetpotato grown in a nutrient film technique system.

    PubMed

    Almazan, A M; Zhou, X

    1997-01-01

    Sweetpotato cultivar TU-82-155 grown in a nutrient film technique system and separated into foliage, tips, fibrous, string and storage roots at harvest had a total dry biomass of 89.9 g per plant with 38.4% inedible portion. Tips and storage roots, the traditional edible parts, were analyzed for dry matter, protein, fat, ash, minerals (Ca, Fe, K, Mg, Na, Zn), vitamins (carotene, ascorbic acid, thiamin), oxalic and tannic acids, and trypsin and chymotrypsin inhibitors to determine their nutritional quality. Water soluble matter, minerals (Ca, Fe, K, Mg, Na, Zn), cellulose, hemicellulose and lignin concentrations in the edible and inedible parts were obtained to provide information needed for the selection of appropriate bioconversion processes of plant wastes into food or forms suitable for crop production in a controlled biological life support system.

  5. Electronic and magnetic structure of ultra-thin Ni films grown on W(110)

    NASA Astrophysics Data System (ADS)

    Calloni, A.; Bussetti, G.; Berti, G.; Yivlialin, R.; Camera, A.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2016-12-01

    We studied the electronic structure of thin Ni films grown on a W(110) single crystal, as a function of the Ni thickness, by means of angle-resolved photoemission and inverse photoemission spectroscopy, also with spin resolution. The results are discussed in the light of the different stages characterizing the transition from the pseudomorphic bcc to the fully relaxed fcc phase. A clear spin polarization is detected as soon as a bulk-like electronic structure is observed. In these conditions, we characterized the exchange splitting of the occupied bands at the Γbar and Mbar points of the surface Brillouin zone, providing further experimental support to previous interpretations of photoemission spectra from bulk Ni.

  6. 90{degree} Magnetization Switching in Thin Fe Films Grown on Stepped Cr(001)

    SciTech Connect

    Escorcia-Aparicio, E.J.; Choi, H.J.; Ling, W.L.; Kawakami, R.K.; Qiu, Z.Q.

    1998-09-01

    The ferromagnetic/antiferromagnetic interfacial interaction was investigated in thin Fe films grown on stepped Cr(001) with the steps parallel to the [100] direction. Above the N{acute e}el temperature of the Cr, the atomic steps induce a uniaxial magnetic anisotropy with the easy axis parallel to the step edges. Below the N{acute e}el temperature, the Fe-Cr interfacial interaction favors the Fe magnetization perpendicular to the step edges. The competition between the Fe-Cr interaction and the step-induced magnetic anisotropy results in an in-plane 90{degree} magnetization switching from perpendicular to the step edges at low step-density to parallel to the step edges at high step density. {copyright} {ital 1998} {ital The American Physical Society }

  7. Synthesis of nanocrystalline Cu2ZnSnS4 thin films grown by the spray-pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Singh, Joginder; Rajaram, P.

    2015-08-01

    Spray pyrolysis was used to deposit Cu2ZnSnS4 (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  8. Reversible Change in Electrical and Optical Properties in Epitaxially Grown Al-Doped ZnO Thin Films

    SciTech Connect

    Noh, J. H.; Jung, H. S.; Lee, J. K.; Kim, J. Y; Cho, C. M.; An, J.; Hong, K. S.

    2008-01-01

    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01 x 10{sup -4} {Omega} cm. However, after annealing at 450 C in air, the electrical resistivity of the AZO films increased to 1.97 x 10{sup -1} {Omega} cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H{sub 2} recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H{sub 2} annealing. A photoluminescence study showed that oxygen interstitial (O{sub i}) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films.

  9. Characteristics of Fluorine-doped tin oxide thin films grown by Streaming process for Electrodeless Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Khalilzadeh-Rezaie, Farnood; Cleary, Justin W.; Oladeji, Isaiah O.; Suu, Koukou; Schoenfeld, Winston V.; Peale, Robert E.; Awodugba, Ayodeji O.

    2015-04-01

    This work investigated the characteristics of SnO2: F films grown by Streaming Process for Electrodeless Electrochemical Deposition (SPEED). Stannic chloride (SnCl4) and ammonium fluoride (NH4 F) was dissolved in a mixture of deionized water and organic solvents. The preheated substrate temperature was varied between 450 and 530° C. High quality SnO2: F films were grown at all the substrate temperatures studied. The typical film thickness was 250 nm. XRD shows that the grown films are polycrystalline SnO2 with a tetragonal crystal structure. The average optical transmission of the films was around 93% throughout the wavelength of 400 to 1000 nm. The lowest electrical resistivity achieved was 6 x 10-4 Ω cm. The Hall measurements showed that the film is an n-type semiconductor, with the highest carrier mobility of 8.3 cm2/V.s, and concentration of 1 x 1021 cm-3. The direct band gap was determined to be 4 eV from the transmittance spectrum.

  10. Study of overall and local electrochemical responses of oxide films grown on CoCr alloy under biological environments.

    PubMed

    Diaz, I; Martinez-Lerma, J F; Montoya, R; Llorente, I; Escudero, M L; García-Alonso, M C

    2017-06-01

    The interaction of the physiological medium and living tissues with the implant surfaces in biological environments is regulated by biopotentials that induce changes in the chemical composition, structure and thickness of the oxide film. In this work, oxide films grown on CoCr alloys at 0.5 V vs Ag/AgCl and 0.7 V vs Ag/AgCl have been characterized through overall and localized electrochemical techniques in a phosphate buffer solution and 0.3% hyaluronic acid. Nanopores of 10-50nm diameter are homogeneously distributed along the surface in the oxide film formed at 0.7 V vs Ag/AgCl. The distribution of the Constant Phase Element studied by local electrochemical impedance spectroscopy showed a three-dimensional (3D) model on the oxide films grown at 0.5 V vs Ag/AgCl and 0.7 V vs Ag/AgCl. This behaviour is especially noticeable in oxide films grown at 0.7 V vs Ag/AgCl, probably due to surface inhomogeneities, and resistive properties generated by the potentiostatic growth of the oxide film.

  11. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  12. Local structure and magnetic properties of ultrathin Mn films grown on Si(001)

    NASA Astrophysics Data System (ADS)

    Kahwaji, Samer; Monchesky, Theodore; Crozier, Daryl; Gordon, Robert

    2012-02-01

    We report on the structural and magnetic properties of ultrathin Mn layers deposited onto Si(001) by molecular beam epitaxy (MBE) at low temperature. X-ray absorption fine structure (XAFS) studies reveal that the structure of the silicide layer that forms depends on the growth temperature of the capping layer. A capping layer grown at 200 ^oC on 0.35 monolayer (ML) Mn results in a metastable MnSi phase with a B2-like (CsCl) structure, whereas a cap grown at room temperature on 0.5 ML followed by annealing at 200 ^oC produces a lower coordinated MnSi phase with a B20-like structure. Increasing the Mn thickness from 0.5 to 4 monolayers does not trigger a structural transformation but drives the structure closer to MnSi-B20. Using SQUID magnetometry, we show that the sample with B2-like structure has the largest Mn magnetic moment of 0.33μB/Mn at T=2 K, and a Curie temperature TC above 250 K. MnSi-B20 layers showed lower moments and much lower TC's, in-line with those reported for MnSi-B20 thin films.

  13. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  14. Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint

    SciTech Connect

    Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

    2012-06-01

    We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

  15. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  16. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  17. Phase and disorder investigations in boron nitride thin films grown by PECVD

    SciTech Connect

    Depero, L.E.; Sangaletti, L.; Schaffnit, C.; Rossi, F.; Gibson, P.N.

    1996-12-31

    Based on X-ray diffraction and infrared spectroscopy measurements, BN thin films grown by PECVD on silicon substrates have been studied with the aim of identifying the thin film phase. In a set of samples, while the infrared spectra showed characteristic bands of the hexagonal phase, X-ray diffraction patterns only displayed reflections belonging to the cubic BN phase. Therefore, structural models have been developed to explain the apparent inconsistency between the two sets of experimental data. In particular, static disorder effects--which have been introduced in the model starting from the sp{sup 2} hybridization of the ordered hexagonal phase, as suggested by the infra-red spectroscopy results--allowed a consistent interpretation of the X-ray diffraction patterns. For another set of samples, which also showed a characteristic hexagonal signal in the IR data, the XRD pattern could not be indexed with any of the BN phases. In this case, the presence of molecular and ionic phases, associated with impurities, was considered in structural modeling studies.

  18. Neutron Depth Profiling (NDP) of boron thin films in epitaxially grown silicon

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, H. Heather; Lamaze, George P.; Simons, David S.

    2001-03-01

    Neutron Depth Profiling is a technique for the determination of concentration and distribution of certain light elements in the region of about 1 µm below a solid surface. An incident neutron beam activates the nucleus of interest and causes the emission of reaction products in the form of charged particles which carry information of the reaction origin. The eligible elements include boron, lithium, and nitrogen. The most common substrate measured at NIST is silicon. We have studied a calibration sample for the purpose of inter-comparison between NDP and SIMS. The sample is a multilayer consisting of a 1 µm-thick epitaxially grown silicon film with four thin layers of boron about 0.25 micrometers apart. A previous study on the mathematical modeling of the NDP data indicates a discrepancy between the NDP and the SIMS data, either due to the uncertainty of the density of the film or of the stopping power of the alpha particle in silicon. The density has been verified by x-ray reflectivity to be that of the bulk. To understand this discrepancy, we have measured the angular dependence of the charged-particle emission which provides an experimentally determined relation between the energy loss and the depth. The result is compared with the stopping power obtained from TRIM to determine whether the discrepancy can be resolved with a modified stopping power.

  19. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    SciTech Connect

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-07-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10{sup -4} and 6 x 10{sup -4} {Omega} cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10{sup -3} {Omega}{sup -1} for ITO higher than 0.55 x 10{sup -3} {Omega}{sup -1} for FTO.

  20. Modeling the Growth of Aluminum Gallium Nitride ((Al)GaN) Films Grown on Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2011-03-01

    3.1 Slip Systems Analysis .....................................................................................................2 3.2 Simulations of...much like it has been done for hetero-epitaxial silicon-germanium ( SiGe ) films grown on silicon (Si) ( 1 , 2), which have the cubic zinc blende...calculations carried out using the Vienna Ab-Initio Simulation Package (VASP) code (4, 5 ) with projector augmented waves (generalized gradient

  1. Optical and electrical properties of Titania thin films doped with In3+ and grown by sol-gel process.

    NASA Astrophysics Data System (ADS)

    Rodolfo Palomino Merino, Martín; Lozada Morales, Rosendo; Xoxocotzi Aguilar, Reyna; Díaz Furlong, Alfonso

    2004-03-01

    Using the sol-gel process were prepared Titania (TiO2) thin films formed on glass substrates by dip-coating method. The samples were grown starting from Titanium Isopropoxide and changing the concentration of In3+ ions from Indium Nitrate. The results of the characterization of the samples by UV-VIS spectroscopy , IR , thermopotency and conductivity will be reported.

  2. Spin-dependent Fabry-Pérot interference from a Cu thin film grown on fcc Co(001).

    PubMed

    Wu, Y Z; Schmid, A K; Altman, M S; Jin, X F; Qiu, Z Q

    2005-01-21

    Spin-dependent electron reflection from a Cu thin film grown on Co/Cu(001) was investigated using spin-polarized low-energy electron microscopy (SPLEEM). Fabry-Pe rot type interference was observed and is explained using the phase accumulation model. SPLEEM images of the Cu overlayer reveal magnetic domains in the Co underlayer, with the domain contrast oscillating with electron energy and Cu film thickness. This behavior is attributed to the spin-dependent electron reflectivity at the Cu/Co interface which leads to spin-dependent Fabry-Pe rot electron interference in the Cu film.

  3. Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition

    SciTech Connect

    Hansen, Per-Anders Fjellvåg, Helmer; Nilsen, Ola; Finstad, Terje G.

    2016-01-15

    Lanthanide based luminescent materials are highly suitable as down conversion materials in combination with a UV-absorbing host material. The authors have used TiO{sub 2} as the UV-absorbing host material and investigated the energy transfer between TiO{sub 2} and 11 different lanthanide ions, Ln{sup 3+} (Ln = La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in thin films grown by atomic layer deposition. They have also investigated the possibility to improve the overall energy transfer from TiO{sub 2} to Yb{sup 3+} with a second Ln{sup 3+}, in order to enhance down conversion. The films were grown at a substrate temperature of 300 °C, using the Ln(thd){sub 3}/O{sub 3} (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and TiCl{sub 4}/H{sub 2}O precursor pairs. The focus of the work is to explore the energy transfer from TiO{sub 2} to Ln{sup 3+} ions, and the energy transfer between Ln{sup 3+} and Yb{sup 3+} ions, which could lead to efficient down conversion. The samples have been characterized by x-ray diffraction, x-ray fluorescence, spectroscopic ellipsometry, and photoluminescence. All films were amorphous as deposited, and the samples have been annealed at 600, 800, and 1000 °C in order to investigate the correlation between the crystallinity and luminescence. The lanthanum titanium oxide samples showed a weak and broad emission centered at 540 nm, which was absent in all the other samples, indicating energy transfer from TiO{sub 2} to Ln{sup 3+} in all other lanthanide samples. In the amorphous phase, all samples, apart from La, Tb, and Tm, showed a typical f-f emission when excited by a 325 nm HeCd laser. None of the samples showed any luminescence after annealing at 1000 °C due to the formation of Ln{sub 2}Ti{sub 2}O{sub 7}. Samples containing Nd, Sm, and Eu show a change in emission spectrum when annealed at 800 °C compared to the as-deposited samples, indicating that the smaller lanthanides crystallize in a different manner than the larger

  4. Spatial distribution of carrier concentration in un-doped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Beling, C. D.; Fung, S.; Ling, C. C.

    2004-03-01

    The depth and lateral dependent carrier concentration of un-intentionally doped GaN film grown on sapphire substrate have been studied by temperature-dependent Hall effect measurement, confocal micro-Raman spectroscopy and capacitance-voltage (C-V) measurements. The depth-dependent free carrier concentration extracted from the depth-profiled Raman spectra confirms a non-uniform spatial distribution of free carriers in the GaN film with a highly conductive layer of 1 m thickness near the GaN/sapphire boundary. The temperature dependent Hall data have been analyzed using two-layer model to extract the carrier concentration in the GaN bulk film and in the parallel conduction channel adjacent to the GaN/sapphire boundary. The carrier concentrations of the two layers derived from the Raman technique and the Hall measurements agree with each other. The lateral-dependent carrier concentration of the 2-inch GaN epitaxial wafer has also been studied by micro-Raman spectroscopy and C-V measurements. The line-shape fitting of the Raman A1(LO) coupled modes taken from horizontal lateral-different positions on the wafer yielded a rudimentary spatial map of the carrier concentration. These data are compared well with a lateral-dependent carrier concentration map of the wafer revealed by C-V measurements. The study in the article indicates that Raman spectroscopy of the LO phonon-plasmon mode can be used as a nondestructive and reliable, in situ diagnostic for GaN wafer production.

  5. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    SciTech Connect

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  6. Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate

    NASA Astrophysics Data System (ADS)

    Yi, Soung Soo; Bae, Jong Seong; Moon, Byung Kee; Jeong, Jung Hyun; Kim, Jung Hwan

    2005-02-01

    Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ luminescent thin films have been grown on Si (100) substrates using pulsed-laser deposition. The films grown at different deposition conditions show different microstructural and luminescent characteristics. Both cubic and monoclinic crystalline structures were observed in both Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ films, but the cubic phase becomes more dominant and the ratio of peak values IC(222)/IM(-402) increases rapidly for Li-doped Gd2O3:Eu3+ films. The photoluminescence brightness data obtained from Li-doped Gd2O3:Eu3+ films indicate that Si (100) is a promising substrate for growth of high-quality Li-doped Gd2O3:Eu3+ thin-film red phosphor. In particular, the incorporation of Li + ions into the Gd2O3 lattice induced changes of crystallinity, surface roughness, and photoluminescence. The highest emission intensity was observed with Gd1.84Li0.08Eu0.08O3, whose brightness was a factor of 2.1 larger than that from Gd2O3:Eu3+ films. This phosphor is promising for applications in flat-panel displays.

  7. Morphology and Optical Properties of Zinc Oxide Films Grown on Metal Coated Glass Substrates by Aqueous Chemical Growth

    NASA Astrophysics Data System (ADS)

    Bakar, M. A.; Hamid, M. A. A.; Jalar, A.; Shamsudin, R.

    2013-04-01

    Zinc oxide films were deposited on three different metal coated substrates (gold, nickel and platinum) by aqueous chemical growth method. This paper discusses the effect of metal coated substrates on the morphology and optical properties of grown ZnO films. X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and UV-visible spectroscopy (UV-vis) were employed to characterize the samples. All the as-deposited ZnO films exhibit crystalline hexagonal wurzite structure. The crystallite size of the ZnO films were in the range of 29 to 32 nm. FESEM micrographs revealed hexagonal rod, oval-like and flower-like ZnO structures formed on all metal coated substrates. The Pt coated film contains higher density hexagonal rod as compared to others metal coated substrate. Most probably the Pt lattice parameter is the nearest to ZnO compared to nickel and gold. The optical band gap energy, Eg of ZnO films were estimated to be 3.30 eV which is near to bulk Eg, 3.37 eV. This indicates that the ZnO grown by aqueous chemical growth is able to produce similar quality properties to other conventional method either films or bulk size.

  8. X-ray diffraction and ellipsometric studies of zinc sulfide thin films grown by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Oikkonen, Markku

    1988-05-01

    The microstructure of ZnS thin films grown by atomic layer epitaxy (ALE) is investigated using X-ray diffraction and a single-line technique. Crystal structure, preferred orientation, crystallinity, crystallite size, crystallite size distribution, and microstrain are determined. Complex refractive indexes of the films are determined in the wavelength range 400 to 600 nm using spectroscopic ellipsometry. A two-layer model is employed, where the uppermost layer takes into account the surface roughness. Density of ZnS thin films is determined using ellipsometry and He(+)-ion backscattering spectrometry. In the first tens of nanometers of an ALE ZnS thin film the crystallinity and void content strongly depend on the substrate properties. Most of the films were grown on soda glass. It is found that after the bottom layer, at the distances from 50 to 100 nm to 300 to 400 nm from the substrate the crystallinity is good, crystallites are large, the specific orientation is strong, the void content is low, and the optical properties resemble those of bulk ZnS. At distances larger than 300 to 400 nm the surface roughness and the void content in the upper parts of the film increase because of the more and more randomly packed large crystallites. Substrate temperature and source materials affect the growth of all parts of the films.

  9. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  10. Ferrite microwave electronics Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  11. UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Alkis, Sabri; Tekcan, Burak; Nayfeh, Ammar; Kemal Okyay, Ali

    2013-10-01

    We present ultraviolet-visible (UV/vis) range photodetectors (PDs) based on thin film ZnO (n)/Si (p) heterojunction diodes. ZnO films are grown by the atomic layer deposition (ALD) technique at growth temperatures of 80, 150, 200 and 250 ° C. The fabricated ZnO (n)/Si (p) photodetectors (ZnO-Si-PDs) show good electrical rectification characteristics with ON/OFF ratios reaching up to 103. Under UV (350 nm wavelength) and visible (475 nm wavelength) light illumination, the ZnO-Si-PDs give photoresponsivity values of 30-37 mA W-1 and 74-80 mA W-1 at 0.5 V reverse bias, respectively. Photoluminescence (PL) spectra of ALD grown ZnO thin films are used to support the results.

  12. RBS and PIXE analysis of chlorine contamination in ALD-Grown TiN films on silicon

    SciTech Connect

    Meersschaut, J.; Witters, T.; Kaeyhkoe, M.; Lenka, H. P.; Vandervorst, W.; Zhao, Q.; Vantomme, A.

    2013-04-19

    The performance, strengths and limitations of RBS and PIXE for the characterization of trace amounts of Cl in TiN thin films are critically compared. The chlorine atomic concentration in ALD grown TiN thin films on Si is determined for samples grown at temperatures ranging from 350 Degree-Sign C to 550 Degree-Sign C. We show that routine Rutherford backscattering spectrometry measurements (1.5 MeV He{sup +}) and PIXE measurements (1.5 MeV H{sup +}) on 20 nm thick TiN films allow one to determine the Cl content down to 0.3 at% with an absolute statistical accuracy reaching 0.03 at%. Possible improvements to push the sensitivity limit for both approaches are proposed.

  13. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  14. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    SciTech Connect

    Morse, K.; Balooch, M.; Hamza, A.V.; Belak, J.

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  15. Thermal and irradiation induced interdiffusion in magnetite thin films grown on magnesium oxide (0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Balogh, A. G.; Meyer, J. D.; Brötz, J.; Zając, M.; Ślęzak, T.; Korecki, J.

    2009-05-01

    Epitaxial Fe 3O 4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe 3O 4/MgO(0 0 1) films. For the Fe 3O 4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe 3O 4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe 3O 4-on-Fe film system.

  16. Mechanically tunable magnetic properties of Fe{sub 81}Ga{sub 19} films grown on flexible substrates

    SciTech Connect

    Dai Guohong; Zhan Qingfeng; Liu Yiwei; Yang Huali; Zhang Xiaoshan; Chen Bin; Li Runwei

    2012-03-19

    We investigated on magnetic properties of magnetostrictive Fe{sub 81}Ga{sub 19} films grown on flexible polyethylene terephthalate (PET) substrates under various mechanical strains. The unstrained Fe{sub 81}Ga{sub 19} films exhibit a significant uniaxial magnetic anisotropy due to a residual stress in PET substrates. It was found that the squareness of hysteresis loops can be tuned by an application of strains, inward/compressive or outward/tensile bending of the films. A modified Stoner-Wohlfarth model with considering a distribution of easy axes in polycrystalline films was developed to account for the mechanically tunable magnetic properties in flexible Fe{sub 81}Ga{sub 19} films. These results provide an alternative way to tune mechanically magnetic properties, which is particularly important for developing flexible magnetoelectronic devices.

  17. Structure and magnetic properties of electrodeposited, ferromagnetic, group 3-d element films grown onto GaAs (011) substrate

    NASA Astrophysics Data System (ADS)

    Scheck, C.; Evans, P.; Schad, R.; Zangari, G.

    2003-05-01

    Ni, Co, and iron-rich FeNi films were grown onto n-GaAs (011) substrates using electrodeposition from metal sulfate solutions, at room temperature, with a current density of 3.5 mA/cm2 at a pH of 2.5. The structure of Ni film is found to be fcc with a (111) preferred orientation, whereas Co films show a mixed fcc and hcp structure that is confirmed by x-ray diffraction and transmission electron microscopy data. The structure of iron-rich (>90%) FeNi films remains unclear at the moment. The films show a well-defined, in-plane, uniaxial anisotropy with the easy axis along the [011] GaAs direction for Ni, and [011¯] GaAs direction for Co and FeNi films (i.e., anisotropy rotated by 90° compared to Ni). Co films maintain their anisotropy even for large thicknesses (>250 nm) and so does Ni (up to 90 nm). Surprisingly, thin Ni films exhibit a larger HK value (950 Oe) than what would be expected from a purely crystalline anisotropy. This effect is ascribed to internal stresses in the as-deposited films.

  18. Electrical and optical properties of Y-doped indium zinc oxide films grown by RF magnetron sputtering.

    PubMed

    Lee, Young-Jun; Kim, Joo-Hyung; Oh, Byeong-Yun; Kim, Kwang-Young

    2013-09-01

    Y2O3-doped IZO (YIZO) films was investigated in order to control the carrier concentration of semiconducting IZO layer. Stoichiometric thin YIZO films were deposited on glass substrates by RF magnetron sputtering method using indium zinc oxide (IZO) including 50 wt.% ZnO and Y2O3 targets. During the deposition of YIZO films, the working pressure was fixed at 0.17 Pa and the deposition temperature was kept at room temperature while the oxygen partial pressure (P(O2)) was changed to find the optimal film condition. In order to check the PO2 effect on structural, electrical and optical properties of the grown YIZO layer on glass, X-ray diffraction (XRD) was employed to analyze the structure of YIZO films and the electrical properties were characterized by Hall measurements using the Van der Pauw geometry at room temperature. From the measured XRD patterns, exhibiting crystalline peak of the YIZO film deposited under PO2 condition is revealed while amorphous phase structure is only observed from the YIZO film deposited under pure Ar gas condition. As the O2 contents in gas increase, the resistivity of YIZO film also drastically increases, whereas the carrier concentration of the YIZO films sharply decreases with mobility.

  19. Pulsed laser deposition of ZnO grown on glass substrates for realizing high-performance thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Maemoto, T.; Sasa, S.; Inoue, M.

    2010-12-01

    We report characterization of ZnO thin-film transistors (TFTs) on glass substrates fabricated by pulsed laser deposition (PLD). ZnO films were characterized by X-ray diffraction (XRD), atomic force microscopy and Hall effect measurements. The XRD results showed high c-axis-oriented ZnO(0002) diffraction corresponding to the wurtzite phase. Moreover, the crystallization and the electrical properties of ZnO thin films grown at room temperature are controllable by PLD growth conditions such as oxygen gas pressure. The ZnO films are very smooth, with a root-mean-square roughness of 1 nm. From the Hall effect measurements, we have succeeded in fabricating ZnO films on glass substrates with an electron mobility of 21.7 cm2/V s. By using the ZnO thin film grown by two-step PLD and a HfO2 high- k gate insulator, a transconductance of 24.1 mS/mm, a drain current on/off ratio of 4.4×106 and a subthreshold gate swing of 0.26 V/decade were obtained for the ZnO TFT.

  20. Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Vohra, Yogesh K.

    1999-07-01

    We report on the microstructure and mechanical properties of diamond films grown using varying nitrogen additions to a plasma with a high-CH4 fraction of 15% (in hydrogen) and an operating pressure of 125 Torr. Films were grown at N2/CH4 ratios ranging from 0 to 0.30 by fixing the CH4 flow rate and changing only the N2 flow rate. With increasing nitrogen addition, we observe an increase in intensity and a decrease in the full width at half maximum (FWHM) of the Raman band at 1550 cm-1, while the crystalline diamond peak at 1332 cm-1 decreases in intensity and increases in the FWHM. X-ray diffraction confirms that the film crystallinity and diamond grain size decrease rapidly with increasing nitrogen additions up to a N2/CH4 ratio of 0.10, but then do not change significantly above this ratio. A similar trend is observed for film surface roughness. In addition, we find from indentation testing that all films exhibit high hardness values ranging from 70 to 90 GPa and that the toughness of the films improves with increasing nitrogen addition. Optical emission spectroscopy reveals that an increase in CN species relative to C2 in the plasma is responsible for the formation of tetrahedral amorphous carbon (indicated by the Raman band at 1550 cm-1).

  1. Investigation of bonded hydrogen defects in nanocrystalline diamond films grown with nitrogen/methane/hydrogen plasma at high power conditions

    NASA Astrophysics Data System (ADS)

    Tang, C. J.; Hou, Haihong; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2017-02-01

    In this work, we investigate the influence of some growth parameters such as high microwave power ranging from 3.0 to 4.0 kW and N2 additive on the incorporation of bonded hydrogen defects in nanocrystalline diamond (NCD) films grown through a small amount of pure N2 addition into conventional 4% CH4/H2 plasma using a 5 kW microwave plasma CVD system. Incorporation form and content of hydrogen point defects in the NCD films produced with pure N2 addition was analyzed by employing Fourier-transform infrared (FTIR) spectroscopy for the first time. A large amount of hydrogen related defects was detected in all the produced NCD films with N2 additive ranging from 29 to 87 μm thick with grain size from 47 nm to 31 nm. Furthermore, a specific new H related sharp absorption peak appears in all the NCD films grown with pure N2/CH4/H2 plasma at high powers and becomes stronger at powers higher than 3.0 kW and is even stronger than the 2920 cm-1 peak, which is commonly found in CVD diamond films. Based on these experimental findings, the role of high power and pure nitrogen addition on the growth of NCD films including hydrogen defect formation is analyzed and discussed.

  2. (110)-oriented indium tin oxide films grown on m- and r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lu, Tso-Wen; Xu, Wei-Lun

    2015-04-01

    Indium tin oxide (ITO) thin films have been deposited by pulsed laser deposition on m-plane (100) and r-plane (012) sapphire substrates. For both substrates, the films were grown with their [110] direction perpendicular to the substrate planes under the conditions of high growth temperature and high oxygen pressure. Their in-plane epitaxial relations with the substrates were identified to be ITO[001] ∥ Al2O3[020] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[001] for the m-plane substrate. For the r-plane substrate, two types of lattice matching were observed: one being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[2,1, - 1/2] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[4/3, - 4/3,2/3], the other being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[1, - 1,1/2] and \\text{ITO}[1\\bar{1}0]/\\text{Al}2\\text{O}3[8/3,4/3, - 2/3]. The electrical properties were measured by the Hall effect and van der Pauw methods at room temperature. All of the samples have low electrical resistivity on the order of 3.0 × 10-4 Ω cm, high carrier concentration of about 2.5 × 1020 cm-3, and mobility ranging from 70 to 90 cm2 V-1 s-1.

  3. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  4. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    SciTech Connect

    Chen, Xinchun Kato, Takahisa

    2014-01-28

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ∼ 0.51 and β ∼ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ∼ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface “polishing” process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ∼9–10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp{sup 2}-bonded a–C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ∼0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N{sub 2} atmosphere. An extremely low friction coefficient of ∼0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  5. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa

    2014-01-01

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ˜ 0.51 and β ˜ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ˜ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface "polishing" process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ˜9-10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp2-bonded a-C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ˜0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N2 atmosphere. An extremely low friction coefficient of ˜0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  6. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Hunt, S.; Teplyakov, A.; Opila, R. L.

    2010-12-01

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H 2O 2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH 4) 2S and RCA procedures giving the best RMS values (˜0.5-0.8 nm).

  7. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath

    PubMed Central

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  8. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  9. Fundamental reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition

    SciTech Connect

    Yamada, Hiroshi

    2008-01-15

    The reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition (RIBD) with in situ pyrolytic-gas passivation (PGP) using N{sub 2}O and NF{sub 3} was investigated. RIBD uses low-energy-controlled reactive, ionized species and potentializes low-temperature film growth. Although the oxide films were grown at a low temperature of 150 deg. C, their fundamental indices of reliability, such as the time-dependent dielectric breakdown lifetime and interface state density, were almost equivalent to those of oxide films grown at 850 deg. C using a furnace. This is probably due to localized interfacial N and F atoms. The number density of interfacial N atoms was about seven times larger than that for the furnace-grown oxide films, and this is a key factor for improving the reliability through the compensation of residual inconsistent-state bonding sites.

  10. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  11. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  12. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  13. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  14. Hole-dominated transport in InSb nanowires grown on high-quality InSb films

    NASA Astrophysics Data System (ADS)

    Algarni, Zaina; George, David; Singh, Abhay; Lin, Yuankun; Philipose, U.

    2016-12-01

    We have developed an effective strategy for synthesizing p-type indium antimonide (InSb) nanowires on a thin film of InSb grown on glass substrate. The InSb films were grown by a chemical reaction between S b 2 S 3 and I n and were characterized by structural, compositional, and optical studies. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal that the surface of the substrate is covered with a polycrystalline InSb film comprised of sub-micron sized InSb islands. Energy dispersive X-ray (EDX) results show that the film is stoichiometric InSb. The optical constants of the InSb film, characterized using a variable-angle spectroscopic ellipsometer (VASE) shows a maximum value for refractive index at 3.7 near 1.8 eV, and the extinction coefficient (k) shows a maximum value 3.3 near 4.1 eV. InSb nanowires were subsequently grown on the InSb film with 20 nm sized Au nanoparticles functioning as the metal catalyst initiating nanowire growth. The InSb nanowires with diameters in the range of 40-60 nm exhibit good crystallinity and were found to be rich in Sb. High concentrations of anions in binary semiconductors are known to introduce acceptor levels within the band gap. This un-intentional doping of the InSb nanowire resulting in hole-dominated transport in the nanowires is demonstrated by the fabrication of a p-channel nanowire field effect transistor. The hole concentration and field effect mobility are estimated to be ≈1.3 × 1017 cm-3 and 1000 cm2 V-1 s-1, respectively, at room temperature, values that are particularly attractive for the technological implications of utilizing p-InSb nanowires in CMOS electronics.

  15. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L.

    2016-09-01

    The pulsed laser deposition (PLD) technique is used to grow Al-doped ZnO (AZO) thin films at 500 ° C on silicon substrates under vacuum or oxygen gas background from ablating AZO nanoparticle targets synthesized via the sol-gel process. The structural, morphological and optical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) techniques. XRD and TEM images show that AZO powder has a wurtzite-type structure and is composed of small prismatic-like shape nanoparticles with an average size of 30nm. The structural properties of the AZO films grown under oxygen show no significant changes compared to those of the film grown under vacuum. However, the optical properties show a dependence on the growth conditions of the AZO films. Highly c -axis-oriented AZO thin films were obtained with grain size ˜ 15 nm. The stress in the AZO films is tensile as measured from the c -parameter. The dielectric function, the refractive index and the extinction coefficient as a function of the photon energy for the AZO films were determined by using spectroscopic ellipsometry measurements in the photon energy region from 1 to 6eV. The band gap energy was observed to slightly decrease in the presence of the O2 gas background and this may be attributed to the stress. The surface and volume energy loss functions are calculated and exhibit different behaviors in the energy range 1-6eV. Refractive indices of 1.9-2.1 in the visible region were obtained for the AZO films. Also, the electronic carrier concentration appears to be related to the presence of O2 during the growth process.

  16. Illumination effects on the ferroelectric properties of zinc oxide films grown by DC-unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kurniawan, R.; Willy, F.; Nurfani, E.; Muhammady, S.; Sutjahja, I. M.; Winata, T.; Darma, Y.

    2017-02-01

    We study the illumination effect on the ferroelectric properties of zinc oxide (ZnO) film grown by DC-unbalanced magnetron sputtering. We focus on the P–E hysteresis response of the as-grown ZnO (ag-ZnO) and annealed-ZnO (ann-ZnO) films under dark and light conditions. The measurement of ferroelectric properties is performed by driving a positive voltage on the top-side of the films. Under the dark condition, a strong P–E response is observable on the ann-ZnO film due to the structural enhancement. The value of electrical coercivity for ferroelectric polarization is strongly related to the light illumination. The illumination treatment changed the P–E hysteresis of the ZnO films from symmetric to asymmetric. We found that higher energy illumination promotes a higher electric coercivity. These results confirmed that ferroelectric properties could be effectively tailored by tuning the energy of the light source. This interrelated electrical and optical properties is an important phenomenon to design a new light-induced non-volatile device application.

  17. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect

    Roberts, Joel Glenn

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  18. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  19. Structure and defects of a linear chain polymer film; GeO phthalocyanine epitaxially grown on KC1

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takashi; Uyeda, Natsu

    1987-10-01

    Epitaxial film of GeO phthalocyanine polymer grown on KC1 has been investigated by direct observation of molecular images and electron diffraction. The film is composed of many crystallites oriented in two directions. The mechanism of the epitaxial growth of an organic crystal has been related to the determination of a staggering angle of the molecules stacked in polymer chains. Prominent diffuse scatterings have been observed and their origin has been revealed to be the existence of stacking faults in the crystal. The molecular orientation at the fault is discussed.

  20. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  1. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of “stirring” defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700 °C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  2. Anomalous Mn depth profiles for GaMnAs/GaAs(001) thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, J. F.; Thibado, P. M.; Awo-Affouda, C.; Ramos, F.; Labella, V. P.

    Mn concentration depth profiles in Mn-doped GaAs thin films grown at substrate temperatures of 580 and 250 {\\deg}C using various Mn cell temperatures have been investigated with dynamic secondary ion mass spectrometry and Auger electron spectroscopy. When the samples are grown at a low substrate temperature of 250 {\\deg}C, the Mn distributes uniformly. For the samples grown at a high substrate temperature of 580 {\\deg}C, the concentration depth profiles are easily fitted with a temperature-dependent Fermi function only if the Mn concentration is above the solubility limit. However, when the Mn concentration is below the solubility limit, unexpected peaks are observed in the concentration depth profiles.

  3. Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates

    SciTech Connect

    Vemuri, R. S.; Carbjal-Franco, G.; Ferrer, D. A.; Engelhard, Mark H.; Ramana, Chintalapalle V.

    2012-10-15

    Nanocrystalline WO3 films were grown by reactive magnetron sputter-deposition in a wide range of oxygen gas flow rates while keeping the deposition temperature fixed at 400 oC. The physical characteristics of WO3 films were evaluated using grazing incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) measurements. Physical characterization indicates that the thickness, grain size, and density of WO3 films are sensitive to the oxygen gas flow rate during deposition. XRD data indicates the formation of tetragonal WO3 films. The grain size increases from 21 to 25 nm with increasing oxygen gas flow rate to 65%, at which point the grain size exhibits a decreasing trend to attain the lowest value of 15 nm at 100% oxygen. TEM analysis provides a model consisting of isotropic WO3 film (nanocrystalline)-SiO2 interface (amorphous)-Si(100) substrate. XRR simulations, which are based on this model, provide excellent agreement to the experimental data indicating that the normalized thickness of WO3 films decreases with the increasing oxygen gas flow rate. The density of WO3 films increases with increasing oxygen gas flow rate.

  4. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    NASA Astrophysics Data System (ADS)

    Fedoseeva, Yu. V.; Pozdnyakov, G. A.; Okotrub, A. V.; Kanygin, M. A.; Nastaushev, Yu. V.; Vilkov, O. Y.; Bulusheva, L. G.

    2016-11-01

    Since amorphous oxygenated hydrocarbon (COxHy) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of COxHy films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the COxHy films, deposited at 300 and 500 °C, were mainly composed of the sp2-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  5. Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Vinod; Purohit, L. P.; Swart, H. C.; Kroon, R. E.

    2016-10-01

    Zinc sulphide (ZnS) films are of great importance for applications in various optoelectronic devices. ZnS thin films were grown on glass, indium tin oxide (ITO) and Corning glass substrates by radio-frequency magnetron sputtering at a temperature of 373 K and a comparative study of the structural, optical and electrical properties was performed using X-ray diffraction (XRD), scanning electron microscopy, optical and current-voltage (I-V) measurements. The XRD patterns showed that the sputtered thin films exhibited good crystallinity with the (111) peak around 2θ=28.3° indicating preferential orientation of the cubic structure. The maximum strain and most densely packed grains were obtained for the Corning glass substrate. The transmittance spectra of the films were measured in the wavelength range from 200 to 800 nm, showing that the films are about 77% transparent in the visible region. A slight change of 3.50 eV to 3.54 eV was found for the bandgap of the films deposited on different substrates. The ZnS thin films deposited on Corning glass show better crystallinity, morphology and I-V characteristics than that deposited on ordinary glass and ITO substrates.

  6. Magnetorefractive effect in the La1-xKxMnO3 thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Bessonov, V. D.; Gan'shina, E. A.; Kaul', A. R.; Korsakov, I. E.; Perov, N. S.; Fetisov, L. Yu.; Yurasov, A. N.

    2014-10-01

    Thin epitaxial La1-хKхMnO3 films were grown using two-stage procedure. Influence of substitution of La3+ ions with K+ ions on the optical and electrical properties of La1-xKxMnO3 films (х=0.05, 0.10, 0.15 и 0.18) has been studied in detail. A noticeable magnetorefractive effect in the films under study was detected in the infrared range. Magnetorefractive effect as well as transverse magneto-optical Kerr effect and magnetoresistance have the maximum in optimally doped sample with x=0.18 corresponding to the highest Curie temperature. The experimental data for compositions close to optimally doped films are in good agreement with the data calculated in the framework of a theory developed for manganites. The resonance-like contribution to magnetoreflection spectra of manganite films has been observed in the vicinity of the phonon bands. It is shown that magnetic and charge inhomogeneities strongly influence on the magneto-optical effects in films. Thin films of La1-xKxMnO3 with the large values of Kerr and magnetorefractive effect are promising magneto-optical material in the infrared range.

  7. Stoichiometry of LaAlO3 films grown on SrTiO3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Chen, G.; Spanier, J. E.; Ghassemi, H.; Johnson, C. L.; Taheri, M. L.; Xi, X. X.

    2013-07-01

    We have studied the stoichiometry of epitaxial LaAlO3 thin films on SrTiO3 substrate grown by pulsed laser deposition as a function of laser energy density and oxygen pressure during the film growth. Both x-ray diffraction (θ-2θ scan and reciprocal space mapping) and transmission electron microscopy (geometric phase analysis) revealed a change of lattice constant in the film with the distance from the substrate. Combined with composition analysis using x-ray fluorescence we found that the nominal unit-cell volume expanded when the LaAlO3 film was La-rich, but remained near the bulk value when the film was La-poor or stoichiometric. La excess was found in all the films deposited in oxygen pressures lower than 10-2 Torr. We conclude that the discussion of LaAlO3/SrTiO3 interfacial properties should include the effects of cation off-stoichiometry in the LaAlO3 films when the deposition is conducted under low oxygen pressures.

  8. Effects of post-deposition annealing on the structure and magnetization of PLD grown yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Hossain, Z.; Budhani, R. C.

    2017-03-01

    We report on the recrystallization of 200 nm thick as-grown Yttrium Iron Garnet ( Y 3.4 Fe 4.6 O 12 ) films on the (111) face of gadolinium gallium garnet single crystals by post-deposition annealing. Epitaxial conversion of the as-grown microcrystalline yttrium iron garnet films was seen after annealing at 800 °C for more than 30 min both in ambient oxygen and in air. The as-grown oxygen annealed samples at 800 °C for 60 min crystallize epitaxially and show excellent figure-of-merit for saturation magnetization (MS = 3.3 μB/f.u., comparable to the bulk value) and coercivity (HC ˜ 1.1 Oe). The ambient air annealing at 800 °C with a very slow rate of cooling (2 °C/min) results in a double layer structure with a thicker unstrained epitaxial top layer having the MS and HC of 2.9 μB/f.u. and 0.12 Oe, respectively. The symmetric and asymmetric reciprocal space maps of both the samples reveal a locking of the in-plane lattice of the film to the in-plane lattice of the substrate, indicating a pseudomorphic growth. The residual stress calculated by the sin 2 ψ technique is compressive in nature. The lower layer in the air annealed sample is highly strained, whereas the top layer has negligible compressive stress.

  9. Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.

    2015-08-01

    Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.

  10. XPS Depth Profile Analysis of Zn3N2 Thin Films Grown at Different N2/Ar Gas Flow Rates by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Haider, M. Baseer

    2017-01-01

    Zinc nitride thin films were grown on fused silica substrates at 300 °C by radio frequency magnetron sputtering. Films were grown at different N2/Ar flow rate ratios of 0.20, 0.40, 0.60, 0.80, and 1.0. All the samples have grain-like surface morphology with an average surface roughness ranging from 4 to 5 nm and an average grain size ranging from 13 to16 nm. Zn3N2 samples grown at lower N2/Ar ratio are polycrystalline with secondary phases of ZnO present, whereas at higher N2/Ar ratio, no ZnO phases were found. Highly aligned films were achieved at N2/Ar ratio of 0.60. Hall effect measurements reveal that films are n-type semiconductors, and the highest carrier concentration and Hall mobility was achieved for the films grown at N2/Ar ratio of 0.60. X-ray photoelectron study was performed to confirm the formation of Zn-N bonds and to study the presence of different species in the film. Depth profile XPS analyses of the films reveal that there is less nitrogen in the bulk of the film compared to the nitrogen on the surface of the film whereas more oxygen is present in the bulk of the films possibly occupying the nitrogen vacancies.

  11. XPS Depth Profile Analysis of Zn3N2 Thin Films Grown at Different N2/Ar Gas Flow Rates by RF Magnetron Sputtering.

    PubMed

    Haider, M Baseer

    2017-12-01

    Zinc nitride thin films were grown on fused silica substrates at 300 °C by radio frequency magnetron sputtering. Films were grown at different N2/Ar flow rate ratios of 0.20, 0.40, 0.60, 0.80, and 1.0. All the samples have grain-like surface morphology with an average surface roughness ranging from 4 to 5 nm and an average grain size ranging from 13 to16 nm. Zn3N2 samples grown at lower N2/Ar ratio are polycrystalline with secondary phases of ZnO present, whereas at higher N2/Ar ratio, no ZnO phases were found. Highly aligned films were achieved at N2/Ar ratio of 0.60. Hall effect measurements reveal that films are n-type semiconductors, and the highest carrier concentration and Hall mobility was achieved for the films grown at N2/Ar ratio of 0.60. X-ray photoelectron study was performed to confirm the formation of Zn-N bonds and to study the presence of different species in the film. Depth profile XPS analyses of the films reveal that there is less nitrogen in the bulk of the film compared to the nitrogen on the surface of the film whereas more oxygen is present in the bulk of the films possibly occupying the nitrogen vacancies.

  12. Semiconductor-insulator transition in VO{sub 2} (B) thin films grown by pulsed laser deposition

    SciTech Connect

    Rúa, Armando; Díaz, Ramón D.; Lysenko, Sergiy; Fernández, Félix E.

    2015-09-28

    Thin films of B-phase VO{sub 2} were grown by pulsed-laser deposition on glass and (100)-cut MgO substrates in a temperature range from 375 to 425 °C and at higher gas pressures than usual for this technique. The films were strongly oriented, with ab-planes parallel to the substrate surface. Detailed study of surface morphology through Atomic Force Microscopy images suggest significant differences in evolution as a function of growth temperature for films on the two types of substrates. Measurements of electrical conductivities through cooling-heating cycles from room temperature to 120 K showed changes of five orders of magnitude, with steeper changes between room temperature and ∼150 K, which corresponds with the extended and reversible phase transition known to occur for this material. At lower temperatures conductivities exhibited Arrhenius behavior, indicating that no further structural change was occurring and that conduction is thermally activated. In this lower temperature range, conductivity of the samples can be described by the near-neighbor hopping model. No hysteresis was found between the cooling and heating braches of the cycles, which is at variance with previous results published for VO{sub 2} (B). This apparent lack of hysteresis for thin films grown in the manner described and the large conductivity variation as a function of temperature observed for the samples suggests this material could be of interest for infrared sensing applications.

  13. KCl ultra-thin films with polar and non-polar surfaces grown on Si(111)7 × 7

    PubMed Central

    Beinik, Igor; Barth, Clemens; Hanbücken, Margrit; Masson, Laurence

    2015-01-01

    The growth of ultra-thin KCl films on the Si(111)7 × 7 reconstructed surface has been investigated as a function of KCl coverage and substrate temperature. The structure and morphology of the films were characterized by means of scanning tunneling microscopy (STM) under ultra-high vacuum (UHV) conditions. Detailed analysis of the atomically resolved STM images of islands grown at room and high temperatures (400 K–430 K) revealed the presence of KCl(001) and KCl(111) islands with the ratio between both structures depending on the growth temperature. At room temperature, the growth of the first layer, which covers the initial Si(111)7 × 7 surface, contains double/triple atomic layers of KCl(001) with a small fraction of KCl(111) islands. The high temperature growth promotes the appearance of large KCl(111) areas, which are built up by three atomic layers. At room and high temperatures, flat and atomically well-defined ultra-thin KCl films can be grown on the Si(111)7 × 7 substrate. The formation of the above mentioned (111) polar films is interpreted as a result of the thermally activated dissociative adsorption of KCl molecules on Si(111)7 × 7, which produces an excess of potassium on the Si surface. PMID:25650038

  14. Unpredicted surface termination of α-Fe2O3(0001) film grown by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Osaka, Shun; Kubo, Osamu; Takahashi, Kazuki; Oda, Masaya; Kaneko, Kentaro; Tabata, Hiroshi; Fujita, Shizuo; Katayama, Mitsuhiro

    2017-06-01

    We analyze the surface structure of an α-Fe2O3(0001) film grown on a c-plane sapphire substrate by mist chemical vapor deposition (CVD), which has been recently developed as a simple, safe, and cost-effective film growth method. Using coaxial impact-collision ion scattering spectroscopy, we found that the atomic-layer sequence of the surface termination of an α-Fe2O3(0001) film grown by mist CVD was Fe-O3-Fe- from the top layer. This surface termination is predicted to form in an oxygen-poor environment by density functional theory combined with a thermodynamical approach despite that the mist CVD process is performed with atmospheric-pressure air. The surface structure markedly changes after annealing above 600 °C in ultrahigh vacuum. We found that only a couple of layers from the top layer transform into Fe3O4(111) after 650 °C annealing, which would be so-called biphase reconstruction. Complete transformation into a Fe3O4(111) film occurs at 700 °C, whose atomic-layer sequence is determined to be Fe-O4-Fe3- from the top layer.

  15. Surface morphology and lattice misfit in YIG and La:YIG films grown by LPE method on GGG substrate

    SciTech Connect

    Choi, D.Y.; Chung, S.J.

    1998-12-31

    Y{sub 3}Fe{sub 5}O{sub 12}(YIG) and La-doped YIG films were grown on the (111) GGG substrate using the PbO-B{sub 2}O{sub 3} flux system. Pb, La incorporation and lattice misfit and annealing behaviors were studied. In the case of LPE growth of YIG film, lead ions from flux are substituted inevitably, and they play an important role in controlling film misfit. For a complete lattice matching, high supercooling is necessary in pure YIG growth, but this induces high defect concentration. In this experiment, La ions were added in the solution to sufficiently increase lattice parameter of the film grown under low supercooling. The concentration of substituted Pb and La were increased as the growth temperature was lowered and growth rate increased. The effective distribution coefficient of La was about 0.2 at a supercooling of 30 C. The optimum growth conditions which bring about very small misfit were determined by measuring the misfit by double crystal diffractometer. Strain distributions of pre-annealed and annealed samples were investigated by triple crystal diffractometer.

  16. Role of native defects in nitrogen flux dependent carrier concentration of InN films grown by molecular beam epitaxy

    SciTech Connect

    Tangi, Malleswararao; Kuyyalil, Jithesh; Shivaprasad, S. M.

    2012-10-01

    We address the carrier concentration, strain, and bandgap issue of InN films grown on c-sapphire at different N-flux by molecular beam epitaxy using x-ray diffraction and x-ray photoelectron spectroscopy. We demonstrate that the strain in InN films arises due to point defects like nitrogen interstitials and nitrogen antisites. We report minimal biaxial strain due to relaxed growth morphology and a minimal hydrostatic strain arising due to interstitial nitrogen atoms being partially compensated by nitrogen antisites. We find that the variation in absorption edge can be attributed to defect induced carrier concentration and that nitrogen interstitials and nitrogen antisites act as donors that yield the respective absorption edge and Moss-Burstein shift. Our studies are a step towards the ability to form low carrier concentration strain-relaxed films and to determine the intrinsic band gap value for this technologically important material.

  17. Light emission and magnetic properties of aluminum films grown on SrTiO3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-01

    Aluminum films were grown on SrTiO3 (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO3. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO3 matrix. This work is valuable in developing SrTiO3 which is a promising material used in optical and magnetic related application.

  18. Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moon, Tae-Hyoung; Ham, Moon-Ho; Myoung, Jae-Min

    2005-03-01

    We present the annealing effects on nanochemistry and electrical properties in HfO2 dielectrics grown by metalorganic molecular-beam epitaxy. After the postannealing treatment of HfO2 films in the temperature range of 600-800°C, the thicknesses and chemical states of the films were examined by high-resolution transmission electron microscopy and angle-resolved x-ray photoelectron spectroscopy. By comparing the line shapes of core-level spectra for the samples with different annealing temperatures, the concentrations of SiO and Hf-silicate with high dielectric constant are found to be highest for HfO2 film annealed at 700°C. This result supports that the accumulation capacitance of the sample annealed at 700°C is not deteriorated in spite of a steep increase in interfacial layer thickness compared with that of the sample annealed at 600°C.

  19. Effects of nitrogen on the growth and optical properties of ZnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cui, J. B.; Thomas, M. A.; Soo, Y. C.; Kandel, H.; Chen, T. P.

    2009-08-01

    ZnO thin films were grown using pulsed laser deposition by ablating a Zn target in various mixtures of O2 and N2. The presence of N2 during deposition was found to affect the growth of the ZnO thin films and their optical properties. Small N2 concentrations during growth led to strong acceptor-related photoluminescence (PL), while larger concentrations affected both the intensity and temperature dependence of the emission peaks. In addition, the PL properties of the annealed ZnO thin films are associated with the N2 concentration during their growth. The possible role of nitrogen in ZnO growth and annealing is discussed.

  20. On the radiation hardness of (Mg,Zn)O thin films grown by pulsed-laser deposition

    SciTech Connect

    Schmidt, Florian; Wenckstern, Holger von; Spemann, Daniel; Grundmann, Marius

    2012-07-02

    We report on electrical properties and the generation of the E4 defect in pulsed-laser deposited Mg{sub x}Zn{sub 1-x}O thin films irradiated with 2.25 MeV protons. Whereas the electrical properties of the Schottky diodes as well as the net doping density of the samples did not change due to irradiation, the concentration of the E4 defect increased proportional to the applied dose as revealed by deep level transient spectroscopy. The generation rate {eta}, is for binary ZnO thin films about 40 cm{sup -1}, a factor of 3 higher than in melt-grown single crystals, and increases to about 100 cm{sup -1} for the Mg-alloyed thin films.

  1. Morphology of TiN thin films grown on MgO(001) by reactive dc magnetron sputtering

    SciTech Connect

    Ingason, A. S.; Magnus, F.; Olafsson, S.; Gudmundsson, J. T.

    2010-07-15

    Thin TiN films were grown by reactive dc magnetron sputtering on single-crystalline MgO(001) substrates at a range of temperatures from room temperature to 600 deg. C. Structural characterization was carried out using x-ray diffraction and reflection methods. TiN films grow epitaxially on the MgO substrates at growth temperatures of 200 deg. C and above. The crystal coherence length determined from Laue oscillations and the Scherrer method agrees with x-ray reflection thickness measurements to 6% and within 3% for growth temperatures of 200 and 600 deg. C, respectively. For lower growth temperatures the films are polycrystalline but highly textured and porous.

  2. AlN thin films grown on epitaxial 3C-SiC (100) for piezoelectric resonant devices

    SciTech Connect

    Lin, Chih-Ming; Senesky, Debbie G.; Pisano, Albert P.; Lien, Wei-Cheng; Felmetsger, Valery V.; Hopcroft, Matthew A.

    2010-10-04

    Highly c-axis oriented heteroepitaxial aluminum nitride (AlN) films were grown on epitaxial cubic silicon carbide (3C-SiC) layers on Si (100) substrates using alternating current reactive magnetron sputtering at temperatures between approximately 300-450 deg. C. The AlN films were characterized by x-ray diffraction, scanning electron microscope, and transmission electron microscopy. A two-port surface acoustic wave device was fabricated on the AlN/3C-SiC/Si composite structure, and an expected Rayleigh mode exhibited a high acoustic velocity of 5200 m/s. The results demonstrate the potential of utilizing AlN films on epitaxial 3C-SiC layers to create piezoelectric resonant devices.

  3. The depth-profiled carrier concentration and scattering mechanism in undoped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.; Wei, Z. F.; Xu, S. J.; Zhi, C. Y.

    2004-07-01

    Temperature-dependent Hall (TDH) measurements and confocal micro-Raman spectroscopy have been used to study the free carrier spatial distribution and scattering mechanism in unintentionally doped GaN film grown on the sapphire substrate with the method of metalorganic chemical vapor deposition. Both the TDH data and the depth-profiled Raman spectra agreed with the existence of a nonuniform spatial distribution of free carriers in the GaN film with a highly conductive layer of ˜1 μm thickness near the GaN sapphire boundary. With the consideration of this parallel conduction channel adjacent to GaN sapphire boundary, detailed analysis of the TDH mobility data suggests that a relatively high concentration of nitrogen vacancies exists and nitrogen vacancy scattering has an important influence on limiting the electron mobility in the bulk film of the present GaN sample.

  4. Dislocation densities reduction in MBE-grown AlN thin films by high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Nemoz, Maud; Dagher, Roy; Matta, Samuel; Michon, Adrien; Vennéguès, Philippe; Brault, Julien

    2017-03-01

    AlN thin films, grown on (0001) sapphire substrates by molecular beam epitaxy (MBE), were annealed at high temperature (up to 1650 °C) in flowing N2. X-ray diffraction (XRD) studies, combined with Williamson-Hall and Srikant plots, have shown that annealing leads to a strong reduction of both edge and mixed threading dislocation densities, as confirmed by transmission electron microscopy (TEM) images, up to 75%. Moreover, it is found that annealing at high temperatures allows the relaxation of the tensile strain in the AlN film due to the growth process. In addition, the morphological properties of the films were determined by atomic force microscopy (AFM) and show that the annealing conditions have a strong impact on the surface morphology and roughness. Finally, an annealing at 1550 °C for 20 min appears as an ideal tradeoff to enhance the structural properties while preserving the initial AlN surface morphology.

  5. High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target.

    PubMed

    Shen, Kun-Ching; Wang, Tzu-Yu; Wuu, Dong-Sing; Horng, Ray-Hua

    2012-07-02

    High indium compositions InGaN films were grown on sapphires using low temperature pulse laser deposition (PLD) with a dual-compositing target. This target was used to overcome the obstacle in the InGaN growth by PLD due to the difficulty of target preparation, and provided a co-deposition reaction, where InGaN grains generated from the indium and GaN vapors deposit on sapphire surface and then act as nucleation seeds to promote further InGaN growth. The effects of co-deposition on growth mechanisms, surface morphology, and electrical properties of films were thoroughly investigated and the results clearly show promise for the development of high indium InGaN films using PLD technique with dual-compositing targets.

  6. Microstructural Properties of NC-Si/SiO2 Films IN SITU Grown by Reactive Magnetron Co-Sputtering

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Guo, Shaogang; Wang, Jiantao; Li, Yun; Wang, Xinzhan; Yu, Gengxi; Fan, Shanshan; Fu, Guangsheng

    2012-01-01

    Nanocrystalline silicon embedded in silicon oxide (nc-Si/SiO2) films have been in situ grown at a low substrate temperature of 300°C by reactive magnetron co-sputtering of Si and SiO2 targets in a mixed Ar/H2 discharge. The influences of H2 flow rate (FH) on the microstructural properties of the deposited nc-Si/SiO2 films were investigated. The results of XRD and the deposition rate of nc-Si/SiO2 films show that the introduction of H2 contributes to the growth of nc-Si grains in silicon oxide matrix. With further increasing FH, the average size of nc-Si grains increases and the deposition rate of nc-Si/SiO2 films decreases gradually. Fourier transform infrared spectra analyses reveal that introduction of hydrogen contributes to the phase separation of nc-Si and SiOx in the deposited films. Moreover, the Si-O4-nSin(n = 0, 1) concentration of the deposited nc-Si/SiO2 films reduces with the increase of FH, while that of Si-O4-nSin(n = 2, 3) concentration increases. These results can be explained by that active hydrogen atoms increase the probability of reducing oxygen from precursor in the plasma and prompting oxygen desorption from the growing surface. This low-temperature procedure for preparing nc-Si/SiO2 films opens up the possibility of fabricating the silicon-based thin-film solar cells onto low-cost glass substrates using nc-Si/SiO2 films.

  7. Status of ferrite technology for high volume microwave applications

    SciTech Connect

    Webb, D.C.

    1995-08-01

    With the emergence of high volume commercial and military applications, there is a growing need to reduce the size and cost of microwave ferrite components, especially ferrite circulators, to be more compatible with monolithic integrated circuits. The Ferrite Development Consortium, consisting of leading US ferrite government, university and industrial institutions, was formed under Advanced Research Project Agency (ARPA) sponsorship to address these needs. Areas of Consortium technical activity include bulk and thick-film techniques for batch processing of ferrite devices, improved computer-aided-design tools and protype demonstrations. This paper will review the Consortium`s materials development needs and progress.

  8. Stabilization of scandium rich spinel ferrite CoFe{sub 2−x}Sc{sub x}O{sub 4} (x≤1) in thin films

    SciTech Connect

    Lefevre, Christophe Roulland, François; Thomasson, Alexandre; Autissier, Emmanuel; Leuvrey, Cédric; Barre, Sophie; Versini, Gilles; Viart, Nathalie; Pourroy, Geneviève

    2015-12-15

    Scandium rich cobalt ferrites Co{sub y}Fe{sub 3−x−y}Sc{sub x}O{sub 4} with y~1 never obtained in bulk could be stabilized in pulsed laser deposited thin films. Scandium contents of up to x=1 are reached. The cell parameter increases versus x as awaited when considering the size of scandium. It is equal to 0.8620 nm for x=1, significantly higher than that of CoFe{sub 2}O{sub 4} (0.8396 nm). The lattice mismatch between the MgO (100) substrate and the scandium-containing spinel leads to an increased roughness. Cobalt is displaced from the octahedral site by Sc and mainly occupies the tetrahedral sites for high x values. - Graphical abstract: Magnification of the XRD patterns recorded on thin films of CoFe{sub 2-x}Sc{sub x}O{sub 4} for x=0, 0.45, 1 and 1.2, the arrows denote the (004) and (008) diffraction lines of the spinel phase.

  9. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    SciTech Connect

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; Dindar, Amir; Fuentes-Hernandez, Canek; Kim, Hyungchul; Cullen, David A.; Kippelen, Bernard; Graham, Samuel

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  10. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    NASA Astrophysics Data System (ADS)

    Bulusu, A.; Singh, A.; Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kim, H.; Cullen, D.; Kippelen, B.; Graham, S.

    2015-08-01

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  11. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Terasaki, I.; Karppinen, M.

    2016-11-01

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  12. Magnetic properties of Sm-Co thin films grown on MgO(100) deposited from a single alloy target

    SciTech Connect

    Verhagen, T. G. A.; Boltje, D. B.; Ruitenbeek, J. M. van; Aarts, J.

    2014-08-07

    We have grown epitaxial Sm-Co thin films by sputter deposition from a single alloy target with a nominal SmCo{sub 5} composition on Cr(100)-buffered MgO(100) single-crystal substrates. By varying the Ar gas pressure, we can change the composition of the film from a SmCo{sub 5}-like to a Sm{sub 2}Co{sub 7}-like phase. The composition, crystal structure, morphology, and magnetic properties of these films have been determined using Rutherford Backscattering, X-ray diffraction, and magnetization measurements. We find that we can grow films with, at room temperature, coercive fields as high as 3.3 T, but with a remanent magnetization which is lower than can be expected from the texturing. This appears to be due to the Sm content of the films, which is higher than expected from the content of the target, even at the lowest possible sputtering pressures. Moreover, we find relatively large variations of film properties using targets of nominally the same composition. At low temperatures, the coercive fields increase, as expected for these hard magnets, but in the magnetization, we observe a strong background signal from the paramagnetic impurities in the MgO substrates.

  13. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2005-10-31

    Using a dual molecular-beam epitaxy (MBE)-pulsed laser deposition (PLD) ultrahigh vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along the <100> directions; the film roughness and mound separation increase with film thickness. In PLD with high kinetic energy, well-defined pyramidal mounds are not observed and the morphology rather resembles that of an ion-etched Ge(001) surface. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. We attribute these differences to the higher yield of defect generation by energetic species in PLD.

  14. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    SciTech Connect

    Sokolov, N. S. Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  15. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    DOE PAGES

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less

  16. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    SciTech Connect

    Bulusu, A.; Singh, A.; Kim, H.; Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kippelen, B.; Cullen, D.; Graham, S.

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al{sub 2}O{sub 3})/hafnium oxide (HfO{sub 2}) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiN{sub x} layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  17. Measuring the electronic structure of atomically uniform silver films grown on silicon using angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Speer, Nathan James

    Electronic structures derived from Valence electrons in thin films and at surfaces are often much different from those of their bulk counter parts. When the film thickness is less than the electron-coherence length, the boundary conditions at the surface and interface can give rise to standing-wave-like quantum-well states. Electrons in these states are often described as particles in a box. Confinement in the perpendicular direction gives rise to a quantized band structure along the same direction, where the energy spacing is determined by the film thickness. Changing the film by a single atomic layer can cause properties derived from the band structure to vary like ˜ 1/N , where N is the number of monolayers. Recent advances in thin film techniques have made it possible to fabricate films with atomically uniform thickness. Because the electronic structure is a function of film thickness, such techniques are crucial to efforts for a comprehensive understanding of thin films. In this thesis, the electronic properties of atomically uniform Ag films grown on Si(111) substrates are studied using angle-resolved photoemission spectroscopy (ARPES). Using molecular beam epitaxy (MBE) deposition at low temperatures, we are able to fabricate atomically uniform, ultra-thin Ag films on Si substrates for the first time, and the electronic structures are measured using ARPES. The electrons in these uniform film systems have very long coherence lengths and occupy standing-wave-like quantum-well states that propagate through the film and, surprisingly, can reach deep into the substrate despite a lattice mismatched, incommensurate interface. This interaction with the substrate is so strong that it can produce an electronic interference pattern in the photoemission spectra. As the film thickness increases, the electronic structure evolves to form the bulk band continuum plus separates surfaces states. A careful analysis of this evolution allows us to separate surface from bulk

  18. Epitaxial Hexagonal Ferrites for Millimeter Wave Tunable Filters.

    DTIC Science & Technology

    1982-12-13

    anisotropy fields which, in effect, provide built-in biasing. The result is that ferrite components, similar to those used in microwave systems, can operate... method for growing hexagonal ferrites in the form of single crystal layers on non-magnetic, trAnsparmat subsrates - . The LPE method circumvents... method , single crystal hexagonal ferrites which are superior in quality to those grown by conventional methods . In order to have a more specific goal

  19. Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering

    NASA Astrophysics Data System (ADS)

    Martínez, F. L.; Toledano-Luque, M.; Gandía, J. J.; Cárabe, J.; Bohne, W.; Röhrich, J.; Strub, E.; Mártil, I.

    2007-09-01

    Thin films of hafnium oxide (HfO2) have been grown by high pressure reactive sputtering on transparent quartz substrates (UV-grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants (refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy-ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law (indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films (amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot (the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i.e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries.

  20. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  1. Structural and optical characteristics of the hexagonal ZnO films grown on cubic MgO (001) substrates.

    PubMed

    Shen, Xiangqian; Zhou, Hua; Li, Yaping; Kang, Junyong; Zheng, Jin-Cheng; Ke, Shanming; Wang, Qingkang; Wang, Hui-Qiong

    2016-11-01

    In this Letter, we report on the structural and optical characteristics of ZnO films with a wurtzite structure grown on MgO (001) substrates with cubic structures. The ZnO films were prepared through the molecular beam epitaxy method, and growth orientation transformation from [0001] to [10-10] direction was observed with the change of growth temperature and thickness. The x-ray diffraction pole figures and in situ RHEED patterns demonstrated that the rotational relationship among grains within the ZnO films appeared in a typical two-fold rotation of about 30° for the [0001] growth orientation and four-fold rotation of about 30° or 60° for the [10-10] growth orientation, respectively. Last, we investigated their optical properties through measuring the transmission and photoluminescence spectra of the ZnO films, which showed the bulk-like bandgap feature of the ZnO films in spite of the existing growth orientation transformation.

  2. Band dispersion near the Fermi level for VO2 thin films grown on TiO2 (001) substrates

    NASA Astrophysics Data System (ADS)

    Saeki, K.; Wakita, T.; Muraoka, Y.; Hirai, M.; Yokoya, T.; Eguchi, R.; Shin, S.

    2009-09-01

    We have performed angle-resolved photoemission spectroscopy (ARPES) measurements of VO2 using epitaxial thin films and observed the band dispersion near the Fermi level (EF) for this compound. The VO2 thin films have been grown on TiO2 (001) single-crystal substrates using pulsed laser deposition. The films exhibit a first-order metal-insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O2p band shows highly dispersive features in the binding-energy range of 3-8 eV along the Γ-Z direction. Also, the V3d state shows two dispersive bands around the Γ point near EF , indicative of two electron pockets centered at the Γ point. Both electron pockets have an occupied bandwidth of about 0.4 eV. Assuming the parabolic energy bands around the Γ point, the effective-mass ratios of the two electron pockets are estimated to be about 0.2 and 1. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO2 and thus would play a crucial role to elucidate the mechanism of the MIT in VO2 .

  3. Thickness-Dependent Properties of YBCO Films Grown on GZO/CLO-Buffered NiW Substrates

    NASA Astrophysics Data System (ADS)

    Malmivirta, M.; Huhtinen, H.; Zhao, Y.; Grivel, J.-C.; Paturi, P.

    2017-01-01

    To study the role of novel Gd_2Zr_2O_7/Ce_{0.9}La_{0.1}O_2 buffer layer structure on a biaxially textured NiW substrate, a set of YBa_2Cu_3O_{7-δ } (YBCO) films with different thicknesses were prepared by pulsed laser deposition (PLD). Interface imperfections as well as thickness-dependent structural properties were observed in the YBCO thin films. The structure is also reflected into the improved superconducting properties with the highest critical current densities in films with intermediate thicknesses. Therefore, it can be concluded that the existing buffer layers need more optimization before they can be successfully used for films with various thicknesses. This issue is linked to the extremely susceptible growth method of PLD when compared to the commonly used chemical deposition methods. Nevertheless, PLD-grown films can give a hint on what to concentrate to be able to further improve the buffer layer structures for future coated conductor technologies.

  4. Optical and electrical properties of high-quality Ti2O3 epitaxial film grown on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Fan, Haibo; Wang, Mingzi; Yang, Zhou; Ren, Xianpei; Yin, Mingli; Liu, Shengzhong

    2016-11-01

    Epitaxial film of Ti2O3 with high crystalline quality was grown on Al2O3 substrate by pulsed laser deposition process using a powder-pressed TiO2 target in active O2 flow. X-ray diffraction clearly reveals the (0006) crystalline Ti2O3 orientation and its (10overline{1} 0)_{{{{Ti}}_{ 2} {{O}}_{ 3} }} ||(10overline{1} 0)_{{sapphire}} in-plane epitaxial relationship with the substrate. Scanning electron microscopy images show that the film grew uniformly on the substrate with a Volmer-Weber mode. High-resolution transmission electron microscopy and selected area electron diffraction further confirm the high crystalline quality of the film. Transmittance spectrum shows that the Ti2O3 film is highly transparent in 400-800 nm with the optical band gap estimated to be 3.53 eV by Tauc plot. The temperature-dependent Hall effect measurement indicates that the Ti2O3 film appears to be n-type semiconductor with carrier concentration, mobility, and resistivity showing typical temperature-dependent behavior. The donor ionization energy was estimated to be 83.6 meV by linear relationship of conductivity versus temperature.

  5. Thickness-Dependent Permanent Magnet Properties of Zr2 Co_{11} Thin Films Grown on Si with Pt Underlayer

    NASA Astrophysics Data System (ADS)

    Yüzüak, Gizem Durak; Yüzüak, Ercüment; Teichert, Niclas; Hütten, Andreas; Elerman, Yalçın

    2017-03-01

    Zr-Co is one of the essential magnetic materials due to its interesting magnetic and structural properties. In this work, we studied the magnetic and structural properties of Zr2 Co_{11} thin films of different thicknesses grown on Si substrate with Pt underlayer. The structural properties and chemical composition of the Zr2 Co_{11} films were investigated by X-ray diffraction analysis, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) analysis, and atomic force microscopy-magnetic force microscopy measurements. The saturation magnetization, M(H) characteristic, and Henkel plots of the Zr-Co films were obtained by vibrating-sample magnetometry. The results show that H_{c} and (BH)_{\\max } were enhanced with decreasing layer thickness of Zr-Co. For 10-nm Zr2 Co_{11} with 20-nm Pt underlayer thin film, we observed coercive field of 2 kOe with energy product of 0.7 MGOe. Our results may be valuable for use of Zr2 Co_{11} thin films in nanomagnet applications.

  6. Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazra, D.; Tsavdaris, N.; Jebari, S.; Grimm, A.; Blanchet, F.; Mercier, F.; Blanquet, E.; Chapelier, C.; Hofheinz, M.

    2016-10-01

    Niobium nitride (NbN) is widely used in high-frequency superconducting electronics circuits because it has one of the highest superconducting transition temperatures ({T}{{c}}˜ 16.5 {{K}}) and largest gap among conventional superconductors. In its thin-film form, the T c of NbN is very sensitive to growth conditions and it still remains a challenge to grow NbN thin films (below 50 nm) with high T c. Here, we report on the superconducting properties of NbN thin films grown by high-temperature chemical vapor deposition (HTCVD). Transport measurements reveal significantly lower disorder than previously reported, characterized by a Ioffe-Regel parameter ({k}{{F}}{\\ell }) ˜ 12. Accordingly we observe {T}{{c}}˜ 17.06 {{K}} (point of 50% of normal state resistance), the highest value reported so far for films of thickness 50 nm or less, indicating that HTCVD could be particularly useful for growing high quality NbN thin films.

  7. Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Arredondo, C. A.; Vallejo, W.

    2016-03-01

    This work presents the results of synthesis and characterization of polycrystalline n-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity (σ) was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and σ versus T measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap (Eg) of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

  8. Injection of holes from the silicon substrate in Ta{sub 2}O{sub 5} films grown on silicon

    SciTech Connect

    Novkovski, N.; Atanassova, E.

    2004-10-11

    In this paper a compact model for leakage currents of metal/Ta{sub 2}O{sub 5}/SiO{sub 2}/Si structures is presented, considering tunneling and hopping conduction in a SiO{sub 2} layer and Poole-Frenkel emission in a Ta{sub 2}O{sub 5} layer. Theoretical calculations fit very well the experimental results obtained on thermally grown Ta{sub 2}O{sub 5} films over an unintentionally grown ultrathin SiO{sub 2} layer for both bias polarities. The following parameters were fitted: the SiO{sub 2} layer thickness, the hopping conductivity of a SiO{sub 2} layer, and the Poole-Frenkel defect-related constant. Experimentally observed asymmetry between different polarities was explained by the injection of holes from the silicon substrate at negative bias.

  9. Strain in epitaxial high-index Bi2Se3(221) films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Weiguang; Guo, Xin; Ho, Wingkin; Dai, Xianqi; Jia, Jinfeng; Xie, Maohai

    2017-02-01

    High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  10. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth

    NASA Astrophysics Data System (ADS)

    Kuramata, Akito; Koshi, Kimiyoshi; Watanabe, Shinya; Yamaoka, Yu; Masui, Takekazu; Yamakoshi, Shigenobu

    2016-12-01

    β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process and the floating zone process. Semiconductor substrates containing no twin boundaries with sizes up to 4 in. in diameter were fabricated. It was found that Si was the main residual impurity in the EFG-grown crystals and that the effective donor concentration (N d - N a) of unintentionally doped crystals was governed by the Si concentration. Intentional n-type doping was shown to be possible. An etch pit observation revealed that the dislocation density was on the order of 103 cm-3. N d - N a for the samples annealed in nitrogen ambient was almost the same as the Si concentration, while for the samples annealed in oxygen ambient, it was around 1 × 1017 cm-3 and independent of the Si concentration.

  11. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    SciTech Connect

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  12. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  13. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    SciTech Connect

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y.; Amin, N.

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  14. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E.; Bellarmine, F.; Ramanjaneyulu, M.; Lamberti, Carlo; Ramachandra Rao, M. S.

    2013-09-01

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni0 nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  15. Compositional inhomogeneities in AlGaN thin films grown by molecular beam epitaxy: Effect on MSM UV photodetectors

    NASA Astrophysics Data System (ADS)

    Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.

    2016-10-01

    Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal

  16. Elastically strained and relaxed La0.67Ca0.33MnO3 films grown on lanthanum aluminate substrates with different orientations

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Serenkov, I. T.; Sakharov, V. I.; Claeson, T.

    2016-12-01

    Structure of 40-nm thick La0.67Ca0.33MnO3 (LCMO) films grown by laser evaporation on (001) and (110) LaAlO3 (LAO) substrates has been investigated using the methods of medium-energy ion scattering and X-ray diffraction. The grown manganite layers are under lateral biaxial compressive mechanical stresses. When (110)LAO wafers are used as the substrates, stresses relax to a great extent; the relaxation is accompanied by the formation of defects in a (3-4)-nm thick manganite-film interlayer adjacent to the LCMO-(110)LAO interface. When studying the structure of the grown layers, their electro- and magnetotransport parameters have been measured. The electroresistance of the LCMO films grown on the substrates of both types reached a maximum at temperature T M of about 250 K. At temperatures close to T M magnetoresistance of the LCMO/(110)LAO films exceeds that of the LCMO/(001)LAO films by 20-30%; however, the situation is inverse at low temperatures ( T < 150 K). At T < T M , the magnetotransport in the grown manganite films significantly depends on the spin ordering in ferromagnetic domains, which increase with a decrease in temperature.

  17. X-ray analysis of strain distribution in two-step grown epitaxial SrTiO{sub 3} thin films

    SciTech Connect

    Panomsuwan, Gasidit E-mail: g.panomsuwan@gmail.com; Takai, Osamu; Saito, Nagahiro

    2014-08-04

    Epitaxial SrTiO{sub 3} (STO) thin films were grown on (001)-oriented LaAlO{sub 3} (LAO) substrates using a two-step growth method by ion beam sputter deposition. An STO buffer layer was initially grown on the LAO substrate at a low temperature of 150 °C prior to growing the STO main layer at 750 °C. The thickness of the STO buffer layer was varied at 3, 6, and 10 nm, while the total film thickness was kept constant at approximately 110 nm. According to x-ray structural analysis, we show that the STO buffer layer plays an essential role in controlling the strain in the STO layer grown subsequently. It is found that the strains in the STO films are more relaxed with an increase in buffer layer thickness. Moreover, the strain distribution in two-step grown STO films becomes more homogeneous across the film thickness when compared to that in directly grown STO film.

  18. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    SciTech Connect

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-10

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm{sup 2} has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  19. Electron traps as major recombination centers in n-GaN films grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, In-Hwan; Polyakov, Alexander Y.; Smirnov, Nikolai B.; Yakimov, Eugene B.; Tarelkin, Sergey A.; Turutin, Andery V.; Shemerov, Ivan V.; Pearton, Stephen J.

    2016-06-01

    For a group of n-GaN films grown by metalorganic chemical vapor deposition (MOCVD) using both straight MOCVD and epitaxial lateral overgrowth techniques (ELOG proper or pendeo overgrowth), the spectra of deep traps were measured by deep-level transient spectroscopy (DLTS) with electrical or optical injection (ODLTS). The results were compared with diffusion length measurement results obtained from electron-beam-induced current experiments. The results strongly indicate that deep electron traps near E c - 0.56 eV could be the major recombination centers determining the diffusion length values in pendeo samples.

  20. The Effects of Substrate Surface Treatments on the Defect Incorporation in Hydride VPE Grown InGaAs Films.

    DTIC Science & Technology

    1984-01-05

    AD-RI37 488 THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE i/i DEFECT INCORPORATION I..(U) COLORADO STATEUUIIV FORT COLLINS DEPT OF ELECTRICAL...WA n 11111125 liii411.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STNA-19- THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE qDEFECT...b.) in HCI (37.5x) ---------- 12 4. InP films grown on a substrate bathed in PH3 (left) and b.) a substrate etched in HCl (right

  1. Post-annealing effects on ZnS thin films grown by using the CBD method

    NASA Astrophysics Data System (ADS)

    Ahn, Heejin; Um, Youngho

    2015-09-01

    Herein, the structural, morphological, and optical properties of zinc sulfide (ZnS) thin films deposited via the chemical bath deposition method are reported. These films were deposited on soda-lime glass (SLG) substrates by using ZnSO4, thiourea, and 25% ammonia at 90 °C. The effect of changing the annealing temperature from 100 °C to 300 °C on the properties of the ZnS thin films was investigated. X-ray diffraction (XRD) patterns showed that the ZnS thin film annealed at 100 °C had an amorphous structure; however, as the annealing temperature was increased, the crystalline quality of the thin film was enhanced. Moreover, transmission measurements showed that the optical transmittance was about 80% for wavelengths above 500 nm. The band gap energy (E g ) value of the film annealed at 300 °C was decreased to about 3.82 eV.

  2. Nanostructured and amorphous-like tungsten films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dellasega, D.; Merlo, G.; Conti, C.; Bottani, C. E.; Passoni, M.

    2012-10-01

    An experimental investigation of nanostructured, micrometer-thick, tungsten films deposited by pulsed laser deposition is presented. The films are compact and pore-free, with crystal grain sizes ranging from 14 nm to less than 2 nm. It is shown how, by properly tailoring deposition rate and kinetic energy of ablated species, it is possible to achieve a detailed and separate control of both film morphology and structure. The role of the main process parameters, He background pressure, laser fluence, and energy, is elucidated. In contrast with W films produced with other PVD techniques, β-phase growth is avoided and the presence of impurities and contaminants, like oxygen, is not correlated with film structure. These features make these films interesting for the development of coatings with improved properties, like increased corrosion resistance and enhanced diffusion barriers.

  3. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Linzen, S.; Ziegler, M.; Astafiev, O. V.; Schmelz, M.; Hübner, U.; Diegel, M.; Il’ichev, E.; Meyer, H.-G.

    2017-03-01

    We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition (PEALD) process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films was minimised and a film structure consisting of mainly polycrystalline niobium nitride with a small fraction of amorphous niobium oxide and niobium oxo-nitrides were formed. For this composition a critical temperature of 13.8 K and critical current densities of 7 × 106 A cm–2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic δ-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor–insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures. The perfect thickness control and film homogeneity of the PEALD growth make such films extremely promising candidates for developing novel devices on the coherent quantum phase slip effect.

  4. Thermally driven stability of octadecylphosphonic acid thin films grown on SS316L.

    PubMed

    Lim, Min Soo; Smiley, Katelyn J; Gawalt, Ellen S

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF, and water flushes, whereas untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a 3-hour period, whereas the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface.

  5. Fractal features of CdTe thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-12-01

    Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  6. Thermally Driven Stability of Octadecylphosphonic Acid Thin Films Grown on SS316L

    PubMed Central

    Lim, Min Soo; Smiley, Katelyn J.; Gawalt, Ellen S.

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF and water flushes while untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a three hour period while the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  7. Phase-coherent electron transport in (Zn, Al)O{sub x} thin films grown by atomic layer deposition

    SciTech Connect

    Saha, D. E-mail: pmisra@rrcat.gov.in; Misra, P. E-mail: pmisra@rrcat.gov.in; Ajimsha, R. S.; Joshi, M. P.; Kukreja, L. M.

    2014-11-24

    A clear signature of disorder induced quantum-interference phenomena leading to phase-coherent electron transport was observed in (Zn, Al)O{sub x} thin films grown by atomic layer deposition. The degree of static-disorder was tuned by varying the Al concentration through periodic incorporation of Al{sub 2}O{sub 3} sub-monolayer in ZnO. All the films showed small negative magnetoresistance due to magnetic field suppressed weak-localization effect. The temperature dependence of phase-coherence length (l{sub φ}∝T{sup −3/4}), as extracted from the magnetoresistance measurements, indicated electron-electron scattering as the dominant dephasing mechanism. The persistence of quantum-interference at relatively higher temperatures up to 200 K is promising for the realization of ZnO based phase-coherent electron transport devices.

  8. Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition

    SciTech Connect

    Ager, J.W. III; Walukiewicz, W.; McCluskey, M. ); Plano, M.A.; Landstrass, M.I. )

    1995-01-30

    A series of boron-doped polycrystalline diamond films grown by direct current and microwave plasma deposition was studied with Raman and infrared (IR) absorption spectroscopy. A Fano line shape is observed in the Raman spectra for films with a boron concentration in a narrow range near 10[sup 21] cm[sup [minus]3]. The appearance of the Fano line shape is correlated with the disappearance of discrete electronic transitions of the boron acceptor observed in the IR spectrum and the shift of the broadened peak to lower energy. The Fano interaction is attributed to a quantum mechanical interference between the Raman phonon (0.165 eV) and transitions from the broadened impurity band to continuum states composed of excited acceptor and valence band states.

  9. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    NASA Astrophysics Data System (ADS)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the <110 > crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the <110 > directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  10. Resistive switching phenomena of HfO2 films grown by MOCVD for resistive switching memory devices

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Dong; Yun, Min Ju; Kim, Sungho

    2016-08-01

    The resistive switching phenomena of HfO2 films grown by using metal organic chemical vapor deposition (MOCVD) was studied for the application of resistive random access memory (ReRAM) devices. In the fabricated Pt/HfO2/TiN memory cells, bipolar resistive switching characteristics were observed, and the set and reset states were measured to be as low as 7 μA and 4 μA, respectively, at V READ = 1 V. Regarding the resistive switching performance, stable resistive switching (RS) performance was observed under 40 repetitive dc cycles with small variations of set/reset voltages and the currents and good retention characteristics of over 105 s in both the low-resistance state (LRS) and the high-resistance state (HRS). These results show the possibility of using MOCVDgrown HfO2 films as a promising resistive switching materials for ReRAM applications.

  11. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Sharma, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-11-01

    This paper presents effect of low temperature annealing on the physical properties of ZnO thin films for photovoltaic applications. The thin films of thickness 50 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing radio frequency magnetron sputtering technique followed by thermal annealing within low temperature range 150-450 °C. These as-grown and annealed films were subjected to the X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of the as-grown ZnO film was also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the films have wurtzite structure of hexagonal phase with preferred orientation (1 0 0) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in detail. The optical band gap was found in the range 3.30-3.52 eV and observed to decrease with annealing temperature except 150 °C. The current-voltage characteristics show that the films exhibit approximately ohmic behavior. The SEM studies show that the films are uniform, homogeneous and free from crystal defects and voids. The experimental results reveal that ZnO thin films may be used as alternative materials for eco-friendly buffer layer to the thin film solar cell applications.

  12. Structural properties and metallic conductivity of Ti1-x Nb x O2 films grown by atomic layer deposition on crystalline substrates

    NASA Astrophysics Data System (ADS)

    Luka, Grzegorz; Wachnicki, Lukasz; Jakiela, Rafal; Lusakowska, Elzbieta

    2015-12-01

    Niobium-doped titanium dioxide (Ti1-x Nb x O2, x  ≈  0.04, TNO) films were grown by atomic layer deposition (ALD) at a low growth temperature (220 °C) on LaAlO3(1 0 0) (LAO) and Al2O3(0 0 0 1) (c-sapphire) substrates. The films were without any post-deposition annealing. The films grown on both kinds of substrates have anatase structure. However, the films grown on LAO substrates have (0 0 1) predominant orientation compared to a higher content of (1 1 2) orientation in the films grown on sapphire. TNO/LAO films showed low resistivities (~10-3 Ω cm at room temperature) and a metallic-type electrical conductivity as opposed to higher resistivities (~10-2 Ω cm) and a thermally activated conductivity of TNO/sapphire layers. ALD growth mechanisms of TNO films on crystalline substrates were described.

  13. Thermoelectric properties of bismuth-selenide films with controlled morphology and texture grown using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Le, Phuoc Huu; Liao, Chien-Neng; Luo, Chih Wei; Lin, Jiunn-Yuan; Leu, Jihperng

    2013-11-01

    Polycrystalline, thermoelectric thin films of bismuth selenide (Bi2Se3) were grown on SiO2/Si (1 1 1) substrates, using pulsed laser deposition (PLD). Bi2Se3 films with highly c-axis-oriented and controlled textures were fabricated by maintaining the helium gas pressure (P) between 0.7 and 173 Pa and the substrate temperature (Ts) between 200 and 350 °C. The carrier concentration (n) of films decreased with increasing P, which was attributed to the increase of Se concentration from Se deficiency (P ≤ 6.7 Pa) to stoichiometry to slight Se enrichment (P ≥ 40 Pa). The Seebeck coefficient (S) was enhanced considerably because of the reduction in n, following the S ˜ n-2/3 relation approximately. The average grain size increased from approximately 100 to 500 nm when Ts was raised from 200 to 350 °C, resulting in enhanced carrier mobility (μ) and electrical conductivity (σ) and a reduced full width at half maximum of (0 0 6) peaks. The shape of grains transformed from rice-like at Ts of 200-250 °C to layered-hexagonal platelets (L-HPs) or super-layered flakes (S-LFs) at Ts of 300-350 °C. Films that were grown at 300 °C and 40 Pa and contained highly c-axis oriented L-HPs possessed the highest power factor (PF = S2σ), which reached 5.54 μW cm-1 K-2, where S = 75.8 μV/K and σ = 963.8 S cm-1.

  14. On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films.

    PubMed

    Quickel, Thomas E; Le, Van H; Brezesinski, Torsten; Tolbert, Sarah H

    2010-08-11

    In this work, we report the synthesis of periodic nanoporous cobalt ferrite (CFO) that exhibits tunable room temperature ferrimagnetism. The porous cubic CFO frameworks are fabricated by coassembly of inorganic precursors with a large amphiphilic diblock copolymer, referred to as KLE. The inverse spinel framework boasts an ordered open network of pores averaging 14 nm in diameter. The domain sizes of the crystallites are tunable from 6 to 15 nm, a control which comes at little cost to the ordering of the mesostructure. Increases in crystalline domain size directly correlate with increases in room temperature coercivity. In addition, these materials show a strong preference for out-of-plane oriented magnetization, which is unique in a thin film system. The preference is explained by in-plane tensile strain, combined with relaxation of the out-of-plane strain through flexing of the mesopores. It is envisioned that the pores of this ferrimagnet could facilitate the formation of a diverse range of exchange coupled composite materials.

  15. Reflective films and expression of light-regulated genes in field-grown apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective films are used in orchard management to improve fruit coloration. Numerous physiological studies on the effects of application of these films have been conducted, including variation of angles of light incidence and reflection, spectral determination of reflected light and effects on pho...

  16. Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Liu, Xianlin; Li, Chengming; Wei, Hongyuan; Guo, Yan; Jiao, Chunmei; Li, Zhiwei; Xu, Xiaoqing; Song, Huaping; Yang, Shaoyan; Zhu, Qinsen; Wang, Zhanguo; Yang, Anli; Yang, Tieying; Wang, Huanhua

    2011-12-01

    Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD) and hydride vapor-phase epitaxy (HVPE) in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD), micro-Raman spectra, and scanning electron microscopy (SEM). Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate.

  17. Structural and Magnetotransport Study of SrTiO3-δ/Si Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Currie, Alex; Cottier, Ryan; Villarreal, Oscar; Cantu, Jesus; Ponce, Arturo; Theodoropoulou, Nikoleta; Texas State University, San Marcos Collaboration; University of Texas, San Antonio Collaboration

    2014-03-01

    SrTiO3 (STO) films were grown on p-Si (001) substrates using molecular beam epitaxy (MBE). Oxygen vacancies were introduced by controlling the Oxygen resulting in SrTiO3-δ with δ ~ 0.02% for the lowest pressure. The single phase STO/Si films were of high crystalline quality as verified by x-ray diffraction, transmission electron microscopy, and had an rms roughness of less than 0.5nm measured by atomic force microscopy. Transport measurements were performed on the STO/Si structures in a Van der Pauw configuration. We measured resistance as a function of temperature, T = 3K-300K and as a function of an applied magnetic field , H =0 to +/- 9T. The resistivity decreased from 1 Ohm cm to 3x10-2 Ohm cm as the film thickness increased (3nm-60nm) for all temperatures. The magnetoresistance (MR) shows a reproducible trend for all films, the MR is positive at 300K, becomes negative between 200K and 100K and at low temperatures T =3-20K the MR is positive at low H =0 to +/- 2T but at high fields, it starts decreasing again. The MR behavior combined with the Hall effect data indicates the presence of localized electrons that delocalize with H and T. This research was supported by NSF Carrer Award DMR-1255629.

  18. Optical parameters of Al-doped ZnO nanorod array thin films grown via the hydrothermal method.

    PubMed

    Kim, Soaram; Kim, Min Su; Nam, Giwoong; Park, Hyunggil; Yoon, Hyunsik; Leem, Jae-Young

    2013-09-01

    ZnO seed layers were deposited onto a quartz substrate using the sol--gel method, and Al-doped ZnO (AZO) nanorod array thin films with different Al concentrations that ranged from 0 to 2.0 at. % were grown on the ZnO seed layers via the hydrothermal method. Optical parameters, including the optical band gap, the absorption coefficient, the Urbach energy, the refractive index, the dispersion parameter, and the optical conductivity, were studied to investigate the effects of Al doping on the optical properties of AZO nanorod array thin films. The optical band gaps of the ZnO and AZO nanorod array thin films were 3.206 at 0 at.%, 3.214 at 0.5 at.%, 3.226 at 1.5 at.%, and 3.268 at 2.0 at.%. The Urbach energy gradually decreased from 126 meV (0 at.%) to 70 meV (2.0 at.%) as the Al concentration was increased. The dispersion energy, the single-oscillator energy, the average oscillator wavelength, the average oscillator strength, the refractive index, and the optical conductivity of the AZO nanorod array thin films were all affected by Al doping.

  19. Boron nitride phosphide thin films grown on quartz substrate by hot-filament and plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xu, S. Y.; Han, G. R.

    2004-10-01

    Boron nitride phosphide films are, for the first time, grown on transparent quartz substrate by hot filament and radio-frequency plasma co-assisted chemical vapor deposition technique. XPS, XRD, SEM, and UV measurements are performed to study the chemical composition, crystallization, microstructure, and optical absorption, respectively. A centipede-like microstructure and undulating ground morphology on the film surface are observed, and their growth mechanism is speculated upon. The chemical composition is determined as BN1-xPx, whose characteristic XRD peak is preliminarily identified. The optical band gap can be modulated between 5.52 eV and 3.74 eV, simply by adjusting the phosphorus content in BN1-xPx through modifying the PH3 flux during the film-deposition process. The merits of the BN1-xPx film, such as high ultraviolet photoelectric sensitivity with negligible sensitivity in the visible region, modifiable wide optical band gap, and good adhesion on transparent substrate, suggest potential applications for ultraviolet photo-electronics.

  20. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    SciTech Connect

    Valente, Anne-Marie; Eremeev, Grigory V.; Spradlin, Joshua K.; Phillips, H. Lawrence; Reece, Charles E.; Cao, C.; Proslier, Thomas; Tao, T.

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  1. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  2. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    SciTech Connect

    Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  3. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    SciTech Connect

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; Kisslinger, K.; and Wang, G. -C.

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the first report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.

  4. Investigation of NbNx thin films and nanoparticles grown by pulsed laser deposition and thermal diffusion

    NASA Astrophysics Data System (ADS)

    Hassan Farha, Ashraf

    Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (lambda = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films. When the fabrication parameters are fixed, except for laser fluence, surface roughness, deposition rate, nitrogen content, and grain size increases with increasing laser fluence. Increasing nitrogen background pressure leads to change in the phase structure of the NbNx films from mixed -Nb 2N and cubic delta-NbN phases to single hexagonal beta- Nb 2N. A change in substrate temperature led to a pronounced change in the preferred orientation of the crystal structure, the phase transformation, surface roughness, and composition of the films. The structural, electronic, and nanomechanical properties of niobium nitride PLD deposited at different nitrogen pressures (26.7-66.7 Pa) on Si(100) were investigated. The NbNx, films exhibited a cubic delta-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The highly-textured delta-NbN films have a Tc up to 15.07 K. The film was deposited at a nitrogen background pressure of 66.7 Pa exhibited improved superconducting properties and showed higher hardness values as compared to films deposited at lower nitrogen pressures. NbN nanoclusters that were deposited on carbon coated Cu-grids using PLD at laser fluence of 8 J/cm2 were observed. Niobium nitride is prepared by heating of Nb sample in a reactive nitrogen atmosphere (133 Pa

  5. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  6. Effects of Annealing Ambient on the Characteristics of LaAlO3 Films Grown by Atomic Layer Deposition.

    PubMed

    Zhao, Lu; Liu, Hong-Xia; Wang, Xing; Fei, Chen-Xi; Feng, Xing-Yao; Wang, Yong-Te

    2017-12-01

    We investigated the effects of different annealing ambients on the physical and electrical properties of LaAlO3 films grown by atomic layer deposition. Post-grown rapid thermal annealing (RTA) was carried out at 600 °C for 1 min in vacuum, N2, and O2, respectively. It was found that the chemical bonding states at the interfacial layers (ILs) between LaAlO3 films and Si substrate were affected by the different annealing ambients. The formation of IL was enhanced during the RTA process, resulting in the decrease of accumulation capacitance, especially in O2 ambient. Furthermore, based on the capacitance-voltage characteristics of LaAlO3/Si MIS capacitors, positive V FB shifting tendency could be observed, indicating the decrease of positive oxide charges. Meanwhile, both trapped charge density and interface trap density showed decreased trends after annealing treatments. In addition, RTA process in various gaseous ambients can reduce the gate leakage current due to the enhancement of valence band offset and the reduction of defects in the LaAlO3/Si structure in varying degrees.

  7. Effects of Annealing Ambient on the Characteristics of LaAlO3 Films Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Liu, Hong-xia; Wang, Xing; Fei, Chen-xi; Feng, Xing-yao; Wang, Yong-te

    2017-02-01

    We investigated the effects of different annealing ambients on the physical and electrical properties of LaAlO3 films grown by atomic layer deposition. Post-grown rapid thermal annealing (RTA) was carried out at 600 °C for 1 min in vacuum, N2, and O2, respectively. It was found that the chemical bonding states at the interfacial layers (ILs) between LaAlO3 films and Si substrate were affected by the different annealing ambients. The formation of IL was enhanced during the RTA process, resulting in the decrease of accumulation capacitance, especially in O2 ambient. Furthermore, based on the capacitance-voltage characteristics of LaAlO3/Si MIS capacitors, positive V FB shifting tendency could be observed, indicating the decrease of positive oxide charges. Meanwhile, both trapped charge density and interface trap density showed decreased trends after annealing treatments. In addition, RTA process in various gaseous ambients can reduce the gate leakage current due to the enhancement of valence band offset and the reduction of defects in the LaAlO3/Si structure in varying degrees.

  8. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  9. Ferromagnetism and Ru-Ru distance in SrRuO3 thin film grown on SrTiO3 (111) substrate

    PubMed Central

    2014-01-01

    Epitaxial SrRuO3 thin films were grown on both (100) and (111) SrTiO3 substrates with atomically flat surfaces that are required to grow high-quality films of materials under debate. The following notable differences were observed in the (111)-oriented SrRuO3 films: (1) slightly different growth mode, (2) approximately 10 K higher ferromagnetic transition temperature, and (3) better conducting behavior with higher relative resistivity ratio, than (100)c-oriented SrRuO3 films. Together with the reported results on SrRuO3 thin films grown on (110) SrTiO3 substrate, the different physical properties were discussed newly in terms of the Ru-Ru nearest neighbor distance instead of the famous tolerance factor. PACS 75.70.Ak; 75.60.Ej; 81.15.Fg PMID:24393495

  10. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  11. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  12. Properties of ZrB2 Thin Films Grown by E-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Lad, Robert; Stewart, David; Sell, Julia; Bernhardt, George; Frankel, David; University of Maine Team

    2014-03-01

    Zirconium diboride (ZrB2) is a candidate material for many high temperature applications because it has a high melting point, high hardness, thermal shock resistance, and metallic conductivity. However, very little work has been reported concerning growth of ZrB2 thin films and high temperature oxidation behavior. In this study, ZrB2 films with nominal thickness of 200 nm have been deposited using electron-beam evaporation of either ZrB2 pellets or elemental B and Zr sources. The ZrB2 source yields a film that has a 1:1 Zr:B average composition as measured by X-ray photoelectron spectroscopy, consisting of ZrB2 precipitates within an amorphous Zr matrix as determined by X-ray diffraction. Use of elemental B and Zr sources allows precise control of film growth over a range of stoichiometries and yields ZrB2 films with much lower oxygen contamination. After annealing ZrB2 films to 1200°C in air, oxidation leads to a loss of B and formation of a textured monoclinic ZrO2 phase. Several strategies, including deposition of a thin Al2O3 capping layer over the ZrB2 film are being pursued in an attempt to stabilize the electrically conductive ZrB2 phase at high temperature, where it can be used for high temperature electronic devices in harsh environments. Supported by NSF grant # 1309983.

  13. Surface-Morphology-Induced Hydrophobicity of Fluorocarbon Films Grown by a Simultaneous Etching and Deposition Process

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, C. S.; Huang, Y. Y.; Chin, T. S.

    2015-08-01

    Development of facile methods to prepare hydrophobic films is of great important. We report fluorocarbon films deposited by a simple plasma-assisted chemical vapor deposition method using C3F8 and C2H2 with extra Ar and/or O2 gases. The surface characteristics of the films were examined by scanning electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. The hydrophobic and oleophobic properties of the films were evaluated by measurements of static contact angle. The results showed that the film deposited with C3F8, C2H2, Ar, and O2 exhibited a water contact angle of 114°, hexadecane contact angle of 45°, and transmittance of 94.5%. Photoelectron spectra further revealed that the films contained mainly CF and CF2 bonds and thus a high F/C ratio. Introduction of O2 increased the F/C ratio, which combined with the stripe-like surface of the films achieved better hydrophobicity.

  14. Photoluminescence Characteristics of Pulsed Laser Deposited ZnO Thin Films Grown in Nitrogen/Oxygen Ambients

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Cui, J. B.; Soo, Y. C.; Kandel, H.; Chen, T. P.; Daghlian, C. P.

    2009-03-01

    ZnO thin films were grown by pulsed laser deposition using a Zn target in different atmospheres. The samples were characterized by SEM, XRD, EDX, and temperature dependent photoluminescence (PL) measurements. The growth conditions were varied sequentially from a pure oxygen to a pure nitrogen atmosphere, and the resulting changes of the material properties were investigated. The presence of nitrogen during growth was found to have a strong impact on the materials. Samples grown with higher nitrogen concentrations showed weak PL characteristics at room temperature as well as a small temperature dependence of the near band edge emission. At temperatures below 40 K, a sharp and pronounced emission peak was present at 3.362 eV. In an attempt to understand the PL characteristics, the samples were annealed in both pure oxygen and pure nitrogen environments at 600 C. The samples grown with large nitrogen ratios exhibited a strong dependence on the annealing atmosphere; those annealed in nitrogen showed a strong increase in emissions in the 3.362 eV range compared to the same samples annealed in oxygen. In addition, the defect emissions of the samples were strongly affected by the presence of nitrogen during annealing. The possible role of nitrogen in ZnO growth and annealing is discussed.

  15. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  16. Amorphization and recrystallization of epitaxial ReSi2 films grown on Si(100)

    NASA Technical Reports Server (NTRS)

    Kim, Kun HO; Bai, G.; Nicolet, MARC-A.; Mahan, John E.; Geib, Kent M.

    1991-01-01

    The effects of implantation damage and the chemical species of the implant on structural and electrical properties of epitaxial ReSi2 films on Si(100) implanted with Si-28 or Ar-40 ions, at doses ranging from 10 to the 13th/sq cm to 10 to the 15th/sq cm, were investigated using the backscattering spectrometry, XRD, and the van der Pauw techniques. Results showed that ion implantation produces damage in the film, which increases monotonically with dose; the resistivity of the film decreases monotonically with dose.

  17. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Lopez, Thomas; Laur, Jean-Pierre; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Brunet, Magali

    2013-12-01

    Ferrite-based micro-inductors are proposed for hybrid integration on silicon for low-power medium frequency DC-DC converters. Due to their small coercive field and their high resistivity, soft ferrites are good candidates for a magnetic core working at moderate frequencies in the range of 5-10 MHz. We have studied several soft ferrites including commercial ferrite film and U70 and U200 homemade ferrites. The inductors are fabricated at wafer level using micromachining and assembling techniques. The proposed process is based on a sintered ferrite core placed in between thick electroplated copper windings. The low profile ferrite cores of 1.2 × 2.6 × 0.2 mm3 are produced by two methods from green tape-casted films and ferrite powder. This paper presents the magnetic characterization of the sintered ferrite films cut and printed in rectangular shape and sintered at different temperatures. The comparison is made in order to find out the best material for the core that can reach the required inductance (470 nH at 6 MHz) under 0.6A current DC bias and that generate the smallest losses. An inductance density of 285 nH/ mm2 up to 6 MHz was obtained for ESL 40011 cores that is much higher than the previously reported devices. The small size of our devices is also a prominent point.

  18. Pseudo capacitive performance of copper oxide thin films grown by RF sputtering

    SciTech Connect

    Reddy, B. Purusottam; Ganesh, K. Sivajee; Hussain, O. M.

    2015-06-24

    Thin films of Copper Oxide were prepared by radio frequency magnetron sputtering on steel substrates maintained at 250°C under different RF powers ranging from 150W to 250W by keeping the sputtering pressure at 5.7×10{sup −3} mbar and O{sub 2}:Ar ratio of 1:7. The influence of RF power on the pseudo capacitive performance of thin films was studied. The X-ray diffraction studies and Raman studies indicates that all the thin films exhibits CuO phase. The electrochemical studies was done by using three electrode configuration with platinum as reference electrode. From the cyclic voltammetry studies a high rate pseudocapacitance of 227 mFcm{sup −2} at 0.5 mVs{sup −1} and 77% of capacity retention after 1000 cycles was obtained for the CuO thin films prepared at an RF power of 220W.

  19. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect

    Seo, Won-Oh; Kim, Jihyun; Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol; Kim, Donghwan

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2 MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  20. Characterization of CdZnS thin film grown by using different capping agents

    NASA Astrophysics Data System (ADS)

    Shrivastava, R.; Shrivastava, S. C.; Singh, R. S.; Singh, A. K.

    2015-03-01

    In this paper, a comparative study of CdZnS nano-crystalline films with two different capping agents, CTAB and TSC, deposited by chemical bath deposition method has been made using x-ray diffraction, scanning electron microscope, transmission electron microscopy and atomic frequency microscopy. The structure of CdZnS nano-crystalline films with capping agents CTAB and TSC was observed by XRD technique and found to be both hexagonal and cubic. SEM micrographs show the cabbage-like structure of CdZnS nano-crystalline films when prepared in the presence of capping agents. The AFM image shows the presence of nanorods in the samples. The TEM diffraction pattern indicates a nano-crystalline structure with the presence of various crystal planes. Elemental analysis has also been made and it has been found that no impurity was present in the film.

  1. Continuous Ultra-Thin MOS2 Films Grown by Low-Temperature Physical Vapor Deposition (Postprint)

    DTIC Science & Technology

    2014-07-01

    films are composed of nano -scale domains with strong chemical binding between domain boundaries, allowing lift-off from the substrate and electronic...process yields materials with key optical and electronic properties identical to exfoliated layers. The films are composed of nano -scale domains with...with a layered atomic structure giving rise to remarkable me- chanical (e.g., low shear strength for solid lubrication )1 and catalytic (e.g

  2. Theoretical studies of epitaxially grown Co and Ni thin films on (111) metallic substrates

    NASA Astrophysics Data System (ADS)

    Zelený, M.; Šob, M.

    2008-04-01

    Total energies of hcp and trigonally distorted fcc Co and Ni are studied from first principles. Regions of stability of these structures are found and the behavior of the total energies is used to explain and predict the lattice parameters and magnetic states of Co and Ni thin films on various (111) substrates. The stresses needed to keep the thin films coherent with the substrates are also determined. The theoretical results agree surprisingly well with available experimental data.

  3. Magnetic, ferroelectric and leakage current properties of gadolinium doped bismuth ferrite thin films by sol-gel method

    NASA Astrophysics Data System (ADS)

    Chen, Hone-Zern; Kao, Ming-Cheng; Young, San-Lin; Hwang, Jun-Dar; Chiang, Jung-Lung; Chen, Po-Yen

    2015-05-01

    Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel technology. The effects of annealing temperature (400-700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10-8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole-Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region.

  4. Random lasing of ZnO thin films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Cachoncinlle, C.; Hebert, C.; Perrière, J.; Nistor, M.; Petit, A.; Millon, E.

    2015-05-01

    Low-dimensional semiconductor structures on nanometer scale are of great interest because of their strong potential applications in nanotechnologies. We report here optical and structural properties on UV lasing in ZnO thin films. The ZnO films, 110 nm thick, were prepared using pulsed-laser deposition on c-cut sapphire substrates at 500 °C under 10-2 oxygen pressure. The ZnO films are nearly stoichiometric, dense and display the wurtzite phase. The films are highly textured along the ZnO c-axis and are constituted of nanocrystallites. According to Hall measurements these films are conductive (0.11 Ω cm). Photoluminescence measurements reveals a so-called random lasing in the range 390 to 410 nm, when illuminating at 355 nm with a tripled frequency pulsed Nd-YAG laser. Such random lasing is obtained at rather low optical pumping, 45 kW cm-2, a value lower than those classically reported for pulsed-laser deposition thin films.

  5. Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition.

    PubMed

    György, E; Toricelli, P; Socol, G; Iliescu, M; Mayer, I; Mihailescu, I N; Bigi, A; Werckman, J

    2004-11-01

    Mn(2+)-doped carbonated hydroxyapatite (Mn-CHA) thin films were obtained by pulsed laser deposition on Ti substrates. The results of the performed complementary diagnostic techniques, X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy investigations indicate that the films are crystalline with a Ca/P ratio of about 1.64-1.66. The optimum conditions, when nearly stoichiometric crystalline thin films were deposited, were found to be 10 Pa oxygen pressure, 400 degrees C substrate temperature, and postdeposition heat treatment in water vapors at the same substrate temperature. The films were seeded with L929 fibroblast and hFOB1.19 osteoblast cells and subjected to in vitro tests. Both fibroblast and osteoblast cells have a good adherence on the Mn-CHA film and on the Ti or polystyrene references. Proliferation and viability tests showed that osteoblast cells growth on Mn-CHA-coated Ti was enhanced as compared to uncoated pure Ti surfaces. Caspase-1 activity was not affected significantly by the material, showing that Mn-CHA does not induce apoptosis of cultured cells. These results demonstrate that Mn-CHA films on Ti should provoke a faster osteointegration of the coated implants as compared to pure Ti. (c) 2004 Wiley Periodicals, Inc. J Biomed Mater Res 71A: 353-358, 2004.

  6. Non-epitaxially Grown, Oriented L10 FeNiPt Films and Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Yan, M. L.; Xu, Y. F.; Sellmyer, D. J.

    2004-03-01

    We report on Ni doped, nonepitaxial L10 FePt thin films with strong texturing. The Ni is used to control and adjust magnetic properties of the films for use as an extremely high-density perpendicular recording media. The FeNiPt films were deposited directly on Si wafers with a (FeNi/Pt)n multilayer structure and subsequent rapid thermal annealing (RTA). Microstructural evolution of the nonepitaxial growth was investigated by XRD. The data show only (00l) peaks, indicating high (001) texture of the FeNiPt films. In comparison with FePt, the (00l) peak positions shifted to higher angle, meaning that Ni is partially substituted for Fe on the L10 lattice. Magnetic properties of these films were investigated by SQUID. The coercivity, measured at room temperature, was about 5 kOe for the film with 10% Ni substitution. This value is suitable for reading and writing in a practical recording media. The coherence length of interaction and temperature dependence of the coercivity are also discussed.

  7. Dislocation Reduction Mechanisms in Gallium Nitride Films Grown by Canti-Bridge Epitaxy Method

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Gang; Wang, Jing; Pei, Xiao-Jiang; Wan, Wei; Chen, Hong; Zhou, Jun-Ming

    2007-08-01

    By using the special maskless V-grooved c-plane sapphire as the substrate, we previously developed a novel GaN LEO method, or the so-called canti-bridge epitaxy (CBE), and consequently wing-tilt-free GaN films were obtained with low dislocation densities, with which all the conventional difficulties can be overcome [J. Vacuum Sci. Technol. B 23 (2005) 2476]. Here the evolution manner of dislocations in the CBE GaN films is investigated using transmission electron microscopy. The mechanisms of dislocation reduction are discussed. Dislocation behaviour is found to be similar to that in the conventional LEO GaN films except the enhanced dislocation-combination at the coalescence boundary that is a major dislocation-reduction mechanism for the bent horizontal-propagating dislocations in the CBE GaN films. The enhancement of this dislocation-combination probability is believed to result from the inclined shape and the undulate morphology of the sidewalls, which can be readily obtained in a wide range of applicable film-growth conditions during the GaN CBE process. Further development of the GaN CBE method and better crystal-quality of the GaN film both are expected.

  8. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    NASA Astrophysics Data System (ADS)

    McLeod, K.; Kumar, S.; Dutta, N. K.; Smart, R. St. C.; Voelcker, N. H.; Anderson, G. I.

    2010-09-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  9. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  10. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film.

  11. High hole concentration Li-doped NiZnO thin films grown by photo-assisted metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Dong, X.; Ma, Z. Z.; Zhang, Y. T.; Wu, B.; Zhuang, S. W.; Zhang, B. L.; Li, W. C.; Du, G. T.

    2016-11-01

    High hole concentration Li-doped NiZnO thin films were grown by metal-organic chemical vapor deposition (MOCVD). The crystalline, optical, electrical, and morphological characteristics of the NiZnO films were studied as a function of lithium content. The resistance of the films decreased and the hole concentration greatly increased with increasing lithium content. However, the crystalline and optical properties were observed to degrade as the lithium content was increased. To relieve the degradation, a photo-assisted MOCVD method was used in order to restrict this degradation and this represents a new way to obtain stable high hole concentration NiZnO films.

  12. Ag films grown by remote plasma enhanced atomic layer deposition on different substrates

    SciTech Connect

    Amusan, Akinwumi A. Kalkofen, Bodo; Burte, Edmund P.; Gargouri, Hassan; Wandel, Klaus; Pinnow, Cay; Lisker, Marco

    2016-01-15

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

  13. Enhanced photocatalytic performance in atomic layer deposition grown TiO{sub 2} thin films via hydrogen plasma treatment

    SciTech Connect

    Sasinska, Alexander; Singh, Trilok; Wang, Shuangzhou; Mathur, Sanjay; Kraehnert, Ralph

    2015-01-15

    The authors report the effect of hydrogen plasma treatment on TiO{sub 2} thin films grown by atomic layer deposition as an effective approach for modifying the photoanode materials in order to enhance their photoelectrochemical performance. Hydrogen plasma treated TiO{sub 2} thin films showed an improved absorption in the visible spectrum probably due to surface reduction. XPS analysis confirmed the formation of Ti{sup 3+} states upon plasma treatment. Hydrogen plasma treatment of TiO{sub 2} films enhanced the measured photocurrent densities by a factor of 8 (1 mA/cm{sup 2} at 0.8 V versus normal hydrogen electrode) when compared to untreated TiO{sub 2} (0.12 mA/cm{sup 2}). The enhancement in photocurrent is attributed to the formation of localized electronic states in mid band-gap region, which facilitate efficient separation and transportation of photo excited charge carriers in the UV region of electromagnetic spectrum.

  14. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  15. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    NASA Astrophysics Data System (ADS)

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-01

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500-750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  16. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-01-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573

  17. Thermal stability of Pr2O3 films grown on Si(100) substrate

    NASA Astrophysics Data System (ADS)

    Goryachko, A.; Liu, J. P.; Krüger, D.; Osten, H. J.; Bugiel, E.; Kurps, R.; Melnik, V.

    2002-11-01

    We have investigated the effect of thermal annealing on uncapped and Si-capped Pr2O3 films deposited on Si(100) substrate by Auger electron spectroscopy, x-ray photoelectron spectroscopy, and transmission electron microscopy. A rapid diffusion of Si out of the substrate was found for uncapped films at temperatures starting from 700 °C. The diffused Si is oxidized, forming a Pr2O3-Prx- Oy- Siz mixture. The excess Si diffuses through the film, forming a SiO2 rich layer on the surface. Annealing of uncapped films in vacuum has qualitatively similar effects as annealing in N2, which is not the case for Si-capped films. The latter were transformed into a Pr2O3-Prx- Oy- Siz mixture when annealed in N2 starting from 900 °C and into PrSix when annealed in vacuum starting from 700 °C. Two distinct PrSix phases were found, with Si-richer phases corresponding to higher annealing temperature.

  18. Structural, optical and electrical properties of Sn x S y thin films grown by spray ultrasonic

    NASA Astrophysics Data System (ADS)

    Kherchachi, I. B.; Attaf, A.; Saidi, H.; Bouhdjer, A.; Bendjedidi, H.; Benkhetta, Y.; Azizi, R.

    2016-03-01

    Tin sulfide (Sn x S y ) thin films were prepared by a spray ultrasonic technique on glass substrate at 300 °C. The influence of deposition time t = 2, 4, 6, 8 and 10 min on different properties of thin films, such as (XRD), photoluminescence (PL) and (UV) spectroscopy visible spectrum and four-point were investigated. X-ray diffraction showed that thin films crystallized in SnS2, SnS, and Sn2S3 phases, but the most prominent one is SnS2. The results of the (UV) spectroscopy visible spectrum show that the film which was deposited at 4 min has a large transmittance of 60% in the visible region. The photoluminescence spectra exhibited the luminescent peaks in the visible region, which shows its potential application in photovoltaic devices. The electrical resistivity (ρ) values of Sn x S y films have changed from 8.1 × 10-4 to 1.62 Ω·cm with deposition time.

  19. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  20. Out-of-plane magnetic anisotropy in columnar grown Fe-Ni films

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.; Araújo Filho, M. S.; Tedesco, J. C. G.; Ardisson, J. D.; Macedo, W. A. A.

    2014-10-01

    Polycrystalline thin films usually present magnetic anisotropy resulting from a conjunction of textures, residual stresses, surface effects, and magnetic dipole distribution. The shape anisotropy, which is caused by the magnetic dipole distribution, is dominant in most of the cases, and it forces the occurrence of in-plane easy axes for the magnetization. Contrary to this common expectation, we have found predominant out-of-plane easy axes in a series of Fe-Ni thin films produced by DC sputtering. Films with different thicknesses, from 40 to 1000 nm, and different deposition temperatures have been tested and show similar results. These unusual characteristics are results of a particular columnar structure formed during the films growth. The magnetic characterization of the samples has been done by Mössbauer spectroscopy, magnetometry, and ferromagnetic resonance. The unusual anisotropy observed is not believed to be uniform along the film thickness. This interpretation comes from the comparison of the experimental results with hysteresis obtained by micromagnetic simulations. Five distinct configurations for the anisotropies have been simulated for this comparison.

  1. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  2. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    NASA Astrophysics Data System (ADS)

    Ouarab, N.; Haroun, A.; Baadji, N.

    2016-12-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin-orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μB. The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light.

  3. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  4. Properties of SnS thin films grown by physical vapour deposition

    NASA Astrophysics Data System (ADS)

    Ganchev, M.; Vitanov, P.; Sendova-Vassileva, M.; Popkirov, G.; Dikov, H.

    2016-02-01

    Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates and on n-type Si substrate and their physical properties were studied. The phase of the obtained thin films before and after thermal treatment was confirmed by X-ray diffraction analysis and Raman spectra. Optical transmission and reflection spectra were measured in the wavelength range 300-1800 nm, and the data were used to determine the direct and indirect optical band gaps. Four-point measurements have revealed that SnS thin film exhibits p-type conduction. Current-voltage characteristics of the SnS/ n-Si structures demonstrate strong photosensitivity and photovoltaic effect. However, in order to be able to evaluate the potential applicability of this heterojunction for photovoltaic or electronic devices, further study and technological optimization has to be conducted.

  5. On the wetting behavior of ceria thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Fu, Sin-Pui; Rossero, Jorge; Chen, Chen; Li, Daniel; Takoudis, Christos G.; Abiade, Jeremiah T.

    2017-02-01

    Polymers are most widely used in the production of water-repellant coatings. However, their use in applications requiring wear resistance or high-temperature stability is extremely limited. A recent report suggests that wear resistant, thermally stable rare earth oxide materials like cerium dioxide (ceria) are intrinsically water repellant. We have studied this intriguing finding for ceria thin films fabricated by pulsed laser deposition (PLD) at different oxygen pressures and different substrate temperatures. We used a custom apparatus for measuring water contact angles on ceria films deposited by PLD. X-ray photoelectron spectroscopy was used to determine the relationship between the ceria wetting behavior and ceria surface chemistry. Our results show that ceria thin films are intrinsically hydrophilic and that hydrophobicity arises due to adsorption of hydrocarbon species after ˜24 h.

  6. Properties of amorphous silicon thin films grown in square wave modulated silane rf discharges

    NASA Astrophysics Data System (ADS)

    Andújar, J. L.; Bertran, E.; Canillas, A.; Campmany, J.; Serra, J.; Roch, C.; Lloret, A.

    1992-02-01

    Hydrogenated amorphous silicon (a-Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a-Si:H from SQWM rf discharges through their influence on powder particle formation.

  7. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  8. Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films

    SciTech Connect

    Kumbhar, S.S.; Mahadik, M.A.; Mohite, V.S.; Hunge, Y.M.; Rajpure, K.Y.; Bhosale, C.H.

    2015-07-15

    Graphical abstract: The Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) thin films were prepared by spray pyrolysis technique onto the quartz substrates. The composition x = 0.4 shows the formation of the compact grain structure and highest saturation magnetization of 143 emu/cm{sup 3}. - Highlights: • Synthesis of nanocrystalline Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} thin films. • Influence of Ni substitution on physicochemical properties. • Electrical conductivity arises mainly from the grain boundary. • The highest saturation magnetization is 143 emu/cm{sup 3} for x = 0.4. - Abstract: The Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} thin films have been prepared using a simple spray pyrolysis technique. The X-ray diffraction studies reveal that, the films are polycrystalline with spinel structure. The lattice parameters vary in the range of 8.35–8.48 Å with composition (x) obeying Vegard’s rule. SEM and AFM studies show that the surface of the films exhibit a smooth, compact and a pin hole free morphology. Raman spectra indicate first order Raman active modes; A{sub 1g} (λ = 334 cm{sup −1}); E{sub g} (λ = 148 cm{sup −1}) and T{sub 2g} (λ = 699) of the Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4}. The investigation on dielectric constant, dielectric loss tangent and ac conductivity was carried out in the frequency range 20 Hz–1 MHz at room temperature. The linear nature of the AC conductivity shows small polaron type of hopping mechanism. The saturation magnetization increases up to x = 0.4 (143 emu/cm{sup 3}), which decreases for higher x.

  9. Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Rivière, J.-P.

    2009-12-01

    Nitrogen-doped titanium dioxide semiconductor photocatalytic thin films have been deposited by unbalanced reactive magnetron physical vapor deposition on glass substrates for self-cleaning applications. In order to increase the photocatalytic efficiency of the titania coatings, it is important to enhance the catalysts absorption of light from the solar spectra. Bearing this fact in mind, a reduction in the titania semiconductor band-gap has been attempted by using nitrogen doping from a coreactive gas mixture of N2:O2 during the titanium sputtering process. Rutherford backscattering spectroscopy was used in order to assess the composition of the titania thin films, whereas heavy-ion elastic recoil detection analysis granted the evaluation of the doping level of nitrogen. X-ray photoelectron spectroscopy provided valuable information about the cation-anion binding within the semiconductor lattice. The as-deposited thin films were mostly amorphous, however, after a thermal annealing in vacuum at 500 °C the crystalline polymorph anatase and rutile phases have been developed, yielding an enhancement in the crystallinity. Spectroscopic ellipsometry experiments enabled the determination the refractive index of the thin films as a function of the wavelength, while from the optical transmittance it was possible to estimate the semiconductor indirect band-gap of these coatings, which has been proven to decrease as the N-doping increases. The photocatalytic performance of the titania films has been characterized by the degradation rate of an organic reactive dye under UV/visible irradiation. It has been found that for a certain critical limit of 1.19 at. % of nitrogen doping in the titania anatase crystalline lattice enhances the photocatalytic behavior of the thin films and it is in accordance with the observed semiconductor band-gap narrowing to 3.18 eV. By doping the titania lattice with nitrogen, the photocatalytic activity is enhanced under both UV and visible light.

  10. Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films

    SciTech Connect

    Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Riviere, J.-P.

    2009-12-01

    Nitrogen-doped titanium dioxide semiconductor photocatalytic thin films have been deposited by unbalanced reactive magnetron physical vapor deposition on glass substrates for self-cleaning applications. In order to increase the photocatalytic efficiency of the titania coatings, it is important to enhance the catalysts absorption of light from the solar spectra. Bearing this fact in mind, a reduction in the titania semiconductor band-gap has been attempted by using nitrogen doping from a coreactive gas mixture of N{sub 2}:O{sub 2} during the titanium sputtering process. Rutherford backscattering spectroscopy was used in order to assess the composition of the titania thin films, whereas heavy-ion elastic recoil detection analysis granted the evaluation of the doping level of nitrogen. X-ray photoelectron spectroscopy provided valuable information about the cation-anion binding within the semiconductor lattice. The as-deposited thin films were mostly amorphous, however, after a thermal annealing in vacuum at 500 deg. C the crystalline polymorph anatase and rutile phases have been developed, yielding an enhancement in the crystallinity. Spectroscopic ellipsometry experiments enabled the determination the refractive index of the thin films as a function of the wavelength, while from the optical transmittance it was possible to estimate the semiconductor indirect band-gap of these coatings, which has been proven to decrease as the N-doping increases. The photocatalytic performance of the titania films has been characterized by the degradation rate of an organic reactive dye under UV/visible irradiation. It has been found that for a certain critical limit of 1.19 at. % of nitrogen doping in the titania anatase crystalline lattice enhances the photocatalytic behavior of the thin films and it is in accordance with the observed semiconductor band-gap narrowing to 3.18 eV. By doping the titania lattice with nitrogen, the photocatalytic activity is enhanced under both UV and

  11. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  12. Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates.

    PubMed

    Bae, Eun Ju; Min, Yo-Sep; Kim, Un Jeong; Park, Wanjun

    2007-12-12

    We report a transistor of randomly networked single-walled carbon nanotubes on a glass substrate. The carbon nanotube networks acting as the active components of the thin film transistor were selectively formed on the transistor channel areas that were previously patterned with catalysts to avoid the etching process for isolating nanotubes. The nanotube density was more than 50 microm(-2), which is much larger than the percolation threshold. Transistors were successfully fabricated with a conducting and transparent ZnO for the back-side gate and the top-side gate. This allows the transparent electronics or suggests thin film applications of nanotubes for future opto-electronics.

  13. BST Films Grown by Metal Organic Chemical Vapor Deposition Incorporating Real-Time Control of Stoichiometry

    DTIC Science & Technology

    2009-01-01

    grow multi-component oxide films including YBCO and ferroelectric PBT. In this paper, we describe preliminary studies of MOCVD growth of BST films...320 nm . These values as well as those for Ti and Bar are also summarized in Table 1. Table 1 Bubbler temperatures and UV absorption spectral windows...Precursor Tbubbler(◦C) UV Spectral Window ( nm ) Ba(thd) 237 260–235 Sr(thd) 232–235 250–320 Ti(thd2) 135–150 290–335 D ow nl oa de d by [ T & F In

  14. Multiferroic YCrO3 thin films grown on glass substrate: Resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Son, Jong Yeog

    2016-01-01

    Polycrystalline YCrO3 thin films were deposited on (111) Pt/Ta/glass substrates by pulsed laser deposition. The YCrO3 thin films exhibited good ferroelectric properties with remnant polarization of about 5 µC/cm2. Large leakage current was observed by I- V curve and ferroelectric hysteresis loop. The YCrO3 resistive random access memory (RRAM) capacitor showed unipolar switching behaviors with SET and RESET voltages higher than those of general NiO RRAM capacitors. [Figure not available: see fulltext.

  15. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  16. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  17. Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration

    2016-03-01

    Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity

  18. Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Rath, Martando; Ilango, S.; Ravindran, T. R.; Ramachandra Rao, M. S.; Dash, S.; Tyagi, A. K.

    2017-01-01

    Piezoelectric response of AlN thin films was investigated in a AlN/Ti/Si(1 0 0) layer structure prepared by ion beam sputter deposition (IBSD) in reactive assistance of N+/\\text{N}2+ ions. The samples were characterized for their microstructure, piezoelectric response and charged defects using high resolution x-ray diffraction (HR-XRD), piezo force microscopy (PFM) and photoluminescence (PL) spectroscopy respectively. Our results show that the films are highly textured along the a-axis and charged native point defects are present in the microstructure. Phase images of these samples obtained from PFM show that the films are predominantly N-polar. The measured values of piezoelectric coefficient d 33(eff) for these samples are as high as 206  ±  20 pm V-1 and 668  ±  60 pm V-1 calculated by piezo response loop for AlN films of a thickness of 235 nm and 294 nm respectively. A mechanism for high d 33(eff) values is proposed with a suitable model based on the charged defects induced enhanced polarization in the dielectric continuum of AlN.

  19. Low-temperature Spin Spray Deposited Ferrite/piezoelectric Thin Film Magnetoelectric Heterostructures with Strong Magnetoelectric Coupling

    DTIC Science & Technology

    2014-01-08

    tunabilities of the Fe3O4/ZnO multilayer were demonstrated by electro- static-field-induced in-plane FMR field changes at room temperature, as shown...observed through voltage induced in-plane ferromagnetic resonance ( FMR ) field shift in the Fe3O4/ZnO hetero- structures. Compared to the high process...Microwave ME coupling of thin films Fe3O4/ZnO heterostructures was carried out by custom- made microwave FMR spectrometer. 3 Results and discussion 3.1

  20. Observation of one magnon and magnon-phonon-electric dipole coupling in multiferroics bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Murari, N. M.; Katiyar, R. S.

    2008-04-01

    We observed "one magnon," scattering in multiferroic polycrystalline BiFeO3 thin films near 17.2cm-1 at 90K employing Raman spectroscopy. It is seen with a kink in magnon intensity at 150K and with strong anomaly near 210K illustrating spin reorientation transition. The spectral weight of one magnon transferred to the lowest phonon mode near the spin reorientation temperature suggests magnon-phonon coupling. Dielectric constant and dielectric loss as function of temperature showed anomaly at 210K suggesting magnon-phonon-electric dipole coupling. The one magnon becomes overdamped or overcome by elastic scattering at elevated temperatures.

  1. Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films

    DOE PAGES

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...

    2016-09-12

    Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe2 and WSe2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricate coupling between the spinmore » and orbital degrees of freedom in this class of material.« less

  2. Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masataka; Teraji, Tokuyuki; Koizumi, Satoshi

    2001-11-01

    The lattice location of phosphorus dopant atoms in n-type homoepitaxial diamond {111} films grown by chemical-vapor deposition has been investigated by Rutherford backscattering spectrometry and particle-induced x-ray emission under ion-channeling conditions. It is found that phosphorus dopant atoms occupy the substitutional sites almost completely in the host diamond lattice. The substitutional fraction of phosphorus was more than 0.9 for <011> and <111> directions. Present observation implies that the deep ground-state energy level of phosphorus in diamond, which is at 0.6 eV below the bottom of the conduction band, is attributed to the relaxation of surrounding carbon atoms.

  3. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  4. Structural and magnetic properties of {eta}-phase manganese nitride films grown by molecular-beam epitaxy

    SciTech Connect

    Yang, Haiqiang; Al-Brithen, Hamad; Smith, Arthur R.; Borchers, J. A.; Cappelletti, R. L.; Vaudin, M. D.

    2001-06-11

    Face-centered tetragonal (fct) {eta}-phase manganese nitride films have been grown on magnesium oxide (001) substrates by molecular-beam epitaxy. For growth conditions described here, reflection high energy electron diffraction and neutron scattering show primarily two types of domains rotated by 90{degree} to each other with their c axes in the surface plane. Scanning tunneling microscopy images reveal surface domains consisting of row structures which correspond directly to the bulk domains. Neutron diffraction data confirm that the Mn moments are aligned in a layered antiferromagnetic structure. The data are consistent with the fct model of G. Kreiner and H. Jacobs for bulk Mn{sub 3}N{sub 2} [J. Alloys Compd. 183, 345 (1992)]. {copyright} 2001 American Institute of Physics.

  5. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-06-01

    We report on highly efficient gas diffusion barriers for organic light emitting diodes (OLEDs). Nanolaminate (NL) structures composed of alternating Al2O3 and ZrO2 sublayers grown by atomic layer deposition at 80 °C are used to realize long-term stable OLED devices. While the brightness of phosphorescent p-i-n OLEDs sealed by a single Al2O3 layer drops to 85% of the initial luminance of 1000 cd/m2 after 1000 h of continuous operation, OLEDs encapsulated with the NL retain more than 95% of their brightness. An extrapolated device lifetime substantially in excess of 10 000 h can be achieved, clearly proving the suitability of the NLs as highly dense and reliable thin film encapsulation of sensitive organic electronic devices.

  6. Curie Temperature Enhancement and Induced Pd Magnetic Moments for Ultrathin Fe Films Grown on Stepped Pd(001)

    SciTech Connect

    Choi, H.J.; Kawakami, R.K.; Escorcia-Aparicio, E.J.; Qiu, Z.Q.; Pearson, J.; Jiang, J.S.; Li, D.; Bader, S.D.

    1999-03-01

    Fe films grown in ultrahigh vacuum onto a curved Pd(001) substrate with a continuous gradient in atomic step density were studied {ital in situ} via the surface magneto-optic Kerr effect (SMOKE). The steps induce an in-plane, uniaxial magnetic anisotropy with the easy axis perpendicular to the step edges, and whose strength scales linearly with step density. The Curie temperature of 1{endash}2thinspthinspmonolayers of Fe is enhanced by the steps relative to that on a flat substrate. The enhancement is attributed to a step-induced Pd moment at step edges, as inferred from the enhancement of the SMOKE signal with step density. {copyright} {ital 1999} {ital The American Physical Society}

  7. High-Tc and high-Jc SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ueda, Shinya; Takeda, Soichiro; Takano, Shiro; Yamamoto, Akiyasu; Naito, Michio

    2011-12-01

    Superconducting thin films of SmFeAs(O,F) were prepared by molecular beam epitaxy on fluoride substrates. In our process, F-free SmFeAsO films were grown first, and F was subsequently introduced to the films by diffusion from an overlayer of SmF3. By this simple process, record high Tc, namely, Tcon (Tcend) = 57.8 K (56.4 K) was obtained in a film on CaF2. Furthermore, the films on CaF2 showed high critical current density over 1 MA/cm2 in the self-field at 5 K. The correlation between superconductivity and epitaxial strain in SmFeAs(O,F) films is discussed.

  8. Synthesis of nanocrystalline Cu{sub 2}ZnSnS{sub 4} thin films grown by the spray-pyrolysis technique

    SciTech Connect

    Chandel, Tarun Singh, Joginder; Rajaram, P.

    2015-08-28

    Spray pyrolysis was used to deposit Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  9. High-T{sub c} and high-J{sub c} SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy

    SciTech Connect

    Ueda, Shinya; Takeda, Soichiro; Takano, Shiro; Naito, Michio; Yamamoto, Akiyasu

    2011-12-05

    Superconducting thin films of SmFeAs(O,F) were prepared by molecular beam epitaxy on fluoride substrates. In our process, F-free SmFeAsO films were grown first, and F was subsequently introduced to the films by diffusion from an overlayer of SmF{sub 3}. By this simple process, record high T{sub c}, namely, T{sub c}{sup on} (T{sub c}{sup end}) = 57.8 K (56.4 K) was obtained in a film on CaF{sub 2}. Furthermore, the films on CaF{sub 2} showed high critical current density over 1 MA/cm{sup 2} in the self-field at 5 K. The correlation between superconductivity and epitaxial strain in SmFeAs(O,F) films is discussed.

  10. Scintillating screens based on the LPE grown Tb3Al5O12:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Gorbenko, Vitaliy; Zorenko, Tetiana; Paprocki, Kazimierz; Iskalieva, Aizhan; Witkiewicz, Sandra; Fedorov, Alexander; Bilski, Paweł; Twardak, Anna

    2017-03-01

    We report in this work the creation of new heavy and efficient Tb3Al5O12:Ce (TbAG:Ce) single crystalline film (SCF) scintillators, grown by LPE method from PbO-B2O3 based flux onto Y3Al5O12 (YAG) and Gd3Ga2.5Al2.5O12 (GAGG) substrates, for different optoelectronic applications. The luminescent and scintillation properties of the TbAG:Ce SCF screens, grown onto different types of substrates, are studied and compared with the properties of the Lu3Al5O12:Ce (LuAG:Ce) and YAG:Ce SCF counterparts. TbAG:Ce SCFs show very high scintillation light yield (LY) under α-particles excitation, which overcomes by 30% the LY of high-quality LuAG:Ce SCF samples. In comparison with YAG:Ce and LuAG:Ce SCFs, TbAG:Ce SCF screens show also significantly lower afterglow (up to 10-4 level at X-ray burst duration of 0.1 s), which is comparable with the afterglow level of the best samples of LSO:Ce, Tb SCFs typically being used now for microimaging. Together with a high light output of X-ray excited luminescence, such extremely low afterglow of TbAG:Ce SCF is a very good reason for future development of scintillating screens based on the mentioned garnet. We also introduce the possibility to create new types of ;film-substrate; hybrid scintillators using the LPE method for simultaneous registration of different components of ionizing radiation and microimaging based on the TbAG:Ce SCF and GAGG:Ce substrates.

  11. Bandedge optical properties of MBE grown GaAsBi films measured by photoluminescence and photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, M.; Lewis, R. B.; Andrews, J. J.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; O'Leary, S. K.; Tiedje, T.

    2015-09-01

    The bandedge optical properties of GaAsBi films, as thick as 470 nm, with Bi content varying from 0.7% Bi to 2.8% Bi grown by molecular beam epitaxy on GaAs substrates are measured by photoluminescence (PL) and photothermal deflection spectroscopy (PDS). The PDS spectra were fit with a modified Fernelius model which takes into account multiple reflections within the GaAsBi layer and GaAs substrate. Three undoped samples and two samples that are degenerately doped with silicon are studied. The undoped samples show a clear Urbach absorption edge with a composition dependent bandgap that decreases by 56 meV/% Bi and a composition independent Urbach slope parameter of 25 meV due to absorption by Bi cluster states near the valence band. The doped samples show a long absorption tail possibly due to absorption by gap states and free carriers in addition to a Burstein-Moss bandgap shift. PL of the undoped samples shows a lower energy emission peak due to defects not observed in the usually available thin samples (50 nm or less) grown under similar conditions.

  12. Local structure and magnetic properties of B2- and B20-like ultrathin Mn films grown on Si(001)

    NASA Astrophysics Data System (ADS)

    Kahwaji, S.; Gordon, R. A.; Crozier, E. D.; Monchesky, T. L.

    2012-01-01

    The structural and magnetic properties of ultrathin Mn layers deposited onto Si(001) by molecular beam epitaxy at low temperature are reported. X-ray absorption fine structure studies reveal that the structure of the silicide layer that forms depends on the growth temperature of the capping layer. A capping layer grown at 200 °C on 0.35-monolayer (ML) Mn results in a metastable MnSi phase with a B2-like (CsCl) structure, whereas a cap grown at room temperature on 0.5 ML followed by annealing at 200 °C produces a lower coordinated MnSi phase with a B20-like structure. Increasing the Mn thickness from 0.5 to 4 monolayers does not trigger a structural transformation but drives the structure closer to MnSi-B20. The sample with B2-like structure has the largest Mn magnetic moment of 0.33 μB/Mn at T = 2 K, and a Curie temperature TC above 250 K. MnSi-B20 layers showed lower moments and much lower TC's, in line with those reported for MnSi-B20 thin films.

  13. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  14. Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates

    NASA Technical Reports Server (NTRS)

    Steckl, A. J.; Roth, M. D.; Powell, J. A.; Larkin, D. J.

    1993-01-01

    The surface of 3C SiC films grown on 6H SiC substrates has been studied by atomic probe microscopy in air. Atomic-scale images of the 3C SiC surface have been obtained by STM which confirm the 111 line type orientation of the cubic 3C layer grown on the 0001 plane type surface of the hexagonal 6H substrate. The nearest-neighbor atomic spacing for the 3C layer has been measured to be 3.29 +/- 0.2 A, which is within 7 percent of the bulk value. Shallow terraces in the 3C layer have been observed by STM to separate regions of very smooth growth in the vicinity of the 3C nucleation point from considerably rougher 3C surface regions. These terraces are oriented at right angles to the growth direction. Atomic force microscopy has been used to study etch pits present on the 6H substrate due to high temperature HCl cleaning prior to CVD growth of the 3C layer. The etch pits have hexagonal symmetry and vary in depth from 50 nm to 1 micron.

  15. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  16. IR emission and electrical conductivity of Nd/Nb-codoped TiOx (1.5 < x < 2) thin films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Tchiffo-Tameko, C.; Cachoncinlle, C.; Perriere, J.; Nistor, M.; Petit, A.; Aubry, O.; Pérez Casero, R.; Millon, E.

    2016-12-01

    The effect of the co-doping with Nd and Nb on electrical and optical properties of TiOx films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO2) or highly oxygen deficient (TiOx with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10-1 and 10-6 mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO2 were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV-vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd3+ emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiOx films by Nb5+ ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO2 films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10-6 mbar).

  17. Implantable ferrite antenna for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fazeli, Maxwell L.

    We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.

  18. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy.

    PubMed

    Yue, Ruoyu; Barton, Adam T; Zhu, Hui; Azcatl, Angelica; Pena, Luis F; Wang, Jian; Peng, Xin; Lu, Ning; Cheng, Lanxia; Addou, Rafik; McDonnell, Stephen; Colombo, Luigi; Hsu, Julia W P; Kim, Jiyoung; Kim, Moon J; Wallace, Robert M; Hinkle, Christopher L

    2015-01-27

    In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

  19. Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique

    SciTech Connect

    Krajewski, Tomasz A. Dybko, Krzysztof; Luka, Grzegorz; Wachnicki, Lukasz; Kopalko, Krzysztof; Paszkowicz, Wojciech; Guziewicz, Elzbieta

    2015-07-21

    In this work, the analysis of the temperature-dependent electrical conductivity of highly crystalline zinc oxide (ZnO) thin films obtained by the Atomic Layer Deposition (ALD) method is performed. It is deduced that the most important scattering mechanisms are: scattering by ionized defects (at low temperatures) as well as by phonons (mainly optical ones) at higher temperatures. Nevertheless, the role of grain boundaries in the carrier mobility limitation ought to be included as well. These conclusions are based on theoretical analysis and temperature-dependent Hall mobility measurements. The presented results prove that existing models can explain the mobility behavior in the ALD-ZnO films, being helpful for understanding their transport properties, which are strongly related both to the crystalline quality of deposited ZnO material and defects in its lattice.

  20. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors

    NASA Astrophysics Data System (ADS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-09-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT-graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT-graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene-CNT/Si solar cells reveal power conversion efficiencies up to 8.50%.

  1. Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

    PubMed Central

    Blumenstein, Nina J; Streb, Fabian; Walheim, Stefan; Schimmel, Thomas; Bill, Joachim

    2017-01-01

    Biomaterials are used as model systems for the deposition of functional inorganic materials under mild reaction conditions where organic templates direct the deposition process. In this study, this principle was adapted for the formation of piezoelectric ZnO thin films. The influence of two different organic templates (namely, a carboxylate-terminated self-assembled monolayer and a sulfonate-terminated polyelectrolyte multilayer) on the deposition and therefore on the piezoelectric performance was investigated. While the low negative charge of the COOH-SAM is not able to support oriented attachment of the particles, the strongly negatively charged sulfonated polyelectrolyte leads to texturing of the ZnO film. This texture enables a piezoelectric performance of the material which was measured by piezoresponse force microscopy. This study shows that it is possible to tune the piezoelectric properties of ZnO by applying templates with different functionalities. PMID:28243568

  2. Co3O4(100) films grown on Ag(100): Structure and chemical properties

    NASA Astrophysics Data System (ADS)

    Arman, Mohammad A.; Merte, Lindsay R.; Lundgren, Edvin; Knudsen, Jan

    2017-03-01

    Spinel type Co3O4(100) is successfully grown on Ag(100) at ultrahigh vacuum conditions and its structure, electronic and chemical properties are compared with those of Co3O4(111) grown on Ir(100). We find that the Co3O4(100) is unreconstructed. In contrast to the defect free Co3O4(111) surface the Co3O4(100) surface contains a high concentration of defects that we assign to subsurface cation vacancies analogous to those observed for Fe3O4(100). Our photoemission and absorption spectroscopy experiments reveal a very similar electronic structure of the Co3O4(111) and Co3O4(100) surfaces. The similar electronic structure of the two surfaces is reflected in the CO adsorption properties at low temperatures, as we observe adsorption of molecular CO as well as the formation of carbonate (CO3) species on both surfaces upon CO exposure at 85 K.

  3. Synthesis of 15R polytype of diamond in oxy-acetylene flame grown diamond thin films

    NASA Astrophysics Data System (ADS)

    Kapil, R.; Mehta, B. R.; Vankar, V. D.

    1996-04-01

    15R polytype of diamond has been synthesized using a specially designed oxy-acetylene flame system along with 3C diamond and cubic carbon on polycrystalline molybdenum substrates. X-ray diffraction has been used to detect the 15R phase as the dominant phase in these films. Rapid changes in the substrate temperature during the growth process are expected to be responsible for the growth of these phases.

  4. Fluence dependent electrical conductivity in aluminium thin films grown by infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Martínez-Tong, Daniel E.; Sanz, Mikel; Oujja, Mohamed; Marco, José F.; Ezquerra, Tiberio A.; Castillejo, Marta

    2016-11-01

    We studied the effect of laser fluence on the morphology, composition, structure and electric conductivity of deposits generated by pulsed laser ablation of a metallic aluminium target in vacuum using a Q-switched Nd:YAG laser (1064 nm, 15 ns). Upon irradiation for one hour at a repetition rate of 10 Hz, a smooth layer of several tens of nanometres, as revealed by atomic force microscopy (AFM) was deposited on glass. Surface chemical composition was determined by X-ray photoelectron spectroscopy, and to study the conductivity of deposits both I-V curves and conductive-AFM measurements were performed. Irradiation at fluences around 2.7 J/cm2 resulted in deposition of amorphous aluminium oxide films. Differently, at higher fluences above 7 J/cm2, the films are constituted by metallic aluminium. Optical emission spectroscopy revealed that highly ionized species are more abundant in the ablation plumes generated at higher fluences. The results demonstrate the possibility to control by PLD the metal or dielectric character of the films.

  5. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    PubMed Central

    Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-01-01

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648

  6. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  7. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Lo, Fang-Yuh; Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Chern, Ming-Yau; Liu, Hsiang-Lin

    2015-06-01

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  8. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  9. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  10. Resistive switching characteristics and mechanism of thermally grown WOx thin films

    NASA Astrophysics Data System (ADS)

    Biju, Kuyyadi P.; Liu, Xinjun; Siddik, Manzar; Kim, Seonghyun; Shin, Jungho; Kim, Insung; Ignatiev, Alex; Hwang, Hyunsang

    2011-09-01

    Resistive switching characteristics of thermally oxidized tungsten thin films and their switching mechanism were investigated, modifying thickness of the active layer (WOx) by varying oxidation conditions. Two types of switching were observed in Pt/WOx/W memory devices. Thinner film (t ≤ 15 nm) exhibits clockwise switching (CWS) with filamentary characteristics, whereas thicker film (t ≥ 25 nm) exhibits counter-clockwise switching (CCWS) with more homogeneous conduction. Both switching modes are highly reliable and show good cycling endurance. The conduction phenomena in two different switching modes were examined. In the case of CWS, the conduction mechanism changes from Schottky emission to ohmic conduction due to the local bypass of Schottky barrier formed at Pt/WOx interface by oxygen vacancies. Contrary to CWS, CCWS showed a completely different conduction mechanism. The high resistance state is dominated by the Schottky emission at low electric field and by Poole-Frenkel emission at high electric field, whereas the low resistance state exhibits the Schottky emission. Different types of switching behavior might be attributed to the non-homogenous defect distribution across the active layer. A possible conduction sketch for two types switching behaviors is also discussed.

  11. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.

    PubMed

    Driessen, Marion; Merkel, Benjamin; Reber, Stefan

    2011-09-01

    Crystalline silicon thin film (cSiTF) solar cells based on the epitaxial wafer-equivalent (EpiWE) concept combine advantages of wafer-based and thin film silicon solar cells. In this paper two processes beyond the standard process sequence for cSiTF cell fabrication are described. The first provides an alternative to wet chemical saw damage removal by chemical vapor etching (CVE) with hydrogen chloride in-situ prior to epitaxial deposition. This application decreases the number of process and handling steps. Solar cells fabricated with different etching processes achieved efficiencies up to 14.7%. 1300 degrees C etching temperature led to better cell results than 1200 degrees C. The second investigated process aims for an improvement of cell efficiency by implementation of a reflecting interlayer between substrate and active solar cell. Some characteristics of epitaxial lateral overgrowth (ELO) of a patterned silicon dioxide film in a lab-type reactor constructed at Fraunhofer ISE are described and first solar cell results are presented.

  12. Properties of Al-doped ZnS Films Grown by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Nagamani, K.; Prathap, P.; Lingappa, Y.; Miles, R. W.; Reddy, K. T. R.

    Zinc sulphide (ZnS) buffer layers are a cadmium free, wider energy band gap, alternative to the cadmium sulphide (CdS) buffer layers commonly used in copper indium gallium diselenide (CuInGaSe2)-based solar cells. However extrinsic doping of the ZnS is important to lower the resistivity of the layers and to improve flexibility of device design. In this work, Al-doped ZnS nanocrystalline films have been produced on glass substrates using a chemical bath deposition (CBD) method. The Al- concentration was varied from 0 at. % to 10 at. %, keeping other deposition parameters constant. The elemental composition of a typical sample with 6 at. % 'Al' in ZnS was Zn=44.9 at. %, S=49.8 at. % and Al=5.3 at.%. The X-ray diffraction data taken on these samples showed a broad peak corresponding to the (111) plane of ZnS while the crystallite size varied in the range, 8 - 15 nm, depending on the concentration of Al in the layers. The films with a Al-doping content of 6 at. % had an optical transmittance of 75% in the visible range and the energy band gap evaluated from the data was 3.66 eV. The films n-type electrical conductivities and the electrical resistivity varied in the range, 107-103 Ωcm, it decreasing with an increase of the Al-concentration in the solution.

  13. X-ray reflectivity analysis of titanium dioxide thin films grown by cathodic arc deposition.

    PubMed

    Kleiman, A; Lamas, D G; Craievich, A F; Márquez, A

    2014-05-01

    TiO2 thin films deposited by a vacuum arc on a glass substrate were characterized by X-ray reflectivity (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Several thin films with different amounts of deposited TiO2 mass and different deposition and annealing temperatures were studied. A qualitative analysis of the XRD patterns indicated the presence of the anatase and/or rutile crystalline phases in most of the studied samples. From the analysis of the experimental XRR curves--which exhibited a wide angular range of oscillatory behavior--the thickness, mass density and interface roughness were determined. All XRR patterns were well fitted by modeled curves that assume the presence of a single and homogeneous TiO2 layer over which a very thin H2O layer is adsorbed. The thickest H2O adsorption layers were developed in films with the highest anatase content. Our overall results of the XRR analyses are consistent with those derived from the imaging techniques (SEM and AFM).

  14. Generation of pure spin currents via spin Seebeck effect in self-biased hexagonal ferrite thin films

    SciTech Connect

    Li, Peng; Ellsworth, David; Chang, Houchen; Janantha, Praveen; Richardson, Daniel; Phillips, Preston; Vijayasarathy, Tarah; Wu, Mingzhong; Shah, Faisal

    2014-12-15

    Light-induced generation of pure spin currents in a Pt(2.5 nm)/BaFe{sub 12}O{sub 19}(1.2 μm)/sapphire(0.5 mm) structure is reported. The BaFe{sub 12}O{sub 19} film had strong in-plane uniaxial anisotropy and was therefore self-biased. Upon exposure to light, a temperature difference (ΔT) was established across the BaFe{sub 12}O{sub 19} thickness that gave rise to a pure spin current in the Pt via the spin Seebeck effect. Via the inverse spin Hall effect, the spin current produced an electric voltage across one of the Pt lateral dimensions. The voltage varied with time in the same manner as ΔT and flipped its sign when the magnetization in BaFe{sub 12}O{sub 19} was reversed.

  15. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH{sub 4}/Ar plasma

    SciTech Connect

    Sankaran, K. J.; Tai, N. H. E-mail: nhtai@mse.nthu.edu.tw; Huang, B. R.; Saravanan, A.; Lin, I. N. E-mail: nhtai@mse.nthu.edu.tw

    2014-10-28

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH{sub 4} and Ar under different negative bias voltages ranging from −50 to −200 V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under −200 V, the electron field emission (EFE) process can be turned on at a field as small as 4.08 V/μm, attaining a EFE current density as large as 3.19 mA/cm{sup 2} at an applied field of 8.64 V/μm. But the films grown without bias (0 V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH{sub 4}/Ar plasma due to large applied bias voltage of −200 V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  16. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    PubMed Central

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  17. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Roro, K. T.; Kassier, G. H.; Dangbegnon, J. K.; Sivaraya, S.; Westraadt, J. E.; Neethling, J. H.; Leitch, A. W. R.; Botha, J. R.

    2008-05-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3-4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18-300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm2 V-1 s-1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33-41 meV range and concentration of the order of 1017 cm-3, as well as a total acceptor concentration of mid-1015 cm-3. Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered.

  18. Superexchange and iron valence control by off-stoichiometry in yttrium iron garnet thin films grown by pulsed laser deposition

    SciTech Connect

    Dumont, Y.; Keller, N.; Popova, E.; Schmool, D.S.; Bhattacharya, S.; Stahl, B.; Tessier, M.; Guyot, M.

    2005-05-15

    Controlled off-stoichiometric single phase polycrystalline yttrium iron garnet (YIG) thin films have been grown by pulsed laser deposition, adjusting the oxygen partial pressure P{sub O2} between 5 and 400 mTorr. Atomic stoichiometry by RBS shows an oxygen deficiency for P{sub O2}P{sub stoich}. P{sub stoich}=30 mTorr refers to films showing magnetic and structural properties of the bulk stoichiometric YIG. Curie temperature T{sub c} and saturation magnetization 4{pi}Ms decreased for P{sub O2}P{sub stoich}: Increase of Tc (up to +10%) and of 4{pi}Ms (up to +20%) and lattice parameter compression. Microscopic interpretation is given in terms of superexchange interaction and creation and site selectivity of iron vacancies.

  19. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.

    PubMed

    Townrow, S; Coleman, P G

    2014-03-26

    The crystalline structure of ∼ 5-20 μm water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ≥ 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ∼ 100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ∼ 172 K, with the ortho-Ps diffusion length rising by ∼ 60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history.

  20. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  1. Thin films of metal oxides grown by chemical vapor deposition from volatile transition metal and lanthanide metal complexes

    NASA Astrophysics Data System (ADS)

    Pollard, Kimberly Dona

    1998-08-01

    synthesized and characterized spectroscopically. An X-ray structural determination of lbrack Ce(hfac)sb3(CHsb3O(CHsb2CHsb2O)sb2CHsb3)rbrack was reported. As-deposited films of cerium oxide were studied by XPS, SEM, and XRD. The benefits of catalyst-enhanced CVD were also examined. Bimetallic films of Ysb2Cesb2O, and Pd/CeOsb2 were grown and examined by XPS. The decomposition of cerium precursors to form cerium oxide was examined by studying ne exhaust products of the CVD reaction using GC-MS. An organometallic complex, (Ir(Cp)(COD)), (Cp = cyclopentadienyl, COD = 1,5-cyclooctadiene) and a metal-organic complex, lbrack Ir(acac)sb3rbrack, (acac = \\{CHsb3C(O)CHC(O)CHsb3\\}sp-) were used to study the formation of iridium dioxide, IrOsb2. Films were analyzed using XPS, SEM, and XRD. The GC-MS technique was used to study trapped exhaust products of a CVD reaction to give insight into decomposition mechanisms at the substrate surface.

  2. Optical properties of hydrogenated amorphous carbon films grown from methane plasma

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Lanford, W. A.

    1985-01-01

    A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined.

  3. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  4. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  5. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    SciTech Connect

    Kalkofen, Bodo Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P.; Garke, Bernd; Lisker, Marco; Gargouri, Hassan

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  6. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-14

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T{sub s}). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10{sup −3} Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T{sub s} of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein–Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ∼110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  7. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  8. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone.

    PubMed

    Jin, Chunyan; Liu, Ben; Lei, Zhongxiang; Sun, Jiaming

    2015-01-01

    TiO2 films were grown on silicon substrates by atomic layer deposition (ALD) using tetrakis-dimethylamino titanium and ozone. Amorphous TiO2 film was deposited at a low substrate temperature of 165°C, and anatase TiO2 film was grown at 250°C. The amorphous TiO2 film crystallizes to anatase TiO2 phase with annealing temperature ranged from 300°C to 1,100°C in N2 atmosphere, while the anatase TiO2 film transforms into rutile phase at a temperature of 1,000°C. Photoluminescence from anatase TiO2 films contains a red band at 600 nm and a green band at around 515 nm. The red band exhibits a strong correlation with defects of the under-coordinated Ti(3+) ions, and the green band shows a close relationship with the oxygen vacancies on (101) oriented anatase crystal surface. A blue shift of the photoluminescence spectra reveals that the defects of under-coordinated Ti(3+) ions transform to surface oxygen vacancies in the anatase TiO2 film annealing at temperature from 800°C to 900°C in N2 atmosphere.

  9. Structural characterization of niobium oxide thin films grown on SrTiO3 (111) and (La,Sr)(Al,Ta)O3 (111) substrates

    NASA Astrophysics Data System (ADS)

    Dhamdhere, Ajit R.; Hadamek, Tobias; Posadas, Agham B.; Demkov, Alexander A.; Smith, David J.

    2016-12-01

    Niobium oxide thin films have been grown by molecular beam epitaxy on SrTiO3 (STO) (111) and (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT) (111) substrates. Transmission electron microscopy (TEM) confirmed the formation of high quality films with coherent interfaces. Films grown with higher oxygen pressure on STO (111) resulted in a (110)-oriented NbO2 phase with a distorted rutile structure, which can be described as body-centered tetragonal. The a lattice parameter of NbO2 was determined to be ˜13.8 Å in good agreement with neutron diffraction results published in the literature. Films grown on LSAT (111) at lower oxygen pressure produced the NbO phase with a defective rock salt cubic structure. The NbO lattice parameter was determined to be a ≈ 4.26 Å. The film phase/structure identification from TEM was in good agreement with in situ x-ray photoelectron spectroscopy measurements that confirmed the dioxide and monoxide phases, respectively. The atomic structure of the NbO2/STO and NbO/LSAT interfaces was determined based on comparisons between high-resolution electron micrographs and image simulations.

  10. Ferroelectric PLZT thick films grown by poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA)-modified sol-gel process

    SciTech Connect

    Hu, Zhongqiang; Ma, Beihai; Li, Meiya; Koritala, Rachel E.; Balachandran, Uthamalingam

    2016-03-01

    We report the growth of ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) thick films using a poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA)-modified sol–gel process. A per-coating thickness of ≈0.66 μm has been demonstrated using PVP/VA-modified solution, which is more than doubled that of the PLZT films grown by PVP-modified method, and nearly 6 times the per-coating thickness of films prepared by conventional sol–gel process. PLZT thick films grown on LNO/Ni substrates exhibited denser microstructure, higher remanent polarization (11 μC/cm2) and dielectric tunability (45%), lower leakage current density (≈1.2 × 10-8 A/cm2), and higher breakdown strength (≈1.6 MV/cm) than those for the samples grown on PtSi substrates. These results demonstrated great potential of using PVP/VA-modified sol–gel process for high power film capacitor applications.

  11. In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ngo, Trong Si; Le, Duc Duy; Tran, Duy Khanh; Song, Jung-Hoon; Hong, Soon-Ku

    2017-01-01

    Plasma-assisted molecular beam epitaxy (PAMBE) was used to grow Ga2O3 films on oxidized GaN layers on nitrided sapphire substrates. The GaN layer was grown by PAMBE, and the in situ oxidation of the GaN layer was achieved through exposure to oxygen plasma, which resulted in the formation of monoclinic β-Ga2O3. Crystalline monoclinic β-Ga2O3 films were grown on the GaN layers, with and without oxidation. The orientation relationships were [11overline{2} 0 ] Al2O3//[1overline{1} 00 ] AlN//[1overline{1} 00 ] GaN//[102] β-Ga2O3 and [1overline{1} 00 ] Al2O3//[11overline{2} 0 ] AlN//[11overline{2} 0 ] GaN//[010] β-Ga2O3. The grown β-Ga2O3 films were not single-crystalline but showed rotational domains along the growth direction with three variations, which resulted in six-fold rotational symmetry instead of two-fold rotational symmetry. The surface roughness of the grown β-Ga2O3 film was closely reflected to that of as-grown GaN and oxidized GaN. By analyzing the x-ray omega rocking curves for the on-axis (overline{2} 01 ) and off-axis (002) reflections, it was concluded that rotational domains dominantly affected the crystal quality of the β-Ga2O3 films.

  12. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame

    NASA Astrophysics Data System (ADS)

    Wolter, S. D.; Prater, J. T.; Sitar, Z.

    2001-06-01

    Diamond films produced in the low-pressure flat flame have been examined using Raman spectroscopy. The effect of the oxy-acetylene gas mixture (R=O 2/C 2H 2 gas ratio of 0.95 to 1.06) and substrate temperature (650-850°C) on the form of the non-diamond carbon as well as the diamond phase purity and crystallinity are reported. An assessment of the diamond crystallinity was achieved by inspection of the full-width-at-half-maximum (FWHM) of the Raman line observed at 1332±0.5 cm -1 representing sp 3-bonded carbon. This analysis revealed a FWHM as low as ˜4.3 cm -1 for the optimum growth conditions of an R=1.05 and substrate temperatures of 650-750°C. The broad non-diamond carbon component in the 1350 cm -1 to 1650 cm -1 range was deconvoluted into three distinct Gaussian peaks at 1355±1.5 cm -1, 1470±7.5 cm -1, and 1550±4.0 cm -1. These peaks remained in the same relative proportion regardless of the processing conditions, and the total area of the non-diamond peaks was found to correspond linearly with the background luminescence. A relative comparison of the diamond and non-diamond carbon was used to qualitatively estimate the diamond film phase purity.

  13. Structural Characteristics of La2O3 Thin Film Grown on LaB6

    NASA Astrophysics Data System (ADS)

    Kafadaryan, Y. A.; Petrosyan, S. I.; Badalyan, G. R.; Lazaryan, V. G.; Shirinyan, G. H.; Aghamalyan, N. R.; Hovsepyan, R. K.; Semerjian, H. S.; Igityan, A. S.; Kuzanyan, A. M.

    Within the framework of hexagonal lanthanum oxide (h-La2O3) formation, lanthanum hexaboride film on sapphire substrate (LaB6/Al2O3) was oxidized at different temperatures (700-1000 °C) under reduced atmospheric pressure (1·10-2,1.5·10-1Torr) during 30 min. The composition evolution of La2O3/LaB6 structure versus annealing temperature has been studied using XRD, FIR reflectivity spectroscopy, SEM and electron probe X-ray microanalysis (EDS). The annealing of the LaB6 film at T=700 °C under air pressure of 1·10-2 Torr generates thin La2O3 layer which exhibits as inferred from XRD the hexagonal phase. The hydratation of La2O3/LaB6/Al2O3 in distilled water for 30 min and postannealing at 900 °C under air pressure of 1.5·10-1 Torr transform h-La2O3 into hexagonal La(OH)3 phase accompanied monoclinic LaO(OH) and lanthanum oxide carbonate hydrate species.

  14. Optical and electrical characterization of CIGS thin films grown by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    In this paper, the electrochemical impedance spectroscopy was handled to study the electrochemical attitude of quaternary alloy Cu (In, Ga) Se2/Na2SO4 electrolyte interface. Subsequently, an annealing treatment was performed at various temperatures (250-400 °C). The material features of Cu (In, Ga) Se2 films are controlled by the percentage of gallium content. XRD studies showed three favorite orientations along the (112), (220), and (116) planes for all samples. The morphological and chemical composition studies exhibited Ga/(Ga + In) ratio ranging from 0.27 to 0.32, and RMS surface roughness was in the range 54.2-77.8 nm, respectively. The optical band gap energy of the CIGS alloys can be strongly controlled by adjusting gallium and indium concentrations. EIS measurement has been modeled by using an equivalent circuit. Mott-Schottky plot illustrates p-type conductivity of CIGS film with a carrier concentration around 1016 cm-3, a flat band potential V fb ranging from -0.68 to -0.57 V, and depletion layer thickness rises from 0.24 to 0.36 μm.

  15. TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Farstad, M. H.; Ragazzon, D.; Grönbeck, H.; Strømsheim, M. D.; Stavrakas, C.; Gustafson, J.; Sandell, A.; Borg, A.

    2016-07-01

    The growth of ultrathin TiOx (0≤x≤2) films on Pd(100) and Pd(111) surfaces by chemical vapor deposition (CVD), using Titanium(IV)isopropoxide (TTIP) as precursor, has been investigated by high resolution photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. Three different TiOx phases and one Pd-Ti alloy phase have been identified for both surfaces. The Pd-Ti alloy phase is observed at the initial stages of film growth. Density functional theory (DFT) calculations for Pd(100) and Pd(111) suggest that Ti is alloyed into the second layer of the substrate. Increasing the TTIP dose yields a wetting layer comprising Ti2 + species (TiOx, x ∼0.75). On Pd(100), this phase exhibits a mixture of structures with (3 × 5) and (4 × 5) periodicity with respect to the Pd(100) substrate, while an incommensurate structure is formed on Pd(111). Most importantly, on both surfaces this phase consists of a zigzag pattern similar to observations on other reactive metal surfaces. Further increase in coverage results in growth of a fully oxidized (TiO2) phase on top of the partially oxidized layer. Preliminary investigations indicate that the fully oxidized phase on both Pd(100) and Pd(111) may be the TiO2(B) phase.

  16. Transport Anisotropy of Epitaxial VO2 films grown on (100) TiO2

    NASA Astrophysics Data System (ADS)

    Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, Stuart

    2011-03-01

    Vanadium dioxide (VO2) exhibits a metal semiconductor transition (MST) at 340 K. This transition is accompanied by the abrupt change in the electrical conductivity, optical transmittance and reflectance in infrared region, which can be used in the electronic devices such as temperature sensors and electric switches. In this study, Reactive Bias Target Ion Beam Deposition was used for epitaxial VO2 thin film growth on Ti O2 (100) substrates. The out-of-plane and the in-plane XRD scans have been performed to confirm the single phase VO2 and the epitaxial relationship between the film and the substrate. The hall bars along the in-plane c-axis and b-axis of R-VO2 were fabricated via the photolithographic process. It is found that the maximum conductivity was parallel to c-axis, while the minimum conductivity was parallel to b-axis. The conductivity anisotropy persisted through the metal semiconductor transition. The conductivity anisotropy ratio σc / σb was found to be ~ 16.2 at 300 K, much larger than that of single crystal VO2 . The temperature dependent anisotropy of the carrier concentration and the mobility is to be discussed.

  17. Influence of the grain boundary network on the critical current of YBa2Cu3O7 films grown on biaxially textured metallic substrates

    NASA Astrophysics Data System (ADS)

    Fernández, L.; Holzapfel, B.; Schindler, F.; de Boer, B.; Attenberger, A.; Hänisch, J.; Schultz, L.

    2003-02-01

    YBa2Cu3O7/YSZ/CeO2 heterostructures have been grown epitaxially on biaxially textured Ni substrates by pulsed laser deposition. The texture of the film was determined by electron backscattering diffraction, providing information on the propagation of the grain boundary network from the Ni substrate to the YBa2Cu3O7 film via the epitaxial growth. The grain boundary network limits the critical current density to 0.3 MA/cm2 (77 K, 0 T), compared with 1.3 MA/cm2 (77 K, 0 T) for a film grown on a single crystalline Ni substrate. Transport measurements on the coated conductor sample at different temperatures and magnetic fields show that there is a crossover field between intergrain and intragrain critical current that is shifted to higher magnetic fields as the temperature is reduced.

  18. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  19. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern

    NASA Astrophysics Data System (ADS)

    Mynbaeva, M. G.; Kremleva, A. V.; Kirilenko, D. A.; Sitnikova, A. A.; Pechnikov, A. I.; Mynbaev, K. D.; Nikolaev, V. I.; Bougrov, V. E.; Lipsanen, H.; Romanov, A. E.

    2016-07-01

    A TEM study of defect structure of GaN films grown by chloride vapor-phase epitaxy (HVPE) on GaN/Al2O3 substrates was performed. The substrates were fabricated by metal-organic chemical vapor deposition overgrowth of templates with buried column pattern. The results of TEM study showed that the character of the defect structure of HVPE-grown films was determined by the configuration of the column pattern in the substrate. By choosing the proper pattern, the reduction in the density of threading dislocations in the films by two orders of magnitude (in respect to the substrate material), down to the value of 107 cm-2, was achieved.

  20. A relation between a metallic film covering on diamond formed during growth and nanosized inclusions in HPHT as-grown diamond single crystals

    NASA Astrophysics Data System (ADS)

    Yin, L.-W.; Li, M.-S.; Gong, Z.-G.; Bai, Y.-J.; Li, F.-Z.; Hao, Z.-Y.

    One of the most important characteristics and basic phenomena during diamond growth from liquid metal catalyst solutions saturated with carbon at high temperature-high pressure (HPHT) is that there exists a thin metallic film covering on the growing diamond, through which carbon-atom clusters are delivered to the surface of the growing diamond by diffusion. A study of microstructures of such a metallic film and a relation between the thin metallic film and the inclusions trapped in HPHT as-grown diamond single crystals may be helpful to obtain high-purity diamond single crystals. It was found that both the metallic film and the HPHT as-grown diamond single crystals contain some nanostructured regions. Examination by transmission electron microscopy suggests that the microstructure of the thin metallic film is in accordance with nanosized particles contained in HPHT as-grown diamond single crystals. The nanosized particles with several to several tens of nanometers in dimension distribute homogeneously in the metallic film and in the diamond matrix. Generally, the size of the particles in the thin metallic film is relatively larger than that within the diamond matrix. Selected area electron diffraction patterns suggest that the nanosized particles in the metallic film and nanometer inclusions within the diamond are mainly composed of f.c.c. (FeNi)23C6, hexagonal graphite and cubic γ-(FeNi). The formation of the nanosized inclusions within the diamond single crystals is thought not only to relate to the growth process and rapid quenching from high temperature after diamond synthesis, but also to be associated with large amounts of defects in the diamond, because the free energy in these defect areas is very high. The critical size of carbide, γ-(FeNi)and graphite particles within the diamond matrix should decrease and not increase according to thermodynamic theory during quenching from HPHT to room temperature and ambient pressure.

  1. Temperature stabilization of microwave ferrite devices

    NASA Technical Reports Server (NTRS)

    Kaminsky, R.; Wendt, E. J.

    1978-01-01

    Thin-film heating element for strip-line circulator is sandwiched between insulation and copper laminations. Disks conform to shape of circulator ferrite disks and are installed between copper-clad epoxy ground planes. Heater design eliminates external cartridges and reduces weight by approximately one-third.

  2. Micro-twins TiO2 nanorods grown on seeded ZnO film

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Xia, Maosheng; Liu, Yuhua; Zheng, Biju; Jiang, Qing; Lian, Jianshe

    2012-04-01

    TiO2 anatase nanorods (NRs) epitaxially grew along the [001] direction at 600 °C on seeded c-axis oriented ZnO films which were deposited on a quartz glass substrate. The length of TiO2 NRs was about 450 nm. Micro-twins (MTs) were found in the TiO2 NRs with the (103) plane as the twin planes. The possible growth mechanisms of these TiO2 MTs have been studied using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The photo-degradation experiment showed that the TiO2 NRs have a high degradation efficiency of 32.9%. The effects of structural defects and MTs on the photocatalytic activity have been discussed.

  3. Magnetostrictive iron gallium thin films grown onto antiferromagnetic manganese nitride: Structure and magnetism

    NASA Astrophysics Data System (ADS)

    Mandru, Andrada-Oana; Corbett, Joseph P.; Richard, Andrea L.; Gallagher, James; Meng, Keng-Yuan; Ingram, David C.; Yang, Fengyuan; Smith, Arthur R.

    2016-10-01

    We report structural and magnetic properties of magnetostrictive Fe100 -xGax (x ≈ 15) alloys when deposited onto antiferromagnetic manganese nitride and non-magnetic magnesium oxide substrates. From X-ray diffraction measurements, we find that the FeGa films are single crystalline. Scanning tunneling microscopy imaging reveals that the surface morphologies are dictated by the growth temperature, composition, and substrate. The magnetic properties can be tailored by the substrate, as found by magnetic force microscopy imaging and vibrating sample magnetometry measurements. In addition to pronounced tetragonal deformations, depositing FeGa onto manganese nitride leads to the formation of stripe-like magnetic domain patterns and to the appearance of perpendicular magnetic anisotropy.

  4. Formation of pyramid-like nanostructures in MBE grown Si films on Si(001)

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Garzon, L.; Rodriguez-Cañas, E.; Munuera, Carmen; Esteban-Betegon, F.; Varela del Arco, Maria; Ocal, Carmen; Alonso, Maria; Ruiz, Ana

    2010-01-01

    The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometric scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks and square pit (inverted pyramids) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nano-scale entities (islands or pits) display certain self assembly and ordering, concerning size, shape and spacing. Film growth sequence follows the islands-coalescence-2D growth pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature.

  5. Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lukco, Dorothy; Cytron, Sheldon J.

    2004-01-01

    An investigation was conducted to examine the friction and wear behavior of the two types of oxide ceramic films furnished by the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) under Space Act Agreement SAA3 567. These two types of oxide ceramics were grown on 55Ni-45Ti (60 wt% Ni and 40 wt% Ti) substrates: one was a TiO2 with no other species (designated the B film) and the other was a TiO2 with additional species (designated the G film). Unidirectional ball-on-disk sliding friction experiments were conducted with the oxide films in contact with sapphire at 296 K (23 C) in approx. 50-percent relative humidity laboratory air in this investigation. All material characterization and sliding friction experiments were conducted at the NASA Glenn Research Center. The results indicate that both films greatly improve the surface characteristics of 55Ni-45Ti, enhancing its tribological characteristics. Both films decreased the coefficient of friction by a factor of 4 and increased wear resistance by a two-figure factor, though the B film was superior to the G film in wear resistance and endurance life. The levels of coefficient of friction and wear resistance of both films in sliding contact with sapphire were acceptable for NASA and Department of Defense tribological applications. The decrease in friction and increase in wear resistance will contribute to longer wear life for parts, lower energy consumption, reduced related breakdowns, decreased maintenance costs, and increased reliability.

  6. Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kurniawan, R.; Nurfani, E.; Muhammady, S.; Sutjahja, I. M.; Winata, T.; Darma, Y.

    2016-11-01

    We study the annealing effect of highly oriented zinc oxide (ZnO) films grown by low-power dc-unbalanced magnetron sputtering (DC-UBMS). In this study, we compare the structural and electrical properties of thermal-annealed ZnO films (ann-ZnO) and as-growth ZnO films (ag-ZnO) by using x-ray diffraction (XRD), scanning electron microscopy (SEM) and RT66A standardized ferroelectric test system. We found that the ag-ZnO films and the ann-ZnO films show a high orientation in (101) plane. SEM images indicate that annealing treatment at 600°C in nitrogen ambient promote the surface atomics arrangement and convert a non-uniform ag-ZnO surface to relatively flat ann-ZnO film surface. Also confirm that the ag- ZnO and the ann-ZnO films have strong ferroelectric characteristics, while the values of remnant polarization and polarization saturation are almost similar. The electric coercivity (Ec ) of the ann-ZnO film is larger than ag-ZnO films as an indication of structural defects elimination. Our results are beneficial for high energy electric-based storage devices with less depolarized structural systems.

  7. Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates

    NASA Astrophysics Data System (ADS)

    Inguva, Saikumar; Vijayaraghavan, Rajani K.; McGlynn, Enda; Mosnier, Jean-Paul

    2015-09-01

    Zeonor plastics are highly versatile due to exceptional optical and mechanical properties which make them the choice material in many novel applications. For potential use in flexible transparent optoelectronic applications, we have investigated Zeonor plastics as flexible substrates for the deposition of highly transparent ZnO and AZO thin films. Films were prepared by pulsed laser deposition at room temperature in oxygen ambient pressures of 75, 150 and 300 mTorr. The growth rate, surface morphology, hydrophobicity and the structural, optical and electrical properties of as-grown films with thicknesses ˜65-420 nm were recorded for the three oxygen pressures. The growth rates were found to be highly linear both as a function of film thickness and oxygen pressure, indicating high reproducibility. All the films were optically smooth, hydrophobic and nanostructured with lateral grain shapes of ˜150 nm wide. This was found compatible with the deposition of condensed nanoclusters, formed in the ablation plume, on a cold and amorphous substrate. Films were nanocrystalline (wurtzite structure), c-axis oriented, with average crystallite size ˜22 nm for ZnO and ˜16 nm for AZO. In-plane compressive stress values of 2-3 GPa for ZnO films and 0.5 GPa for AZO films were found. Films also displayed high transmission greater than 95% in some cases, in the 400-800 nm wavelength range. The low temperature photoluminescence spectra of all the ZnO and AZO films showed intense near band edge emission. A considerable spread from semi-insulating to n-type conductive was observed for the films, with resistivity ˜103 Ω cm and Hall mobility in 4-14 cm2 V-1 s-1 range, showing marked dependences on film thickness and oxygen pressure. Applications in the fields of microfluidic devices and flexible electronics for these ZnO and AZO films are suggested.

  8. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  9. High temperature coefficient of resistance of low-temperature-grown VO2 films on TiO2-buffered SiO2/Si (100) substrates

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenichi; Shibuya, Keisuke; Suzuki, Megumi; Wado, Hiroyuki; Sawa, Akihito

    2015-08-01

    The introduction of a TiO2 buffer layer significantly improved the temperature coefficient of resistance (TCR), a measure of the sharpness of the metal-insulator transition, for films of VO2 grown on SiO2/Si (100) substrates at growth temperatures below 670 K. X-ray diffraction and Raman scattering measurements revealed that polycrystalline VO2 films were formed on the TiO2-buffered substrates at low temperatures below 600 K, whereas amorphous films were formed at these temperatures on SiO2/Si (100) substrates without a TiO2 buffer layer. Electron microscopy studies confirmed that the TiO2 buffer layer enhanced the grain growth of VO2 films at low growth temperatures. The VO2 films grown at 600 K on TiO2-buffered substrates showed a large TCR of more than 80%/K as a result of the improved crystallinity and grain size of the VO2 films. Our results provide an effective approach toward the integration of VO2-based devices onto Si platforms at process temperatures below 670 K.

  10. Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates

    NASA Astrophysics Data System (ADS)

    Fornari, Celso I.; Rappl, Paulo H. O.; Morelhão, Sérgio L.; Abramof, Eduardo

    2016-04-01

    Structural properties of topological insulator bismuth telluride films grown epitaxially on (111) BaF2 with a fixed Bi2Te3 beam flux were systematically investigated as a function of substrate temperature and additional Te flux. A layer-by-layer growth mode is observed since the early stages of epitaxy and remains throughout the whole deposition. Composition of the epitaxial films produced here stays between Bi2Te3 and Bi4Te5, as determined from the comparison of the measured x-ray diffraction curves with calculations. The substrate temperature region, where the growth rate remains constant, is found to be the most appropriate to obtain ordered Bi2Te3 films. Line width of the L = 18 Bi2Te3 diffraction peaks as low as 140 arcsec was obtained, indicating high crystalline quality. Twinning domains density rises with increasing growth temperature and reducing Te extra flux. X-ray reflectivity curves of pure Bi2Te3 films with thickness from 165 to 8 nm exhibited well defined interference fringes, evidencing homogeneous layers with smooth surface. Our results demonstrate that Bi2Te3 films with very well controlled structural parameters can be obtained. High structural quality Bi2Te3 films as thin as only eight quintuple layers grown here are promising candidates for intrinsic topological insulator.

  11. Effect of target-substrate distance on properties of flexible InZnSnO films grown by linear facing target sputtering

    SciTech Connect

    Shin, Hyun-Su; Lee, Ju-Hyun; Kim, Han-Ki

    2012-05-15

    The authors have investigated the effect of target-to-substrate distance (TSD) on the electrical, optical, and structural properties of flexible InZnSnO (IZTO) films grown on polyethylene terephthalate substrates using linear facing target sputtering (LFTS) at room temperature. The electrical and optical properties of IZTO film grown by LFTS were significantly influenced by TSD while the structural and surface properties of IZTO film were not affected by TSD, unlike conventional magnetron sputtering. Regardless of TSD, all IZTO film showed completely amorphous structure with very low root mean square roughness of 0.33 nm, due to the low kinetic energy of sputtered IZTO atoms and a substrate position that did not directly face the targets. Based on the figure of merit value, the optimized TSD for deposition of flexible IZTO films is 2.5 cm. At optimized conditions, the IZTO film showed a sheet resistance of 23.1 {Omega}/sq and an optical transmittance of 80%.

  12. High Mg content wurtzite phase MgxZn1-xO epitaxial film grown via pulsed-metal organic chemical vapor deposition (PMOCVD)

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Ledyaev, Oleg; Miller, Ross; Beletsky, Valeria; Hertog, Brian; Osinsky, Andrei; Schoenfeld, Winston V.

    2016-02-01

    We report on high quality, wurtzite MgxZn1-xO (MgZnO) epitaxial films grown via the PMOCVD method with a record high Mg content up to 51 %. A series of MgZnO films with various Mg content were grown on ZnO (~30 nm)/Al2O3(0001) and ZnO (~30 nm)/AlN (~25 nm)/Al2O3(0001) substrates. The band gap for the films estimated using UV-visible transmission spectroscopy ranges from 3.24 - 4.50 eV, corresponding to the fraction of Mg between x=0.0 to x=0.51, as determined by Rutherford backscattering spectroscopy (RBS). The cathodoluminescence (CL) measurement showed a blue shift in the spectral peak position of MgZnO, indicating an increase in Mg content. No multi-absorption edges and CL band splitting were observed, suggesting the absence of phase segregation in the as grown films. The phase purity and crystal structure of the films were further confirmed by XRD. The absence of phase separation is attributed to the fast periodic transition steps in the PMOCVD, creating a non-equilibrium system where radicals that are formed will have insufficient time to reach their energy minimum. AFM analysis of the films had decreasing surface roughness with increasing Mg content. MSM photodetector was fabricated from the films to characterize the spectral response. The devices exhibit peak response ranging between 276 - 383 nm, covering a large portion of the solar blind spectral window. Moreover, the Schottky barrier was enhanced by treating the MgZnO surface with H2O2, reducing the device's dark current.

  13. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ∼5 × 10{sup −8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup −3}, resistivity of 66.733–12.758 Ω cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup −1} s{sup −1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  14. Enhancement of thickness uniformity of thin films grown by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1995-01-01

    A peculiarity of the pulsed laser deposition technique of thin-film growth which limits its applicability is the very rapid drop of resulting film thickness as a function of distance from the deposition axis. This is due to the narrow forward peaking of the emission plume characteristic of the laser ablation process. The plume is usually modeled by a cos(sup n) theta function with n greater, and in some cases, much higher, than 1. Based on this behavior, a method is presented to substantially enhance coverage uniformity in substrate zones of the order of the target-substrate distance h, and to within a specified thickness tolerance. Essentially, target irradiation is caused to form an annular emission source instead of the usual spot. By calculating the resulting thickness profiles, an optimum radius s is found for the annular source, corresponding to a given power in the emission characteristic and a given value of h. The radius of this annulus scales with h. Calculated numerical results for optimal s/h ratios corresponding to a wide range of values for n are provided for the case of +/- 1% tolerance in deviation from the thickness at deposition axis. Manners of producing annular illumination of the target by means of conic optics are presented for the case of a laser beam with radially symmetric profile. The region of uniform coverage at the substrate can be further augmented by extension of the method to multiple concentric annular sources. By using a conic optic of novel design, it is shown also how a single-laser beam can be focused onto a target in the required manner. Applicability of the method would be limited in practice by the available laser power. On the other hand, the effective emitting area can be large, which favors extremely high growth rates, and since growth can occur uniformly over the whole substrate for each laser pulse, single-shot depositions with substantial thicknesses are possible. In addition, the simultaneity of growth over the

  15. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    PubMed Central

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density. PMID:22509001

  16. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  17. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    NASA Astrophysics Data System (ADS)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  18. Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chong, Fayun; Cao, Yingying; Subhan, Fazle; Wang, Qianru; Yu, Jianfeng; Zhang, Maosheng; Luo, Liwen; Ren, Wei; Chen, Xi; Yan, Zifeng

    2013-12-06

    In this work, oriented ZnO nanorods (ZNRs) were in situ hydrothermally grown on a porous polyaniline (PANI) film to function as a solid-phase microextraction (SPME) coating. Scanning electron microscopy (SEM) study revealed that the majority of oriented ZNRs grew from pores of PANI matrix, which protected the ZNRs from easily peeling off during operation. Furthermore, in this process, a thin layer of PANI was found to cover the ZNRs, which can enlarge the effective surface area of the composite coating. This ZNRs/PANI composite coating combined the merits of both ZNRs and PANI and, thus, has several advantages over that of sole PANI film and ZNRs coating such as improved extraction efficiency for benzene homologues, enhanced mechanical stability and longer service life (over 150 cycles of SPME-GC operation). Coupled with gas chromatography-flame ionization detector (GC-FID), the optimized SPME-GC-FID method was used for the analysis of six benzene homologues in water samples. The calibration curves were linear from 1 to 1000μgL(-1) for each analyte, and the limits of detection were between 0.001 and 0.024μgL(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 1.3-6.8% and 5.3-11.2%, respectively. The spiked recoveries at 100 and 5μgL(-1) for three environmental water samples were in the range of 79.8-115.4% and 73.7-117.4%, respectively.

  19. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    SciTech Connect

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  20. Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film.

    SciTech Connect

    Behranginia, Amirhossein; Asadi, Mohammad; Liu, Cong; Yasaei, Poya; Kumar, Bijandra; Phillips, Patrick; Foroozan, Tara; Waranius, Joseph C.; Kim, Kibum; Abiade, Jeremiah; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2016-01-26

    Electrochemistry is central to applications in the field of energy storage and generation. However, it has advanced far more slowly over the last two decades, mainly because of a lack of suitable and affordable catalysts. Here, we report the synthesis of highly crystalline layered three-dimensional (3D) molybdenum disulfide (MoS2) catalysts with bare Mo-edge atoms and demonstrate their remarkable performance for the hydrogen evolution reaction (HER). We found that Mo-edge-terminated 3D MoS2 directly grown on graphene film exhibits a remarkable exchange current density (18.2 mu A cm(-2)) and turnover frequency (>4 S-1) for HER. The obtained exchange current density is 15.2 and 2.3 times higher than that of MoS2/graphene and MoS2/Au catalysts, respectively, both with sulfided Mo-edge atoms. An easily scalable and robust growth process on a wide variety of substrates, along with prolonged stability, suggests that this material is a promising catalyst in energy-related applications.