Science.gov

Sample records for ferritic ods alloys

  1. Joining Techniques for Ferritic ODS Alloys

    SciTech Connect

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  2. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  3. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 58Ni(nth,γ) 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  4. Residual ferrite formation in 12CrODS steels

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Kudo, Y.; Wu, X.; Oono, N.; Hayashi, S.; Ohtsuka, S.; Kaito, T.

    2014-12-01

    Increasing Cr content from 9 to 12 mass% leads to superior corrosion and high-temperature oxidation resistances, and usually changes microstructure from martensite to a ferrite. To make transformable martensitic type of 12CrODS steels that have superior processing capability by using α/γ phase transformation, alloy design was conducted through varying nickel content. The structure of 12CrODS steels was successfully modified from full ferrite to a transformable martensite-base matrix containing ferrite. This ferrite consists of both equilibrium ferrite and a metastable residual ferrite. It was shown that the fraction of the equilibrium ferrite is predictable by computed phase diagram and formation of the residual ferrite was successfully evaluated through pinning of α/γ interfacial boundaries by oxide particles.

  5. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    NASA Astrophysics Data System (ADS)

    De Bremaecker, Anne

    2012-09-01

    -destructive tests (ultrasonic and eddy currents) were also developed. In-pile creep in argon and in liquid sodium was deeply studied on pressurized segments irradiated up to 75 dpaNRT. Finally two fuel assemblies cladded with such ODS alloys were irradiated in Phenix to the max dose of 90 dpa. Creep deformation and swelling were limited but the irradiation-induced embrittlement became acute. The programme was stopped shortly after the Chernobyl disaster, before the embrittlement problem was solved.

  6. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    SciTech Connect

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  7. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    DOE PAGES

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; ...

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process,more » mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.« less

  8. TEM characterization of 14YWT and 12YWT ODS ferritic alloys neutron irradiated at 500C using in-situ helium injection

    SciTech Connect

    Jung, Hee Joon; Edwards, Danny J.; Kurtz, Richard J.; Odette, G Robert; Wu, Yuan; Yamamoto, Takuya

    2015-03-31

    This report summaries TEM characterization of 14YWT and 12YWT, ODS ferritic alloys with 14 and 12 wt % of Cr respectively, to compare the effect of neutron irradiation with and without concurrent He injection using ISHI. The density and average size of <100>/{100} type dislocation loops are always larger than those of 1/2<111>/{111} type, but this difference is significantly affected by He implantation. The density of dislocation loops of both types ranges from ~1 to 4x1021 m-3 with average size ranging from 5~20 nm. 14YWT has lower density but larger size dislocation loops than 12YWT, while the line dislocation density of 14YWT is 3 times lower than that of 12YWT. Helium bubble densities of both 14YWT and 12YWT are 1.9x1023 m-3, the average He bubbles size of 14YWT and 12YWT are 1.4 and 1.2 nm, respectively. 14YWT exhibits α-α’ phase separation, Y-rich particles and uniformly distributed W. In addition to those features, 12YWT exhibits Y-Ti-O particles (not Y-O rich) and elongated Cr-rich phases.

  9. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-02-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  10. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  11. Inhibited Aluminization of an ODS FeCr Alloy

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small ({approx} 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  12. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  13. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  14. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  15. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  16. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  17. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  18. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  19. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  20. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  1. Microstructure of a 14Cr-ODS ferritic steel before and after helium ion implantation

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2014-12-01

    A 14Cr-ODS ferritic steel with the nominal compositions of Fe-14Cr-2 W-0.3Ti-0.3Y2O3 (wt.%) was produced by mechanical alloying (MA) and hot isostatic pressing (HIP). Helium ion was implanted into the 14Cr-ODS steel along with Eurofer 97 steel as reference at 400 °C to a fluence of 1 × 1017 He+/cm2. High resolution transmission electron microscopy (HRTEM), high angle annual dark field (HAADF) scanning TEM (STEM) and atom probe tomography (APT) were used to characterize the microstructure of 14Cr-ODS and Eurofer 97 steels before and after helium implantation. High-density Y-Ti-O-rich nanoclusters and Y2Ti2O7 precipitates as well as large Cr-Ti rich oxides were observed in the 14Cr-ODS steel. The average size of Y-Ti-O nanoclusters and Y2Ti2O7 precipitates is 9 nm. After helium implantation, the helium bubbles formed in the 14Cr-ODS steel exhibit the smaller size and the lower volume fraction than that in Eurofer 97 steel, indicating high-density nano-scale precipitates can effectively suppress the coarsening of helium bubbles.

  2. Reduction in Defect Content in ODS Alloys

    SciTech Connect

    Jones, A.R.; Ritherdon, J.; Prior, D.J.

    2003-04-22

    In order to develop FeCrAl-based ODS alloy tubing with the coarse, high aspect ratio, appropriately oriented grain structures likely to deliver enhanced high temperature (11000C) hoop creep strength compared to conventionally formed ODS alloy tubing, flow forming techniques were explored in a European funded programme. The evolution of microstructure in PM2000 alloy tubing formed by warm flow forming techniques has been the subject of continuing investigation and more detailed study in the current work. The warm flow formed tubes investigated were produced by reverse flow forming using three, 1200 opposed rollers described around a tube preform supported on a driven mandrel. This produced a complex pattern of shape changing deformation, driven from the outer surface of the tube preforms. The grain size and shape together with the pattern of nucleation and growth of secondary recrystallization that developed through the thickness of the tube wall during the subsequent high temperature annealing (13800C) of these warm flow formed samples is described, as are the textures that formed. The unusual pattern and shape of secondary recrystallized grain structures that formed on the outer surfaces of the flow formed tubes closely follows the pattern and pitch of the flow forming rollers. The local texture, grain shape and pattern of misorientation in the surface of warm flow formed tubes that was associated with the development of these outer surface microstructures are described. Parallel studies have continued on the influence of microstructural inhomogeneities on the development of secondary recrystallized grain structures in ODS alloys. As part of this work, a separate variant of PM2000 alloy with additions of 1 wt.% ODS-free Fe powder have been manufactured as extruded bar by Plansee GmbH. The initial recrystallization behavior of the variant has been studied and cross-compared with the recrystallization behavior found in a prototype ODS-Fe3Al alloy, notably where the

  3. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  4. Formation of nano-size oxide particles and δ-ferrite at elevated temperature in 9Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Kim, Sawoong; Ohtsuka, Satoshi; Kaito, Takeji; Yamashita, Shinichiro; Inoue, Masaki; Asayama, Tai; Shobu, Takahisa

    2011-10-01

    Excellent high-temperature strength and resistance to radiation damage of 9Cr Oxide Dispersion Strengthened (9Cr-ODS) martensitic steel have been realized by nano-size Y-Ti-O complex oxide particles dispersed in the matrix and a dual phase structure consisting of α'-martensite and δ-ferrite. These are produced by mechanically alloying Fe-Cr-Ti powders with Y 2O 3 followed by a hot-consolidation process. Therefore, the hot-consolidation process is the issue to be clarified for the formation of nano-size oxide particle and δ-ferrite. The temperature dependence of the formation and development of nano-size oxide particles and δ-ferrite using mechanically alloyed 9Cr-ODS raw powder were investigated applying X-ray Diffraction and Small Angle X-ray Scattering measurement at SPring-8 and by Electron Probe Micro Analysis. In situ heating measurement techniques with XRD and SAXS enabled real-time observation of phase transformations and allowed correlation between formation of nano-size oxide particle and δ-ferrite.

  5. In Situ Synchrotron Tensile Investigations on 14YWT, MA957 and 9-Cr ODS Alloys

    SciTech Connect

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James; Yacout, Abdellatif

    2016-01-01

    Nanostructured ferritic alloys (NFAs) provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of two NFAs including 14YWT and MA957, and a 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14 YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, respectively. This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstr m s dislocation models.

  6. Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application

    NASA Astrophysics Data System (ADS)

    He, P.; Klimenkov, M.; Lindau, R.; Möslang, A.

    2012-09-01

    Oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels, have been considered as promising materials for application in fusion power reactors up to about 750 °C. Four ODS RAF steels, with compositions of Fe-13.5Cr-2W-(0-0.2-0.3-0.4)Ti-0.3Y2O3 (in wt.%) were produced by powder metallurgy technique. For the different Ti-contents, the correlation between microstructure and mechanical properties was analyzed by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) equipped with energy- dispersive X-ray spectrometer (EDX) and electron energy loss spectrometer (EELS). A bimodal grain size distribution was observed in all as-hipped Ti-containing ODS alloys. These alloys consisted of coarse grains typical ranging from 1 μm to 8 μm and fine grains well below 1 μm in diameter. The addition of Ti resulted in the formation of spherical Ti oxides rather than Cr oxides owing to the stronger affinity of Ti. The influence of Ti on particle size refinement was striking and the optimum effect was obtained when adding 0.3% Ti. Generally the hardness increased consistently with increasing in Ti content. The ODS alloying with 0.3% Ti exhibit the highest strength due to the optimum refinement of mean ODS particle size.

  7. Microstructural characterization of oxide dispersion strengthened (ODS) Fe-12Cr-0.5Y2O3 alloy

    NASA Astrophysics Data System (ADS)

    Shamsudin, Farha Mizana; Radiman, Shahidan; Abdullah, Yusof; Hamid, Nasri A.

    2016-11-01

    Oxide dispersion strengthened (ODS) ferritic alloy containing 12wt% Cr and 0.5wt% Y2O3 was prepared by mechanical alloying (MA) method and then compacted into bulk shape. Field emission scanning electron microscopy (FESEM) was performed to characterize the microstructure of milled alloy powder. The fragments and nanoclusters of Y2O3 were observed in this alloy powder. FESEM-EDS mapping on the milled alloy powder reveal the uniformity of the element distribution achieved by the alloy. The Y element is finely dispersed into the alloy matrix and the O element is observed indicating the presence of oxides throughout the alloy sample. The compacted alloy was then heat treated at 1050°C and analyzed by field emission scanning electron microscope (FESEM). The formations of nano-scale Y2O3 were observed after the heat treatment process of alloy indicating the dispersion and incorporation of Y2O3 nanoparticles into the alloy matrix.

  8. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  9. Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum Alloys

    DTIC Science & Technology

    1997-01-01

    containing 4 parts concentrated sulfuric acid and 1 part distilled water using a Type 304 stainless steel cathode and a direct current accelerating...Ductile-to-Brittle Transition Temperature ( DBTT ): The following mechanical properties were measured from the ODS molybdenum alloy rods: (a) 0.2...and to determine the DBTT . Elevated Temperature Tensile Tests: Elevated temperature tensile specimens of each as- swaged alloy were equilibrated

  10. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  11. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  12. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    DOE PAGES

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experiencedmore » the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  13. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  14. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Bischoff, Jeremy

    Ferritic-martensitic and ODS alloys are primary candidates for application as cladding and structural material in Generation IV nuclear power plants, especially the supercritical water reactor. One of the main in-service degradation mechanisms for these alloys is uniform corrosion, thus this project focuses on understanding the oxidation behavior of these alloys in the supercritical water (SCW) environment. This understanding is acquired through the analysis of the oxide microstructure using microbeam synchrotron radiation diffraction and fluorescence associated with electron microscopy (both SEM and TEM). The microbeam synchrotron radiation diffraction and fluorescence technique provides unique microstructural data of the oxide. This technique simultaneously probes elemental and phase information step by step with a sub-micron spatial resolution throughout the oxide layers. Thus we were able to locate specific phases, such as Cr2O3, at specific locations in the oxide layer, mainly the interfaces. The electron microscopy complemented this analysis by imaging the oxide layers, to yield detailed information on the oxide morphology. All the alloys studied exhibited the same three-layer structure with an outer layer containing only Fe3O4, an inner layer containing a mixture of Fe3O4 and FeCr2O 4, and a diffusion layer containing a mixture of chromium-rich precipitates (Cr2O3 and FeCr2O4) and metal grains. By analyzing samples with various exposure times, we were able to follow the evolution of the oxide microstructure with exposure time. To obtain the corroded samples, several corrosion experiments were performed: some in supercritical water (at 500°C and 600°C) and one experiment in 500°C steam. The test in steam was undertaken to obtain more data points in the kinetic curves, because we thought the corrosion in steam and supercritical water at the same temperature would result in similar kinetics. This turned out not to be the case and the samples in supercritical

  15. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  16. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  17. Microstructural characterizations of 14Cr ODS ferritic steels subjected to hot torsion

    NASA Astrophysics Data System (ADS)

    Karch, A.; Sornin, D.; Barcelo, F.; Bosonnet, S.; de Carlan, Y.; Logé, R.

    2015-04-01

    Oxide dispersion strengthened (ODS) steels are very promising materials for nuclear applications. In this paper, the hot working behavior of ODS ferritic steels, consolidated by hot extrusion, is studied through torsion tests. Three ODS steels are produced acting on both the quantity of Ti and Y2O3 added to the matrix (wt% Fe-14Cr-1W), and the density and size of the nanoparticles. A temperature range of 1000-1200 °C and strain rates from 5 ṡ 10-2 to 5 s-1 are considered. The microstructures of deformed samples are examined by Electron Back-Scatter Diffraction and X-ray diffraction techniques. It is observed that hot plastic strain leads to an early damage with nucleation and growth of cavities along grain boundaries. Except for the damage, very few microstructural and textural evolutions are noticed. The three tested ODS steels exhibit almost the same behavior under hot torsion straining, regardless of the precipitation state. Overall, the experimental results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains.

  18. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kim, Byungjun; Kasada, Ryuta; Kimura, Akihiko

    2012-07-01

    Diffusion bonding techniques were employed to join high Cr oxide dispersion strengthened (ODS) ferritic steel (Fe-15Cr-2W-0.2Ti-0.35Y2O3) and F82H steel under uni-axial hydrostatic pressure using a high vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. The dissimilar joints were bonded by solid-state diffusion bonding (SSDB) and liquid phase diffusion bonding (LPDB). After bonding process, heat treatments were conducted to utilize the phase transformation of F82H steel for recovering the martensitic structure. Tensile tests with miniaturized specimens were carried out to investigate and compare the bonding strengths of each joint. Microstructure was observed for the bonding interface, and fracture mode was investigated after the tensile tests. LPDB joint of interfacial F82H steel fully recovered to martensite phase by post-joining heat treatments, while SSDB joint had ferrite phases at the interface even after heat treatment, which is considered to be due to decarburization of F82H steel during the bonding process. Therefore it is considered that the insert material plays a role as diffusion barrier of carbon during LPDB process. Microstructure observations and tensile tests of the joints revealed that the LPDB joints possess suitable tensile properties which are comparable to that of F82H steel. This indicates that LPDB is more promising method to bond ODS-FS and F82H steel than SSDB.

  19. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  20. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Béchade, J. L.; Tournié, I.; Tancray, A.; Bougault, A.; Bonnaillie, P.

    2010-10-01

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  1. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  2. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  3. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  4. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    SciTech Connect

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  5. Stress relaxation behavior of nanocluster-strengthened ferritic alloy at high temperatures

    SciTech Connect

    Kim, Jeoung H; Byun, Thak Sang; Hoelzer, David T

    2012-01-01

    Stress relaxation behavior was investigated for the nanoclusters/dispersoids-strengthened steels including the nanostructured ferritic alloy 14YWT (SM10), oxide-dispersion strengthened (ODS) Eurofer97, and commercial ODS steel PM2000. The stress relaxation tests were carried out at high temperatures ranging from 600 to 1000 degrees C. Overall, the relaxation rates of 14YWT and ODS-Eurofer97 were lower than that of PM2000. To analyze the strain rate sensitivity of the alloys, the load drop-time curves were converted to the stress-strain rate curves. In the log-log plots of these curves, no significant change in slope was observed in the strain rate range of 2 x 10(-5)-1 x 10(-3)s(-1). At 600 degrees C, 14YWT and ODS-Eurofer97 have similar activation values of similar to 50b(3) while PM2000 has similar to 100b(3). Above 700 degrees C, the differences of the activation energy among alloys become more noticeable with increasing temperature. The activation energies of the three alloys were derived and compared. The rate-controlling mechanisms in the stress relaxation of the three nanoclusters/dispersoids-hardened alloys include dislocation glide and climb, and further study is necessary to clarify detailed contributing mechanisms.

  6. Helium entrapment in a nanostructured ferritic alloy

    SciTech Connect

    Edmondson, Philip D; Parish, Chad M; Zhang, Yanwen; Hallen, Dr Anders; Miller, Michael K

    2011-01-01

    The nanostructured ferritic alloy 14YWT has been irradiated with He ions to simulate accumulation of He during the service life of a nuclear reactor to test the hypothesis that the large surface area for nanoclusters is a preferential nucleation site for bubbles. Transmission electron microscopy and atom probe tomography showed that high number densities of He bubbles were formed on the surface of nanoclusters and Ti(C,N) precipitates, and along grain boundaries and dislocations. At higher fluences, facetted bubbles are formed and it is postulated that the lowest energy state configuration is the truncated rhombic dodecahedron.

  7. Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

    SciTech Connect

    Rieken, Joel; Anderson, Iver; Kramer, Matthew

    2011-04-01

    An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.

  8. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Anderson, Iver; Rieken, Joel; Lewandowski, John; Hoelzer, Dave; Odette, George R.

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of

  9. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-06-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  10. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  11. Charpy impact test results for low-activation ferritic alloys

    SciTech Connect

    Cannon, N.S.; Hu, W.L.; Gelles, D.S.

    1987-05-01

    The objective of this work is to evaluate the shift of the ductile to brittle transition temperature (DBTT) and the reduction of the upper shelf energy (USE) due to neutron irradiation of low activation ferritic alloys. Six low activation ferritic alloys have been tested following irradiation at 365/sup 0/C to 10 dpa and compared with control specimens in order to assess the effect of irradiation on Charpy impact properties.

  12. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  13. Towards Radiation Tolerant Nanostructured Ferritic Alloys

    SciTech Connect

    Miller, Michael K; Hoelzer, David T; Russell, Kaye F

    2010-01-01

    The high temperature and irradiation response of a new class of nanostructured ferritic alloys have been investigated by atom probe tomography. These materials are candidate materials for use in the extreme environments that will be present in the next generation of power generating systems. Atom probe tomography has revealed that the yttria powder is forced into solid solution during the mechanical alloying process andsubsequently 2-nm-diameter Ti-, Y- and O-enriched nanoclusters are formedduring the extrusion process. These nanoclusters have been shown to be remarkably stable during isothermal annealing treatments up to 0.92 of the melting temperature and during proton irradiation up to 3 displacements per atom. No significant difference in sizes, compositions and number densities of the nanoclusters was also observed between the unirradiated and proton irradiated conditions. The grain boundaries were found to have high number densities of nanoclusters as well as chromium and tungsten segregation which pin the grain boundary to minimize creep and grain growth.

  14. Microstructure and impact properties of ferritic ODS ODM401 (14%Cr-ODS of MA957 type)

    NASA Astrophysics Data System (ADS)

    Hadraba, Hynek; Kazimierzak, Bohumil; Stratil, Ludek; Dlouhy, Ivo

    2011-10-01

    The oxide dispersion strengthened (ODS) steel ODM401 is one of the ODS steels developed during the 1960-1970s as a structural tubing material for fast breeder reactors, mainly because of their high-temperature strength and swelling resistance under irradiation. Nowadays, these steels are taken under consideration as a structural material for blanket and heat exchanger components in fusion reactors. The aim of the work was to describe fracture behaviour of ODM401 steel in connection to the microstructure. The microstructure of as-extruded ODM401 steel has fine grains elongated in the extrusion direction. The two population of Y-Ti-O particles sizes were found in the microstructure of size about 10-20 nm and 2-3 nm. Temperature dependence of KLST impact energy was measured and transition temperature tDBTT evaluated about -110 °C. The fracture surface was formed by alternated cleavage areas connected by inclined areas fractured by dimple micro mechanism proportional to the impact energy.

  15. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  16. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  17. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  18. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  19. Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels

    NASA Astrophysics Data System (ADS)

    Xie, Rui; Lu, Zheng; Lu, Chenyang; Liu, Chunming

    2014-12-01

    Pre-alloyed powders of oxide dispersion strengthened (ODS) steels were produced by atomization. The atomized powders without mechanical alloying (MA) and with short-time MA were consolidated by hot isostatic pressing (HIP). The morphology and microstructure of the atomized and the MA powders were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of 9Cr-ODS steels with different MA time was characterized by high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and atom probe tomography (APT). The results showed that high-density of nanosized precipitates and ultrafine grains are formed in the ODS steels using the processing route, which remarkably reduce MA time. The yield strength and ultimate tensile strength of ODS steels are improved with the increase of MA time.

  20. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  1. High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions

    NASA Astrophysics Data System (ADS)

    Sugino, Yoshito; Ukai, Shigeharu; Oono, Naoko; Hayashi, Shigenari; Kaito, Takeji; Ohtsuka, Satoshi; Masuda, Hiroshi; Taniguchi, Satoshi; Sato, Eiichi

    2015-11-01

    The ODS ferritic steels realize potentially higher operating temperature due to structural stability by the dispersed nano-size oxide particles. The deformation process and mechanism of 15CrODS ferritic steels were investigated at 1073 K and 1173 K for the cold-rolled and recrystallized conditions. Tensile and creep tests were conducted at the stress in parallel (LD) and perpendicular (TD) directions to the grain boundaries. Strain rate varied from 10-1 to 10-9 s-1. For the LD specimens, deformation in the cold rolled and recrystallized conditions is reinforced by finely dispersed oxide particles. The dominant deformation process for the recrystallized TD specimen is controlled through the grain boundary sliding and stress accommodation via diffusional creep at temperature of 1173 K and lower strain rate less than 10-4 s-1. The grain boundary sliding couldn't be rate-controlling process at 1073 K for the as-cold rolled TD specimen, where a dynamic recovery of the dislocation produced by cold-rolling is related to the deformation process.

  2. Production of FR Tubing from Advanced ODS Alloys

    SciTech Connect

    Maloy, Stuart Andrew; Lavender, Curt; Omberg, Ron; Lewandowski, John

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  3. Effect of displacement damage on the stability of oxide nanoparticles in model ODS alloys: TEM studies

    SciTech Connect

    Santra, Sumita; Balaji, S.; Panigrahi, B. K.; Serruys, Yves; Robertson, C.; Ana, Alamo; Sundar, C. S.

    2012-06-05

    Model ODS alloy containing Fe-0.3% yttria was prepared by ball milling and hipping at high temperature and the effect of irradiation on stability of yttria nanoclusters in model ODS alloy is studied by dual beam ion irradiation using 5 MeV Fe{sup +} and 1.5 MeV He{sup +} ions. TEM studies on irradiated sample show that these particles are stable at 25 dpa and 40 appm He concentration. However, at 80 dpa and 360 appm He concentration Yttria particles were found to be unstable as evidenced from increase in average particle size and particle size distribution.

  4. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  5. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    SciTech Connect

    Ren, Weiju; Feng, Zhili

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  6. Ferritic Fe-Mn alloy for cryogenic applications

    DOEpatents

    Hwang, Sun-Keun; Morris, Jr., John W.

    1979-01-01

    A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

  7. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-05-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  8. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-03-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) prescribe extrusion consolidation methodologies via detailed

  9. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-02-28

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  10. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-08-31

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  11. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2005-06-27

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  12. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT

    SciTech Connect

    Bimal K. Kad

    2004-11-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in cross-rolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (i) prescribe extrusion consolidation methodologies via detailed

  13. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Chen, Tianyi; Sridharan, K.; He, Li

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  14. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium Alloys

    SciTech Connect

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-10-22

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C.

  15. Evaluation of Oxide Dispersion Strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1995-12-31

    A series of fourteen (14) novel high-strength molybdenum alloy compositions containing a dispersion of very fine (< 1 {mu}m diameter) oxide particles were consolidated using two proprietary powder metallurgy techniques. The developmental compositions were evaluated to determine the microstructural stability and mechanical properties from cryogenic (-148{degrees}F) to elevated temperatures (4000{degrees}F) for material in the as-swaged (>98% cold work) condition and for as-swaged material in the heat treated condition. Extremely fine oxide particle sizes (<1000 {Angstrom}) were observed by Transmission Electron Microscopy (TEM) for a number of the experimental compositions in the as-swaged condition. A one hour recrystallization temperature as high as 3990{degrees}F was measured and a ductile-to-brittle transition temperature as low as {approximately}58{degrees}F for material in the recrystallized condition was determined. The preliminary results support the alloy design concept feasibility.

  16. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  17. Impact of the use of the ferritic/martensitic ODS steels cladding on the fuel reprocessing PUREX process

    NASA Astrophysics Data System (ADS)

    Gwinner, B.; Auroy, M.; Mas, D.; Saint-Jevin, A.; Pasquier-Tilliette, S.

    2012-09-01

    Some ferritic/martensitic oxide dispersed strengthened (F/M ODS) steels are presently developed at CEA for the fuel cladding of the next generation of sodium fast nuclear reactors. The objective of this work is to study if this change of cladding could have any consequences on the spent fuel reprocessing PUREX process. During the fuel dissolution stage the cladding can actually be corroded by nitric acid. But some process specifications impose not to exceed a limit concentration of the corrosion products such as iron and chromium in the dissolution medium. For that purpose the corrosion behavior of these F/M ODS steels is studied in hot and concentrated nitric acid. The influence of some metallurgical parameters such as the chromium content, the elaboration process and the presence of the yttrium oxides is first discussed. The influence of environmental parameters such as the nitric acid concentration, the temperature and the presence of oxidizing species coming from the fuel is then analyzed. The corrosion rate is characterized by mass loss measurements and electrochemical tests. Analyses of the corroded surface are carried out by X-ray photoelectron spectroscopy.

  18. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    DOE PAGES

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases,more » Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.« less

  19. Joining a Ni-based creep-resistant (ODS) alloy by brazing

    NASA Astrophysics Data System (ADS)

    Bucklow, I. A.

    Joints are produced in a fine-grained Ni oxide-dispersion-strengthened (ODS) alloy by means of brazing alloys with and without boron, and the resulting joints are studied mechanographically. The brazing alloys employed are either sputtered coatings or foils, and brazing is conducted in a vacuum for approximately two hours. The resulting joints are examined during the process by mass spectrometry and afterwards by means of metallographic observation following etching in glyceregia. Premature and uncontrolled recrystallization of the parent metal is noted in the samples brazed with alloys obtaining boron. The 2-micron braze coating used minimize second-phase formation and dispersoid agglomerations, and the 25-micron brazing foils lead to high porosity and dispersoid aggregation due to excessive melting. Recrystallization of the parent metal near brazing zones is concluded to be undesirable although is does not necessarily influence the quality of the joint.

  20. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-06-01

    Iron aluminides containing greater than about 20-25 @ % Al have oxidation/sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. In addition to alloying modifications for improved creep resistance of wrought material, this strength limitation is being addressed by development of oxide-dispersion- strengthened (ODS) iron aluminides and by evaluation of Fe{sub 3}Al alloy compositions as coatings or claddings on higher-strength, less corrosion-resistant materials. As part of these efforts, the high-temperature corrosion behavior of iron-aluminide weld overlays and ODS alloys is being characterized and compared to previous results for ingot-processed material.

  1. Texture analysis of oxide dispersion strengthened (ODS) Fe alloys by X-ray and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Béchade, J. L.; Mathon, M. H.; Branger, V.; Réglé, H.; Alamo, A.

    2002-07-01

    The ferritic ODS alloys studied were obtained by mechanical alloying. This strengthening method is very attractive, in particular for nuclear applications. In order to ensure the alloy a good compromise between mechanical resistance and ductility at high temperatures, it is necessary to control the microstructure and in particular the evolution during the recrystallization. First, a preliminary study, performed by X ray diffraction and optical microscopy, shows several grain growth mechanisms ; in particular, the “abnormal” grain growth mechanism which conducts to a large grain size [1], [2]. After annealing (3600s at 1470^{circ}C), the 30% cold-worked (swaging) alloys exhibit an heterogeneous microstructure with a large grains size ( 200 to 500 μm) in the heart and near the surface of the material when the intermediate zone is inhabited by small grains ( 1 μm). Fora higher cold-work level (60%), large size grains are only present in the periphery of the material. On account of the large grain size and strong heterogeneity of the microstructure, texture analysis using laboratory x-ray beam in not well adapted and so we have decided to use neutron beam. The neutron diffraction texture analysis has been performed at the Laboratoire Léon Brillouin on the 6T1 diffractometer on 2 different rods of the alloy (corresponding to the reduction ratios of 30% and 60%). Specific samples have been machined to characterise separately the zones with a different microstructure. After deformation, the alloys exhibit a typical α-fibre texture \\{ hkl \\} <1l0> whatever the area of the sample and the reduction ratio. After recrystallization, a very inhomogeneous texture is evidenced through the thickness of the sample, in particular for the rod deformed with a reduction ratio of 30% : in the heart and in the periphery of the rod, a “single-crystal” type texture is observed; the a fibre remains for the intermediate diameter of the rod. For the rod cold rolled with a

  2. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    SciTech Connect

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu; Jatuporn Burns; Kerry N. Allahar; Darryl P. Butt; James I. Cole

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomography revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.

  3. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2005-11-23

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. Recent studies in crossrolled ODS-alloy sheets (produced from flattened tubes) indicate that transverse creep is significantly enhanced via controlled transverse grain fibering, and similar improvements are expected for cross-rolled tubes. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to

  4. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    SciTech Connect

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases, Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.

  5. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the

  6. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (a) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (b) evaluated at ''in-service'' loads at service temperatures and environments. In this 12th quarter of performance, program activities are concluded for Task 2 and continuing for Tasks 3, 4 and

  7. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement

    SciTech Connect

    Bimal K. Kad

    2006-04-10

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested

  8. The role of nickel in radiation damage of ferritic alloys

    SciTech Connect

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; Terentyev, Dmitry

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content from 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.

  9. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetskiy, Yury N.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to the modern theory damage evolution under neutron irradiation depends on the fraction of self interstitial atoms (SIAs) produced in the form of one-dimensionally (1-D) glissile clusters. These clusters, having a low interaction cross-section with other defects, sink mainly on grain boundaries and dislocations creating the so-called production bias. It is known empirically that addition of certain alloying elements affect many radiation effects, including swelling, however the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling of SIA clusters mobility in bcc Fe-Ni alloys with Ni content frommore » 0.8 to 10 at.%. We have found that Ni interacts strongly with periphery of clusters affecting their mobility. The total effect is defined by all Ni atoms interacting with the cluster at the same time and can be significant even in low-Ni alloys. Thus 1nm (37SIAs) cluster is practically immobile at T < 500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhance cluster immobilization. Furthermore, this effect should have quite broad consequences in swelling rate, matrix damage accumulation, radiation induced hardening, etc. and the results obtained help in better understanding and prediction of radiation effects in Fe-Ni ferritic alloys.« less

  10. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  11. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  12. Phase Stability under Irradiation of Precipitates and Solid Solutions in Model ALloys and in ODS Alloys Relevant for Gen IV

    SciTech Connect

    Arthur T. Motta; Robert C. Birtcher

    2007-10-17

    The overall objective of this program is to investigate the irradiation-altered phase stability of oxide precipitates in ODS steels and of model alloy solid solutions of associated systems. This information can be used to determine whether the favorable mechanical propertiies of these steels are maintained under irradiation, thus addressing one of the main materials research issues for this class of steels as identified by the GenIV working groups. The research program will also create fundamental understanding of the irradiation precipitation/dissolution problem by studying a "model" system in which the variables can be controlled and their effects understood individually.

  13. Latent tracks of swift heavy ions in Сr23C6 and Y-Ti-O nanoparticles in ODS alloys

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Sohatsky, A. S.; O'Connell, J. H.; Kornieieva, K.; Nikitina, A. A.; Uglov, V. V.; Neethling, J. H.; Ageev, V. S.

    2016-05-01

    The radiation stability of dielectric nanoparticles embedded into a metallic matrix is of considerable practical value due to the growing interest in oxide dispersion strengthened (ODS) steels as promising nuclear reactor materials. In this report the results of a TEM study of structural changes in Cr23C6 and Y-Ti-O nanoparticles in several ODS alloys irradiated with 1.2 MeV/amu Xe and 3.4 MeV/amu Bi ions is presented. It was found that swift heavy ion irradiation leads to the formation of amorphous latent tracks in both materials. The upper limit of the threshold electronic stopping power for track formation in carbides is estimated to be around 35 keV/nm. Multiple ion track overlapping leads to complete amorphization of carbide and Y-Ti oxide nanoparticles. Microstructural analysis have revealed a strong influence of the ferritic matrix on track morphology in Y2Ti2O7 nanoparticles in pre-thinned TEM targets after postradiation annealing and irradiation at elevated temperatures.

  14. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  15. Study of the deformation mechanisms in a Fe-14% Cr ODS alloy

    NASA Astrophysics Data System (ADS)

    Praud, M.; Mompiou, F.; Malaplate, J.; Caillard, D.; Garnier, J.; Steckmeyer, A.; Fournier, B.

    2012-09-01

    In this present work, the plasticity of a rod bar of a 14% Cr ferritic ODS steel is examined through a multiscale approach based on both macroscopic and microscopic results. This bar was elaborated at CEA by powder metallurgy and consolidated by hot extrusion. The microstructure of the material has been characterized. First, the tensile behavior of this material is studied in a wide range of temperatures. Thereafter, through in situ Transmission Electron Microscopy (TEM) straining experiments, dislocation/dislocation and dislocation/precipitates interactions are observed. The collapse of the tensile properties noticed from 400 °C can be explained by a change in the deformation mechanism. At lower temperatures, the hardening seems to be due to the precipitates, dislocations are pinned on oxides. At higher temperatures, the hardening role of the precipitates is still observed, but the dislocations seem to move in a more steady way, thermal activation of dislocations sources is observed and leads to formation of cavities at the grain boundaries.

  16. Precipitation sequence in niobium-alloyed ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Fujita, Nobuhiro; Bhadeshia, H. K. D. H.; Kikuchi, Masao

    2004-03-01

    Niobium is an important alloying element in the design of heat-resistant ferritic stainless steels for automotive exhaust systems. When in solid solution, it improves both the high temperature strength and the resistance to thermal fatigue. However, it also forms several kinds of precipitates during service. These reactions have been modelled, taking into account the multicomponent nature of the diffusion process and allowing for capillarity effects. It has been possible to estimate not only the volume fractions but also the particle sizes for Fe2Nb (Laves phase) and Fe3Nb3C (M6C) carbide in a 19Cr-0.8Nb steel, with good agreement against experimental data.

  17. Progress toward determining the potential of ODS alloys for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  18. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys

    DOE PAGES

    Yu, Xinghua; Mazumder, B.; Miller, M. K.; ...

    2015-01-19

    Nanostructured ferritic alloys, which have complex microstructures which consist of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This paper evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. Finally, the hardness difference in different regions of friction stir weld has been explained.

  19. High-Temperature Tensile Properties of Nano-Oxide Dispersion Strengthened Ferritic Steels Produced by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Boulnat, Xavier; Fabregue, Damien; Perez, Michel; Mathon, Marie-Hélène; de Carlan, Yann

    2013-06-01

    Oxide-dispersion strengthened (ODS) ferritic steels were produced by mechanical alloying and subsequent spark plasma sintering. Very fast heating rates were used to minimize porosity when controlling grain size and precipitation of dispersoids within a compacted material. Sintering cycles performed at 1373 K (1100 °C) induced heterogeneous, but fine grain size distribution and high density of nano-oxides. Yield strengths at room temperature and at 923 K (650 °C) are 975 MPa and 298 MPa, respectively. Furthermore, high-temperature ductility is much increased: total strain of 28 pct at 923 K (650 °C).

  20. High-cycle fatigue properties of the ODS-alloy MA 6000 at 850 C

    SciTech Connect

    Hoffelner, W.; Singer, R.F.

    1985-03-01

    The high cycle fatigue (HCF) and cyclic crack growth rate (CCGR) properties of the dispersion strengthened ODS-alloy MA 6000 were investigated with smooth bars and with fracture mechanics samples at 850 C. The material was very coarse-grained with the grains elongated in the rolling direction. The fatigue limit of samples cut parallel to the grain elongation direction (p-samples) was almost a factor of 2 higher than the one of samples cut transverse to the elongation direction (t-samples). Inclusions were found to be responsible for crack initiation. For p-samples a reasonable agreement between particle size, fatigue limit, and crack growth behavior was found. For t-type samples such an agreement also exists, provided differences in the crack growth behavior of short cracks and long cracks are taken into consideration. The low fatigue strength of t-samples could be linked with low Young's modulus in this direction. The crack propagation rate of long cracks is lower in t-samples than in p-samples due to crack branching along the grain boundaries. HCF-strength of MA 6000 is high compared to conventional cast alloys mainly because of reduced size of crack nucleation sites and higher fatigue threshold stress intensity range, as a result of higher Young's modulus. 15 references.

  1. Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT

    SciTech Connect

    Y. Q. Wu; K. N. Allahar; J. Burns; B. Jacques; I Charit; D. P. Butt; J. I. Cole

    2013-08-01

    Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (~ 100 – 500 nm) and micron-size grains with nanostructured oxide precipitates formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.

  2. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

    SciTech Connect

    Catalini, David; Kaoumi, Djamel; Reynolds, Anthony; Grant, Glenn J.

    2015-07-09

    INCOLOY® MA956 is a ferritic Oxide Dispersion Strengthened (ODS) alloy. Three different oxides, Y4Al2O9, YAlO3 and Y3Al5O12, have been observed in this alloy. The oxide particle sizes range from just a few up to hundreds of nm and these particles are responsible of the high temperature mechanical strength of this alloy. Mechanically alloyed MA956 powder was consolidated via Friction Consolidation using three different processing conditions. As a result, three small compacts of low porosity were produced. The compacts exhibited a refined equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion.YAlO3 and Y3Al5O12 were identified in the compacts by Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS showing an aluminum enrichment trend as precipitates grow in size.

  3. Microstructure and mechanical properties of ultrafine-grained Fe-14Cr and ODS Fe-14Cr model alloys

    NASA Astrophysics Data System (ADS)

    Auger, M. A.; Leguey, T.; Muñoz, A.; Monge, M. A.; de Castro, V.; Fernández, P.; Garcés, G.; Pareja, R.

    2011-10-01

    Reduced activation ferritic Fe-14 wt%Cr and Fe-14 wt%Cr-0.3 wt%Y 2O 3 alloys were produced by mechanical alloying and hot isostatic pressing followed by forging and heat treating. The alloy containing Y 2O 3 developed a submicron-grained structure with homogeneous dispersion of oxide nanoparticles that enhanced the tensile properties in comparison to the Y 2O 3 free alloy. Strengthening induced by the Y 2O 3 dispersion appears to be effective up to 873 K, at least. A uniform distribution of Cr-rich precipitates, stable upon a heat treatment at 1123 K for 2 h, was also found in both alloys.

  4. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    DOE PAGES

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; ...

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using amore » combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.« less

  5. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    PubMed Central

    Zhang, Z. W.; Yao, L.; Wang, X.-L.; Miller, M. K.

    2015-01-01

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. Here we report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters. PMID:26023747

  6. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    SciTech Connect

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; Miller, M. K.

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.

  7. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  8. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  9. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  10. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  11. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  12. Measuring the Fracture Toughness of TZM and ODS Molybdenum Alloys Using Standard and Sub-Sized Bend Specimens

    SciTech Connect

    Cockeram, B. V.

    2002-12-01

    Oxide Dispersion Strengthened (ODS) and TZM molybdenum have excellent creep resistance and strength at high temperatures in inert atmospheres. Fracture toughness and tensile testing was performed at temperatures between -150 degrees C and 450 degrees C to characterize 6.35 mm thick plate material of ODS and TZM molybdenum. A transition from low fracture toughness values (5.8 to 29.6 MPa square root m) to values greater than 30 MPa square root m is observed for TZM molybdenum in the longitudinal orientation at 100 degrees C and in the transverse orientation at 150 degrees C. These results are consistent with data reported in literature for molybdenum. A transition to low fracture toughness values (less than 30 MPa square root m) was not observed for longitudinal ODS molybdenum at temperatures greater than or equal to -150 degrees C, while a transition to low fracture toughness values (12.6 to 25.4 MPa square root m) was observed for the transverse orientation at room-temperature. The fi ne spacing of La-oxide precipitates that are present in ODS molybdenum result in a transition temperature that is significantly lower than any molybdenum alloy reported to date, with upper bound fracture toughness values that bound the literature data. A comparison of fracture toughness values obtained using a 1T, 0.5T, and 0.25T Charpy shows that a 0.5T Charpy could be used as a sub-sized specimen geometry.

  13. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  14. Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys

    SciTech Connect

    Hoelzer, David T.; Edmondson, Philip D.; Gussev, Maxim N.; Tang, Wei; Feng, Zhili

    2016-09-16

    Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of the plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were nearly optimized. The results of the digital image correlation (DIC) analysis of the two SS-Mini-2 tensile specimens fabricated from the 0.1 cm thick plate of 14YWT showed that the specimens exhibited high strength and good ductility. However, strain localization occurred in one of the specimens during the tensile test that was too close to the grips, which invalidated the data from the DIC analysis. This was surprising since the abrupt crack pop-in that occurred in the 0.1 cm thick plate of 14YWT during fabrication by wire EDM suggested that residual stresses were high. Residual stress measurements and the effects of post weld heat treatment on the FSW quality of joined 14YWT plates will be investigated in the next FW work package.

  15. Accumulation and annealing of radiation defects under low-temperature electron and neutron irradiation of ODS steel and Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Goshchitskii, B. N.; Sagaradze, V. V.; Danilov, S. E.; Kar'kin, A. E.

    2010-10-01

    The processes of accumulation and annealing of radiation defects at low-temperature (77 K) electron and neutron irradiation and their effect on the physicomechanical properties of Fe-Cr alloys and oxide dispersion strengthened (ODS) steel have been studied. It has been shown that the behavior of radiation defects in ODS steel and Fe-Cr alloys is qualitatively similar. Above 250 K, radiation-induced processes of the solid solution decomposition become conspicuous. These processes are much less pronounced in ODS steel because of specific features of its microstructure. Processes related to the overlapping of displacement cascades under neutron irradiation have been considered. It has been shown that, in this case, it is the increase in the size of vacancy clusters, rather than the growth of their concentration, that is prevailing. Possible mechanisms of the radiation hardening of the ODS steel and the Fe-13Cr alloy upon irradiation and subsequent annealing have been discussed.

  16. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  17. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  18. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    SciTech Connect

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  19. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  20. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    DOE PAGES

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detectedmore » for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less

  1. Development of porosity in an oxide dispersion strengthened ferritic alloy containing nanoscale oxide particles

    SciTech Connect

    Schneibel, Joachim H; Liu, Chain T; Hoelzer, David T; Mills, Michael J.; Sarosi, P. M.; Hayashi, Taisuke; Wendt, Ullrich; Heyse, Hartmut

    2007-01-01

    The development of porosity at 1000 C in an oxide dispersion strengthened ferritic alloy containing ultra-fine oxide particles with diameters on the order of a few nm is investigated. A comparison with an alloy fabricated by internal oxidation demonstrates that the porosity formation is associated with mechanical alloying with Y2O3 in argon. The pores grow in spite of a sub-micron grain size suggesting that the grain boundaries are not effective paths for removing entrapped gas from the pores.

  2. The Effect of H and He on Irradiation Performance of Fe and Ferritic Alloys

    SciTech Connect

    James F. Stubbins

    2010-01-22

    This research program was designed to look at basic radiation damage and effects and mechanical properties in Fe and ferritic alloys. The program scope included a number of materials ranging from pure single crystal Fe to more complex Fe-Cr-C alloys. The range of materials was designed to examine materials response and performance on ideal/model systems and gradually move to more complex systems. The experimental program was coordinated with a modeling effort. The use of pure and model alloys also facilitated the ability to develop and employ atomistic-scale modeling techniques to understand the inherent physics underlying materials performance

  3. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  4. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    DOE PAGES

    Parish, Chad M.; Unocic, Kinga A.; Tan, Lizhen; ...

    2016-10-24

    Here we irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ~50 dpa, ~15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ~8 nm, ~1021 m-3 (CNA), and of ~3 nm, 1023 m-3 (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces inmore » all alloys survived ~50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Finally, among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.« less

  5. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Parish, C. M.; Unocic, K. A.; Tan, L.; Zinkle, S. J.; Kondo, S.; Snead, L. L.; Hoelzer, D. T.; Katoh, Y.

    2017-01-01

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼1021 m-3 (CNA), and of ∼3 nm, 1023 m-3 (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  6. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    SciTech Connect

    Parish, Chad M.; Unocic, Kinga A.; Tan, Lizhen; Zinkle, S. J.; Kondo, Sosuke; Snead, Lance Lewis; Hoelzer, David T.; Katoh, Yutai

    2016-10-24

    Here we irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ~50 dpa, ~15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ~8 nm, ~1021 m-3 (CNA), and of ~3 nm, 1023 m-3 (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ~50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Finally, among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  7. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F.

    1996-08-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  8. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    SciTech Connect

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-04-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved.

  9. Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Zeng, Yong

    2016-02-01

    Tungsten-titanium alloys are considered as promising materials for the future fusion devices, in particular for the divertor and other first wall components. The microstructure and the mechanical properties of the material are dependent on the amount of Ti present in the alloy. In this study, W-Ti-Y2O3 alloys with varied Ti contents between 1 wt.% and 10 wt.% fabricated by mechanical alloying were investigated. The effect of Ti on the phase formation and mechanical properties of W-Ti-Y2O3 alloys has been examined. The results suggest that the alloys containing low Ti content exhibit homogeneous microstructure with a uniform distribution of fine titanium oxide particles and tungsten carbides, leading to a significant increase in hardness and elastic modulus of alloys. In addition, high-energy ball milling can facilitate a solid-state reaction between Y2O3 particles and the tungsten-titanium matrix and the subsequent sintering processing promotes the formation of stable nano Ti2Y2O7 oxide particles, which greatly increase the mechanical properties at elevated temperature and enhance irradiation resistance.

  10. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1998-03-01

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  11. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy

    NASA Astrophysics Data System (ADS)

    Ramar, A.; Spätig, P.; Schäublin, R.

    2008-12-01

    Oxide dispersion in tempered martensitic EUROFER97 steel is an efficient approach to improve its strength. The oxide dispersion strengthened (ODS) EUROFER97 steel shows a good strength up to 600 °C, but degrades rapidly beyond that temperature. To understand the origin in the microstructure of this drop in strength in situ heating experiment in TEM was performed from room temperature to 1000 °C. Upon heating neither microstructure changes nor dislocation movement are observed up to 600 °C. Movement of dislocations are observed above 680 °C. Phase transformation to austenite starts at 840 °C. Yttria particles remain stable up to 1000 °C. Changes in mechanical properties thus do not relate to changes in yttria dispersion. It is attempted to relate these observations to the thermal activation parameters measured by the technique of conventional strain rate experiment, which allow to identify at a mesoscopic scale the microstructural mechanisms responsible for the degradation of ODS steel at high temperatures.

  12. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-10-01

    Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50-100 μm irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Y3Al5O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion.

  13. Computational thermodynamics aided design of novel ferritic alloys

    SciTech Connect

    Yang, Ying; Chen, Tianyi; Tan, Lizhen

    2016-06-30

    With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium with the BCC phase are C15_Laves phase, Fe23Zr6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr)2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe23Zr6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni7Zr2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni)2Zr nanoprecipitates for further studies.

  14. Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy.

    SciTech Connect

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.; Materials Science Division; Shimane Univ.; Osaka Univ.

    2008-12-01

    Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe{sup +} ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation.

  15. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  16. High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.

    2017-02-01

    Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.

  17. The metallurgical and mechanical properties of ODS alloy MA 956 friction welds

    SciTech Connect

    Shinozaki, K.; Kang, C.Y.; Kim, Y.C.; Nakao, Y.; Aritoshi, M.; North, T.H.

    1997-08-01

    The metallurgical and mechanical properties of friction welded MA 956 oxide dispersion strengthened (ODS) iron-based superalloy material were investigated. The mechanical properties of friction welded joints were evaluated using a combination of room temperature and elevated temperature tensile testing and creep rupture testing. The microstructural features and particle characteristics were examined using optical and transmission electron microscopy. The distribution of residual stress in completed joints was analyzed using FEM analysis. The room temperature and elevated temperature tensile strengths of friction welded joints were similar to those of as-received MA 956 base material and, in all cases, failure occurred away from the weld interface. However, the creep rupture properties of friction welded joints were much poorer than those of as-received MA 956 base material. The friction welding operation created low-aspect-ratio, fully recrystallized grains at the joint centerline and substantially altered the oxide particle chemistry, dimensions and shape in the joint region. It is speculated that the coarse, irregularly shaped particles in regions immediately adjacent to the weld interface were produced as a result of a strain-induced agglomeration of small-diameter yttria dispersoids with larger-diameter alumina and Ti(C,N) particles.

  18. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  19. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  20. System and method of forming nanostructured ferritic alloy

    DOEpatents

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  1. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  2. Effect of alloying on microstructure and precipitate evolution in ferritic weld metal

    NASA Astrophysics Data System (ADS)

    Narayanan, Badri Kannan

    The effect of alloying on the microstructure of ferritic weld metal produced with an self-shielded flux cored arc welding process (FCAW-S) has been studied. The welding electrode has a flux core that is intentionally alloyed with strong deoxidizers and denitriding elements such as aluminum, titanium and zirconium in addition to austenite formers such as manganese and nickel. This results in formation of microstructure consisting of carbide free bainite, retained austenite and twinned martensite. The work focuses on characterization of the microstructures and the precipitates formed during solidification and the allotropic phase transformation of the weld metal. Aluminum, manganese and nickel have significant solubility in iron while aluminum, titanium and zirconium have very strong affinity for nitrogen and oxygen. The effect of these alloying elements on the phase transformation and precipitation of oxides and nitrides have been studied with various characterization techniques. In-situ X-ray synchrotron diffraction has been used to characterize the solidification path and the effect of heating and cooling rates on microstructure evolution. Scanning Transmission Electron Microscopy (STEM) in conjunction with Energy Dispersive Spectroscopy (EDS) and Electron energy loss spectroscopy (EELS) was used to study the effect of micro-alloying additions on inclusion evolution. The formation of core-shell structure of oxide/nitride is identified as being key to improvement in toughness of the weld metal. Electron Back Scattered Diffraction (EBSD) in combination with Orientation Imaging Microscopy (OIM) and Transmission electron microscopy (TEM) has been employed to study the effect of alloying on austenite to ferrite transformation modes. The prevention of twinned martensite has been identified to be key to improving ductility for achieving high strength weld metal.

  3. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    SciTech Connect

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  4. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  5. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Kalashnikov, A. N.; Suchkov, A. N.; Moeslang, A.; Rohde, M.

    2007-08-01

    Results on rapidly solidified filler metals for brazing W with W and monocrystalline W with EUROFER steel (FS) are presented. Rapidly quenched powder-type filler metals based on Ti bal-V-Cr-Be were developed to braze polycrystalline W with monocrystalline W. In addition, Fe bal-Ta-Ge-Si-B-Pd alloys were developed to braze monocrystalline W with FS for helium gas cooled divertors and plasma-facing components. The W to FS brazed joints were fabricated under vacuum at 1150 °C, using a Ta spacer of 0.1 mm in thickness to account for the different thermal expansions. The monocrystalline tungsten as well as the related brazed joints withstood 30 cycles between 750 °C/20 min and air cooling/3-5 min.

  6. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  7. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  8. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  9. Grain boundary diffusion of {sup 181}W in Fe-Cr ferritic alloys

    SciTech Connect

    Cermak, J.; Ruzickova, J.; Pokorna, A.

    1995-07-15

    The grain boundary diffusivity s{delta}D{sub b} of {sup 181}W in binary Fe-Cr alloys with 8--12 wt.% Cr, in a ternary alloy Fe-8Cr-0.17C and in two commercial modifications of 8% Cr ferritic steels were measured by the serial sectioning method in the temperature range 773--1,123 K. A variation of the Cr concentration in the range 8--12 wt.% does not influence s{delta}D{sub b}. The addition of carbon and, probably also phosphorus, decreases s{delta}D{sub b} similarly as it was observed in a previous study on iron diffusion in austenitic alloys Fe-Ni-Cr-C and Fe-Ni-Cr-P. The binary alloys could be considered pure, i.e. free of carbon, above 883 K, whereas at lower temperatures, probably due to residual carbon segregation to grain boundaries, a considerable decrease in s{delta}D{sub b} was observed compared with the extrapolated values from the high temperature region. The tungsten grain boundary diffusivity was found to be insensitive to small changes in the concentration of other alloying or impurity elements.

  10. Characteristic results and prospects of the 13Cr-1W-0.3Ti-0.3Y 2O 3 ODS steel

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.

    2009-04-01

    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic steels would allow a substantial increase of the operating temperature from ˜550 °C to about 650 °C. Temperatures above 700 °C in the He cooled modular divertor concept necessitates the use of ferritic (RAF) ODS steels, which are not limited by a phase transition. Therefore a 13Cr-1W-0.3Ti-0.3Y 2O 3 ferritic ODS steel is being developed, using an Attritor with varying milling parameters. Afterwards the mechanically alloyed powders were encapsulated, sealed and consolidated in a hot isostatic press device. In this work, the effects of several parameter variations on the microstructure of the produced ferritic ODS-alloys, analysed by optical microscopy (OM) and high resolution TEM, as well as results of conducted mechanical tests are presented.

  11. Optical driving of a miniature machine composed of temperature-sensitive ferrite and shape memory alloy

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Hayashi, Daisuke; Otani, Yukitoshi

    2001-02-01

    12 Optically driven small machines have such features as easily miniaturized in fabrication and as controlled by optical energy supplied remotely in wireless. We report on an optically controlled machine which moves like a caterpillar on the basis of optomechatronic principle. This miniaturized machine consists of two parts; a body made of shape memory alloys and springs and feet made of a magnet, a temperature- sensitive ferrite. The feet can hold the steel-made floor using magnetic force balance caused by projected beam, and the body repeats expansion and contraction using deformation of shape memory alloys caused by switching of projected beam. A prototype is fabricated in trial with a size of 35 mm X 12 mm. As an experimental result, it proved that they could move at the speed of 8.7 mm per cycle on a ceiling as well as a horizontal steel floor and it could ascend a slope as steep as 50 degree.

  12. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect

    Gelles, D.S.

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  13. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  14. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  15. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    DOE PAGES

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less

  16. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  17. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect

    Rebak, Raul B.

    2014-09-30

    provide hermetic seal. The replacement of a zirconium alloy using a ferritic material containing chromium and aluminum appears to be the most near term implementation for accident tolerant nuclear fuels.

  18. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K.

    2017-01-01

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni2TiAl/NiAl or single-Ni2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate. PMID:28387230

  19. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  20. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    DOE PAGES

    Mazumder, B.; Parish, C. M.; Bei, H.; ...

    2015-06-03

    Nanostructured ferritic alloys (NFAs) have outstanding high temperature creep properties and extreme tolerance to radiation damage. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of -Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of -Fe with 50-100 m irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embeddedmore » precipitates with the Al5Y3O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These differences can be explained by the differences in the microstructure and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms retarding diffusion.« less

  1. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy

    SciTech Connect

    Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.

    2015-06-03

    Nanostructured ferritic alloys (NFAs) have outstanding high temperature creep properties and extreme tolerance to radiation damage. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of -Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of -Fe with 50-100 m irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Al5Y3O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These differences can be explained by the differences in the microstructure and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms retarding diffusion.

  2. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  3. Morphology, Structure, and Chemistry of Nanoclusters in a Mechanically-Alloyed Nanostructured Ferritic Steel

    SciTech Connect

    Brandes, Matthew C; Kovarik, L.; Miller, Michael K; Mills, Michael J.

    2012-01-01

    Nanostructured ferritic steels have excellent elevated temperature strengths, creep resistances, and radiation tolerances due to the presence of a high density of Ti-Y-O-enriched nanoclusters. The compositions, morphologies, and structures of the smallest of these nanoclusters with maximum dimensions of {approx}2-4 nm were investigated in alloy 14YWT by high-resolution scanning transmission electron microscopy and atom probe tomography. Nanoclusters are found to be coherent with truncated rhombic dodecahedron morphologies defined by the {l_brace}100{r_brace} and {l_brace}110{r_brace} planes in the Fe matrix. Particles have compositions rich in Ti, O, Y, and Cr that are inconsistent with known oxide structures. The smallest nanoclusters appear to lack an identifiable crystal structure. Both nano-diffraction and focal series imaging through the sample thickness suggest that they are amorphous.

  4. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  5. Liquid metal embrittlement susceptibility of ferritic martensitic steel in liquid lead alloys

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Bosch, R. W.; Sapundjiev, D.; Almazouzi, A.

    2008-06-01

    The susceptibility of the ferritic-martensitic steels T91 and EUROFER97 to liquid metal embrittlement (LME) in lead alloys has been examined under various conditions. T91, which is currently the most promising candidate material for the high temperature components of the future accelerator driven system (ADS) was tested in liquid lead bismuth eutectic (LBE), whereas the reduced activation steel, EUROFER97 which is under consideration to be the structural steel for fusion reactors was tested in liquid lead lithium eutectic. These steels, similar in microstructure and mechanical properties in the unirradiated condition were tested for their susceptibility to LME as function of temperature (150-450 °C) and strain rate (1 × 10 -3-1 × 10 -6 s -1). Also, the influence of pre-exposure and surface stress concentrators was evaluated for both steels in, respectively, liquid PbBi and PbLi environment. To assess the LME effect, results of the tests in liquid metal environment are compared with tests in air or inert gas environment. Although both unirradiated and irradiated smooth ferritic-martensitic steels do not show any or little deterioration of mechanical properties in liquid lead alloy environment compared to their mechanical properties in gas as function of temperature and strain rate, pre-exposure or the presence of surface stress concentrators does lead to a significant decrease in total elongation for certain test conditions depending on the type of liquid metal environment. The results are discussed in terms of wetting enhanced by liquid metal corrosion or crack initiation processes.

  6. Alloys developed for high temperature applications

    NASA Astrophysics Data System (ADS)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  7. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ˜1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  8. Effects of Partial Phase Transformation on Characteristics of 9Cr Nanostructured Ferritic Alloy

    SciTech Connect

    Ji Hyun, Yoon; Byun, Thak Sang; Hoelzer, David T

    2014-01-01

    The core structures of future nuclear systems require tolerance to extreme irradiation, and some critical components, for example, the fuel cladding in Sodium-cooled Fast Reactors (SFRs), have to maintain mechanical integrity to very high doses of 200 -400 dpa at high temperatures up to 700 degrees C. The high Cr nanostructured ferritic alloys (NFAs) are under intense research worldwide as a candidate core material. Although the NFAs have some admirable characteristics for high-temperature applications, their crack sensitivity is very high at high temperatures. The fracture toughness of high strength NFAs is unacceptably low above 300 degrees C. The objective of this study is to develop processes and microstructures with improved high temperature fracture toughness and ductility. To optimize the afterextrusion heat treatment condition, both the computational simulation technique on phase equilibrium and the basic microstructural and mechanical characterization have been carried out. 9 Cr-NFA was produced by the mechanical alloying of pre-alloyed Fe-9Cr base metallic powder and yttria particles, and subsequent extrusion. The post-extrusion heat-treatments of various conditions were applied to the asextruded NFA. The tensile and fracture toughness tests were conducted for as-extruded and heat-treated samples at up to 700 degrees C. Fracture toughness of the NFA has increased by more than 40% at every testing temperature after heat-treatment in the inter-critical temperature range. The increment of fracture toughness of the NFA after post-extrusion heat-treatment is attributed to the increased strength at below 500 degrees C, and an increased ductility at 700 degrees C.

  9. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  10. Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Moeslang, A.; Rohde, M.

    2004-08-01

    Results on rapidly solidified filler metals for tungsten brazing are presented. A rapidly quenched foil-type filler metal based on Ni bal-15Cr-4Mo-4Fe-(0.5-1.0)V-7.5Si-1.5B was developed to braze tungsten to ferritic/martensitic Crl3Mo2NbVB steel (FS) for helium gas cooled divertors and plasma facing components. Polycrystalline W-2CeO 2 and monocrystalline pure tungsten were brazed to the steel under vacuum at 1150 °C, using a 0.5 mm thick foil spacer made of a 50Fe-50Ni alloy. As a result of thermocycling tests (100 cycles between 700 °C/20 min and air-water cooling/3-5 min) on brazed joints, tungsten powder metallurgically processed W-2CeO 2 failed due to residual stresses, whereas the brazed joint with zone-melted monocrystalline tungsten withstood the thermocycling tests.

  11. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  12. Evaluation of magnetic behaviour and in vitro biocompatibility of ferritic PM2000 alloy.

    PubMed

    Flores, M S; Ciapetti, G; González-Carrasco, J L; Montealegre, M A; Multigner, M; Pagani, S; Rivero, G

    2004-05-01

    PM2000 is a ferritic alloy obtained by powder metallurgy and is being investigated for potential applications as a biomaterial. This work aimed to assess the biological compatibility and to determine the influence of the processing route and further recrystallisation treatment on the magnetic behaviour. The magnetic behaviour has been analysed as a function of the hysteresis loop obtained by using an inductive method. The biocompatibility has been tested using human osteoblast-like cells seeded onto discs of PM2000. The ability of cells, on its surface, to attach, grow, and produce alkaline phosphatase (ALP) was determined. It is shown that PM2000 is a soft magnetic material irrespective of its material condition, its remanent magnetisation being very low (up to about 3% for the recrystallised swaged material). Fields close to 200 Oe are required to saturate the material. The saturation magnetisation is about 135 emu g(-1). In vitro tests indicate that cells are able to attach and grow onto its surface, and produce ALP, a specific marker of cells with bone-forming activity. In this respect, PM2000 holds promise as a suitable substrate for bone integration. These properties could make PM2000 a useful candidate for the preparation of medical devices where biocompatible and soft magnetic materials are sought. Applications for dental magnetic attachments could be envisaged.

  13. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  14. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    SciTech Connect

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  15. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  16. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    DOE PAGES

    Alam, M. Ershadul; Pal, Soupitak; Fields, Kirk; ...

    2016-08-13

    Here, a new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strengthmore » decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.« less

  17. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    SciTech Connect

    Alam, M. Ershadul; Pal, Soupitak; Fields, Kirk; Maloy, S. A.; Hoelzer, David T.; Odette, George R.

    2016-08-13

    Here, a new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strength decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.

  18. Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes

    NASA Astrophysics Data System (ADS)

    Toualbi, L.; Cayron, C.; Olier, P.; Malaplate, J.; Praud, M.; Mathon, M.-H.; Bossu, D.; Rouesne, E.; Montani, A.; Logé, R.; de Carlan, Y.

    2012-09-01

    Oxide Dispersion Strengthened ferritic/martensitic steels are developed as future cladding materials for Generation IV Sodium-Cooled Fast Reactors. ODS alloys are elaborated by powder metallurgy, consolidated by hot extrusion and manufactured into tube cladding using cold rolling process. ODS steels present low ductility and high hardness at room temperature which complicate their manufacturing. Cold working leads to the hardening of the tube which needs to be softened by heat treatment. A new high temperature fabrication route performed on a Fe-9Cr-1W-Ti-Y2O3-ODS martensitic steel has been designed by following the hardness values, the morphological and crystallographic anisotropy and the nano-precipitation size evolution at each step of the fabrication route. Observations show that phase transformation from ferrite (α) to austenite (γ) is crucial to reduce the morphological and the crystallographic anisotropy induced by the manufacturing processes. The high temperature heat treatments permit to make the austenitic grain grow leading to an improvement of the cold workability. Ultimate Tensile Strength values obtained in the hoop direction remain about 315 MPa at 650 °C which is slightly lower compared to other Fe-9Cr ODS tubes but the new microstructure could be more favorable for creep properties.

  19. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Chun, Y. B.; Kang, S. H.; Noh, S.; Kim, T. K.; Lee, D. W.; Cho, S.; Jeong, Y. H.

    2014-12-01

    As part of an alloy development program for Korean reduced-activation ferritic-martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile-brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.

  20. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  1. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    DOE PAGES

    Parish, Chad M.; Miller, Michael K.

    2014-12-09

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography.more » In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.« less

  2. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    SciTech Connect

    Parish, Chad M.; Miller, Michael K.

    2014-12-09

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  3. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  4. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  5. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  6. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  7. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-08-01

    Iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. All the weld overlays showed good oxidation/sulfidation behavior under isothermal conditions, including a gas metal arc deposit with only 21 at.% Al. A rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initially grown scales spalled and the subsequent rate of reaction was not controlled by the formation of slowly growing aluminum oxides. Higher starting aluminum concentrations (>{approximately}25 at.%) are needed to assure adequate oxidation/sulfidation lifetimes of the weld overlays. A variety of stable oxides was added to a base Fe-28 at.% Al-2 % Cr alloy to assess the effect of these dopants on the oxidation behavior at 1200{degrees}C. A Y{sub 2}O{sub 3} dispersion improved the scale adhesion relative to a Zr alloy addition, but wasn`t as effective as it is in other alumina-forming alloys. Preliminary data for powder-processed Fe-28 at.% Al-2% Cr exposed to the H{sub 2}S-H{sub 2}-H{sub 2}O-Ar gas at 800{degrees}C showed that the oxidation/sulfidation rate was similar to that of many Fe{sub 3}Al alloys produced by ingot metallurgy routes.

  8. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-06-01

    There has been a recent increase of interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system. In a program conducted as part of the European COST-501 Concerted Action Project, available alloys based on FeCrAl-Y{sub 2}O{sub 3} were evaluated for use in the main heat exchanger in a similar closed-cycle gas turbine application. One of the currently available ODS FeCrAl alloys was found to meet the strength requirements for this application, in which the working fluid at 0.9 MPa (131 psi) flowing at 5,889 kg/hr (12,955 lb/hr) was to be heated from 800 to 1100{degrees}C (1472 to 2012{degrees}F) over a tube length of 4 m (13 ft).

  9. Creep behavior of a {beta}{prime}(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy

    SciTech Connect

    Zhu, S.M.; Tjong, S.C.; Lai, J.K.L.

    1998-05-22

    Creep in precipitation-strengthened alloys usually exhibits a pronounced transition in the stress vs creep rate relationship due to dislocations bypassing of particles by climb at low stresses. In the present study, a single-slope behavior is observed in creep of {beta}{prime}(NiAl) strengthened ferritic Fe-19Cr-4Ni-2Al alloy in the temperature range 873--923 K. The alloy exhibits anomalously high values of apparent stress exponent and activation energy (980 kJ/mol). Transmission electron microscopy examination of the deformation microstructure reveals the occurrence of attractive dislocation/particle interaction, a feature which is usually observed in dispersion-strengthened alloys. Such an attractive dislocation particle interaction makes the local climb of dislocations over particles a realistic configuration at low stresses. The creep data are analyzed by the back-stress approach and by the recent dislocation-climb theories based on attractive interaction between dislocations and particles. By considering a back stress, all data can be rationalized by a power-law with a stress exponent of 4 and a creep activation energy close to the self-diffusion energy of the matrix lattice. Local climb together with the attractive but not strong interactions between the dislocations and particles is suggested to be the operative deformation mechanism at low stresses and to account for the single-slope behavior in the stress/creep rate relationship of this alloy.

  10. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    NASA Astrophysics Data System (ADS)

    Saroja, S.; Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M.; Bhanu Sankara Rao, K.; Raj, Baldev

    2011-02-01

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y 2O 3 particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures ( Ac1, Ac3 and Ms) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  11. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance

    SciTech Connect

    Hsiung, Luke L.; Fluss, Michael J.; Tumey, Scott J.; Choi, B. William; Serruys, Yves; Willaime, Francois; Kimura, Akihiko

    2010-11-01

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y{sub 2}O{sub 3} (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to understand the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y{sub 4}Al{sub 2}O{sub 9}, a few oxide particles of YAlO{sub 3} are also observed occasionally. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves solid-state amorphization and recrystallization. The role of nanoparticles in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented.

  12. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    PubMed Central

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-01-01

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700–950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. PMID:26537060

  13. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy.

    PubMed

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700-950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.

  14. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    SciTech Connect

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys by illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.

  15. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys bymore » illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.« less

  16. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  17. Influence of alloy content and a cerium surface treatment on the oxidation behavior of Fe-Cr ferritic stainless steels

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2006-01-01

    The cost of solid oxide fuel cells (SOFC) can be significantly reduced by using interconnects made from ferritic stainless steels. In fact, several alloys have been developed specifically for this application (Crofer 22APU and Hitachi ZMG323). However, these steels lack environmental stability in SOFC environments, and as a result, degrade the performance of the SOFC. A steel interconnect can contribute to performance degradation through: (i) Cr poisoning of electrochemically active sites within the cathode; (ii) formation of non-conductive oxides, such as SiO2 or Al2O3 from residual or minor alloying elements, at the base metal-oxide scale interface; and/or (iii) excessive oxide scale growth, which may also retard electrical conductivity. Consequently, there has been considerable attention on developing coatings to protect steel interconnects in SOFC environments and controlling trace elements during alloy production. Recently, we have reported on the development of a Cerium surface treatment that improves the oxidation behavior of a variety alloys, including Crofer 22APU [1-5]. Initial results indicated that the treatment may improve the performance of Crofer 22APU for SOFC application by: (i) retarding scale growth resulting in a thinner oxide scale; and (ii) suppressing the formation of a deleterious continuous SiO2 layer that can form at the metal-oxide scale interface in materials with high residual Si content [5]. Crofer 22 APU contains Fe-22Cr-0.5Mn-0.1Ti (weight percent). Depending on current market prices and the purity of raw materials utilized for ingot production, Cr can contribute upwards of 90 percent of the raw materials cost. The present research was undertaken to determine the influence of Cr content and minor element additions, especially Ti, on the effectiveness of the Ce surface treatment. Particular emphasis is placed on the behavior of low Cr alloys.

  18. Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Faulkner, R. G.; Riddle, N. B.; Monge, M. A.; Munoz, A.

    2011-12-01

    Probably the most important range of materials to consider for the blanket material in the tokamak design for fusion reactors such as ITER and DEMO is the high alloy Fe9Cr oxide dispersion strengthened (ODS) ferritic steels. These steels possess exceptional thermal conductivity and low thermal expansion while being strongly resistant to void swelling. Their main drawback is the high ductile-to-brittle transition temperature (DBTT), particularly in the ODS versions of the material. This paper describes attempts that are being made to reduce this DBTT in as yet unirradiated materials by a novel heat treatment procedure. The principle behind this approach is that low DBTT in the unirradiated materials will lead to relatively low DBTT even in He-containing material that has been irradiated with fusion blanket-type irradiations. New batches of high alloy Fe9Cr ODS (EUROFER) ferritic steel have been produced by a powder metallurgical route, and relatively homogeneous material has been produced by a hot isostatic pressing procedure. Mini-Charpy test specimens were made from materials that had been subjected to a matrix of heat treatments designed to show up variations in solution treatment (ST) temperature, cooling rate from the ST temperature and tempering treatment. The initial DBTT was in the range 150-200 °C. Extremely interesting results have been obtained. DBTT downward shifts of up to 200 °C have been observed by using a high 1300 °C ST temperature and a low cooling rate. The paper goes on to describe the microstructure of this material, and discusses the possible microstructural factors needed to produce these very high DBTT downward shifts. Low dissolved carbon and higher proportions of low-angle grain boundaries seem to provide the key to the understanding of the alloy behaviour.

  19. Structural applications of mechanical alloying; Proceedings of the ASM International Conference, Myrtle Beach, SC, Mar. 27-29, 1990

    SciTech Connect

    Froes, F.H.; Debarbadillo, J.J. Inco Alloys International, Inc., Huntington, WV )

    1990-01-01

    The present conference on mechanically alloyed (MA) products discusses their aerospace and industrial applications, the design and isothermal forging of Ni-base oxide dispersion-strengthened (ODS) superalloys, the microstructure and tensile properties of ODS ferritic alloys, the high temperature corrosion resistance of MA refractory products, the mechanical properties of novel MA Fe-based ODS alloys, and dispersoids in MA metals. Also discussed are MA Al-alloys for aircraft applications, the microstructure and properties of MA Al-Mn, the MA processing of the Ti-Al system, the origin of the strength of MA Al alloys, the interaction of Al with SiC during MA processing, the synthesis of chromium silicide via MA, and the MA production of 'TiC-steel'.

  20. HIGH POWER MICROWAVE FERRITES AND DEVICES

    DTIC Science & Technology

    FERROMAGNETIC MATERIALS, * MICROWAVE EQUIPMENT, ALUMINUM, DELAY LINES, ELECTRODES, FERRITES , GADOLINIUM , GARNET, IONS, IRON, MAGNESIUM ALLOYS...MAGNETIC FIELDS, MAGNETIC MATERIALS, MAGNETIC MOMENTS, MANGANESE ALLOYS, MICROWAVE SPECTROSCOPY, NICKEL ALLOYS, RADIOFREQUENCY POWER, RARE EARTH COMPOUNDS, SINGLE CRYSTALS, WAVEFORM GENERATORS, YTTRIUM.

  1. HIGH POWER MICROWAVE FERRITES AND DEVICES

    DTIC Science & Technology

    FERRITES , *FERROMAGNETIC MATERIALS, *GARNET, *MICROWAVE EQUIPMENT, ABSORPTION, ALUMINUM, ALUMINUM ALLOYS, ANISOTROPY, CRYSTALS, DIELECTRICS, DIRECT...CURRENT, ELECTRODES, GADOLINIUM , IRON, IRON ALLOYS, MAGNETIC FIELDS, MAGNETIC PROPERTIES, NICKEL ALLOYS, PHASE SHIFT CIRCUITS, RADIOFREQUENCY, RESONANCE, WAVEGUIDES, X RAY DIFFRACTION, YTTRIUM.

  2. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    SciTech Connect

    Aydogan, E.; Pal, S.; Anderoglu, O.; Maloy, S. A.; Vogel, S. C.; Odette, G. R.; Lewandowski, J. J.; Hoelzer, D. T.; Anderson, I. E.; Rieken, J. R.

    2016-03-08

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion and cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.

  3. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    DOE PAGES

    Aydogan, E.; Pal, S.; Anderoglu, O.; ...

    2016-03-08

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  4. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  5. Modified ferritic iron alloys with improved high-temperature mechanical properties and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1975-01-01

    An alloy modification program was conducted in which the compositions of two existing Fe-Cr-Al alloys (Armco 18SR and GE-1541) were changed to achieve either improved high-temperature strength or improved fabricability. Only modifications of Armco 18SR were successful in achieving increased strength without loss of fabricability or oxidation resistance. The best modified alloy, designated NASA-18T, had twice the rupture strength of Armco 18SR at 800 and 1000 C. The NASA-18T alloy also had better oxidation resistance than Armco 18SR and comparable fabricability. The nominal composition of NASA-18T is Fe-18Cr-2Al-1Si-1.25Ta. All attempted modifications of the GE-1541 alloy were unsuccessful in terms of achieving better fabricability without sacrificing high-temperature strength and oxidation resistance.

  6. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Lewandowska, M.; Kurzydlowski, K. J.; Baluc, N.

    2011-02-01

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y 2O 3 nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 °C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 °C or high speed hydrostatic extrusion (HSHE) at 900 °C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 μm and an average length of 75 μm, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 °C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 °C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  7. Epitaxial Fe/Y2O3 interfaces as a model system for oxide-dispersion-strengthened ferritic alloys

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Bowden, M. E.; Wang, C. M.; Shutthanandan, V.; Overman, N. R.; van Ginhoven, R. M.; Wirth, B. D.; Kurtz, R. J.

    2015-02-01

    The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (1 0 0), (1 1 0), and (1 1 1) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by X-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial orientation for Fe(2 1 1) deposited on Y2O3(1 1 0)/YSZ(1 1 0). In contrast, Fe on Y2O3(1 1 1)/YSZ(1 1 1) was fully polycrystalline, and Fe on Y2O3(1 0 0)/YSZ(1 0 0) exhibited out-of-plane texture in the [1 1 0] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(2 1 1)/Y2O3(1 1 0)/YSZ(1 10) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.

  8. Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel

    SciTech Connect

    Brandes, M. C.; Kovarik, Libor; Miller, Michael K.; Mills, M. J.

    2012-01-14

    Nanostructured ferritic steels have excellent high temperature creep properties and radiation tolerance due to the presence of a high density of Ti-Y-O-enriched nanoclusters. The morphology of the nanoclusters is found to be consistent with a truncated rhombic dodecahedron defined by the {l_brace}100{r_brace} and {l_brace}110{r_brace} planes in the Fe matrix. The derived symmetry and the compositional information indicate that the nanoclusters are inconsistent with the cubic Y2Ti2O7 or the polymorphs of Y2TiO5 phase. Possible structural models are discussed.

  9. Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains

    NASA Astrophysics Data System (ADS)

    Panneer Muthuselvam, I.; Bhowmik, R. N.

    2010-04-01

    We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (˜805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.

  10. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  11. Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

    SciTech Connect

    Fluss, M J; Hsiung, L L; Marian, J

    2011-11-20

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented. Finally, we describe the results from triple ion-beam irradiations using H{sup +} + He{sup +} + Fe{sup +8} ions to emulate fusion first wall radiation effects. Preliminary work is reported that confirms the existence of significant hydrogen synergistic effects described earlier by Tanaka et al., for Fe(Cr) and by Wakai et al

  12. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Miller, Michael K; Ma, Dong; Chen, Guang; Williams, J R; Chin, Bryan

    2012-01-01

    Newly-developed precipitate-strengthened ferritic steels with and without pre-existing nanoscale precipitates were irradiated with 4 MeV protons to a dose of ~5 mdpa at 50 C and subsequently examined by nanoindentation and atom probe tomography (APT). Irradiation-enhanced precipitation and coarsening of pre-existing nanoscale precipitates were observed. Copper partitions to the precipitate core along with a segregation of Ni, Al and Mn to the precipitate/matrix interface after both thermal aging and proton irradiation. Proton irradiation induces the precipitation reaction and coarsening of pre-existing nanoscale precipitates, and these results are similar to a thermal aging process. The precipitation and coarsening of nanoscale precipitates are responsible for the changes in hardness. The observation of the radiation-induced softening is essentially due to the coarsening of the pre-existing Cu-rich nanoscale precipitates. The implication of the precipitation on the embrittlement of reactor-pressure-vessel steels after irradiation is discussed.

  13. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages

    NASA Astrophysics Data System (ADS)

    Olier, P.; Malaplate, J.; Mathon, M. H.; Nunes, D.; Hamon, D.; Toualbi, L.; de Carlan, Y.; Chaffron, L.

    2012-09-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for fission and fusion applications thanks to their improved properties related to both their fine grained microstructure and high density of Y-Ti-O nanoscale clusters (NCs). The Fe-14Cr-1 W-0.3Ti-0.3Y2O3 ODS ferritic steel was produced by powder metallurgy: Iron-base gas atomized powders were mechanically alloyed with 0.3% Y2O3 particles in an attritor. Then, the ODS powders were encapsulated in a soft steel can, consolidated by hot extrusion and cold rolled under the shape of tube cladding. The present work investigates the evolution of the chemical composition and the microstructure after each stage of the fabrication route (i.e. mechanical alloying, extrusion and cold rolling). Chemical analysis indicates a significant increase of the carbon content and a moderate increase of oxygen and nitrogen after mechanical alloying compared to initial atomized powders. After extrusion, the measured oxygen content corresponds mainly to the oxygen coming from yttria addition during MA process. In addition, electron microprobe analyses are performed after hot extrusion to determine the concentration and the distribution of the constitutive elements (Cr, Ti, W, Y, O). The microstructure was investigated by transmission electron microscopy (TEM) and small angle neutron scattering (SANS) in order to characterize the size distribution of Y-Ti-O particles. TEM results reveal a fine microstructure (average grain size of 600 nm in the transverse direction) including Y-Ti-O NCs with a mean diameter close to 3 nm after extrusion. A slight coarsening of Y-Ti-O NCs is evidenced by SANS after cold rolling and heat treatments.

  14. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-05-01

    As the upper temperature for use of reduced activation ferritic/martensitic steels is presently limited by a drop in mechanical strength at about 550 °C, Europe, Japan and the US are actively researching steels with high strength at higher operating temperatures, mainly using stable oxide dispersion. In addition, the numerous interfaces between matrix and oxide particles are expected to act as sinks for the irradiation-induced defects. The main R&D activities aim at finding a compromise between good tensile and creep strength and sufficient ductility, especially in terms of fracture toughness. Oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels appear as promising materials for application in fusion power reactors up to about 750 °C. Six different ODS RAF steels, with compositions of Fe-(12-14)Cr-2W-(0.1-0.3-0.5)Ti-0.3Y2O3 (in wt%), were produced by powder metallurgy techniques, including mechanical alloying, canning and degassing of the milled powders and compaction of the powders by hot isostatic pressing, using various devices and conditions. The materials have been characterized in terms of microstructure and mechanical properties. The results have been analysed in terms of optimal chemical composition and manufacturing conditions. In particular, it was found that the composition of the materials should lie in the range Fe-14Cr-2W-(0.3-0.4)Ti-(0.25-0.3)Y2O3, as 14Cr ODS RAF steels exhibit higher tensile strength and better Charpy impact properties and are more stable than 12Cr materials (no risk of martensitic transformation), while materials with 0.5% Ti or more should not be further investigated, due to potential embrittlement by large TiO2 particles.

  15. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA. Revision 1

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  16. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  17. Fabrication of 13Cr-2Mo Ferritic/Martensitic Oxide-Dispersion-Strengthened Steel Components by Mechanical Alloying and Spark-Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bogachev, I.; Grigoryev, E.; Khasanov, O. L.; Olevsky, E.

    2014-06-01

    The outcomes of the mechanical alloying of 13Cr-2Mo ferritic/martensitic steel and yttria (oxide-dispersion-strengthened steel) powders in a ball mill are reported in terms of the powder particle size and morphology evolution. The optimal ball mill rotation speed and the milling time are discussed. The densification kinetics of the mechanically alloyed powder during the process of spark-plasma sintering is analyzed. An optimal set of the compaction processing parameters, including the maximum temperature, the dwell time, and the heating rate, is determined. The specifics of the densification are discussed in terms of the impact of major spark-plasma sintering parameters as well as the possible phase transformations occurring during compaction processing.

  18. Interdiffusion Behavior of Al-Rich Oxidation Resistant Coatings on Ferritic-Martensitic Alloys

    SciTech Connect

    Velraj, S.; Zhang, Ying; Hawkins, W. E.; Pint, Bruce A.

    2012-06-21

    We investigated interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic–martensitic alloys in the temperature range of 650–700°C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H2O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. Moreover, the model was also applied to predict coating lifetime at 650–700°C based on a minimum Al content (Cb) required at the coating surface to re-form protective oxide scale. In addition to a Cb value established from the failure of a thin CVD coating at 700°C, values reported for slurry aluminide coatings were also included in lifetime predictions.

  19. Effect of Y2O3 contents on oxidation resistance at 1150 °C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy

    NASA Astrophysics Data System (ADS)

    Sun, Duanjun; Liang, Chunyuan; Shang, Jinlong; Yin, Jihui; Song, Yaru; Li, Weizhou; Liang, Tianquan; Zhang, Xiuhai

    2016-11-01

    Ni-20Cr-5Al alloy with Y2O3 addition (i.e., 0, 0.2, 0.4, 0.6, 0.8, 1.0, 3.0 and 5.0 wt%) are used to prepare oxide dispersion strengthening (ODS) Ni-based superalloy by powder metallurgy technology. The effect of Y2O3 particles on oxidation resistance at 1150 °C and mechanical properties at room temperature of Ni-20Cr-5Al alloy was investigated. The results show that the oxidation resistance of alloys is improved when the content of Y2O3 is under 0.6 wt%. The oxidation resistance of alloys decreased obviously when the content of Y2O3 is over 0.8 wt%. It is due to the small amount of Y2O3 is conducive to form stable oxide scale, and improves the adhesion of oxide scale and matrix. While Y2O3 content is too high, it is easier to result in segregation of Y2O3, which create defects in matrix and decrease exfoliation resistance of oxide scale. Continuous and compact Al2O3 oxide scale can effectively protect matrix. The relative density of alloys can be significantly increased with Y2O3 addition which is 0.2-0.6 wt%, it's speculated that distribution of Y2O3 in matrix is benefit to promote rearrangement and densification of grains during process of sintering. While Y2O3 content is more than 0.8 wt%, Y2O3 will hinder viscous flow and reduce relative density due to its strong thermal stability.

  20. Optimization and testing results of Zr-bearing ferritic steels

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata; Sridharan, K.

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  1. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  2. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    SciTech Connect

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjorn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.

  3. Transient liquid-phase bonding of ODS steels

    NASA Astrophysics Data System (ADS)

    Noto, H.; Ukai, S.; Hayashi, S.

    2011-10-01

    The use of transient liquid-phase bonding of 9CrODS steels using Fe-3B-2Si-0.5C filler was investigated for bonding temperature of 1180 °C and hold times of 0.5-4.0 h. The sequential process, consisting of isothermal melting, solidification and homogenization, was confirmed for bonding the 9CrODS steel. The precipitation of chromium boride found in 19CrODS steel is avoided in 9CrODS steel due to the lower Cr content. Silicon tends to be slightly enriched inside the bonding zone. Agglomeration and coarsening of Y 2O 3 particles in 9CrODS steel lead to softening inside the bonding zone formed by incipient melting of the foil bonding alloy, and in a diffusion affected zone (DAZ) adjacent to the bonding zone.

  4. Morphology of Proeutectoid Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-01-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  5. Morphology of Proeutectoid Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  6. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    SciTech Connect

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  7. Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe-12 wt.% Cr alloy

    NASA Astrophysics Data System (ADS)

    Marquis, Emmanuelle A.; Lozano-Perez, Sergio; Castro, Vanessa de

    2011-10-01

    Understanding the behaviour of oxide-dispersion strengthened (ODS) ferritic martensitic steels under irradiation is of prime importance in the design of future fusion reactors. Although changes in grain boundary chemistry during irradiation can significantly affect fracture strength, little is known on the behaviour of grain boundaries in ODS steels. Here, the effect of heavy-ion implantation at 500 °C on grain boundary chemistry in a model ODS Fe-12 wt.% Cr alloy was investigated using atom-probe tomography (APT) and analytical scanning-transmission electron microscopy ((S)TEM) techniques. While chromium and carbon segregation at grain boundaries is found in annealed alloys before irradiation, the three-dimensional APT reconstructions and TEM observations after irradiation reveal a complex distribution of Cr segregation and depletion at grain boundaries of varying character.

  8. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    SciTech Connect

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  9. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    SciTech Connect

    Michelic, S.K.; Loder, D.; Reip, T.; Ardehali Barani, A.; Bernhard, C.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  10. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  11. Deformation mechanisms in a precipitation-strengthened ferritic super alloy revealed by in situ neutron dffraction studies at elevated temperatures

    SciTech Connect

    Huang, Shenyan; Gao, Yanfei; An, Ke; Zheng, Lili; Teng, Zhenke; Wu, Wei; Liaw, Peter K.

    2015-01-01

    The ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)AlB2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticity theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.

  12. First principles assessment of helium trapping in Y{sub 2}TiO{sub 5} in nano-featured ferritic alloys

    SciTech Connect

    Jin, Yanan; Jiang, Yong E-mail: odette@engineering.ucsb.edu; Yang, Litong; Lan, Guoqiang; Robert Odette, G. E-mail: odette@engineering.ucsb.edu; Yamamoto, Takuya; Shang, Jiacheng; Dang, Ying

    2014-10-14

    Nano-scale Y{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}TiO{sub 5} oxides are the major features that provide high strength and irradiation tolerance in nano-structured ferritic alloys. Here, we employ density functional theory to study helium trapping in Y{sub 2}TiO{sub 5}. The results suggest that helium is more deeply trapped in Y{sub 2}TiO{sub 5} compared to Y{sub 2}Ti{sub 2}O{sub 7}. Helium occupies open channels in Y{sub 2}TiO{sub 5}, where it weakly chemically interacts with neighboring oxygen anions, and results in less volume expansion compared to Y{sub 2}Ti{sub 2}O{sub 7}, reducing strains in the iron matrix. The corresponding helium mobility in these channels is very high. While its ultimate fate is to form oxide/matrix interface bubbles, transient deep trapping of helium in oxides plays a major role in the ability of NFA to manage helium distribution.

  13. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    PubMed Central

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  14. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales.

    PubMed

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials.

  15. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  16. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-12-01

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  17. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; ...

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  18. ENABLING THE PRACTICAL APPLICATION OF OXIDE DISPERSION-STRENGTHENED FERRITIC STEELS

    SciTech Connect

    Wright, Ian G; Pint, Bruce A; Dyadko, Dr. Eugene G.; Bornstein, Norman S.; Tatlock, Gordon J

    2007-01-01

    Effort has continued to evaluate joints made in oxide dispersion-strengthened (ODS) FeCrAl by (i) pulsed plasma-assisted diffusion (PPAD) bonding, and (ii) transient liquid phase (TLP) bonding. Creep tests of PPAD-bonded butt joints in air at 1000 C, using small, shoulder-loaded, dog bone-shaped specimens and an incrementally-loaded test technique, indicated that failure occurred at loads of up to 82% of that required to fail the parent alloy in the same test. For high creep-strength ferritic steels joined by conventional welding methods, strength reduction factors of 50-80% are considered to be acceptable. The failures apparently did not initiate along the joints; the observed mode of failure of the joined specimens was the same as observed for monolithic specimens of this alloy, by crack-initiated transgranular brittle fracture, followed by ductile overload failure. The progress of TLP bonding has been slower, with the major effort focused on understanding the behavior of the transient liquid phase and its interaction with the alloy microstructure during the various stages of bonding. Creep testing using the same procedures also has been used to evaluate changes resulting from torsional deformation of ODS-FeCrAl tubes in an attempt to modify their microstructures and increase their hoop strength. Interpretation of the results so far has not shown a clear trend, largely due to difficulties in measuring the effective angle of twist in the specimen gauge lengths. Other issues that have been addressed are the refinement of an approach for prediction of the oxidation-limited service lifetime of alumina scale-forming ODS alloys, and alternative routes for ODS alloy powder processing. Analysis of alloy specimens oxidized to failure (in some cases involving exposures for many thousands of hours) over a range of temperatures has provided an improved basis for calculating the values of parameters required in the lifing model (minimum Al content for protective behavior

  19. Fabrication technology for ODS Alloy MA957

    SciTech Connect

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-03-16

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

  20. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  1. Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-04-01

    Scanning transmission electron microscopy was conducted on welds exhibiting a variety of skeletal, or vermicular ferrite morphologies in addition to one lathy ferrite morphology. These ferrite morphologies result from primary ferrite solidification followed by a solid state transformation upon cooling. During cooling, a large fraction of the ferrite transforms to austenite leaving a variety of ferrite morphologies. Comparison of composition profiles and alloy partitioning showed both the skeletal and lathy ferrite structures result from a diffusion controlled solid state transformation. However, the overall measured composition profiles of the weld structure are a result of partitioning during both solidification and the subsequent solid state transformation.

  2. Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas John

    This work advances the understanding of the Y-Ti-O nanofeatures (NFs) in nanostructured ferritic alloys (NFAs); a class of high temperature, oxide dispersion strengthened iron alloys with applications in both advanced fission and fusion reactors. NFAs exhibit high creep strength up to 800ºC and a remarkable radiation damage tolerance and He management. However, the NFs, which are responsible for these properties, are not fully understood. This work addresses key questions including: a) what is the NF structure and composition and how are they affected by alloy composition and processing; b) what is the NFA long-term thermal stability; c) and what alternative processing paths are available to reduce costs and produce more uniform NF distributions? A detailed study using small angle neutron scattering (SANS), transmission electron microscopy (TEM-group member Y. Wu), and atom probe tomography (APT) evaluated the NF average size (), number density (N), volume fraction (f), composition, and structure in two heats of the commercial NFA MA957. The and N were ≈2.6 nm and ≈5x1023 m-3 , respectively, for both heats, with TEM indicating the NF are Y 2Ti2O7. However, SANS indicates a mixture of NF compositions or atomic densities with a difference between the heats, while APT shows compositions with ≈ 10% Cr and a Y/Ti ratio < 1. However, microscope artifacts such as preferential undercounting of Y and O or trajectory aberrations that prevent resolving Ti segregation to the NF-matrix interface could account for the discrepancy. The microstructure and NFs in MA957 were stable for long times at temperatures up to 900ºC. Notably, Ti in the matrix and some from the NFs migrates to large, Ti-rich phases. Aging at higher temperatures up to 1000ºC for 19.5 kh produced modest coarsening for ≈ 3.8 nm and ≈30% increase in grain size for a corresponding 13% reduction in microhardness. A coarsening model shows no significant NF coarsening will occur at temperatures less than

  3. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  4. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  5. Hafnium-silicon precipitate structure determination in a new heat-resistant ferritic alloy by precession electron diffraction techniques.

    PubMed

    Viladot, Désirée; Portillo, Joaquim; Gemí, Mauro; Nicolopoulos, Stavros; Llorca-Isern, Núria

    2014-02-01

    The structure determination of an HfSi4 precipitate has been carried out by a combination of two precession electron diffraction techniques: high precession angle, 2.2°, single pattern collection at eight different zone axes and low precession angle, 0.5°, serial collection of patterns obtained by increasing tilts of 1°. A three-dimensional reconstruction of the associated reciprocal space shows an orthorhombic unit cell with parameters a = 11.4 Å, b = 11.8 Å, c = 14.6 Å, and an extinction condition of (hkl) h + k odd. The merged intensities from the high angle precession patterns have been symmetry tested for possible space groups (SG) fulfilling this condition and a best symmetrization residual found at 18% for SG 65 Cmmm. Use of the SIR2011 direct methods program allowed solving the structure with a structure residual of 18%. The precipitate objects of this study were reproducibly found in a newly implemented alloy, designed according to molecular orbital theory.

  6. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    SciTech Connect

    Mark A. Harper, Ph.D.

    2001-01-01

    The Vision 21 project titled ''Development of ODS Heat Exchanger Tubing'' has been initiated. A project kick-off meeting was held in Huntington, WV, the MA956 powder that will be used in the extrusion campaign has been obtained, and some of the MA956 tubing and rod required for joining trials has been shipped to the appropriate subcontractors. Acquisition of the MA956 alloy powder will allow the extrusion campaign to begin during the month of February. Also, tubing shipped to Edison Welding Institute and rod shipped to Michigan Technological University will allow joining trials to begin. In addition to these technical aspects, negotiations with all the subcontractors have been completed and the Project Management Plan and Project Work Plan have been prepared and submitted for approval.

  7. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part 1: The Protective Scale

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.

  8. Creep constitutive equation of dual phase 9Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-02-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R&D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture.

  9. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Bergner, F.; Ulbricht, A.; Hernández-Mayoral, M.; Keiderling, U.; Lindau, R.; Weissgärber, T.

    2011-09-01

    Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y 2O 3, TEM results indicate a peak radius of the size distribution of Y 2O 3 particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y 2O 3 particle interaction effects.

  10. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  11. Dependence of the nitriding rate of ferritic and austenitic substrates on the crystallographic orientation of surface grains; gaseous nitriding of Fe-Cr and Ni-Ti alloys

    NASA Astrophysics Data System (ADS)

    Akhlaghi, M.; Jung, M.; Meka, S. R.; Fonović, M.; Leineweber, A.; Mittemeijer, E. J.

    2015-12-01

    Gaseous nitriding of ferritic Fe-Cr and austenitic Ni-Ti solid solutions reveals that the extent of the uptake of dissolved nitrogen depends on the crystallographic orientation of the surface grains of the substrate. In both ferritic and austenitic substrates, the surface nitrogen concentration and the nitriding depth decrease upon increasing the smallest angle between the surface normal and the normal of a {1 0 0} plane of the surface grain considered. This phenomenon could be ascribed to the residual compressive macrostress developed during nitriding which varies as a function of crystallographic orientation of the (surface) grains due to the elastically anisotropic nature of ferrite and austenite solid solutions investigated in this study.

  12. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  13. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  14. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Gao, R.; Zhang, T.; Ding, H. L.; Jiang, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2015-10-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 were fabricated by sol-gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10-40 nm) and fine-grained structure (200-400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  15. Influence of microstructure on impact properties of 9-18%Cr ODS steels for fusion/fission applications

    NASA Astrophysics Data System (ADS)

    Hadraba, H.; Fournier, B.; Stratil, L.; Malaplate, J.; Rouffié, A.-L.; Wident, P.; Ziolek, L.; Béchade, J.-L.

    2011-04-01

    The paper describes the influence of the microstructure (coming from the extrusion shape, the chemical composition and the thermo-mechanical treatments) of (9-18%)Cr-W-Ti-Y 2O 3 ODS steels on their impact fracture properties. The extrusion shape plays a major role on the impact properties, materials extruded as a rod present a higher upper shelf energy (USE) and a lower ductile to brittle transition temperature (DBTT) compared to materials extruded as plates. The DBTT for the non-recrystallized 14%Cr ferritic steels was shifted towards higher temperatures compared to the 9%Cr tempered ferritic-martensitic steel. Increasing the W and Ti content in 9%Cr tempered ferritic-martensitic ODS steel leads to a USE and a DBTT shifted towards higher energies and higher temperatures respectively. Increasing the yttria content leads to a drop of the impact energy and a shift of the DBTT of ferritic ODS steel towards higher temperatures. The present study highlights extensive splitting of the fracture surfaces and a dependency of the impact energy on the fracture plane orientation according to the microstructure anisotropy.

  16. Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors

    NASA Technical Reports Server (NTRS)

    Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)

    1974-01-01

    The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.

  17. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    SciTech Connect

    Zirker, L.R. ); Bottcher, J.H. ); Shikakura, S. ); Tsai, C.L. . Dept. of Welding Engineering); Hamilton, M.L. )

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab.

  18. Thermal helium desorption behavior in advanced ferritic steels

    NASA Astrophysics Data System (ADS)

    Kimura, Akihiko; Sugano, R.; Matsushita, Y.; Ukai, S.

    2005-02-01

    Thermal helium desorption measurements were performed to investigate the difference in the helium trapping and accumulation behavior among a reduced activation ferritic (RAF) steel and oxide dispersion strengthening (ODS) steels after implantation of He+ ions at room temperature. Thermal helium desorption spectra (THDS) were obtained during annealing to 1200 °C at a heating rate of 1 °C/s. The THDS of the ODS steels are very similar to that of the RAF steel, except for the presence of the peak in the temperature range from 800 to 1000 °C, where the α γ transformation related helium desorption from the γ-phase is considered to occur in the 9Cr-ODS martensitic steels. The fraction of helium desorption becomes larger at higher temperatures, and this trend is increased with the amount of implanted helium. In the 9Cr-ODS steels, the fraction of helium desorption by bubble migration mechanism was smaller than that in the RAF steel. This suggests that the bubble formation was suppressed in the ODS steels. In the 12Cr-ODS steel, the fraction of helium desorption by bubble migration reached more than 90%, suggesting that the trapping capacity of martensite phase in the 9Cr-ODS steel is rather large.

  19. Microstructure control for high strength 9Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Tan, L.; Hoelzer, D. T.; Busby, J. T.; Sokolov, M. A.; Klueh, R. L.

    2012-03-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 °C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  20. A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Mazlan, Saiful Amri; Shameli, Kamyar

    2016-09-01

    In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1-xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni-Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni-Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350-700 cm-1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about -34 dB at 9.7 GHz, making them the best candidates for high frequency applications.

  1. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  2. TEM Examination of Advanced Alloys Irradiated in ATR

    SciTech Connect

    Jian Gan, PhD

    2007-09-01

    Successful development of materials is critical to the deployment of advanced nuclear power systems. Irradiation studies of candidate materials play a vital role for better understanding materials performance under various irradiation environments of advanced system designs. In many cases, new classes of materials have to be investigated to meet the requirements of these advanced systems. For applications in the temperature range of 500 800ºC which is relevant to the fast neutron spectrum burner reactors for the Global Nuclear Energy Partnership (GNEP) program, oxide dispersion strengthened (ODS) and ferritic martensitic steels (e.g., MA957 and others) are candidates for advanced cladding materials. In the low temperature regions of the core (<600ºC), alloy 800H, HCM12A (also called T 122) and HT 9 have been considered.

  3. Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steel

    SciTech Connect

    Gannon, Paul; Gorokhovsky, Vladimir I.; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; White, P T.; Sofie, Stephen W.; Yang, Z Gary; Mccready, David E.; Visco, S.; Jacobson, C.; Kurokawa, H.

    2007-11-01

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEM/EDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time dependent Area Specific Resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (>1,000 hours) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed.

  4. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  5. R&D of low activation ferritic steels for fusion in japanese universities*1

    NASA Astrophysics Data System (ADS)

    Kohyama, Akira; Kohno, Yutaka; Asakura, Kentaro; Kayano, Hideo

    1994-09-01

    Following the brief review of the R&D of low activation ferritic steels in Japanese universities, the status of 9Cr-2W type ferritic steels development is presented. The main emphasis is on mechanical property changes by fast neutron irradiation in FFTF. Bend test, tensile test, CVN test and in-reactor creep results are provided including some data about low activation ferritic steels with Cr variation from 2.25 to 12%. The 9Cr-2W ferritic steel, denoted as JLF-1, showed excellent mechanical properties under fast neutron irradiation as high as 60 dpa. As potential materials for DEMO and beyond, innovative oxide dispersion strengthened (ODS) quasi-amorphous low activation ferritic steels are introduced. The baseline properties, microstructural evolution under ion irradiation and the recent progress of new processes are provided.

  6. Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Shibata, Hiroyuki; Hedström, Peter; Jönsson, Pär Göran; Nakajima, Keiji

    2016-08-01

    The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.

  7. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  8. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  9. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  10. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    SciTech Connect

    Certain, Alicia G.; Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Hoelzer, D. T.; Allen, T. R.

    2013-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  11. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  12. XXIst Century Ferrites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Zehani, K.; Pasko, A.; Loyau, V.; LoBue, M.

    2012-05-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Ørsted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the downsizing of ceramics microstucture to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba2+Fe12O19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  13. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-08-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure ( Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  14. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng

    2017-03-01

    The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.

  15. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng

    2017-02-01

    The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.

  16. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Emo, Jonathan; Pareige, Cristelle; Saillet, Sébastien; Domain, Christophe; Pareige, Philippe

    2014-06-01

    This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography.

  17. Hexagonal ferrites for millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Polk, Donald E.; Hathaway, Kristl B.

    1993-01-01

    A review of the work accomplished on this contract is presented. A review of the physics of hexagonal ferrite materials and the effective linewidth concept and the detailed overall research plan are contained in the original proposal document. The focus of the program was on the effective linewidth in millimeter wave materials, including planar hexagonal ferrite Y-type materials, uniaxial M-type materials, and thin ferromagnetic transition metal and alloy films. The key idea in the original proposal was that the ferromagnetic resonance (FMR) linewidth in hexagonal ferrites is dominated by inhomogeneous and two-magnon scattering losses and that off-resonance measurements of the effective linewidth would (1) show that the FMR losses do not represent the intrinsic losses, and (2) that the intrinsic losses are significantly lower. This basic idea was verified. Results were obtained on the off-resonance far-field effective linewidth in planar Zn-Y hexagonal ferrite single crystal platelets, single crystal spheres of Ba- and Sr-hexaferrite materials, and permalloy thin films. Three papers on these results were published.

  18. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  19. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    Ferrites Lithium Ferrite Magnetostatic Wave Garnets Epitaxy Yttrium Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite Microwave Signal Processing...epitaxial ferrit ( materials for use in microwave and millirreter-wave signal processing devices. The major emphasis has been on multiple layer...overall objective of this research is to develop epitaxial single crystal ferrite films suitable for microwave and millimeter-wave signal processing at

  20. SEDS Tether M/OD Damage Analyses

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.; Hill, S. A.

    1997-01-01

    The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

  1. Development oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  2. Short Communication on "Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350 °C"

    NASA Astrophysics Data System (ADS)

    Sandim, M. J. R.; Souza Filho, I. R.; Bredda, E. H.; Kostka, A.; Raabe, D.; Sandim, H. R. Z.

    2017-02-01

    Oxide-dispersion strengthened (ODS) Eurofer steel is targeted for structural applications in future fusion nuclear reactors. Samples were cold rolled down to 80% reduction in thickness and annealed at 1350 °C up to 8 h. The microstructural characterization was performed using Vickers microhardness testing, electron backscatter diffraction, scanning and scanning transmission electron microscopies. Experimental results provide evidence of coarsening of the Y-rich oxide particles in ODS-Eurofer steel annealed at 1350 °C within delta ferrite phase field.

  3. Effect of microstructure on low cycle fatigue properties of ODS steels

    NASA Astrophysics Data System (ADS)

    Kubena, Ivo; Fournier, Benjamin; Kruml, Tomas

    2012-05-01

    Low cycle fatigue properties at room temperature, 650 °C and 750 °C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  4. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and...

  5. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and...

  6. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-ferritic steels (replaces UCS... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-10 Low temperature operation—ferritic steels (replaces UCS-65 through UCS-67). (a) Scope. (1)...

  7. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and...

  8. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels (replaces UCS... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-10 Low temperature operation—ferritic steels (replaces UCS-65 through UCS-67). (a) Scope. (1)...

  9. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and...

  10. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels (replaces UCS... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-10 Low temperature operation—ferritic steels (replaces UCS-65 through UCS-67). (a) Scope. (1)...

  11. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels (replaces UCS... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-10 Low temperature operation—ferritic steels (replaces UCS-65 through UCS-67). (a) Scope. (1)...

  12. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels (replaces UCS... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-10 Low temperature operation—ferritic steels (replaces UCS-65 through UCS-67). (a) Scope. (1)...

  13. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and...

  14. Morphological Stability of δ-Ferrite/γ Interphase Boundary in Carbon Steel

    NASA Astrophysics Data System (ADS)

    Chang, Guowei; Chen, Shuying; Yue, Xudong; Li, Qingchun

    2017-01-01

    The morphological changes of the δ-ferrite/γ interphase boundary have been observed in situ with a high-temperature confocal scanning laser microscope (HTCSLM) during δ/γ transformations (δ → γ and γ → δ) of Fe-0.06 wt pct C-0.6 wt pct Mn alloy, and a kinetic equation of morphological stability of δ-ferrite/γ interphase boundary has been established. Thereafter, the criterion expression for morphological stability of δ-ferrite/γ interphase boundary was established and discussed, and the critical migration speeds of δ-ferrite/γ interphase boundaries are calculated in Fe-C, Fe-Ni, and Fe-Cr alloys. The results indicate that the δ-ferrite/γ interphase boundary is very stable and nearly remains absolute planar all the time during γ → δ transformation in Fe-C alloy. The δ-ferrite/γ interphase boundary remains basically planar during δ → γ transformation when the migration speed is lower than 0.88 μm/s, and the interphase boundary will be unstable and exhibit a finger-like morphology when the migration speed is higher than 0.88 μm/s. The morphological stability of δ-ferrite/γ interphase boundary is primarily controlled by the interface energy and the solute concentration gradient at the front of the boundary. During the constant temperature phase transformation, an opposite temperature gradient on both sides of δ-ferrite/γ interphase boundary weakens the steady effect of the temperature gradient on the boundary. The theoretical analysis of the morphological stability of the δ-ferrite/γ interphase boundary is coincident with the observed experimental results utilizing the HTCSLM. There is a good agreement between the theoretical calculation of the critical moving velocities of δ-ferrite/γ interphase boundaries and the experimental results.

  15. Morphological Stability of δ-Ferrite/ γ Interphase Boundary in Carbon Steel

    NASA Astrophysics Data System (ADS)

    Chang, Guowei; Chen, Shuying; Yue, Xudong; Li, Qingchun

    2017-04-01

    The morphological changes of the δ-ferrite/ γ interphase boundary have been observed in situ with a high-temperature confocal scanning laser microscope (HTCSLM) during δ/ γ transformations ( δ → γ and γ → δ) of Fe-0.06 wt pct C-0.6 wt pct Mn alloy, and a kinetic equation of morphological stability of δ-ferrite/ γ interphase boundary has been established. Thereafter, the criterion expression for morphological stability of δ-ferrite/ γ interphase boundary was established and discussed, and the critical migration speeds of δ-ferrite/ γ interphase boundaries are calculated in Fe-C, Fe-Ni, and Fe-Cr alloys. The results indicate that the δ-ferrite/ γ interphase boundary is very stable and nearly remains absolute planar all the time during γ → δ transformation in Fe-C alloy. The δ-ferrite/ γ interphase boundary remains basically planar during δ → γ transformation when the migration speed is lower than 0.88 μm/s, and the interphase boundary will be unstable and exhibit a finger-like morphology when the migration speed is higher than 0.88 μm/s. The morphological stability of δ-ferrite/ γ interphase boundary is primarily controlled by the interface energy and the solute concentration gradient at the front of the boundary. During the constant temperature phase transformation, an opposite temperature gradient on both sides of δ-ferrite/ γ interphase boundary weakens the steady effect of the temperature gradient on the boundary. The theoretical analysis of the morphological stability of the δ-ferrite/ γ interphase boundary is coincident with the observed experimental results utilizing the HTCSLM. There is a good agreement between the theoretical calculation of the critical moving velocities of δ-ferrite/ γ interphase boundaries and the experimental results.

  16. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  17. CASS Ferrite and Grain Structure Relationship

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Diaz, Aaron A.; Anderson, Michael T.

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  18. Finemet versus ferrite -- Pros and cons

    SciTech Connect

    K.Y. Ng and Z.B. Qian

    1999-05-19

    There is a new magnetic alloy called Finemet which has very constant {mu}'{sub p}Qf up to {approximately} 2 kG and is very stable at high magnet flux density and temperature. It may be a good can-didate for high-gradient rf cavities. However, it has a rather low quality factor and is therefore very lossy. We compare the pros and cons of Finemet versus the common ferrite, when used in low-energy accelerating cavities, insertion for space-charge compensation, and barrier cavities.

  19. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  20. Toughness of 12%Cr ferritic/martensitic steel welds produced by non-arc welding processes

    SciTech Connect

    Ginn, B.J.; Gooch, T.G.

    1998-08-01

    Low carbon 12%Cr steels can offer reduced life cycle costs in many applications. The present work examined the behavior of commercial steels of varying composition when subject to low heat input welding by the electron beam (EB) process and to a forge cycle by linear friction welding (LFW). Charpy impact testing was carried out on the high temperature heat-affected zone (HAZ)/fusion boundary or weld interface, with metallographic examination. With EB welding, the ductile-brittle transition temperature (DBTT) was below 0 C (32 F) only for steel of low ferrite factor giving a fully martensitic weld area. Higher ferrite factor alloys showed predominantly ferritic transformed microstructures and a transition well above room temperature. Grain coarsening was found even with low EB process power, the peak grain size increasing with both heat input and steel ferrite factor. Use of LFW gave a fine weld area structure and DBTTs around 0 C even in high ferrite factor (FF) material.

  1. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    NASA Astrophysics Data System (ADS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-12-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX).

  2. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep

    SciTech Connect

    Li, Shengzhi; Eliniyaz, Zumrat; Zhang, Lanting; Sun, Feng; Shen, Yinzhong; Shan, Aidang

    2012-11-15

    This research focused on the formation and microstructural evolution of delta ferrite phase in SAVE12 steel. The formation of delta ferrite was due to the high content of ferrite forming alloy elements such as Cr, W, and Ta. This was interpreted through either JMatPro-4.1 computer program or Cr{sub eq} calculations. Delta ferrite was found in bamboo-like shape and contained large amount of MX phase. It was surrounded by Laves phases before creep or aging treatment. Annealing treatments were performed under temperatures from 1050 Degree-Sign C to 1100 Degree-Sign C and various time periods to study its dissolution kinetics. The result showed that most of the delta ferrite can be dissolved by annealing in single phase austenitic region. Dissolution process of delta ferrite may largely depend on dissolution kinetic factors, rather than on thermodynamic factors. Precipitation behavior during short-term (1100 h) creep was investigated at temperature of 600 Degree-Sign C under a stress of 180 MPa. The results demonstrated that delta ferrite became preferential nucleation sites for Laves phase at the early stage of creep. Laves phase on the boundary around delta ferrite showed relatively slower growth and coarsening rate than that inside delta ferrite. - Highlights: Black-Right-Pointing-Pointer Delta ferrite is systematically studied under heat treatment and short-term creep. Black-Right-Pointing-Pointer Delta ferrite contains large number of MX phase and is surrounded by Laves phases before creep or aging treatment. Black-Right-Pointing-Pointer Formation of delta ferrite is interpreted by theoretical and empirical methods. Black-Right-Pointing-Pointer Most of the delta ferrite is dissolved by annealing in single phase austenitic region. Black-Right-Pointing-Pointer Delta ferrite becomes preferential nucleation sites for Laves phase at the early stage of creep.

  3. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  4. The Bgo-Od Experiment at Elsa

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bieling, J.; Böse, S.; Braglieri, A.; Brinkmann, K.; Burdeynyi, D.; Curciarello, F.; de Leo, V.; di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Frese, T.; Friedrick, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, O.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Noviskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Schaerf, C.; Schmieden, H.; Sumachev, V.; Tarakonov, V.; Vegna, V.; Vlasov, P.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2014-01-01

    Meson photoproduction is a key tool for the experimental investigation of the nucleon excitation spectrum. To disentangle the specific couplings of resonances, in addition to the rather well measured pion and eta photoproduction channels it is mandatory to obtain information on channels involving strange and vector mesons and higher mass pseudoscalar mesons, and the associated multi-particle final states with both charged and neutral particles. In this respect, the new BGO-OD experiment at the ELSA accelerator of the University of Bonn's Physikalisches Institut provides unique instrumentation. We describe the experiment, present its status and the initial program of measurements.

  5. Magnetic Characterization of Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew; Sokol, Paul; Gumina, Greg; Bronstein, Lyudmila; Dragnea, Bogdan

    2011-03-01

    Magnetic nanoparticles (NPs) of different compositions (FeO/ Fe 3 O4 , g- Fe 2 O3 , FePt, and CoFe 2 O4) have been synthesized using high temperature organometallic routes described elsewhere. NPs (16.6 nm in diameter) of a mixed FeO/ Fe 3 O4 (wuestite/magnetite) composition were prepared by thermal decomposition or iron oleate in the presence of oleic acid as a surfactant in dodocane at 370C in argon atmosphere. After the thermal treatment of the reaction solution at 200 C under air for 2 hours these NPs are transformed into maghemite (g- Fe 2 O3) , the magnetization of which is significantly enhanced. NPs of CoFe 2 O4 (8 nm) have been prepared by simultaneous decomposition of Co(II) and Fe(III) acetylacetonates in the presence of oleic acid and oleylamine. The X-ray diffraction profile of these NPs is characteristic of cobalt ferrite. Alternatively, alloyed 1.8 nm FePt NPs prepared by simultaneous decomposition of Fe and Pt acetylacetonates in the reductive environment demonstrate a completely disordered structure, which is reflected in their magnetic properties. SQUID magnetometry was used to measure the magnetization of NPs at high and low temperatures. Zero-field cooling and field-cooling measurements were taken to demonstrate superparamagnetic behavior and an associated blocking temperature.

  6. Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for Penetrator Application

    DTIC Science & Technology

    2005-09-30

    preparation, sintering, cyclic heat-treatment, swaging , and annealing processes, on microstructures and static/dynamic mechanical properties of ODS tungsten ... tungsten / tungsten contiguity. The swaging and annealing processes of ODS tungsten heavy alloy increase the tensile strength with decreasing the...Final Report for 2nd Year Contract of AOARD 034032 Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for

  7. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite microwave Signal Processing Millimeter-Wave 20. ABSTRACT (Continue ani revee arde if necoeermy and...le.’uIfy by block rns.) e objective of this research is to develop new and improved epitauial ferrite materials for use in microwave and millimeter... ferrite films suitable for microwave and millimeter-wave signal processing at frequencies above 1 GHz. The specific tasks are: a. Analyze and develop

  8. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    SciTech Connect

    Indrajit Charit; Megan Frary; Darryl Butt; K.L. Murty; Larry Zirker; James Cole; Mitchell Meyer; Rajiv S. Mishra; Mark Woltz

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  9. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    SciTech Connect

    Mark A. Harper, Ph.D.

    2003-04-01

    Due to extenuating circumstances Special Metals Corporation is terminating their role as prime contractor with this Vision 21 project. In response to this situation, a status report for the project as of this date, has been prepared and follows. Significant work has been accomplished on three major tasks of this project--increasing the circumferential strength of MA956 tubing, joining of the MA956 alloy, and determination of the high temperature corrosion limits of the MA956 alloy. With respect to increasing the circumferential strength of a MA956 tube, the first rod extrusion campaign has been completed with microstructure analysis providing valuable information on the strengthening mechanism of this alloy. Also, based on the results obtained thus far extrusions of tubes are in process and creep testing to determine the ''stress threshold'' curves for this alloy continues. Regarding joining of the MA956 alloy, welds have been produced using the friction, explosive, magnetic impulse, and diffusion bonding techniques. Complete elevated temperature mechanical testing has not been conducted on joints produced using these methods, however room temperature tensile and shear testing has shown promising results on friction and explosive welds. And finally, laboratory high temperature corrosion testing of the material continues in both fluid-side and fire-side simulated environments. Brief summary status statements from each of the subcontractors is appended to this report which additionally contains the expected funding needed to complete the project.

  10. Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique

    NASA Astrophysics Data System (ADS)

    Turba, K.; Hurst, R. C.; Hähner, P.

    2012-09-01

    The small punch testing technique was used to assess both creep and fracture properties of the MA956 oxide dispersion strengthened ferritic steel. The anisotropy in mechanical properties was addressed, as well as the alloy's susceptibility to thermal embrittlement. Strong anisotropy was found in the material's creep resistance at 725 °C for longer rupture times. Anisotropic behavior was also observed for the ductile-brittle transition temperature (DBTT). The origin of the anisotropy can be related to the strongly directional microstructure which enables a large amount of intergranular cracking during straining at both high and low temperatures. The DBTT of the alloy is very high, and can be further increased by at least 200 °C after 1000 h of ageing at 475 °C, due to the formation of the Cr-rich α' phase. The particularly high susceptibility of the MA956 to thermal embrittlement is mainly a consequence of its high chromium content.

  11. Suppression effect of nano-sized oxide particles on helium irradiation hardening in F82H-ODS steel

    NASA Astrophysics Data System (ADS)

    Chen, S.; Wang, Y.; Tadaki, K.; Hashimoto, N.; Ohnuki, S.

    2014-12-01

    Helium implantation was performed to investigate irradiation hardening in ferritic/martensitic steels. Depth dependence of nano-hardness was obtained using a Berkovich nano-indenter, and then nano-hardness was extracted from Nix-Gao model. The correlation between irradiation hardening and the concentration 500-2000 appm of helium was plotted. Nano-hardness increases as a function of helium concentration. F82H-ODS with a higher nano-hardness provides a lower irradiation hardening than F82H-IEA. Cross-sectional transmission electron microscopy (XTEM) revealed that cavities with a uniform distribution were formed after helium implantation at 2000 appm helium concentration, showing a mean size of 1.1 nm with an average number density of 4.9 × 1023 m-3 in F82H-IEA and 1.3 nm with 7.4 × 1023 m-3 in F82H-ODS. Orowan model was applied to evaluate the hardening from dispersed cavities. The significant difference of hardening between calculation and nano-indentation result of F82H-ODS indicates that oxide particles may shield the hardening effect from cavities because of the complex multi-interaction.

  12. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed Nickel Aluminum for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Deog

    The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate

  13. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  14. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    SciTech Connect

    Mark A. Harper, Ph.D.

    2001-04-30

    Work has begun under three major tasks of this project. With respect to increasing the circumferential strength of a MA956 tube, approximately 60 MA956 rods have been extruded using a 20:1 extrusion ratio and extrusion temperatures of 1000, 1075, 1150, and 1200 C. Also, creep testing is underway for the purpose of determining the ''stress threshold'' curves for this alloy. Regarding joining of the alloy MA956, work has begun on the friction welding, magnetic impulse welding, explosive welding, and transient liquid phase bonding aspects of this project. And finally, material is being prepared for the laboratory fire-side high temperature corrosion tests, with potential gas and deposits for a typical Vision 21 plant being reviewed for final determination of these variables in the test program.

  15. Characterization of Irradiated Nanostructured Ferritic Steels

    SciTech Connect

    Bentley, James; Hoelzer, David T; Tanigawa, H.; Yamamoto, T.; Odette, George R.

    2007-01-01

    The past decade has seen the development of a new class of mechanically alloyed (MA) ferritic steels with outstanding mechanical properties that come, at least in part, from the presence of high concentrations (>10{sup 23} m{sup -3}) of Ti-, Y-, and O-enriched nanoclusters (NC). From the outset, there has been much interest in their potential use for applications to fission and proposed fusion reactors, not only because of their attractive high-temperature strength, but also because the presence of NC may result in a highly radiation-resistant material by efficiently trapping point defects to enhance recombination. Of special interest for fusion applications is the potential of NC to trap transmutation-produced He in high concentrations of small cavities, rather than in fewer but larger cavities that lead to greater radiation-induced swelling and other degraded properties.

  16. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    SciTech Connect

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes contained tube portions with FBW

  17. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    DTIC Science & Technology

    2013-06-01

    development. While high speed steel or WC-Co tools can be used for aluminum and copper alloys, FSW of steel generally requires even more refractory... steel and the microstructure produced by FSW is much more critical than in aluminum alloys. The αγδ phase transformations can cause complex, multi...thesis explores the processing-microstructure-property relationships in friction stir welded ( FSW ) HT9A ferritic-martensitic steel . HT9 has previously

  18. Drug OD Deaths Have Nearly Tripled Since 1999: CDC

    MedlinePlus

    ... Drug OD Deaths Have Nearly Tripled Since 1999: CDC Whites, middle-aged adults hardest hit, new report ... Sinai Health System in New York City. The CDC report, released Feb. 24, found that drug overdose ...

  19. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  20. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    NASA Astrophysics Data System (ADS)

    Maloy, S. A.; Saleh, T. A.; Anderoglu, O.; Romero, T. J.; Odette, G. R.; Yamamoto, T.; Li, S.; Cole, J. I.; Fielding, R.

    2016-01-01

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress-strain curves are analyzed to provide true stress-strain constitutive σ(ɛ) laws for all of these alloys. In the irradiated condition, the σ(ɛ) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where the latter can be understood in terms of the alloy's σ(ɛ) behavior. Increases in the average σ(ɛ) in the range of 0-10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are also analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. Notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  1. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    DOE PAGES

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; ...

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms ofmore » the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.« less

  2. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Han; Wang, Sea-Fue; Tsai, An-Pang; Kameoka, Satoshi

    2015-05-01

    In this study, Fe3O4-supported Cu and Ni catalysts are prepared through reduction of Cu-Ni (Ni1-xCuxFe2O4) ferrites. The Cu-Ni ferrites, synthesized using a solid-state reaction method, are reduced at temperatures from 240 °C to 500 °C in a H2 atmosphere. All ferrites are characterized with granular morphology and a smooth particle surface before reduction. For the CuFe2O4, Ni0.5Cu0.5Fe2O4 and NiFe2O4 ferrites reduced at 240, 300, and 400 °C, respectively, nanosized Cu and/or Ni particles (5-32 nm) and mesopores (5-30 nm) are distributed and adhered on the surfaces of Fe3O4 supports. After increasing the reduction temperature of NiFe2O4 ferrite to 500 °C, the Ni particles and mesopores disappear from the Fe3O4 surfaces, which is due to the formation of a Fe-Ni alloy covering on the Fe3O4 surfaces. The CuFe2O4 ferrite after H2 reduction at 240 °C exhibits the highest H2 production rate of 149 ml STP/min g-cat at 360 °C. The existence of Ni content in the Cu-Ni ferrites enhances the reverse water gas shift reaction, and raises the CO selectivity while reducing the CO2 selectivity. Formation of a Fe-Ni alloy exaggerates the trend and poisons the H2 production rate.

  3. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    NASA Astrophysics Data System (ADS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-03-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain ( 100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe66Co34) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe2O4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  4. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  5. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  6. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    SciTech Connect

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; Romero, Tobias J.; Odette, G. Robert; Yamamoto, Takuya; Li, S.; Cole, James I.; Fielding, Randall

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms of the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  7. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    PubMed Central

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; VanLeeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-01-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications. PMID:26134420

  8. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  9. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  10. RF cavities with transversely biased ferrite tuning

    SciTech Connect

    Smythe, W.R.; Brophy, T.G.; Carlini, R.D.; Friedrichs, C.C.; Grisham, D.L.; Spalek, G.; Wilkerson, L.C.

    1985-10-01

    Earley et al. suggested that ferrite tuned rf cavities have lower ferrite power dissipation if the ferrite bias field is perpendicular rather than parallel to the rf magnetic field. A 50-84 MHz cavity has been constructed in which ferrite can be biased either way. Low power measurements of six microwave ferrites show that the magnetic Q's of these ferrites under perpendicular bias are much higher than under parallel bias, and that the high Q region extends over a much wider range of rf permeability. TDK Y-5 ferrite was found to have a magnetic Q of 10,800, 4,800, 1,200 and 129 at rf permeabilities of 1.2, 2.4, 3.7 and 4.5, respectively. Measurements of perpendicularly biased ferrite at various power levels were made in a coaxial line cavity. The Q of Y-5 ferrite was found to decrease by less than a factor of 2 as the power density in the ferrite was increased to 1.3 W/cmT. A cavity design for a 6 GeV, high current, rapid cycling synchrotron using transversely biased ferrite tuning is described.

  11. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    NASA Technical Reports Server (NTRS)

    Perkins, R. J.; Bailey, P. G.

    1978-01-01

    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  12. Post-Irradiation Fracture Toughness of Unalloyed Molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244C to 507C

    SciTech Connect

    Cockeram, Brian V; Byun, Thak Sang; Leonard, Keith J; Snead, Lance Lewis

    2013-01-01

    Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were neutron irradiated at temperatures of nominally 244 C, 407 C, and 509 C to neutron fluences between 1.0 to 4.6x1025 n/m2 (E>0.1 MeV). Post-irradiation fracture toughness testing was performed. All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 4 MPa-m1/2. The highest post-irradiated fracture toughness values (26-107 MPa-m1/2) and lowest DBTT (100-150 C) was observed for ODS molybdenum in the L-T orientation. The finer grain size for ODS molybdenum results in fine laminates that improve the ductile laminate toughening. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa-m1/2) and higher DBTT (450-600 C) in the T-L orientation. The results for T-L ODS molybdenum are consistent or slightly better than those for LCAC molybdenum (21-71 MPa-m1/2 and 450-800 C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa-m1/2. Lower non-irradiated fracture toughness values were measured for TZM molybdenum that are attributed to the large carbide precipitates serving as preferential fracture initiation sites. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated by comparing the results for LCAC molybdenum and ODS molybdenum.

  13. Swelling of several commercial alloys following high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Powell, R. W.; Peterson, D. T.; Zimmerschied, M. K.; Bates, J. F.

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 1.8 × 10 23 n/cm 2 (E >0.1 MeV) over the temperature range of 400 to 650°C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 {1}/{4}Cr-1Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1Zr. All of these alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  14. Machinery alignment tables: Face-OD and reverse indicator methods

    SciTech Connect

    Buck, G.S.

    1984-01-01

    Many alignment techniques are too complex for practical use, and guessing never provides the needed precision. The face-OD (face-rim) and reverse indicator methods are the two most popular techniques experienced millwrights use, but both methods require time-consuming calculations. These tables replace the graphs, formulas, and calculations used to determine shim requirements. Contents: Face-OD method and reverse indicator method: Setting up Data forms. Equations and calculations. Examples. Alignment Tolerances. Errors in taking data. Typical alignment tolerances. Indicator sag. Cause of indicator sag. Correction of indicator sag. Typical values of indicator sag. Hot alignment. References.

  15. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  16. Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Quatinetz, M.

    1975-01-01

    An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.

  17. Development of oxide dispersion strengthened ferritic steels for fusion reactors

    SciTech Connect

    Mukhopadhay, D.K.; Suryanarayana, C.; Froes, F.H.; Hebeisen, J.; Gelles, D.S.

    1996-12-31

    Seven ODS steels, Fe-(5.13.5)Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) were manufactured using the mechanical alloying process. Only the composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sub 3} showed no austenite formation at any temperature using differential thermal analysis and hence was selected as an experimental alloy for the present investigation. Milled powders were consolidated by hot isostatic pressing and hot swaging. Electron microscopy studies indicated high material homogeneity. The hardness of the as-swaged specimen was 65 R{sub c}. Annealing of the as-swaged material at 800 C, 900 C, 1,000 C, 1,100 C and 1,200 C showed a minor decrease in the hardness.

  18. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Suryanarayana, C.; Froes, F.H.; Gelles, D.S.

    1996-04-01

    Seven ODS steels, Fe(5-13.5)Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) were manufactured using the mechanical alloying process. Only the composition Fe-13.5Cr3W-0.5Ti-0.25Y{sub 2}O{sub 3} showed no austenite formation at any temperature using differential thermal analysis and hence was selected as an experimental alloy for the present investigation. Milled powders were consolidated by hot isostatic pressing and hot swaging. Electron microscopy studies indicated high material homogeneity. The hardness of the as-swaged specimen was 65 R{sub c}. Annealing of the as-swaged material at 800, 900, 1000, 1100, and 1200{degrees}C showed a minor decrease in the hardness.

  19. The partitioning of alloying elements in vacuum arc remelted, Pd-modified PH 13-8 Mo alloys

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Vandenavyle, J. A.; Carr, M. J.; Hills, C. R.; Semarge, R. E.

    1988-12-01

    The partitioning of alloying elements in as-solidified PH 13-8 Mo stainless steel containing up to 1.02 wt pct Pd has been investigated. The as-solidified structure is composed of two major phases, martensite and ferrite. Electron probe microanalysis reveals that Mo, Cr, and Al partition to the ferrite phase while Fe, Ni, Mn, and Pd partition to the martensite (prior austenite) during solidification and cooling from the solidus. In addition to bulk segregation between phases, precipitation of the intermetallic, PdAI, in the retained ferrite is observed. Precipitation of the normal hardening phase, β-NiAl, is also observed in the retained ferrite. Partition ratios of the various alloying elements are determined and are compared with those observed previously in duplex Fe-Cr-Ni stainless steel solidification structures. The martensite start temperature (Ms) was observed to decrease with increasing Pd concentration.

  20. A STUDY OF FERRITE CAVITY.

    SciTech Connect

    ZHAO, Y.

    2002-04-19

    This note addresses the general concerns for the design of a ferrite cavity. The parameters are specified for the RCMS, for which the frequency ramp is in the range of 1.27 MHz to 6.44 MHz, or a ratio of 1:5.

  1. Advanced oxide dispersion strengthened sheet alloys for improved combustor durability

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.

    1981-01-01

    Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.

  2. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each service if, during the calendar year, at least 50 percent of the inbound and 50 percent of the outbound gross freight revenues earned on voyages terminated during the calendar year, for each service.... The amount of ODS payable for the inbound leg of a service for the calendar year shall be reduced...

  3. Characterization of ferritic G. M. A. weld deposits in 9% Ni steel for cryogenic applications

    SciTech Connect

    Mahin, K.W.

    1980-04-01

    Low temperature containment vessels of 9% Ni are normally fabricated using the shielded metal arc (S.M.A.W.) or the gas metal arc (G.M.A.W.) welding processes. Available filler metals compatible with these processes are highly alloyed austenitics, whose strength levels undermatch those of the base plate. A more efficient weld joint would be a low alloy ferritic deposit. Although acceptable matching ferritic gas tungsten arc weld (G.T.A.W.) wires have been developed, similar progress has not been made in the area of ferritic G.M.A. weld wires. Most of the prior work in this area has focused on correlating composition with mechanical properties, without a corresponding evaluation of resultant microstructure. The study presented focused on establishing correlations between chemistry, microstructure and mechanical properties for four different ferritic G.M.A. weld deposits in 9% Ni steel, with the purpose of developing a better understanding of the factors controlling the 77K (-196/sup 0/C) toughness behavior of these weld metals. Microstructural characterization was carried out using standard optical and scanning electron microscopes, as well as a variety of advanced analytical techniques, including transmission electron microscopy (T.E.M.), scanning T.E.M., Moessbauer spectroscopy and Auger electron spectroscopy.

  4. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  5. Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials

    NASA Astrophysics Data System (ADS)

    Toualbi, L.; Ratti, M.; André, G.; Onimus, F.; de Carlan, Y.

    2011-10-01

    It is usually accepted that the formation of nano-clusters inside Oxide Dispersion Strengthened (ODS) materials is due to the dissolution of the yttrium oxide during the mechanical alloying and to the precipitation of the nano-oxides during the consolidation process. A study was conducted to follow the dissolution and the re-precipitation of the phases after mechanical alloying and different heat treatments. A Fe-9Cr powder was milled during different milling times with 10 wt.% of yttria and/or titanium in a planetary mill. Using neutron and X-ray diffractions and the Rietveld method, the dissolution and re-precipitation of yttria was investigated. Even with a content of 10 wt.%, the yttria particles disappear during milling to form a structure which can be described as Fe crystallites coexisting with amorphous domains composed of Y and O atoms. After annealing Y and O atoms re-precipitate into the matrix to form yttria crystallites.

  6. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  7. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  8. Ferrite Phase Shifters Using Stress Insensitive Materials

    DTIC Science & Technology

    1993-10-01

    loop property as far as microvave applications of ferrite toroids is concerned. Ideally, the remanent magnetization should equal the saturation ...a second phase that is presumably Mn ferrite or mannetite which both have large values of saturation magnetization (- 5000 gauss) and low field...temperature. In a ferrite device this may result in a loss of saturation and remanent magnetizations vhich may degrade phaser performance. In a unit excited

  9. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.

    PubMed

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-02

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  10. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    PubMed Central

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  11. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    NASA Astrophysics Data System (ADS)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  12. Progress in ferrite phase shifters

    NASA Astrophysics Data System (ADS)

    Boyd, C. R., Jr.

    1983-10-01

    Advances in the technology of reciprocal ferrite phase shifters are outlined. Nonlatching rotary-field phase shifters have been produced with enhanced phase accuracy and modest control power. A significant quantity of dual-mode latching units has been built at 35 GHz, with good results. Both types of phase shifter can be adapted to perform other functions in addition to phase shifting. Examples of phase shifters that perform duplexing and polarization switching functions are given.

  13. Spin canting in ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Marx, J.; Huang, H.; Salih, K. S. M.; Thiel, W. R.; Schünemann, V.

    2016-12-01

    Recently, an easily scalable process for the production of small (3 -7 nm) monodisperse superparamagnetic ferrite nanoparticles MeFe2O4 (Me = Zn, Mn, Co) from iron metal and octanoic acid has been reported (Salih et al., Chem. Mater. 25 1430-1435 2013). Here we present a Mössbauer spectroscopic study of these ferrite nanoparticles in external magnetic fields of up to B = 5 T at liquid helium temperatures. Our analysis shows that all three systems show a comparable inversion degree and the cationic distribution for the tetrahedral A and the octahedral B sites has been determined to (Zn0.19Fe0.81) A [Zn0.81Fe1.19] B O4, (Mn0.15Fe0.85) A [Mn0.85Fe1.15] B O4 and (Co0.27Fe0.73) A [Co0.73Fe1.27] B O4. Spin canting occurs presumably in the B-sites and spin canting angles of 33°, 51° and 59° have been determined for the zinc, the manganese, and the cobalt ferrite nanoparticles.

  14. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  15. Mechanical testing of anisotropy in ODS steel tubes

    NASA Astrophysics Data System (ADS)

    Špirit, Z.; Chocholoušek, M.; Šíma, M.

    2017-02-01

    Anisotropy of fuel claddings made from Fe-9Cr and Fe-14Cr ODS (oxide dispersion-strengthened) steel for Generation IV reactors with coolants based on liquid metals was examined. Basic mechanical tests were performed at temperatures of 30 °C, 500 °C and 625 °C on ODS steel thin-walled tubes. Tensile tests were performed in axial and tangential directions in a vacuum to avoid oxidation of the small specimens. A scanning electron microscope with a small in-situ tensile testing device was used to conduct the tests. The result of this paper describes the basic mechanical properties of thin-walled tubes as ultimate tensile strength, yield strength, tensile modulus, etc. depending on the direction of loading.

  16. Direct frequency comb measurement of OD + CO → DOCO kinetics.

    PubMed

    Bjork, B J; Bui, T Q; Heckl, O H; Changala, P B; Spaun, B; Heu, P; Follman, D; Deutsch, C; Cole, G D; Aspelmeyer, M; Okumura, M; Ye, J

    2016-10-28

    The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  17. Development of improved ATF engineering alloy - Mechanical testing of Phase 2 alloy

    SciTech Connect

    Anderoglu, Osman; Lovato, Manuel L.; Maloy, Stuart Andrew

    2015-06-15

    In this report we present the results on the tensile testing of phase 2 FeCrAl alloys (Mo and Nb added for high temperature strength) developed at Oak Ridge National Laboratory. We also compare FeCrAl with MA956 which is an ODS FeCrAl.

  18. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  19. Control of Particle Size and Morphology of Cobalt-Ferrite Nanoparticles by Salt-Matrix during Annealing

    NASA Astrophysics Data System (ADS)

    Azizi, A.; Sadrnezhaad, S. K.; Mostafavi, M.

    Salt-matrix annealing of mechanically alloyed Co-ferrite nanopowder was used to modify its particle size and morphology. Efficiency improvement due to suppression of sintering and growth resulted in reduction of average particle size from 100nm for salt-less to 40nm for salt-full annealing procedure. Nanosized single-phase cobalt-ferrite particles were observed after 2h annealing at 750°C in the samples milled for 20 hours both with and without NaCl. NaCl:CoFe2O4 ratio of 10:1 resulted in cabbage-like clusters containing particles smaller than 50 nm.

  20. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  1. Annealing effects on the microstructure and coercive field of two ferritic-martensitic Eurofer steels: A comparative study

    NASA Astrophysics Data System (ADS)

    Oliveira, V. B.; Sandim, M. J. R.; Stamopoulos, D.; Renzetti, R. A.; Santos, A. D.; Sandim, H. R. Z.

    2013-04-01

    Reduced-activation ferritic-martensitic steels are promising candidates for structural applications in future nuclear fusion power plants. Oxide dispersion strengthened ODS-Eurofer and Eurofer 97 steels were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 °C to evaluate both their thermal stability and magnetic behavior. The microstructural changes were followed by magnetic measurements, in particular the corresponding variation of the coercive field (Hc), as a function of both annealing and tempering treatments. Results show that Y2O3 nanoparticles strongly affect the mechanical properties of ODS-Eurofer steel but leave their magnetic properties fairly unchanged when compared with Eurofer-97 steel.

  2. Ferrite Solutions for Electromagnetic Shock Lines

    SciTech Connect

    Coleman, Phillip D.; Dudley, Mark; Primm, Paul

    2014-09-01

    The goal of this work is to develop tools and test procedures for identifying ferrites suitable for use in shock line applications. Electromagnetic shocklines have been used to provide fast rising voltage pulses for many applications. In these applications a slow rising pulse is injected into the line where currents drive the ferrites into saturation leading to a fast rising output pulse. A shockline’s unique capabilities could be applied to new detonator configurations. A properly conditioned voltage pulse is critical for fire set applications. A carefully designed shockline could provide a passive solution to generating a fast rising voltage pulse for the fire set. Traditional circuits use ferrites operating in a linear regime. Shock lines push the ferrites well into the nonlinear regime where very few tools and data currently exist. Ferrite material is key to the operation of these shock lines, and tools for identifying suitable ferrites are critical. This report describes an experimental setup to that allows testing of ferrite samples and comparison to models with the goal of identifying optimal ferrites for shockline use.

  3. Subdomain zinc ferrite particles: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Pannaparayil, T.; Komarneni, S.; Marande, R.; Zadarko, M.

    1990-05-01

    Ultrafine and nearly spherical particles of zinc ferrite were synthesized under mild hydrothermal conditions by precipitating from metal nitrates. These particles exhibited antiferromagnetic ordering below 13 K. Mössbauer spectroscopic measurements revealed the subdomain superparamagnetic nature of the particles having a narrow particle size distribution. The hydrothermal ferrite powders were found to sinter to almost theoretical density with little or no intragranular porosity.

  4. Ferrite thin films for microwave applications

    SciTech Connect

    Zaquine, I.; Benazizi, H.; Mage, J.C.

    1988-11-15

    Production of ferrite thin films is the key to integration of microwave ferrite devices (circulators for phased array antennas, for instance). The interesting materials are the usual microwave ferrites: garnets, lithium ferrites, barium hexaferrites. The required thicknesses are a few tens of micrometers, and it will be important to achieve high deposition rates. Different substrates can be used: silicon and alumina both with and without metallization. The films were deposited by rf sputtering from a single target. The as-deposited films are amorphous and therefore require careful annealing in oxygen atmosphere. The sputtered films are a few micrometers thick on 4 in. substrates. The optimum annealing temperature was found by trying to obtain the highest possible magnetization for each ferrite. The precision on the value of magnetization is limited by the precision on the thickness of the film. We obtain magnetization values slightly lower than the target's. The ferromagnetic resonance linewidth was measured on toroids from 5 to 18 GHz.

  5. Synthesis and Characterization of Nickel Zinc Ferrite

    NASA Astrophysics Data System (ADS)

    Kurian, Manju; Nair, Divya S.

    2011-10-01

    Nano crystalline mixed ferrites can be prepared through different methods. In the present work a comparison was made on sol-gel auto combustion method and co-precipitation method by preparing Nickel Zinc Ferrite. The prepared samples were calcined at different temperatures and were characterized by powder XRD, FTIR. X-ray diffraction analysis indicated the formation of ferrite in nanophase. The lattice parameter was found to be in the range 8.31-8.41Ao. This confirms that nano crystalline ferrite samples are in the cubic spinel structure. An average nano crystalline size was estimated from XRD by the Scherrer's equation. FTIR study also confirms the formation of ferrites. Sol-gel auto combustion technique was superior to co-precipitation method for producing single phase nano particles with smaller crystallite size.

  6. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  7. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    SciTech Connect

    Ashdown, B.G.

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  8. Prediction of yield stress in highly irradiated ferritic steels

    NASA Astrophysics Data System (ADS)

    Windsor, Colin G.; Cottrell, Geoff; Kemp, Richard

    2008-03-01

    The design of any fusion power plant requires information on the irradiation hardening of low-activation ferritic/martensitic steels beyond the range of most present measurements. Neural networks have been used by Kemp et al (J. Nucl. Mater. 348 311-28) to model the yield stress of some 1811 irradiated alloys. The same dataset has been used in this study, but has been divided into a training set containing the majority of the dataset with low irradiation levels, and a test set which contains just those alloys which have been irradiated above a given level. For example some 4.5% of the alloys were irradiated above 30 displacements per atom. For this 'prediction' problem it is found that simpler networks with fewer inputs are advantageous. By using target-driven dimensionality reduction, linear combinations of the atomic inputs reduce the test residual below that achievable by adding inputs from single atoms. It is postulated that these combinations represent 'mechanisms' for the prediction of irradiated yield stress.

  9. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  10. TEM microscopical examination of the magnetic domain boundaries in a super duplex austenitic-ferritic stainless steel

    SciTech Connect

    Fourlaris, G.; Gladman, T.; Maylin, M.

    1996-12-31

    It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic-ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite `island` dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material. However, the 2205 type DSS exhibits {open_quotes}marginal{close_quotes} corrosion protection in a marine environment, so that a study has been undertaken to examine whether the beneficial effects exhibited by the 2205 DSS, are also present in a 2507 type super-DSS.

  11. Ferrite Phase Shifters Using Stress Insensitive Materials. Phase 1

    DTIC Science & Technology

    1992-06-11

    PROGRAM OBJECTIVES 1.3 PROGRAM TECHNICAL TASKS (PHASE I) 2.0 BACKGROUND DISCUSSION 2.1 REMANENT STATE FERRITE PHASERS 2.2 REMANENT MAGNETIZATION 2.3... MAGNETIZATION AND MAGNETOSTRICTION 2.1 REMANENT STATE FERRITE PHASERS Microwave ferrite digital phase shifters utilize ferrite toroidal structures and the...The insertion phase length of the structure is dependent on the remanent magnetization of the ferrite (see the hysteresis loop shown in Figure 2-4

  12. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    DTIC Science & Technology

    2014-06-01

    Master’s Thesis 4 . TITLE AND SUBTITLE OXIDE EVOLUTION IN ODS STEEL RESULTING FROM FRICTION STIR WELDING 5. FUNDING NUMBERS 6 . AUTHOR(S...temperatures, from [5]. ........... 6   Figure 4 .  The phase diagram for aluminum and yttrium oxide, from [13]. ......................8  Figure 5...millimeters per minute. FSW Conditions RPM IPM MMPM Heat Index 400 7 175 2.3 300 4 100 3 200 2 50 4 400 4 100 4 300 2 50 6 400 2 50 8 500 1 25

  13. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    SciTech Connect

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry.

  14. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  15. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    SciTech Connect

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.

  16. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGES

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimentalmore » results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  17. Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Hee, Ay Ching; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis; Mehrali, Mohammad; Osman, Noor Azuan Abu

    2012-12-01

    Ferrite is an important ceramic material with magnetic properties that are useful in many types of electronic devices. In this study, structure and magnetic properties of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion were compared. Both ferrites samples demonstrated similar weight loss characteristics in TGA. The magnesium copper zinc ferrite showed a crystalline structure with an average crystallite size of 13.5 nm. However, nickel zinc ferrite showed an amorphous phase. Transmission electron micrographs showed agglomerated nanoparticles with an average crystallite size of 26.6 nm for magnesium copper zinc ferrite and 22.7 nm for nickel zinc ferrite. Magnesium copper zinc ferrite exhibited soft ferromagnetic bahaviour whereas nickel zinc ferrite showed superparamagnetic nature.

  18. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  19. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  20. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  1. Modeling the austenite decomposition into ferrite and bainite

    NASA Astrophysics Data System (ADS)

    Fazeli, Fateh

    2005-12-01

    during the industrial treatments. The thermodynamic boundary conditions for the kinetic model were assessed with respect to paraequilibrium. The potential interaction between the alloying atoms and the moving ferrite-austenite interface, referred to as solute drag effect, was accounted for rigorously in the model. To quantify the solute drag pressure the Purdy-Brechet approach was modified prior to its implementation into the model. (Abstract shortened by UMI.)

  2. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  3. Loss of DNC from ionized 4-hydroxypyridine-OD

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; Khan, Tanya R.; Terlouw, Johan K.

    2007-07-01

    Low energy 4-hydroxypyridine ions (HP-1) decarbonylate but also readily lose hydrogen (iso)cyanide. Surprisingly, this reaction leads to a specific loss of the label from the OD-labelled isotopomer. Our tandem mass spectrometry experiments show that ionized vinylketene, CH2CHCHCO+ (1), is the product ion. This ion is also generated by the decarbonylation of 4-cyclopentene-1,3-dione ions (CP-1) and a computational analysis using the CBS-QB3 model chemistry indicates that these seemingly unrelated ionic systems share similar dissociation mechanisms. In this study, a mechanism is presented for the decarbonylation of metastable ions CP-1 that satisfies the energy requirement dictated by its appearance energy. Our computational analysis further shows that ions HP-1 may isomerize into the (iso)imino analogues of CP-1, by consecutive H-shift, ring-opening and cyclization steps. The CP-1 analogues serve as the immediate precursors for the specific loss of DNC (rather than DCN) from OD-labelled HP-1 and also its decarbonylation into the vinyl(iso)ketenimine ions CH2CHCHNCH+ (3) and CH2CHCHCNH+ (4).

  4. ODS Characterization Progress Report 06/27/08

    SciTech Connect

    El-Dasher, B

    2008-11-25

    This progress report is intended to help keep track of the work that has been performed in characterizing ODS steels for the LIFE project. This specific report details the current status of the characterization of a 24% Cr, 1% Y{sub 2}O{sub 3} ODS steel obtained from Wayne King via Geoff Campbell. Since no pedigree of the material could be obtained, a baseline characterization was necessary prior to studying processing, welding, and corrosion behavior. This document details the results obtained from analysis performed using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS). At the time of writing, transmission electron microscopy (TEM) and microhardness measurements have not been completed, and will be included in a future report. The results are presented in two sections: microstructure, and phase identification. As the names suggest, the first section will report on the microstructure in the general sense and include details such as grain size and texture, and the second section will include the identification of the phases present in the baseline material.

  5. Ferrite thin films for microwave applications

    NASA Astrophysics Data System (ADS)

    Zaquine, I.; Benazizi, H.; Mage, J. C.

    1988-11-01

    This paper describes the preparation and the properties of thin (a few micron-thick) ferrite films for microwave applications. The films were deposited by RF sputtering from a single ferrite target on two different 4-in-thick substrates, silicon and alumina, both bare and metallized. The as-deposited films were amorphous, requiring careful annealing in oxygen atmosphere. The optimum annealing temperature was determined by obtaining the highest possible magnetization for each ferrite. The conditions of microwave measurements are described together with the results.

  6. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    SciTech Connect

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B.

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  7. HRTEM Study of Oxide Nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y2O3 ODS Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Wall, M; Kimura, A

    2009-11-18

    Crystal and interfacial structures of oxide nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles lead us to propose three-stage mechanisms to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels.

  8. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  9. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2013-09-10

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  10. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2017-02-28

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  11. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    NASA Astrophysics Data System (ADS)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  12. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  13. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    NASA Astrophysics Data System (ADS)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  14. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  15. Friction Stir Welding of ODS and RAFM Steels

    SciTech Connect

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  16. Friction Stir Welding of ODS and RAFM Steels

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  17. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGES

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  18. The crystal structure of Sr(OD) 2

    NASA Astrophysics Data System (ADS)

    Partin, D. E.; O'Keeffe, M.

    1995-10-01

    The crystal structure of Sr(OD) 2 has been determined from a Reitveld refinement of time-of-flight neutron diffraction data, and the deuterium atom positions have been determined for the first time. The structure is orthorhombic: Pnma, a = 9.8269(5) Å, b = 3.9051(2) Å, c = 6.0733(3) Å, V = 233.06 Å 3, D x = 3.466 g cm -3, Rwp = 3.93%, Rp = 2.95%, reduced X2 = 4.774 for 81 variables. Although the data were collected at 12 K, the H atoms have large thermal parameters suggesting the possibility of some disorder. Relationships of the structure to the structures of YOOH, SrBr 2, SrI 2, and SrBr 2 · H 2O are discussed.

  19. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  20. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  1. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    SciTech Connect

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  2. Swelling behavior of a simple ferritic alloy. [Fe-10% Cr

    SciTech Connect

    Horton, L.L.; Bentley, J.

    1983-01-01

    The swelling behavior which results from simulated fusion environment irradiation of Fe-10% Cr has been characterized with transmission electron microscopy. Specimens were bombarded at 850 K with: a triple-beam of He/sup +/, D/sup +//sub 2/, and 4 MeV Fe/sup + +/ ions to 0.3, 1, 3, 10, 30, and 100 dpa, a dual-beam of He/sup +/ and 4 MeV Fe/sup + +/ ions to 30 and 100 dpa; and a single-beam of 4 MeV Fe/sup + +/ ions to 30 dpa. The helium and hydrogen injection rates were approx. 10 appm He/dpa and approx. 40 appm D/dpa. Cavities were observed for damage levels of 3 dpa and greater. The swelling was <0.1% for damage levels <30 dpa, but at 100 dpa, there was an increase in the swelling to 2.5% for the triple-beam irradiation and 1.2% for the dual-beam irradiation. The swelling rates between 30 and 100 dpa correlate well with calculated values assuming a steady-state swelling-rate regime has been reached. Calculations show the rapid cavity growth associated with this swelling increase cannot be attributed to equilibrium bubble growth. For all of the bombardments, the cavities with a diameter greater than 10 nm had a truncated octahedral morphology with (111) facets and (100) truncations. Measurements indicate that the surface energy relationship was ..gamma../sub 111/approx. =0.8 ..gamma../sub 100/ for these cavities. At 30 dpa, the cavities in the specimen irradiated with the single-beam technique were larger and had a lower concentration than the specimens irradiated with specimens irradiated with the dual- and triple-ion beams suggests that deuterium has an effect on the damage microstructures in Fe-10% Cr.

  3. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making

    DOEpatents

    Klueh, R.L.; Maziasz, P.J.

    1994-03-08

    This work describes a high strength, high toughness bainitic/ferritic steel alloy comprising about 2.75% to 4.0% chromium, about 2.0% to 3.5% tungsten, about 0.10% to 0.30% vanadium, and about 0.1% to 0.15% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy having been heated to an austenitizing temperature and then cooled at a rate sufficient to produce carbide-free acicular bainite. 15 figures.

  4. The development of ferritic-martensitic steels with reduced long-term activation

    NASA Astrophysics Data System (ADS)

    Ehrlich, K.; Kelzenberg, S.; Röhrig, H.-D.; Schäfer, L.; Schirra, M.

    1994-09-01

    Ferritic-martensitic 9-12% CrMoVNb steels of MANET type possess a number of advantageous properties for fusion reactor application. Their optimization has led to improved creep and fracture-toughness properties. New 9-10% CrWVTa alloys have been developed by KfK/IMF in collaboration with the SAARSTAHL GmbH which have a reduced long-term activation and show in addition superior fracture toughness properties. The calculation of dose rate and other radiological parameters with the presently available FISPACT/EAF codes, extended by KfK files for sequential reactions has shown that the long-term dose-rate in these alloys is governed by the remaining 'impurity level' of Nb and the alloying elements W and Ta. Sequential reactions — though relevant for single alloying elements like Cr, Mn, V and N — provide only a second order effect in Fe-based alloys. A challenge for the future materials development is the production of alloys with the desired narrow specification of elements and impurities, which necessitates new ways of steelmaking.

  5. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  6. The effect of cooling speed on the structure and properties of the heat affected zone in welded compounds of ferrite-austenitic steels

    NASA Astrophysics Data System (ADS)

    Gonik, I. L.; Gurulev, D. N.; Bondareva, O. P.

    2017-02-01

    Such parameters as the maximum heating temperature, duration of stay at high temperatures, the rate of cooling influence greatly the structure and properties of the heat-affected zone of welded joints of steels and alloys. In the present work, the effect of different cooling speed upon the impact of the thermal cycle of welding on the structure, the fine structure and toughness of ferrite-austenitic steels is investigated. It is established that the cooling speed after welding has a great influence on the shock impact toughness, the phase composition and the structure of the zone of ferrite-austenitic steels.

  7. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  8. Radiation hardening and deformation behavior of irradiated ferritic-martensitic steels

    SciTech Connect

    Robertson, J.P.; Klueh, R.L.; Rowcliffe, A.F.; Shiba, K.

    1998-03-01

    Tensile data from several 8--12% Cr alloys irradiated in the High Flux Isotope Reactor (HFIR) to doses up to 34 dpa at temperatures ranging from 90 to 600 C are discussed in this paper. One of the critical questions surrounding the use of ferritic-martensitic steels in a fusion environment concerns the loss of uniform elongation after irradiation at low temperatures. Irradiation and testing at temperatures below 200--300 C results in uniform elongations less than 1% and stress-strain curves in which plastic instability immediately follows yielding, implying dislocation channeling and flow localization. Reductions in area and total elongations, however, remain high.

  9. Atomic scale design and control of cation distribution in hexagonal ferrite.

    PubMed

    Geiler, Anton L; Yang, Aria; Zuo, Xu; Yoon, Soack Dae; Chen, Yajie; Harris, Vincent G; Vittoria, Carmine

    2008-08-08

    Using a novel alternating target laser ablation deposition technique, Mn cations were placed in specific interstitial sites of BaFe12O19 thin films as opposed to being distributed throughout the unit cell as in conventional bulk materials. The distribution of Mn cations has been confirmed experimentally and predicted theoretically. As a result of site selection, the saturation magnetization increased 12%-22%, and the Néel temperature increased by 40-60 K compared to bulk materials. This technique implies a new methodology to design and process a new generation of ferrite, oxide, and alloy materials.

  10. Toughness testing and high-temperature oxidation evaluations of advanced alloys for core internals

    SciTech Connect

    Tan, Lizhen; Pint, Bruce A.; Chen, Xiang

    2016-09-16

    Alloy X-750 was procured from Carpenter Technology and Bodycote in this year. An appropriate TMT was developed on Alloy 439 to obtain materials with refined grain size for property screening tests. Charpy V-notch impact tests were completed for the three ferritic steels Grade 92, Alloy 439, and 14YWT. Fracture toughness tests at elevated temperatures were completed for 14YWT. The tests will be completed for the other alloys in next fiscal year. Steam oxidation tests of the three ferritic steels, 316L, and Zr–2.5Nb have been completed. The steam tests of the Ni-based superalloys and the other austenitic stainless steels will be continued and finished in next fiscal year. Performance ranking in terms of steam oxidation resistance and impact/fracture toughness of the alloys will be deduced.

  11. 46 CFR 280.9 - Special rules for last year of ODS agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) of this section, if on a cumulative basis for each quarter of the calendar year: (1) Less than 50... ODS payable for the preceding calendar year as required by paragraph (b) (3) of § 280.4. (b) Amount..., the amount payable on the ODS voucher for the last month of any quarter of the last calendar year...

  12. Practical handbook of stainless steels and nickel alloys

    SciTech Connect

    Lamb, S.

    1999-07-01

    This new handbook is an up-to-date technical guide to the grades, properties, fabrication characteristics, and applications of stainless steels and nickel alloys. The individual chapters were written by industry experts and focus on the key properties and alloy characteristics important in material selection and specification as well as the practical factors that influence the development and application of these materials. The contents include: alloy grades and their welding and fabrication characteristics and their application; monel metal; iron-based and nickel-based alloys; ferritic, austenitic, superaustenitic, and martensitic stainless steels; hastelloys; alloys 20, G, and 825; AOD and new refining technology; duplex stainless steels; 6-Mo alloys; corrosion-resistant castings; specification cross-reference tables; trade names; hardness conversions; list of common abbreviations.

  13. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  14. Nuclear Applications of Oxide Dispersion Strengthened and Nano-Featured Alloys: An Introduction

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2014-12-01

    The Nuclear Materials Committee of TMS is sponsoring the current topic in JOM, which is dedicated to a newer generation of materials called oxide dispersion strengthened (ODS) alloys and nano-featured alloys (NFA). These newer materials are fabricated by using powder stock materials and processing them through high energy attrition followed by either extrusion or forging. The presence of nano-sized oxides throughout the matrix makes the recrystallized alloy have grains that are smaller than 1 µm diameter. The nano-features in the matrix of ODS or NFA materials make them highly resistant to degradation by irradiation such as void swelling. There are four papers dedicated to ODS and NFA materials, including fabrication, joining and testing.

  15. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch

    NASA Astrophysics Data System (ADS)

    Son, S.; Taheri, M.; Carpenter, E.; Harris, V. G.; McHenry, M. E.

    2002-05-01

    Nanocrystalline (NC) ferrite powders have been synthesized using a 50 kW-3 MHz rf thermal plasma torch for high-frequency soft magnet applications. A mixed powder of Ni and Fe (Ni:Fe=1:2), a NiFe permalloy powder with additional Fe powder (Ni:Fe=1:2), and a NiFe permalloy powder (Ni:Fe=1:1) were used as precursors for synthesis. Airflow into the reactor chamber was the source of oxygen for oxide formation. XRD patterns clearly show that the precursor powders were transformed into NC ferrite particles with an average particle size of 20-30 nm. SEM and TEM studies indicated that NC ferrite particles had well-defined polygonal growth forms with some exhibiting (111) faceting and many with truncated octahedral and truncated cubic shapes. The Ni content in the ferrite particles was observed to increase in going from mixed Ni and Fe to mixed permalloy and iron and finally to only permalloy starting precursor. The plasma-torch synthesized ferrite materials using exclusively the NiFe permalloy precursor had 40%-48% Ni content in the Ni-ferrite particle, differing from the NiFe2O4 ideal stoichiometry. EXAFS was used to probe the cation coordination in low Ni magnetite species. The coercivity and Neel temperature of the high Ni content ferrite sample were 58 Oe and ˜590 °C, respectively.

  16. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D.

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  17. Effects of helium on ductile-brittle transition behavior of reduced-activation ferritic steels after high-concentration helium implantation at high temperature

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.; Ejiri, M.; Nogami, S.; Ishiga, M.; Kasada, R.; Kimura, A.; Abe, K.; Jitsukawa, S.

    2009-04-01

    The effects of He on the fracture behavior of reduced-activation ferritic/martensitic steels, including oxide dispersion-strengthened (ODS) steels and F82H, was determined by characterizing the microstructural evolution in and fracture behavior of these steels after He implantation up to 1000 appm at around 550 °C. He implantation was carried out by a cyclotron with a beam of 50 MeV α-particles. In the case of F82H, the ductile-to-brittle transition temperature (DBTT) increase induced by He implantation was about 70 °C and the grain boundary fracture surface was only observed in the He-implanted area of all the ruptured specimens in brittle manner. By contrast, no DBTT shift or fracture mode change was observed in He-implanted 9Cr-ODS and 14Cr-ODS steels. Microstructural characterization suggested that the difference in the bubble formation behavior of F82H and ODS steels might be attributed to the grain boundary rupture of He-implanted F82H.

  18. Microstructural study of an ODS stainless steel obtained by Hot Uni-axial Pressing

    NASA Astrophysics Data System (ADS)

    Sornin, D.; Grosdidier, T.; Malaplate, J.; Tiba, I.; Bonnaillie, P.; Allain-Bonasso, N.; Nunes, D.

    2013-08-01

    This study focuses on the consolidation of an ODS Fe-14Cr-1W-0.3Ti-0.3Y2O3 alloy obtained by powder metallurgy. The powder was sintered for 1 h at 1100 °C in a soft steel can and compacted by Hot Uni-axial Pressing (HUP) under 900 MPa within less than 5 s before air cooling. The HUPped material microstructure is prospected to determine relative density as well as microstructure and nano-precipitation. The HUP, which mimics the early stage of hot extrusion (HE), produces a fully dense metallurgical state. The HUPped microstructure is shown to be rather similar to the one obtained by HIPping for equivalent dwell time at high temperature. In both cases heterogeneous grain size microstructure was obtained. It is shown that the bigger grains come from static recrystallization occurring during the dwell time in furnace. Compared to HIP, the effect of the HUP is mainly to introduce intra-granular misorientations within these large recrystallized grains. During Hot Unidirectional Pressing the initially loose powder is fully consolidated. The relative density is rather similar to the HE and HIP process. Even with a uni-axial loading the HUPed material is homogeneous and does not presents any gradients of hardness. The obtained microstructure for the HUPed shows a bimodal grain size distribution and precipitates strings at grain boundaries. This material can be compared to HIP of similar composition grades [10]. Large grains are issued from an incomplete static recrystallization. Precipitation of nano-clusters is very similar for HUPed and HE materials. Nanometer scale precipitates are observed both within the large and small grains. One of the effects of the HUP compared to pure heat treatment is that the large grains that recrystallized during the early stages of the heat treatment present significant internal crystallographic misorientations. This is due to the plastic strain generated by the rapid compaction during HUP consolidation process.

  19. [Enantioseparation behavior of chiral stationary phases AD, AS and OD].

    PubMed

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang

    2016-01-01

    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs.

  20. Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing.

    PubMed

    Li, Y J; Choi, P; Goto, S; Borchers, C; Raabe, D; Kirchheim, R

    2013-09-01

    A local electrode atom probe has been employed to analyze the redistribution of alloying elements including Si, Mn, and Cr in pearlitic steel wires upon cold-drawing and subsequent annealing. It has been found that the three elements undergo mechanical mixing upon cold-drawing at large strains, where Mn and Cr exhibit a nearly homogeneous distribution throughout both ferrite and cementite, whereas Si only dissolves slightly in cementite. Annealing at elevated temperatures leads to a reversion of the mechanical alloying. Si atoms mainly segregate at well-defined ferrite (sub)grain boundaries formed during annealing. Cr and Mn are strongly concentrated in cementite adjacent to the ferrite/cementite interface due to their lower diffusivities in cementite than in ferrite.

  1. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  2. Dual-mode latching ferrite devices

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Jiang, Z.

    1986-05-01

    A primary consideration with microwave ferrite control devices is related to the switching speed. In order to achieve fast switching with the considered devices, an operation in the latching mode is required. A description is given of a new class of ferrite latching devices, taking into account latching quadrupole devices and their modifications. It is pointed out that the advantages of the new devices include fast switching, high electrical performance, and simple construction. According to the utilization of external or internal magnetic return paths, there are two modes of operation in latching ferrite devices. Attention is given to constructions and calculations, the design of a model for each of the two modes of operation, polarization insensitive phase shifters (PIPS) with external magnetic return paths, and PIPS with internal magnetic return paths.

  3. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    SciTech Connect

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  4. Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Yoo, Y. R.; Jang, S. G.; Nam, H. S.; Shim, G. T.; Cho, H. H.; Kim, J. G.; Kim, Y. S.

    2008-12-01

    Bio-metals require high corrosion resistance, because their biocompatibility is closely related to this parameter. Bio-metals release metal ions into the human body, leading to deleterious effects. Allergies, dermatitis, and asthma are the predominant systemic effects resulting in the human body. In particular, Ni is one of the most common causes of allergic contact dermatitis. In the present work, we designed new ferritic stainless steels wherein Ni is replaced with Co under consideration of allergic respondes and microstructural stability. This work focuses on the effect of Co content on the biocompatibility and corrosion resistance of high PRE super ferritic stainless steels in bio-solution and acidic chloride solution. In the case of the acidic chloride solution, with increasing Co content in the ferritic stainless steels, passive current density increased and critical pitting temperature (CPT) decreased. Also, in the passive state, AC impedance and repassivation rate were reduced. These results are attributed to the thermodynamic stability of cobalt ions, as indicated in the EpH diagram for a Co-H2O system. However, in the case of bio-solutions, with increasing Co content of the alloys, the passive current density decreased. AC impedance and repassivation rate meanwhile increased in the passive state. This is due to the increased ratios of Cr2O3/Cr(OH)3 and [Metal Oxide]/Metal + Metal Oxide] of the passive film formed in bio-solution.

  5. Solute Segregation During Ferrite Growth: Solute/Interphase and Substitutional/Interstitial Interactions

    NASA Astrophysics Data System (ADS)

    Van Landeghem, H. P.; Langelier, B.; Panahi, D.; Purdy, G. R.; Hutchinson, C. R.; Botton, G. A.; Zurob, H. S.

    2016-05-01

    The segregation of solutes to austenite/ferrite transformation interfaces during decarburization/denitriding of Fe-Mn-C, Fe-Mn-N, and Fe-Si-C ternary alloys was studied by using atom probe tomography. Manganese was found to segregate noticeably to the transformation interface in the presence of carbon, while no segregation could be detected in the presence of nitrogen. This result might indicate that manganese interacts little with the interface itself and that its interaction with the interstitial controls its segregation behavior. In the case of Fe-Si-C, the experiments were complicated by interface motion during quenching. Preliminary results suggest that silicon was depleted at the interface in contrast to the commonly observed segregation behavior of silicon at grain boundaries of ferrite and austenite. This observation could be explained by taking into account the repulsive interaction between silicon and carbon along with the intense segregation of carbon to the interface. This would lead to a net repulsive interaction of silicon with the interface even when considering the intrinsic tendency of silicon to segregate to the boundary in the absence of carbon. The results presented here emphasize the need to account for the interaction of all solutes present at the interface in ferrite growth models.

  6. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE PAGES

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019more » n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  7. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    SciTech Connect

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  8. Status of ferrite technology for high volume microwave applications

    SciTech Connect

    Webb, D.C.

    1995-08-01

    With the emergence of high volume commercial and military applications, there is a growing need to reduce the size and cost of microwave ferrite components, especially ferrite circulators, to be more compatible with monolithic integrated circuits. The Ferrite Development Consortium, consisting of leading US ferrite government, university and industrial institutions, was formed under Advanced Research Project Agency (ARPA) sponsorship to address these needs. Areas of Consortium technical activity include bulk and thick-film techniques for batch processing of ferrite devices, improved computer-aided-design tools and protype demonstrations. This paper will review the Consortium`s materials development needs and progress.

  9. Characterization of (Mg, La) Substituted Ni-Zn Spinel Ferrite

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wei, S. C.; Wang, Y. J.; Tian, H. L.; Tong, H.; Xu, B. S.

    Spinel structure of (Mg, La) substituted spinel Ni-Zn ferrite has been synthesized by sol-gel auto combustion method. The ferrite exhibits a single-spinel structure. The ferrite is studied as a microwave absorbing material. The microwave measurements are carried out by a vector network analyzer. The reflection loss of the ferrite is calculated as a single-layer absorber. The results indicate that the ferrite annealed at 850°C has great potential for application in electromagnetic wave attenuation.

  10. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  11. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  12. Implantable ferrite antenna for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fazeli, Maxwell L.

    We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.

  13. Transmission through Ferrite Samples at Submillimeter Frequencies

    DTIC Science & Technology

    1986-05-01

    K w+ i YAH YH P+ i , with "a - - B _ iB y = + iH) and / Bx = Hx + iKHy By = y iKHx where 4nM = the saturation magnetization , Y = the gyromagnetic...nac..ry ma Idertify by block number) A theoretical analysis is presented of 1he transmission spectra of thin magnetized ferrite slabs The energy range...chosen was 1 < V < 120 cm 1 (30 GHz < f < 3600 GHz) The magnetic field was assumed to lie in the plane of the ferrite slab, and the incident

  14. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  15. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  16. CORROSION OF HIGH-TEMPERATURE ALLOYS

    SciTech Connect

    John P. Hurley; John P. Kay

    1999-10-01

    Five alloys were tested in the presence of water vapor and water vapor with HCl for 1000 hours using simulated combustion gas. Samples were removed at intervals during each test and measured for determination of corrosion rates. One sample of each alloy was examined with a SEM after the completion of each test. Cumulative corrosion depths were similar for the superstainless alloys. Corrosion for Alloy TP310 roughly doubled. Corrosion for the enhanced stainless alloys changed dramatically with the addition of chlorine. Corrosion for Alloy RA85H increased threefold, whereas Alloy TP347HFG showed an eightfold increase. SEM examination of the alloys revealed that water vapor alone allowed the formation of chromium oxide protective layers on the superstainless alloys. The enhanced stainless alloys underwent more corrosion due to greater attack of sulfur. Iron-rich oxide layers were more likely to form, which do not provide protection from further corrosion. The addition of chlorine further increased the corrosion because of its ability to diffuse through the oxide layers and react with iron. This resulted in a broken, discontinuous, and loose oxide layer that offered less protection. Niobium, although added to aid in creep strength, was found to be detrimental to corrosion resistance. The niobium tended to be concentrated in nodules and was easily attacked through sulfidation, providing conduits for further corrosion deep into the alloy. The alloys that displayed the best corrosion resistance were those which could produce chromium oxide protective layers. The predicted microstructure of all alloys except Alloy HR3C is the same and provided no further information relating to corrosion resistance. No correlation can be found relating corrosion resistance to the quantity of minor austenite-or ferrite-stabilizing elements. Also, there does not appear to be a correlation between corrosion resistance and the Cr:Ni ratio of the alloy. These alloys were tested for their

  17. Summary of Prior Work on Joining of Oxide Dispersion-Strengthened Alloys

    SciTech Connect

    Wright, Ian G; Tatlock, Gordon J; Badairy, H.; Chen, C-L.

    2009-08-01

    There is a range of joining techniques available for use with ODS alloys, but care should be exercised in matching the technique to the final duty requirements of the joint. The goal for joining ODS alloys is a joint with no local disruption of the distribution of the oxide dispersion, and no significant change in the size and orientation of the alloy microstructure. Not surprisingly, the fusion welding processes typically employed with wrought alloys produce the least satisfactory results with ODS alloys, but some versions, such as fusion spot welding, and the laser and electron-beam welding technologies, have demonstrated potential for producing sound joints. Welds made using solid-state spot welding reportedly have exhibited parent metal properties. Thus, it is possible to employ processes that result in significant disruption of the alloy microstructure, as long as the processing parameters are adjustment to minimize the extent of or influence of the changes in the alloy microstructure. Selection among these joining approaches largely depends on the particular application and component configuration, and an understanding of the relationships among processing, alloy microstructure, and final properties is key. Recent developments have resulted in friction welding evolving to be a prime method for joining ODS sheet products, and variants of brazing/diffusion bonding have shown excellent promise for use with tubes and pipes. The techniques that come closest to the goal defined above involve solid-state diffusion bonding and, in particular, it has been found that secondary recrystallization of joints made by pulsed plasma-assisted diffusion can produce the desired, continuous, large alloy grain structure through the joint. Such joints have exhibited creep rupture failure at >82% of the load needed to fail the monolithic parent alloy at 1000 C.

  18. Characterization and Modeling of Grain Boundary Chemistry Evolution in Ferritic Steels under Irradiation

    SciTech Connect

    Marquis, Emmanuelle; Wirth, Brian; Was, Gary

    2016-03-28

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering, and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and

  19. Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Use in Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-01

    The mechanical and thermo-physical properties of Mechanically Alloyed (MA)-Oxide Dispersion Strengthened (ODS) steels are reviewed and their potential for use in space nuclear reactor power systems is examined. The three MA-ODS alloys examined are Inconel MA-ODS754 (77.55Ni, 20Cr, 1Fe, 0.5Ti, 0.3Al, 0.05C, and 0.6Y2O3), Incoloy MA-ODS956 (74.45Fe, 20Cr, 4.5Al, 0.5Ti, 0.05C, 0.5Y2O3), and Incoloy MA-ODS957 (84.55Fe, 14Cr, 0.3Mo, 0.9Ti, 0.25Y2O3). The major advantages of these alloys are: (a) their strength at high temperatures (>1000 K) is relatively higher and decreases slower with temperature than niobium (Nb) and molybdenum (Mo) refractory alloys; (b) they are relatively lightweight and less expensive; (c) they have been shown to experience low swelling and embrittlement with exposure to high-energy neutrons (> 0.1 MeV) up to a fluence of 1023 n/cm2; and (d) their high resistance to oxidation and nitration at high temperatures, which simplifies handling and assembly. These MS-ODS alloys are also lighter and much stronger than 316-stainless steel and super-alloys such as Inconel 601, Haynes 25, and Hastalloy-X at moderately high temperatures (688-1000 K). The little data available on the compatibility of the MA-ODS alloys with alkali liquid metals up to 1100 K are encouraging, however, additional tests at typical operation temperatures (1000-1400 K) in liquid metal cooled and alkali metal heat pipe-cooled space nuclear reactors are needed. The anisotropy of the MA-ODS alloys when cold worked, and in particularly when rolled into tubes, should not hinder their use in space nuclear power systems, in which the operation pressure is either near atmospheric or as high as 2 MPa.

  20. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  1. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  2. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  3. A study of the magnetic properties of cobalt ferrite-coated zinc ferrite particles

    NASA Astrophysics Data System (ADS)

    Tang, Huan; Du, You-wei; Qiu, Zi-qiang; Walker, J. C.

    1987-04-01

    Nearly spherical Zn0.2Fe2.8O4 particles coated with an epitaxial layer of CoFe2O4 ferrites of various thicknesses were studied with Mössbauer spectroscopy. Measurements reveal that the magnetic structures of these particles are different at room temperature and liquid nitrogen or liquid helium temperatures, indicating the existence of a Verwey transition, which occurs between 77 and 119 K. Coating of Co-ferrite has no sizable effect on the transition.

  4. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    NASA Astrophysics Data System (ADS)

    Batra, T.; Schaltz, E.; Ahn, S.

    2015-05-01

    Power transfer capability of wireless power transfer systems is highly dependent on the magnetic design of the primary and secondary inductors and is measured quantitatively by the coupling factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling factor and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance, and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending on the placement of ferrite. Also, the addition of ferrite increases the self-inductance of the coils, and there is a probability for an overall decrease in the coupling factor. Correct placement of ferrite, on the other hand, can increase the coupling factor relatively higher than the base ferrite as it is closer to the other inductor. Ferrite being a heavy compound of iron increases the inductor weight significantly and needs to be added judiciously. Four zones have been identified in the paper, which shows different sensitivity to addition of ferrite in terms of the two inductances and coupling factor. Simulation and measurement results are presented for different air gaps between the coils and at different gap distances between the ferrite base and added ferrite. This paper is beneficial in improving the coupling factor while adding minimum weight to wireless power transfer system.

  5. Temperature stabilization of microwave ferrite devices

    NASA Technical Reports Server (NTRS)

    Kaminsky, R.; Wendt, E. J.

    1978-01-01

    Thin-film heating element for strip-line circulator is sandwiched between insulation and copper laminations. Disks conform to shape of circulator ferrite disks and are installed between copper-clad epoxy ground planes. Heater design eliminates external cartridges and reduces weight by approximately one-third.

  6. Adding calcium improves lithium ferrite core

    NASA Technical Reports Server (NTRS)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  7. Rectangular microstrip antenna on a ferrite substrate

    NASA Astrophysics Data System (ADS)

    Das, S.; Chowdhury, S. K.

    1982-05-01

    The bandwidth and radiation characteristics of a simple quarter wave microstrip antenna on a typical ferrite substrate are measured and compared with the theoretical results in the lower range of ultrahigh frequency (UHF). A method has also been discussed for impedance matching of the antenna to the feed line.

  8. Properties of ferrites at low temperatures (invited)

    SciTech Connect

    Dionne, G.F.

    1997-04-01

    At cryogenic temperatures magnetic properties of ferrites change significantly from their values at room temperature, which has been the main regime for most device applications. Recently, microwave ferrite devices with superconducting microstrip circuits have been demonstrated at a temperature of 77 K with virtually no electrical conduction losses. Conventional ferrimagnetic garnet and spinel compositions, however, are not generally optimized for low temperatures and may require chemical redesign if the full potential of these devices is to be realized. Saturation magnetizations increase according to the Brillouin{endash}Weiss function dependence that is characteristic of all ferromagnetic materials. Increased magnetocrystalline anisotropy and magnetostriction can have large effects on hysteresis loop squareness and coercive fields that are essential for stable phase shift and efficient switching. Rare-earth impurities and other ions with short spin-lattice relaxation times can cause increased microwave losses. In this article, the basic magnetochemistry pertaining to ferrites will be examined for adaptation of ferrite technology to cryogenic environments. {copyright} {ital 1997 American Institute of Physics.}

  9. Contact material for pressure-sintering ferrites

    NASA Technical Reports Server (NTRS)

    Wentworth, C.

    1970-01-01

    Pressure-sintering, in which the unfired laminated ferrite plane is placed between two flat punches and pressed during firing, reduces lateral firing shrinkage to less than one percent. A decrease in thickness of the laminate produces the required volume shrinkage. Phlogopite is the most suitable contact material investigated.

  10. Corrosion and toughness of experimental and commercial super ferritic stainless steels

    SciTech Connect

    Dowling, N.J.E.; Kim, H.; Kim, J.N.; Ahn, S.K.; Lee, Y.D.

    1999-08-01

    The effect of minor alloying in a super ferritic stainless steel 26% Cr-3% Mo matrix was investigated. The corrosion resistance of several experimental heats was examined in terms of their sensitization and intergranular corrosion (IGA) susceptibility following a low-temperature anneal (620 C). Constant potential etching, electrochemical (electropotentiokinetic reactivation [EPR]), and immersion (modified Strauss test) studies showed that the principal corrosion initiation site of heat-treated steels was intergranular even at low [C + N] (< 130 ppm) and relatively high [Nb + Tl] concentrations. Despite the significant contribution of Nb and Ti to the IGA resistance, these elements had a deleterious effect on the notch toughness. Charpy V testing demonstrated increases in the upper shelf energy and ductile-to-brittle transition temperature (DBTT), the latter shifting from {approx} {minus}50 C in the absence of stabilizing elements to > 25 C for the stabilizing ratio [(Nb + Ti)/(C + N)] > 9. Corrosion resistance of the experimental heats was compared with that of several commercial alloys with intermediate stabilization ratios. The interaction of toughness and corrosion resistance in ferritic stainless steel was discussed with respect to the lack of consistency between published evaluation methods and the ideal stabilization ratio at low [C + N] values.

  11. Variation in Mechanical Properties and Heterogeneity in Microstructure of High-Strength Ferritic Steel During Mill Trial

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Barat, K.; Das, S. K.; Ravi Kumar, B.; Pramanick, A. K.; Chakraborty, J.; Das, G.; Hadas, S.; Bharathy, S.; Ray, S. K.

    2014-06-01

    HS600 and HS800 are two new generation, high-strength advanced ferritic steels that find widespread application in automobiles. During commercial production of the same grades with different thicknesses, it has been found that mechanical properties like tensile strength and stretchability varied widely and became inconsistent. In the current endeavor, two different thicknesses have been chosen from a mill trial sample of HS600 and HS800. An in-depth structural characterization was carried out for all four alloys to explain the variation in their respective mechanical and shear punch properties. The carbon content was smaller and Ti + Mo quantity was higher in case of HS800 with respect to HS600. The microstructure of both steels consisted of the dispersion of (Ti,Mo)C in a ferrite matrix. The grain size of HS800 was little larger than HS600 due to an increased coiling temperature (CT) of the former in comparison to the latter. It was found that in case of same grade of steel with a different thickness, a variation in microstructure occurred due to change in strain, CT, and cooling rate. The strength and stretch formability of these two alloys were predominantly governed by a microalloyed carbide. In this respect, carbides with a size range above 5 nm were responsible for loosing coherency with ferrite matrix. In case of HS600, both ≤5 and >5-nm size (Ti,Mo)C precipitates shared a nearly equal fraction of microalloyed precipitates. However, for HS800, >5-nm size (Ti,Mo)C carbide was substantially higher than ≤5-nm size alloy carbides. The ultimate tensile strength and yield strength of HS800 was superior to that of HS600 owing to a higher quantity of microalloyed carbide with a decreased column width and interparticle distance. A higher degree of in-coherency of HS800 made the alloy prone to crack formation with low stretchability.

  12. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  13. Pore Formation Upon Nitriding Iron and Iron-Based Alloys: The Role of Alloying Elements and Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Schwarz, B.; Göhring, H.; Meka, S. R.; Schacherl, R. E.; Mittemeijer, E. J.

    2014-12-01

    Pure iron and a series of iron-based Fe-Me alloys (with Me = Al, Si, Cr, Co, Ni, and Ge) were nitrided in a NH3/H2 gas mixture at 923 K (650 °C). Different nitriding potentials were applied to investigate the development of pores under ferrite and austenite stabilizing conditions. In all cases, pores developed in the nitrided microstructure, i.e., also and strikingly pure ferritic iron exhibited pore development. The pore development is shown to be caused by the decomposition of (homogeneous) nitrogen-rich Fe(-Me)-N phase into nitrogen-depleted Fe(-Me)-N phase and molecular N2 gas. The latter, gas phase can be associated with such high pressure that the surrounding iron-based matrix can yield. Thermodynamic assessments indicate that continued decomposition, i.e., beyond the state where yielding is initiated, is possible. Precipitating alloying-element nitrides, i.e., AlN, CrN, or Si3N4, in the diffusion zone below the surface, hinder the formation of pores due to the competition of alloying-element nitride (Me x N y ) precipitation and pore (N2) development; alloying elements reducing the solubility of nitrogen enhance pore formation. No pore formation was observed upon nitriding a single crystalline pure iron specimen, nitrided under ferrite stabilizing conditions, thereby exhibiting the essential function of grain boundaries for nucleation of pores.

  14. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  15. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    PubMed

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Investigations of low-temperature neutron embrittlement of ferritic steels

    SciTech Connect

    Farrell, K.; Mahmood, S.T.; Stoller, R.E.; Mansur, L.K.

    1992-12-31

    Investigations were made into reasons for accelerated embrittlement of surveillance specimens of ferritic steels irradiated at 50C at the High Flux Isotope Reactor (HFIR) pressure vessel. Major suspects for the precocious embrittlement were a highly thermalized neutron spectrum,a low displacement rate, and the impurities boron and copper. None of these were found guilty. A dosimetry measurement shows that the spectrum at a major surveillance site is not thermalized. A new model of matrix hardening due to point defect clusters indicates little effect of displacement rate at low irradiation temperature. Boron levels are measured at 1 wt ppM or less, inadequate for embrittlement. Copper at 0.3 wt % and nickel at 0.7 wt % are shown to promote radiation strengthening in iron binary alloys irradiated at 50 to 60C, but no dependence on copper and nickel was found in steels with 0.05 to 0.22% Cu and 0.07 to 3.3% Ni. It is argued that copper impurity is not responsible for the accelerated embrittlement of the HFIR surveillance specimens. The dosimetry experiment has revealed the possibility that the fast fluence for the surveillance specimens may be underestimated because the stainless steel monitors in the surveillance packages do not record an unexpected component of neutrons in the spectrum at energies just below their measurement thresholds of 2 to 3 MeV.

  17. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.

    2016-03-01

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  18. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    PubMed

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  19. Commissioning and initial experimental program of the BGO-OD experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Alef, S.; Bauer, P.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Böse, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Görtz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Knaust, J.; Kohl, K.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.

    2016-11-01

    BGO-OD is a new meson photoproduction experiment at the ELSA facility of Bonn University. It aims at the investigation of non strange and strange baryon excitations, and is especially designed to be able to detect weekly bound meson-baryon type structures. The setup for the BGO-OD experiment is presented, the characteristics of the photon beam and the detector performances are shown and the initial experimental program is discussed.

  20. Preparation of pure iron/Ni-Zn ferrite high strength soft magnetic composite by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Zan, Zhao; Deng, Na; Zhao, Zhankui

    2014-06-01

    A dense microcellular structure is fabricated using micron-sized pure iron powder cladded with 10 wt% Zn0.5Ni0.5Fe2O4 nanopowder by filling the pure iron with Ni-Zn-ferrites composite and subjecting the mixture to a temperature of 600 °C. The SEM image shows that the thickness of cell wall is in the range of 1.0-2.0 μm, and the inner dimension of the alloy is in the range of 15-40 μm. By coating Ni-Zn-ferrites, the electrical resistivity is increased. The composite exhibits not only good soft magnetic properties but also good mechanical strength.

  1. odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers.

    PubMed

    Silva, Fernando; Urbano, Paulo; Correia, Luís; Christensen, Anders Lyhne

    2015-01-01

    Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-(μ + 1), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-(μ + 1), odNEAT's evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance.

  2. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  3. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect

    Jablonski, Paul D.; Cowen, Christopher J.; Sears, John S.

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. Finally, however, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  4. Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-08-01

    High-temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and coefficient of thermal expansion (CTE) compatibility with other components for most of the solid oxide fuel cells (SOFCs) . However, creep deformation becomes relevant for a material when the operating temperature exceeds or even is less than half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the SOFCs under development are around 1,073 K. With around 1,800 K of the melting temperature for most stainless steel, possible creep deformation of ferritic IC under the typical cell operating temperature should not be neglected. In this paper, the effects of IC creep behavior on stack geometry change and the stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the changes in fuel- and air-channel geometry due to creep of the ferritic stainless steel IC, therefore indicating possible changes in SOFC performance under long-term operations. The ferritic IC creep model was incorporated into software SOFC-MP and Mentat-FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long-term steady-state operating temperature. It was found that the creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel- and the air-flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  5. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  6. A review of some effects of helium on charpy impact properties of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.; Hankin, G. L.; Hamilton, M. L.

    1998-10-01

    To evaluate the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of earlier tests performed by other researchers on specimens irradiated in reactors with very different neutron spectra, and evaluation of isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400°C to 100 dpa and 1000 appm He will result in a ductile-to-brittle transition temperature (DBTT) shift of over 500°C. However, it can be shown that the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in High Flux Isotope Reactor (HFIR). The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  7. High-strength, creep-resistant molybdenum alloy and process for producing the same

    SciTech Connect

    Bianco, Robert; Buckman, Jr. William R.; Geller, Clint B.

    1997-12-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume ({approximately}1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum.

  8. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  9. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  10. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  11. Non-Linear Dielectrics and Ferrites in ICEPIC

    DTIC Science & Technology

    2012-04-10

    Technical Paper 3. DATES COVERED (From - To) 2010-2011 4. TITLE AND SUBTITLE Non-linear Dielectrics and Ferrites in ICEPIC 5a. CONTRACT...Electromagnetics Government Purpose Rights 14. ABSTRACT Models for non-linear dielectrics and magnetic ferrites are developed and coded into the particle...be longer than an FDTD time step. The ferrite model accounts for the non-linearity of the Landau-Lifshitz-Gibert equation, and the magnetization

  12. Advanced Microwave Ferrite Research (AMFeR): Phase Four

    DTIC Science & Technology

    2009-10-15

    COVERED (From - To) 28 Dec 2006 - 30 Sep 2009 4. TITLE AND SUBTITLE Advanced Microwave Ferrite Research (AMFeR): Phase Four 5a. CONTRACT NUMBER 5b...research endeavor is to devise ferrite materials for microwave , self-biased circulator applications. To this end, the research team focused on two key...Std Z39-18 Final Report Advanced Microwave Ferrite Research (AMFeR): Phase Four Dr. Jeffrey L. Young MRC Institute/Electrical and Computer

  13. Electric Field Tunable Microwave and MM-wave Ferrite Devices

    DTIC Science & Technology

    2010-04-30

    Electric Field Tunable Microwave and MM-wave Ferrite Devices (N00014-06-01-0167) Period of Performance: May 1, 2006-April 30, 2010 Principal...modes as a function of E. The coupling was strong and ranged from 1 to 30 MHz/(kV/cm). Ferrite - ferroelectric composites were used in microwave and...2005, focused on ME effects at microwave and millimeter wave frequencies in ferrite -ferroelectric composites. Studies were performed on basic

  14. Epitaxial Hexagonal Ferrites for Millimeter Wave Tunable Filters.

    DTIC Science & Technology

    1982-12-13

    anisotropy fields which, in effect, provide built-in biasing. The result is that ferrite components, similar to those used in microwave systems, can operate... method for growing hexagonal ferrites in the form of single crystal layers on non-magnetic, trAnsparmat subsrates - . The LPE method circumvents... method , single crystal hexagonal ferrites which are superior in quality to those grown by conventional methods . In order to have a more specific goal

  15. Distributed Ferrite Isolation in Traveling-Wave Tubes.

    DTIC Science & Technology

    coupling to broadband edge modes of ferrite slabs. Evidence of coupling to the lower branch of edge mode, i.e., magnetostatic, has been obtained with...L-band helix . Cold tests and analysis suggest coupling to ferrite edge modes from helix is easier at higher microwave frequencies. Plans for a hot...test at the 1-2 kW power level is an L-band TWT incorporating such distributed ferrites are described.

  16. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  17. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  18. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  19. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    NASA Astrophysics Data System (ADS)

    Palaimiene, E.; Macutkevic, J.; Karpinsky, D. V.; Kholkin, A. L.; Banys, J.

    2015-01-01

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20-800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  20. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  1. Ferrite microwave electronics Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  2. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Lopez, Thomas; Laur, Jean-Pierre; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Brunet, Magali

    2013-12-01

    Ferrite-based micro-inductors are proposed for hybrid integration on silicon for low-power medium frequency DC-DC converters. Due to their small coercive field and their high resistivity, soft ferrites are good candidates for a magnetic core working at moderate frequencies in the range of 5-10 MHz. We have studied several soft ferrites including commercial ferrite film and U70 and U200 homemade ferrites. The inductors are fabricated at wafer level using micromachining and assembling techniques. The proposed process is based on a sintered ferrite core placed in between thick electroplated copper windings. The low profile ferrite cores of 1.2 × 2.6 × 0.2 mm3 are produced by two methods from green tape-casted films and ferrite powder. This paper presents the magnetic characterization of the sintered ferrite films cut and printed in rectangular shape and sintered at different temperatures. The comparison is made in order to find out the best material for the core that can reach the required inductance (470 nH at 6 MHz) under 0.6A current DC bias and that generate the smallest losses. An inductance density of 285 nH/ mm2 up to 6 MHz was obtained for ESL 40011 cores that is much higher than the previously reported devices. The small size of our devices is also a prominent point.

  3. Tunable polarity of the Casimir force based on saturated ferrites

    SciTech Connect

    Zeng Ran; Yang Yaping

    2011-01-15

    We study the polarity of the Casimir force between two different parallel slabs separated by vacuum when the saturated ferrite materials under the influence of an external magnetic field are taken into consideration. Between the ordinary dielectric slab and the ferrite slab, repulsive Casimir force may be observed by adjusting the applied magnetic field. For the ferrite material, we consider the frequency dependence of the permeability modified by the external magnetic field to analyze the formation of the repulsive Casimir force. The restoring force, which means the transition of the force polarity from repulsion to attraction with the increasing slab separation, can also be obtained between two different ferrite slabs.

  4. Magnetoacoustic resonance in ferrite-ferroelectric nanopillars

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Zibtsev, V. V.; Srinivasan, G.

    2009-10-01

    This work is concerned with the nature of ferromagnetic resonance (FMR) under the influence of acoustic oscillations with the same frequency as FMR. Here we provide the theoretical model for ME coupling at FMR in the nanopillars of ferrite in a piezoelectric matrix. Our calculations show that magnification of ME coefficient is obtained at the magnetoacoustic resonance (MAR) region where FMR and acoustic oscillations at electromechanical resonance (EMR) overlap. The clamping effect of the substrate for nanopillars is considered in determining the ME voltage coefficient. In addition, nanostructures based on single crystal ferrites take on special significance as magnetic resonance line width of such materials may be narrow enough to enable the observation of effects connected with magnetoelastic interaction. As an example, ME coefficient is estimated for the nanopillars of yttrium iron garnet in lead zirconate titanate matrix. The phenomenon is of importance for the realization of multifunctional ME nanosensors/transducers operating at microwave frequencies.

  5. Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Wang, Chong M.; Nie, Zimin; Templeton, Joshua D.; Singh, Prabhakar; Stevenson, Jeffry W.

    2008-05-30

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare and spinel coated AISI 441 were studied in terms of metallurgical characteristics, oxidation behavior, and electrical performance. The conventional melt metallurgy used for the bulk alloy fabrication leads to significant processing cost reduction and the alloy chemistry with the presence of minor alloying additions of Nb and Ti facilitate the strengthening by precipitation and formation of Laves phase both inside grains and along grain boundaries during exposure in the intermediate SOFC operating temperature range. The Laves phase formed along the grain boundaries also ties up Si and prevents the formation of an insulating silica layer at the scale/metal interface during prolonged exposure. The substantial increase in ASR during long term oxidation due to oxide scale growth suggested the need for a conductive protection layer, which could also minimize Cr evaporation. In particular, Mn1.5Co1.5O4 based surface coatings on planar coupons drastically improved the electrical performance of the 441, yielding stable ASR values at 800ºC for over 5,000 hours. Ce-modified spinel coatings retained the advantages of the unmodified spinel coatings, and also appeared to alter the scale growth behavior beneath the coating, leading to a more adherent scale. The spinel protection layers appeared also to improve the surface stability of 441 against the anomalous oxidation that has been observed for ferritic stainless steels exposed to dual atmosphere conditions similar to SOFC interconnect environments. Hence, it is anticipated that, compared to unmodified spinel coatings, the Ce-modified coatings may lead to superior structural stability and electrical performance.

  6. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    SciTech Connect

    Grossbeck, M.L.; Gibson, L.T.; Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  7. Hexagonal Ferrites for Millimeter Wave Applications

    DTIC Science & Technology

    1993-01-07

    single crystal platelets, single crystal spheres of Ba- and Sr- hexaferrite materials, and permalloy thin films. Three papers on these results have been...effective linewidth in planar Zn-Y hexagonal ferrite single crystal platelets, single crystal spheres of Ba- and Sr- hexaferrite materials, and...basic thesis of the original proposal - that the measured linewidth in single crystal hexaferrites (1) may contain significant contributions related to

  8. In-situ Fracture Studies and Modeling of the Toughening Mechanism Present in Wrought LCAC, TZM, and ODS Molybdenum Flat Products

    SciTech Connect

    Cockerman, B. V. and Chan, K. S.

    2007-07-01

    In-situ testing, ultrasonic C-scans, and metallography were used to show that a crack-divider delamination form of thin-sheet toughening occurs in wrought Low Carbon Arc Cast (LCAC) unalloyed molybdenum, Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum at temperatures {ge} the Ductile to Brittle Transition Temperature (DBTT). Cracking along boundaries relieves mechanical constraint to free ligaments that may plastically stretch to produce toughening. Anisotropy in fracture toughness with lower values in the short-transverse direction is shown to produce the crack divider delaminations at the crack tip in the LT and TL orientations. The delamination zone increases with increasing stress-intensity to sizes significantly larger than the plastic zone, which leads to large increases in fracture toughness by the thin sheet toughening mechanism. Fracture in ODS Mo-alloys proceeds mainly along grain boundaries to produce small ligaments that exhibit ductility for both LT and TL orientations resulting in a lower DBTT and higher toughness values at lower temperatures than observed in LCAC and TZM. A combination of grain boundary fracture and cleavage is prevalent in LCAC molybdenum and TZM. The predominance for microcracking along grain boundaries to leave fine, ductile ligaments in ODS molybdenum can be attributed to a fine-grained microstructure with {approx} 1-2 {micro}m thickness of sheet-like grains. The presence of mixed grain boundary fracture and cleavage in LCAC and TZM can be attributed to a microstructure with a larger thickness of sheet-like grains (4-15 {micro}m).

  9. Nonswelling behavior of HT9 alloy irradiated to high exposure

    SciTech Connect

    Pitner, A.L.; Hecht, S.L.; Trenchard, R.G.

    1993-10-01

    In-reactor monitoring of assembly axial growths in the Fast Flux Test Facility (FFTF) has shown the ferritic/martensitic alloy HT9 to be essentially swelling free out to a fast neutron fluence of at least 37 {times} 10{sup 22} n/cm{sup 2}. This superior performance directly contributes to the ability to achieve high fuel burnup levels necessary for the ultimate viability of an economical Liquid Metal Reactor (LMR) fuel system.

  10. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  11. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  12. The Formation Process of Silico-Ferrite of Calcium (SFC) from Binary Calcium Ferrite

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Guo, Xing-Min

    2014-08-01

    Silico-ferrite of calcium (SFC) is a significant equilibrium crystalline phase in the Fe2O3-CaO-SiO2 (FCS) ternary system and a key bonding phase in the sintering process of fine iron ore. In this work, the formation process of SFC from binary calcium ferrite has been determined by X-ray diffraction and field-emission scanning electron microscopy. Experiments were carried out under air at 1473 K (1200 °C) by adding SiO2 and Fe2O3 into CaO·Fe2O3 (CF). It was found that the formation of SFC is dominated by solid-state reactions in the FCS ternary system, in which Fe2O3 reacts with CaO·Fe2O3 to form the binary calcium ferrite phase. The chemical composition of binary calcium ferrite is Ca2.5Fe15.5O25 and approximately Ca2Fe12O20 (CaO·3Fe2O3). Then Si4+ and Ca2+ ions take the place of Fe3+ ion in preference located on the octahedral layers which belongs to (0 0 18) plane of binary calcium ferrite. The crystal structure of binary calcium ferrite gradually transforms from orthorhombic to triclinic, and the grain is refined with the addition of silica due to the smaller radius of Si4+ ion. A solid solution SFC forms completely when the content of SiO2 reaches approximately 3.37 wt pct at 1473 K (1200 °C).

  13. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    SciTech Connect

    Rashidi, S.; Ataie, A.

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  14. Oxide strengthened molybdenum-rhenium alloy

    SciTech Connect

    Bianco, Robert; Buckman, William R. Jr.

    1998-12-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (1) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (2) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (3) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (4) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (5) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (6) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method.

  15. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Gu; Park, Jin-Ju; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu; Spirin, Alexey; Krutikov, Vasiliy; Paranin, Sergey

    2015-07-01

    The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

  16. Corrosion behavior of nickel-containing alloys in artificial sweat.

    PubMed

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  17. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  18. Role of Si in Improving the Shape Recovery of FeMnSiCrNi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Gouthama; Ray, R. K.

    2011-08-01

    The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite ( γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ɛ martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ɛ martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α' martensite through γ- ɛ- α' transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ɛ martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ɛ martensite formed during cooling is also observed to decrease with the increase in Si.

  19. Environmentally assisted cracking of two-phase Fe-Mn-Al alloys in NaCl solution

    NASA Astrophysics Data System (ADS)

    Shih, S.-T.; Tsu, I.-F.; Perng, T.-P.

    1993-02-01

    Three two-phase Fe-Mn-Al alloys with nominal compositions, Fe-24Mn-9Al, Fe-27Mn-9Al-3Cr,. and Fe-27Mn-9Al-6Cr, were prepared in the solution-treated and cold-rolled conditions. The fractions of ferrite in the solution-treated condition were controlled at 46 to 60 pct, mainly by adjusting the carbon content and the relative amounts of Mn and Al. The ferrite fractions were reduced to 30 to 37 pct after 75 pct deformation by cold-rolling. Specimens were tensile tested at open circuit in aerated 3.5 pct NaCl solution at slow strain rates ranging from 4 × 10-7 to 4 × 10-5 s-1 at room temperature. All of the alloys were quite susceptible to environmentally assisted cracking (EAC). The deformed specimens showed less susceptibility, presumably because the plasticity was already too limited. The EAC appeared to occur at or after the onset of plastic deformation. In this alloy system, the ferritic phase was less resistant to EAC than the austenitic phase, in contrast to the Fe-Cr-Ni stainless steels. The crack propagated preferentially through the ferrite grains or along the ferrite/austenite grain boundaries. The addition of up to 6 pct Cr did not improve the EAC resistance.

  20. Research on Methods of Processing Transit IC Card Information and Constructing Transit OD Matrix

    NASA Astrophysics Data System (ADS)

    Han, Xiuhua; Li, Jin; Peng, Han

    Transit OD matrix is of vital importance when planning urban transit system. Traditional transit OD matrix constructing method needs a large range of spot check survey. It is expensive and needs long cycle time to process information. Recently transit IC card charging systems have been widely applied in big cities. Being processed reasonably, transit passenger information stored in IC card database can turn into information resource. It will reduce survey cost a lot. The concept of transit trip chain is put forward in this paper. According to the characteristics of closed transit trip chain, it discusses how to process IC card information and construct transit OD matrix. It also points out that urban transit information platform and data warehouse should be constructed, and how to integrate IC card information.