Science.gov

Sample records for ferritin light chain

  1. The ferritin light-chain homologue promoter in Aedes aegypti.

    PubMed

    Pham, D Q-D; Chavez, C A

    2005-06-01

    Promoters that direct the expression of antipathogenic molecules to primary sites of pathogenic invasions provide a means to interfere with these invasions. Thus, they have the potential to be used in mosquito control. However, exogenous elements are known to lower the fitness of most insects, and given the ability of insects to evolve rapidly, all currently known promoters could be rendered useless. As transgenic mosquitoes may be a major component in the fight against mosquito-borne diseases, the identification of new mosquito promoters is needed. The promoter of the Aedes aegypti ferritin light-chain homologue (LCH) gene, a gene whose expression is induced in gut tissues during blood feeding has been identified and mapped. Transfection data indicate that the ferritin LCH promoter is a strong promoter. DNase I footprinting data and Transfac analyses suggest that the ferritin LCH promoter contains putative GATA, E2F, NIT2, TATA and DPE sites. These data together provide the first detailed map of a known ferritin LCH gene.

  2. Structure of Human Ferritin L Chain

    SciTech Connect

    Wang,Z.; Li, C.; Ellenburg, M.; Soistman, E.; Ruble, J.; Wright, B.; Ho, J.; Carter, D.

    2006-01-01

    Ferritin is the major iron-storage protein present in all cells. It generally contains 24 subunits, with different ratios of heavy chain (H) to light chain (L), in the shape of a hollow sphere hosting up to 4500 ferric Fe atoms inside. H-rich ferritins catalyze the oxidation of iron(II), while L-rich ferritins promote the nucleation and storage of iron(III). Several X-ray structures have been determined, including those of L-chain ferritins from horse spleen (HoSF), recombinant L-chain ferritins from horse (HoLF), mouse (MoLF) and bullfrog (BfLF) as well as recombinant human H-chain ferritin (HuHF). Here, structures have been determined of two crystal forms of recombinant human L-chain ferritin (HuLF) obtained from native and perdeuterated proteins. The structures show a cluster of acidic residues at the ferrihydrite nucleation site and at the iron channel along the threefold axis. An ordered Cd{sup 2+} structure is observed within the iron channel, offering further insight into the route and mechanism of iron transport into the capsid. The loop between helices D and E, which is disordered in many other L-chain structures, is clearly visible in these two structures. The crystals generated from perdeuterated HuLF will be used for neutron diffraction studies.

  3. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages.

    PubMed

    Fan, Yumei; Zhang, Jie; Cai, Linlin; Wang, Shengnan; Liu, Caizhi; Zhang, Yongze; You, Linhao; Fu, Yujian; Shi, Zhenhua; Yin, Zhimin; Luo, Lan; Chang, Yanzhong; Duan, Xianglin

    2014-11-01

    Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.

  4. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light chain subunit of human ferritin (FTL). In cultured hepatoma cells, HEV-macro domain reduces secretion of ferritin without causing any change in the expression levels of FTL. This inhibitory effect was further enhanced upon Brefeldin-A treatment. The levels of transferrin Receptor 1 or ferroportin, two important proteins in iron metabolism, remained unchanged in HEV-macro domain expressing cells. Similarly, there were no alterations in the levels of cellular labile iron pool and reactive oxygen species, indicating that HEV-macro domain does not influence cellular iron homeostasis/metabolism. As ferritin is an acute-phase protein, secreted in higher level in infected persons and HEV-macro domain has the property of reducing synthesis of inflammatory cytokines, we propose that by directly binding to FTL, macro domain prevents ferritin from entering into circulation and helps in further attenuation of the host immune response.

  5. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway

    PubMed Central

    Wu, Tingfeng; Li, Yuntao; Liu, Baohui; Zhang, Shenqi; Wu, Liquan; Zhu, Xiaonan; Chen, Qianxue

    2016-01-01

    Accumulating evidence suggests that iron-associated proteins contribute to tumor initiation and development. Ferritin light chain (FTL), a key protein in iron metabolism, is associated with the survival of glioblastoma multiforme (GBM) patients; however, the molecular mechanisms underlying this association remain largely unclear. Therefore, in the present study, we investigated the role of FTL in the pathogenesis of GBM. By using quantitative real-time RT-PCR, we found that expression of FTL was higher in patients with GBM than in those with low-grade glioma. Immunofluorescence showed that FTL was mainly localized in the nucleus of GBM cells and was closely associated with mitotic spindles. Knockdown of FTL resulted in inhibition of cell growth and activation of the GADD45A/JNK pathway in GBM cells. Immunoblotting revealed that levels of GADD45A protein decreased in GBM cells when FTL expression increased. Furthermore, transfection of GADD45A in GBM cells significantly decreased cell viability, and this effect was impeded by co-transfection of FTL. Moreover, FTL was found to localize with GADD45A in GBM cells, and a coimmunoprecipitation experiment showed that the two proteins physically interacted. Taken together, these results demonstrate a novel mechanism by which FTL regulates the growth of GBM cells via the GADD45/JNK pathway. PMID:26871431

  6. The candidate gene approach to susceptibility for abdominal aortic aneurysm: TIMP1, HLA-DR-15, ferritin light chain, and collagen XI-Alpha-1.

    PubMed

    Tilson, M David; Ro, Charles Y

    2006-11-01

    There are two approaches to gene discovery for diseases when genetic susceptibility has been implicated by clinical genetic or case-control studies: (1) genome-wide screening and (2) evaluation of candidate genes. Each has specific advantages and disadvantages. The principal advantage of genome-wide screening is that it is impeccably objective in as much as it proceeds without any presuppositions regarding the importance of specific pathobiological features of the disease process. The principal disadvantage is that such a study is expensive and resource intensive. A large population of enrolled patients and multidisciplinary teams of investigators cooperating from several institutions are usually required. The alternative approach of evaluating candidate genes can be pursued by a small independent laboratory with limited funding and resources, a small collection of clinical specimens, and a small number of team players. The disadvantage is that it is by necessity highly subjective in the process of selecting specific candidates among many reasonable possibilities. There is no a priori assurance that effort will not be expended on one or more candidates that turn out in the end to be failures. This report reviews efforts in our laboratory to evaluate four genes as candidates. One of these tissue inhibitor of metalloprotease 1(TIMP1) led to the description of a polymorphism, but not a conclusive mutation. The other three (HLA-DR-15, ferritin light chain (FTL), and collagen XI-alpha-1 (COL11A1) are subjects of continuing interest. PMID:17182944

  7. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2004-03-01

    Differential screening of a Littorina littorea (the common periwinkle) cDNA library identified ferritin heavy chain as an anoxia-induced gene in hepatopancreas. Northern blots showed that ferritin heavy chain transcript levels were elevated twofold during anoxia exposure, although nuclear run-off assays demonstrated that ferritin heavy chain mRNAs were not transcriptionally upregulated during anoxia. Polysome analysis indicated that existing ferritin transcripts were actively translated during the anoxic period. This result was confirmed via western blotting, which demonstrated a twofold increase in ferritin heavy chain protein levels during anoxia, with a subsequent decrease to control levels during normoxic recovery. Organ culture experiments using hepatopancreas slices demonstrated a >50% increase in ferritin heavy chain transcript levels in vitro under conditions of anoxia and freezing, as well as after incubation with the second messenger cGMP. Taken together, these results suggest that ferritin heavy chain is actively regulated during anoxia exposure in the marine snail, L. littorea. PMID:15010486

  8. Transient overexpression of human H- and L-ferritin chains in COS cells.

    PubMed Central

    Corsi, B; Perrone, F; Bourgeois, M; Beaumont, C; Panzeri, M C; Cozzi, A; Sangregorio, R; Santambrogio, P; Albertini, A; Arosio, P; Levi, S

    1998-01-01

    The understanding of the in vitro mechanisms of ferritin iron incorporation has greatly increased in recent years with the studies of recombinant and mutant ferritins. However, little is known about how this protein functions in vivo, mainly because of the lack of cellular models in which ferritin expression can be modulated independently from iron. To this aim, primate fibroblastoid COS-7 cells were transiently transfected with cDNAs for human ferritin H- and L-chains under simian virus 40 promoter and analysed within 66 h. Ferritin accumulation reached levels 300-500-fold higher than background, with about 40% of the cells being transfected. Thus ferritin concentration in individual cells was increased up to 1000-fold over controls with no evident signs of toxicity. The exogenous ferritin subunits were correctly assembled into homopolymers, but did not affect either the size or the subunit composition of the endogenous heteropolymeric fraction of ferritin, which remained essentially unchanged in the transfected and non-transfected cells. After 18 h of incubation with [59Fe]ferric-nitrilotriacetate, cellular iron incorporation was similar in the transfected and non-transfected cells and most of the protein-bound radioactivity was associated with ferritin heteropolymers, while H- and L-homopolymers remained iron-free. Cell co-transfection with cDNAs for H- and L-chains produced ferritin heteropolymers that also did not increase cellular iron incorporation. It is concluded that transient transfection of COS cells induces a high level of expression of ferritin subunits that do not co-assemble with the endogenous ferritins and have no evident activity in iron incorporation/metabolism. PMID:9461525

  9. Modulation of ferritin H-chain expression in Friend erythroleukemia cells: transcriptional and translational regulation by hemin.

    PubMed Central

    Coccia, E M; Profita, V; Fiorucci, G; Romeo, G; Affabris, E; Testa, U; Hentze, M W; Battistini, A

    1992-01-01

    The mechanisms that regulate the expression of the H chain of the iron storage protein ferritin in Friend erythroleukemia cells (FLCs) after exposure to hemin (ferric protoporphyrin IX), protoporphyrin IX, and ferric ammonium citrate (FAC) have been investigated. Administration of hemin increases the steady-state level of ferritin mRNA about 10-fold and that of ferritin protein expression 20-fold. Experiments with the transcriptional inhibitor actinomycin D and transfection studies demonstrate that the increment in cytoplasmic mRNA content results from enhanced transcription of the ferritin H-chain gene and cannot be attributed to stabilization of preexisting mRNAs. In addition to transcriptional effects, translational regulation induces the recruitment of stored mRNAs into functional polyribosomes after hemin and FAC administration, resulting in a further increase in ferritin synthesis. Administration of protoporphyrin IX to FLCs produces divergent transcriptional and translational effects. It increases transcription but appears to suppress ferritin mRNA translation. FAC treatment increases the mRNA content slightly (about twofold), and the ferritin levels rise about fivefold over the control values. We conclude that in FLCs, hemin induces ferritin H-chain biosynthesis by multiple mechanisms: a transcriptional mechanism exerted also by protoporphyrin IX and a translational one, not displayed by protoporphyrin IX but shared with FAC. Images PMID:1620112

  10. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    PubMed Central

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M.; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  11. Ferritin Assembly in Enterocytes of Drosophila melanogaster.

    PubMed

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  12. Evidence for a role of ferritin heavy chain in mediating reproductive processes of geese.

    PubMed

    Kang, Bo; Jiang, Dongmei; Ma, Rong; He, Hui

    2015-12-01

    Ferritin heavy chain (FHC), which exhibits ferroxidase activity and mediates the primary functions of ferritin, plays a role in regulating reproduction in animals. However, the changes in the FHC mRNA and protein levels in the HPG axis of geese remain to be determined. In the current study, FHC mRNA expression level was quantitatively monitored in the hypothalamus, anterior pituitary and ovary stroma in prelaying and laying geese. In addition, the levels of FHC mRNA and protein were determined in follicles and ovarian stroma of laying geese. In comparison to prelaying geese, the FHC mRNA expression were 2.4, 1.8, and 13 times higher in the hypothalamus, anterior pituitary and ovarian stroma of laying geese, respectively (p<0.05). FHC mRNA and protein were detected in all examined follicles and ovarian stroma. FHC mRNA expression was higher in postovulatory follicles (POFs) and atretic follicles than in developing follicles and ovarian stroma. Furthermore, the FHC protein concentration in POF3 and atretic follicles were, respectively, 1.45 and 1.7 times higher compared with that of F1 (p<0.05). In conclusion, the presented results provided evidence of a link between FHC and goose reproduction, and supplied a theoretical foundation and a new approach for studying reproduction, in particular ovarian follicular development in birds.

  13. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin.

    PubMed

    Lv, Qizhuang; Guo, Kangkang; Wang, Tao; Zhang, Chengcheng; Zhang, Yanming

    2015-09-01

    Porcine circovirus type 2 (PCV2) is the primary infectious agent of PCV-associated disease (PCVAD) in swine. ORF4 protein is a newly identified viral protein of PCV2 and is involved in virus-induced apoptosis. However, the molecular mechanisms of ORF4 protein regulation of apoptosis remain unclear, especially given there is no information regarding any cellular partners of the ORF4 protein. Here, we have utilized the yeast two-hybrid assay and identified four host proteins (FHC, SNRPN, COX8A and Lamin C) interacting with the ORF4 protein. Specially, FHC was chosen for further characterization due to its important role in apoptosis. GST pull-down, subcellular co-location and co-immunoprecipitation assays confirmed that the PCV2 ORF4 protein indeed interacted with the heavy-chain ferritin, which is an interesting clue that will allow us to determine the role of the ORF4 protein in apoptosis. PMID:26333394

  14. Molecular characterization and gene expression of the channel catfish Ferritin H subunit after bacterial infection and iron treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferritins are the major iron storage protein in the cytoplasm of cells, responsible for regulating levels of intracellular iron. Ferritin genes are widely distributed in both prokaryotes and eukaryotes. In mammals, ferritin molecules are composed of heavy- (H) and light- (L) chain subunits; amphibia...

  15. Neurofilament light chain

    PubMed Central

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens

    2015-01-01

    Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. PMID:25934855

  16. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction.

    PubMed

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-02-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.

  17. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction

    PubMed Central

    Pitcher, Jonathan; Abt, Anna; Myers, Jaclyn; Han, Rachel; Snyder, Melissa; Graziano, Alessandro; Festa, Lindsay; Kutzler, Michele; Garcia, Fernando; Gao, Wen-Jun; Fischer-Smith, Tracy; Rappaport, Jay; Meucci, Olimpia

    2014-01-01

    Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS. PMID:24401274

  18. Serum Free Light Chains

    MedlinePlus

    ... changes in the ratio of kappa and lambda production, which indicate an excess of one clone of ... test to detect abnormal monoclonal protein (M-protein) production and to calculate a kappa/lambda free light ...

  19. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation

    PubMed Central

    Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    2016-01-01

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism. PMID:27657916

  20. Atypical immunoglobulin light chain amyloidosis

    PubMed Central

    Wu, Xia; Feng, Jun; Cao, Xinxin; Zhang, Lu; Zhou, Daobin; Li, Jian

    2016-01-01

    Abstract Background: Primary immunoglobulin light chain amyloidosis (AL amyloidosis) is a plasma cell disorder which mainly affects heart, kidneys, liver, and peripheral nervous system. Cases of atypical AL amyloidosis presented as spontaneous vertebral compression fractures have been rarely reported, and data about the management and clinical outcomes of the patients are scarce. Methods: Herein, we present 3 new cases of AL amyloidosis with spontaneous vertebral compression fracture and review 13 cases retrieved from the literature. Results: Moreover, we observed overrepresentations of liver involvement and bone marrow involvement in AL amyloidosis with spontaneous vertebral compression fracture. Conclusion: We believe that better awareness of the rare clinical presentation as spontaneous vertebral compression fracture of AL amyloidosis can facilitate earlier diagnosis and earlier treatment. PMID:27603350

  1. Interaction between glycosaminoglycans and immunoglobulin light chains.

    SciTech Connect

    Jiang, X.; Myatt, E.; Lykos, P.; Stevens, F. J.; Center for Mechanistic Biology and Biotechnology; Illinois Inst. of Tech.

    1997-01-01

    Amyloidosis is a pathological process in which normally soluble proteins polymerize to form insoluble fibrils (amyloid). Amyloid formation is found in a number of diseases, including Alzheimer's disease, adult-onset diabetes, and light-chain-associated amyloidosis. No pharmaceutical methods currently exist to prevent this process or to remove the fibrils from tissue. The search for treatment and prevention methods is hampered by a limited understanding of the biophysical basis of amyloid formation. Glycosaminoglycans (GAGs) are long, unbranched heteropolysaccharides composed of repeating disaccharide subunits and are known to associate with amyloid fibrils. The interaction of amyloid-associated free light chains with GAGs was tested by both size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments. The results indicated that heparin 16 000 and chondroitin sulfate B and C precipitated both human intact light chains and recombinant light chain variable domains. Although all light chains interacted with heparin, the strongest interactions were obtained with proteins that had formed amyloid. Molecular modeling indicated the possibility of interaction between heparin and the conserved saddle like surface of the light chain dimer opposite the complementarity-determining segments that form part of the antigen-binding site of a functional antibody. This suggestion might offer a new path to block the aggregation of amyloid-associated light chain proteins, by design of antagonists based on properties of GAG binding. A hexasaccharide was modeled as the basis for a possible antagonist.

  2. Clonorchis sinensis ferritin heavy chain triggers free radicals and mediates inflammation signaling in human hepatic stellate cells.

    PubMed

    Mao, Qiang; Xie, Zhizhi; Wang, Xiaoyun; Chen, Wenjun; Ren, Mengyu; Shang, Mei; Lei, Huali; Tian, Yanli; Li, Shan; Liang, Pei; Chen, Tingjin; Liang, Chi; Xu, Jin; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2015-02-01

    Clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis, is associated with hepatobiliary damage, inflammation, periductal fibrosis, and the development of cholangiocarcinoma. Hepatic stellate cells respond to liver injury through production of proinflammatory mediators which drive fibrogenesis; however, their endogenous sources and pathophysiological roles in host cells were not determined. C. sinensis ferritin heavy chain (CsFHC) was previously confirmed as a component of excretory/secretory products and exhibited a number of extrahepatic immunomodulatory properties in various diseases. In this study, we investigated the expression pattern and biological role of CsFHC in C. sinensis. CsFHC was expressed throughout life stages of C. sinensis. More importantly, we found that treatment of human hepatic stellate cell line LX-2 with CsFHC triggered the production of free radicals via time-dependent activation of NADPH oxidase, xanthine oxidase, and inducible nitric oxide synthase. The increase in free radicals substantially promoted the degradation of cytosolic IκBα and nuclear translocation of NF-κB subunits (p65 and p50). CsFHC-induced NF-κB activation was markedly attenuated by preincubation with specific inhibitors of corresponding free radical-producing enzyme or the antioxidant. In addition, CsFHC induced an increased expression level of proinflammatory cytokines, IL-1β and IL-6, in NF-κB-dependent manner. Our results indicate that CsFHC-triggered free radical-mediated NF-κB signaling is an important factor in the chronic inflammation caused by C. sinensis infection.

  3. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    PubMed Central

    2013-01-01

    Background Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. Methods For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. Results TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Conclusions Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway. PMID:24066693

  4. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    SciTech Connect

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division; Queen's Univ.

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.

  5. Ferritin Test

    MedlinePlus

    ... presence and severity of iron deficiency or iron overload. ^ Back to top When is it ordered? The ... ferritin level may also be ordered when iron overload is suspected. Symptoms of iron overload will vary ...

  6. Ferritin blood test

    MedlinePlus

    Serum ferritin level ... amount of ferritin in the blood (serum ferritin level) is directly related to the amount of iron ... to 150 ng/mL The lower the ferritin level, even within the "normal" range, the more likely ...

  7. mu-1,2-Peroxobridged di-iron(III) dimer formation in human H-chain ferritin.

    PubMed Central

    Bou-Abdallah, Fadi; Papaefthymiou, Georgia C; Scheswohl, Danielle M; Stanga, Sean D; Arosio, Paolo; Chasteen, N Dennis

    2002-01-01

    Biomineralization of the ferritin iron core involves a complex series of events in which H(2)O(2) is produced during iron oxidation by O(2) at a dinuclear centre, the 'ferroxidase site', located on the H-subunit of mammalian proteins. Rapid-freeze quench Mössbauer spectroscopy was used to probe the early events of iron oxidation and mineralization in recombinant human ferritin containing 24 H-subunits. The spectra reveal that a mu-1,2-peroxodiFe(III) intermediate (species P) with Mössbauer parameters delta (isomer shift)=0.58 mm/s and DeltaE(Q) (quadrupole splitting)=1.07 mm/s at 4.2 K is formed within 50 ms of mixing Fe(II) with the apoprotein. This intermediate accounts for almost all of the iron in the sample at 160 ms. It subsequently decays within 10 s to form a mu-oxodiFe(III)-protein complex (species D), which partially vacates the ferroxidase sites of the protein to generate Fe(III) clusters (species C) at a reaction time of 10 min. The intermediate peroxodiFe(III) complex does not decay under O(2)-limiting conditions, an observation suggesting inhibition of decay by unreacted Fe(II), or a possible role for O(2) in ferritin biomineralization in addition to that of direct oxidation of iron(II). PMID:11988076

  8. Magneto-Optics of Ferritin

    NASA Astrophysics Data System (ADS)

    Dobek, Andrzej

    2010-01-01

    Ferritins are the metalloproteides present in plant and animal cells. Their micelleous tertiary structure allows iron accumulation in the form of hydratated oxides and phosphates. Thus, ferritin is a large spherical macromolecular protein with iron compounds in the cavity created by a peptide shell. Because of the spherical shape, ferritin macromolecule should not manifest magnetic anisotropy; however, in solution it shows the induced magnetic birefringence (Cotton-Mouton effect) and changes in intensity of the scattered light components. Therefore, the Cotton-Mouton effect, Rayleigh light scattering and nonlinear light scattering in dc magnetic field, were measured at room temperature for 100 mM NaCl solutions of apoferritin/ferritin loaded with different contents of Fe atoms/molecule. Analysis of the results has shown that the deformation of linear optical polarizability induced in the ferritin by a magnetic field and the orientation of the induced and permanent magnetic dipole moment by this field are the main sources of the magneto-optical phenomena observed. The results suggest the simultaneous diamagnetic and superparamagnetic behavior of the ferritin biomacromolecule.

  9. The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction.

    PubMed

    Lv, Qizhuang; Guo, Kangkang; Zhang, Guangfang; Zhang, Yanming

    2016-07-01

    Porcine circovirus type 2 (PCV2) is the primary aetiological agent of porcine circovirus-associated disease in swine. The mechanism of PCV2 pathogenesis remains largely unknown. A newly identified viral protein of PCV2, ORF4, has been suggested to be involved in virus-induced apoptosis. However, there is still no information regarding the molecular mechanism by which ORF4 regulates apoptosis. In this study, we reveal that a physical interaction between the PCV2 ORF4 protein and ferritin heavy chain (FHC) in the cytoplasm of host cells reduced the cellular concentration of FHC. The ORF4-mediated reduction of FHC inhibited reactive oxygen species accumulation in PCV2-infected cells. Consequently, the ORF4 protein inhibited apoptosis in host cells. This may be the first report to describe the mechanism of ORF4 cytoprotection against apoptosis during the early stages of PCV2 infection. PMID:27030984

  10. [Light Chain Amyloidosis: an Update for Treatment].

    PubMed

    Shen, Kai-Ni; Li, Jian

    2015-06-01

    Systemic light chain amyloidosis (AL amyloidosis) is the most common type of amyloidosis, in which deposition of misfolded monoclonal light chain secreted by underlying clonal plasma cells leads to organ dysfunction. Tissue biopsy of involved organ is needed to confirm the type of amyloid deposits, thus proper treatment could be applied. Laser microdissection followed by mass spectrometry, performed on formalin-fixed paraffin-embedded specimens, has been proven superior to traditional methods on accurate diagnosis of amyloidosis. Prognosis depends on the extent of cardiac involvement. The Mayo staging system using NT-ProBNP, cardiac troponin-T and free light chain, is the most robust method for risk stratification and treatment guidance. The introduction of autologous stem cell transplantation (auto-ASCT) resulted in long-term survival in responders, while treatment-related toxicity substantially limited the number of eligible candidates. Novel agents, especially bortezomib, thalidomide and lenalidomide hold promise to achieve comparable hematological responses with auto-ASCT, which might play significant role in treatment of recurrent or refractory AL amyloidosis. PMID:26117060

  11. Shared epitopes of avian immunoglobulin light chains.

    PubMed

    Benčina, Mateja; Cizelj, Ivanka; Berčič, Rebeka Lucijana; Narat, Mojca; Benčina, Dušan; Dovč, Peter

    2014-04-15

    Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes.

  12. Shared epitopes of avian immunoglobulin light chains.

    PubMed

    Benčina, Mateja; Cizelj, Ivanka; Berčič, Rebeka Lucijana; Narat, Mojca; Benčina, Dušan; Dovč, Peter

    2014-04-15

    Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes. PMID:24603015

  13. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  14. Cloning and Characterisation of Multiple Ferritin Isoforms in the Atlantic Salmon (Salmo salar)

    PubMed Central

    Lee, Jun-Hoe; Pooley, Nicholas J.; Mohd-Adnan, Adura; Martin, Samuel A. M.

    2014-01-01

    Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1, H2, M1, M2, M3) in the Atlantic salmon that were supported by the presence of iron-regulatory regions, gene structure, conserved domains and phylogenetic analysis. Tissue distribution analysis across eight different tissues showed that each of these isoforms is differentially expressed. We also examined the expression of the ferritin isoforms in the liver and kidney of juvenile Atlantic salmon that was challenged with Aeromonas salmonicida as well as in muscle cell culture stimulated with interleukin-1β. We found that each isoform displayed unique expression profiles, and in certain conditions the expressions between the isoforms were completely diametrical to each other. Our study is the first report of multiple ferritin isoforms from both the H- and M-chains in a vertebrate species, as well as ferritin isoforms that showed decreased expression in response to infection. Taken together, the results of our study suggest the possibility of functional differences between the H- and M-chain isoforms in terms of tissue localisation, transcriptional response to bacterial exposure and stimulation by specific immune factors. PMID:25078784

  15. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  16. Induction of Interleukin-1β by Human Immunodeficiency Virus-1 Viral Proteins Leads to Increased Levels of Neuronal Ferritin Heavy Chain, Synaptic Injury, and Deficits in Flexible Attention

    PubMed Central

    Festa, Lindsay; Gutoskey, Christopher J.; Graziano, Alessandro; Waterhouse, Barry D.

    2015-01-01

    Synaptodendritic pruning and alterations in neurotransmission are the main underlying causes of HIV-associated neurocognitive disorders (HAND). Our studies in humans and nonhuman primates indicated that the protein ferritin heavy chain (FHC) is a critical player in neuronal changes and ensuing cognitive deficit observed in these patients. Here we focus on the effect of HIV proteins and inflammatory cytokines implicated in HAND on neuronal FHC levels, dendritic changes, and neurocognitive behavior. In two well characterized models of HAND (HIV transgenic and gp120-treated rats), we report reductions in spine density and dendritic branches in prefrontal cortex pyramidal neurons compared with age-matched controls. FHC brain levels are elevated in these animals, which also show deficits in reversal learning. Moreover, IL-1β, TNF-α, and HIV gp120 upregulate FHC in rat cortical neurons. However, although the inflammatory cytokines directly altered neuronal FHC, gp120 only caused significant FHC upregulation in neuronal/glial cocultures, suggesting that glia are necessary for sustained elevation of neuronal FHC by the viral protein. Although the envelope protein induced secretion of IL-1β and TNF-α in cocultures, TNF-α blockade did not affect gp120-mediated induction of FHC. Conversely, studies with an IL-1β neutralizing antibody or specific IL-1 receptor antagonist revealed the primary involvement of IL-1β in gp120-induced FHC changes. Furthermore, silencing of neuronal FHC abrogates the effect of gp120 on spines, and spine density correlates negatively with FHC levels or cognitive deficit. These results demonstrate that viral and host components of HIV infection increase brain expression of FHC, leading to cellular and functional changes, and point to IL-1β-targeted strategies for prevention of these alterations. SIGNIFICANCE STATEMENT This work demonstrates the key role of the cytokine IL-1β in the regulation of a novel intracellular mediator [i.e., the

  17. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  18. Comparison of serum free light chain and urine electrophoresis for the detection of the light chain component of monoclonal immunoglobulins in light chain and intact immunoglobulin multiple myeloma.

    PubMed

    Dejoie, Thomas; Attal, Michel; Moreau, Philippe; Harousseau, Jean-Luc; Avet-Loiseau, Herve

    2016-03-01

    Response criteria for multiple myeloma are based upon changes in monoclonal protein levels quantified using serum and/or urine protein electrophoresis. The latter lacks sensitivity at low monoclonal protein levels and since 2001, the serum free light chain test has been available and its clinical utility proven, yet guidelines have not recommended it as a replacement for urine assessment. Herein we evaluated responses using serum free light chain measurements and serum and urine electrophoresis after 2 and 4 cycles of therapy and after stem cell transplantation in 25 light chain and 157 intact immunoglobulin myeloma patients enrolled in the IFM 2007-02 MM trial. All 25 light chain patients had measurable disease by serum free light chain and urine methods at presentation. By contrast 98 out of 157 intact immunoglobulin patients had measurable disease by serum free light chain compared to 55 out of 157 by urine electrophoresis. In all patients there was substantial agreement between predicate (serum/urine protein electrophoresis) and test (serum protein electrophoresis and serum free light chain) methods for response assessment (Weighted Kappa=0.83). Urine immunofixation became negative in 47% light chain and 43% intact immunoglobulin patients after 2 cycles of therapy. At this time the serum free light chain ratio normalised in only 11% and 27% patients, respectively. In summary we found good agreement between methods for response assessment, but the serum free light chain test provided greater sensitivity than urine electrophoresis for monitoring. To our knowledge this is the first report comparing both methods for response assignment based on the International Myeloma Working Group guidelines. (Clinical Trials Register.eu identifier: 2007-005204-40).

  19. [The renal pathology in light chain deposition disease].

    PubMed

    Giannakakis, K N; Faraggiana, T

    2005-01-01

    Light Chain Deposition Disease (LCDD) is a relatively frequent renal disease associated with dysproteinemia. Although the light chain deposits can be widespread, the kidney is the most frequently involved organ, and renal involvement can dominate the clinical condition. The morphological features of LCDD can be recognized by light microscopy; however, the diagnosis can be made certain only by immunofluorescence microscopy, using antisera to kappa and lambda chains, and by electron microscopy.

  20. Mitochondrial ferritin in animals and plants.

    PubMed

    Galatro, Andrea; Puntarulo, Susana

    2007-01-01

    Ferritins play a role in preventing Fe toxicity because of their ability to sequester several thousand Fe atoms in their central cavity in a soluble, non-toxic bioavailable form. The identification of ferritin in mitochondria, an organelle with a constant generation of O2(-) as a by-product of the electron transfer, and the presence of a mitochondrial nitric oxide synthase activity opened up brand new metabolic interactions to be analyzed. In spite of cytosolic ferritins in mammals being ubiquitous, mitochondrial ferritin (mtF) expression is restricted to the testis, neuronal cells, islets of Langerhans, and as recently described to mice normal retinas. None was detected in major storage organs such as liver and spleen. MtF has about 80% identity to cytosolic H-chain and 55% to L-chain in its coding region. There has been reported some differences in the Fe binding and oxidation properties between mtF and cytosolic H-ferritin suggesting that mtF functions differently as an Fe storage protein within the mitochondria and perhaps has other function(s) in Fe homeostasis as well. Recently it was also presented evidence for the presence of ferritins in plant mitochondria. The understanding of the role of mitochondrial ferritin in Fe oxidative metabolism may be useful in approaching clinical situations such as the treatment of Friedreich's ataxia, X-linked sideroblastic anemia, and in other neurodegenerative disorders. PMID:17127361

  1. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins.

    PubMed

    Zhao, Z; Malik, A; Lee, M L; Watt, G D

    1994-04-01

    A capillary electrophoresis (CE) method is described for detecting and quantitating apo and holo ferritins from horse spleen (HoSF), rat liver (RLF), recombinant human light chain (rLF), recombinant human heavy chain (rHF), site-directed variants of human light chain, and Azotobacter vinelandii bacterial ferritin (AVBF). This procedure is carried out at pH 8.2, where the ferritin molecules are associated into their 24-mers. Protein mobilities as expressed as elution times were clearly resolved and could be used to distinguish one ferritin type from another, providing a means for detecting and quantitating various ferritin species in purified or partially purified states. Measurements of these and other ferritins were also conducted at pH 2.0, where dissociation into their respective subunits occurs. For HoSF and RLF, the individual L and H subunits were resolved and their relative concentrations were determined by integrating the areas of the elution peaks. HoSF gave 89.8% L and 10.2% H and RLF gave 70.7% L and 29.3% H, while rLF, rHF, and AVBF gave only a single subunit, all in agreement with reported values obtained by polyacrylamide gel electrophoresis. CE of HoSF, containing increasing amounts of iron in the interior, in general, showed that protein mobilities increased, reached a plateau, and then slowly decreased with increasing core size, although buffer effects altered this CE behavior to some extent. Such results indicate that species formed early during core formation have individual iron atoms present and differ from those formed later in which the oligomeric iron core has formed.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Molecular characterization and gene expression of ferritin in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Sun, Shengming; Zhu, Jian; Ge, Xianping; Zhang, Wxuxiao

    2016-10-01

    Ferritins are conserved iron storage proteins that exist in most living organisms and play an essential role in iron homeostasis. In this study, we reported the identification and analysis of a ferritin middle-chain (M) subunit, MaFerM, from blunt snout bream, Megalobrama amblycephala. The full length cDNA of MaFerM contains a 5'-untranslated region (UTR) of 152 bp, an open reading frame (ORF) of 522 bp and a 3'-UTR of 270 bp. The ORF encodes a putative protein of 174 amino acids, which shares extensive sequence identities with the M ferritins of several fish species. In silico analysis identified both the ferroxidase center of mammalian heavy-chain (H) ferritins and the iron nucleation site of mammalian light-chain (L) ferritins in MaFerM. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that MaFerM expression was highest in the liver and lowest in the heart and responded positively to experimental challenges with Aeromonas hydrophila. The exposure of cultured M. amblycephala to treatment with stress inducers (iron and H2O2) significantly up-regulated the expression of MaFerM in a dose-dependent manner. Iron chelation analysis showed that recombinant MaFerM purified from Escherichia coli exhibited apparent iron binding activity. These results suggest that MaFerM is a functional M ferritin and is likely to play a role in iron sequestration and protection against oxidative stress and immune stimulus. PMID:27539708

  3. Antibody elbow angles are influenced by their light chain class

    SciTech Connect

    Stanfield, R; Zemla, A; Wilson, I; Rupp, B

    2006-01-12

    We have examined the elbow angles for 365 different Fab fragments, and observe that Fabs with lambda light chains have adopted a wider range of elbow angles than their kappa-chain counterparts, and that the lambda light chain Fabs are frequently found with very large (>195{sup o}) elbow angles. This apparent hyperflexibility of lambda-chain Fabs may be due to an insertion in their switch region, which is one residue longer than in kappa chains, with glycine occurring most frequently at the insertion position. A new, web-based computer program that was used to calculate the Fab elbow angles is also described.

  4. Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 in Chlamydia trachomatis-infected HeLa cells.

    PubMed

    Vardhan, Harsh; Gupta, Rishein; Jha, Rajneesh; Bhengraj, Apurb Rashmi; Mittal, Aruna

    2011-08-01

    Chlamydia trachomatis is the leading cause of sexually transmitted infection worldwide, in which disease outcome is determined by the balance between pro- and anti-inflammatory host immune responses. Iron plays important roles in regulation and enhancement of various pro- and anti-inflammatory cytokines. Earlier studies have established essentiality of iron in C. trachomatis infection; however, there is lack of study wherein modulatory effect of iron regulated protein [FHC (ferritin heavy chain)] in regulation of anti-inflammatory cytokine IL (interleukin)-10 has been investigated. In this study, immunoblotting results showed the up-regulation of FHC in C. trachomatis-infected HeLa cells in comparison with mock (in vitro control). Further secretory IL-10 level was significantly increased (P<0.001) or decreased (P<0.001) in response to iron supplementation [FAC (ferric ammonium citrate)] and depletion [DFO (deferoxamine)], respectively. However, in C. trachomatis-infected HeLa cells, levels of IL-10 remain higher, irrespective of availability of iron in comparison with their respective control. These results showed that secretion of IL-10 and expressions of FHC have concordance. Further, to understand interdependence of IL-10 and iron homoeostasis (regulation), the levels of IL-10 were compared with iron-responsive GFP (green fluorescent protein) expression in HeLa-229 cells. The mean fluorescent intensities of GFP were in accordance with levels of IL-10 in C. trachomatis-infected cells. These results showed the association of secreted IL-10, FHC and iron homoeostasis in C. trachomatis-infected HeLa-229 cells. This study provides insight into host-Chlamydia interaction at the crossroad of iron metabolism and immune responses and may help in realizing the potential of iron homoeostasis modulators in treatment of chronic chlamydial infection.

  5. Increased Serum Free Light Chains Precede the Presentation of Immunoglobulin Light Chain Amyloidosis

    PubMed Central

    Weiss, Brendan M.; Hebreo, Joseph; Cordaro, Daniel V.; Roschewski, Mark J.; Baker, Thomas P.; Abbott, Kevin C.; Olson, Stephen W.

    2014-01-01

    Purpose Patients with immunoglobulin light chain amyloidosis (AL amyloidosis) generally present with advanced organ dysfunction and have a high risk of early death. We sought to characterize monoclonal immunoglobulin (M-Ig) light chains before clinical presentation of AL amyloidosis. Patients and Methods We obtained prediagnostic sera from 20 cases with AL amyloidosis and 20 healthy controls matched for age, sex, race, and age of serum sample from the Department of Defense Serum Repository. Serum protein electrophoresis with immunofixation and serum free light chain (FLC) analysis were performed on all samples. Results An M-Ig was detected in 100% of cases and 0% of controls (P < .001). The M-Ig was present in 100%, 80%, and 42% of cases at less than 4 years, 4 to 11 years, and more than 11 years before diagnosis, respectively. The median FLC differential (FLC-diff) was higher in cases compared with controls at all time periods, less than 4 years (174.8 v 0.3 mg/L; P < .001), 4 to 11 years (65.1 v 2.2 mg/L; P < .001), and more than 11 years (4.5 v 0.4 mg/L; P = .03) before diagnosis. The FLC-diff was greater than 23 mg/L in 85% of cases and 0% of controls (P < .001). The FLC-diff level increased more than 10% per year in 84% of cases compared with 16% of controls (P < .001). Conclusion Increase of FLCs, including within the accepted normal range, precedes the development of AL amyloidosis for many years. PMID:25024082

  6. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  7. Unusual Presentation of Light Chain Deposition Disease: A Case Report

    PubMed Central

    Uppal, Mayank; Amitabh, Vindu; Agrawal, Usha

    2016-01-01

    Light Chain Deposition Disease (LCDD) is a rare disease characterized by deposition of monoclonal non-amyloid light chains in multiple organs. We report an unusual histologic manifestation of LCDD in a 55-year-old female patient, who presented with nephrotic syndrome and an increased serum creatinine. This case of LCDD had features of cast nephropathy on biopsy which is diagnostic of myeloma kidney, when the patient was clinically asymptomatic. Serum electrophoresis showed no abnormal band. There was no other evidence of a B-cell clonal disorder or amyloidosis. Following chemotherapy, improvement in renal function correlated with a reduction in circulating light-chain levels. PMID:27437235

  8. Serum free light chain assays not total light chain assays are the standard of care to assess Monoclonal Gammopathies.

    PubMed

    Tietsche de Moraes Hungria, Vania; Allen, Syreeta; Kampanis, Petros; Soares, Elyara Maria

    2016-01-01

    The diagnosis of Multiple Myeloma is a challenge to the physician due to the non-specific symptoms (anemia, bone pain and recurrent infections) that are commonplace in the elderly population. However, early diagnosis is associated with less severe disease, including fewer patients presenting with acute renal injury, pathological fractures and severe anemia. Since 2006, the serum free light chain test Freelite(®) has been included alongside standard laboratory tests (serum and urine protein electrophoresis, and serum and urine immunofixation) as an aid in the identification of monoclonal proteins, which are a cornerstone for the diagnosis of Multiple Myeloma. The serum free light chain assay recognizes the light chain component of the immunoglobulin in its free form with high sensitivity. Other assays that measure light chains in the free and intact immunoglobulin forms are sensitive, but unfortunately, due to the nomenclature used, these assays (total light chains) are sometimes used in place of the free light chain assay. This paper reviews the available literature comparing the two assays and tries to clarify hypothetical limitations of the total assay to detect Multiple Myeloma. Furthermore, we elaborate on our study comparing the two assays used in 11 Light Chain Multiple Myeloma patients at presentation and 103 patients taken through the course of their disease. The aim of this article is to provide a clear discrimination between the two assays and to provide information to physicians and laboratory technicians so that they can utilize the International Myeloma Working Group guidelines.

  9. Serum free light chain assays not total light chain assays are the standard of care to assess Monoclonal Gammopathies

    PubMed Central

    Tietsche de Moraes Hungria, Vania; Allen, Syreeta; Kampanis, Petros; Soares, Elyara Maria

    2016-01-01

    The diagnosis of Multiple Myeloma is a challenge to the physician due to the non-specific symptoms (anemia, bone pain and recurrent infections) that are commonplace in the elderly population. However, early diagnosis is associated with less severe disease, including fewer patients presenting with acute renal injury, pathological fractures and severe anemia. Since 2006, the serum free light chain test Freelite® has been included alongside standard laboratory tests (serum and urine protein electrophoresis, and serum and urine immunofixation) as an aid in the identification of monoclonal proteins, which are a cornerstone for the diagnosis of Multiple Myeloma. The serum free light chain assay recognizes the light chain component of the immunoglobulin in its free form with high sensitivity. Other assays that measure light chains in the free and intact immunoglobulin forms are sensitive, but unfortunately, due to the nomenclature used, these assays (total light chains) are sometimes used in place of the free light chain assay. This paper reviews the available literature comparing the two assays and tries to clarify hypothetical limitations of the total assay to detect Multiple Myeloma. Furthermore, we elaborate on our study comparing the two assays used in 11 Light Chain Multiple Myeloma patients at presentation and 103 patients taken through the course of their disease. The aim of this article is to provide a clear discrimination between the two assays and to provide information to physicians and laboratory technicians so that they can utilize the International Myeloma Working Group guidelines. PMID:26969773

  10. Ferritin Diversity: Mechanistic Studies, Disease Implications, and Materials Chemistry

    NASA Astrophysics Data System (ADS)

    Hilton, Robert J.

    2011-07-01

    phosphate concentration increases, iron loading into ferritin decreases. (3) Materials chemistry studies: Anion sequestration during ferritin core reduction was studied. When the core of horse spleen ferritin is fully reduced using formamidine sulfinic acid, a variety of anions, including halides and oxoanions, cross the protein shell and enter the ferritin interior. Efforts have been made to use ferritin to control the concentration of anions for reactions. In addition, the native ferrihydrite mineral core of ferritin is a semi-conductor capable of catalyzing oxidation/reduction reactions. Light can photo-reduce AuCl4- to form gold nanoparticles (AuNPs) with ferritin as a photocatalyst. The mechanism of AuNP formation using ferritin as a photocatalyst was examined. From this work, we propose that the ferrihydrite core of ferritin photo-reduces; the mineral core dissolves into a soluble iron(II) mineral. The iron(II) then re-oxidizes, and a new mineral forms that appears to be the new photocatalyst, as the lag phase is significantly decreased with this new mineral form of ferritin.

  11. Specific dimerization of the light chains of human immunoglobulin.

    PubMed

    Stevenson, G T; Straus, D

    1968-07-01

    1. The light chains of human immunoglobulin were allowed to dimerize in vitro on removal of the dispersing agents acetic acid or urea. 2. On electrophoresis in polyacrylamide gel at pH8.8 the dimers yielded up to nine regularly spaced bands. This approximates to the number of electrophoretic components known to occur among the monomers. 3. Single electrophoretic components of the dimers were isolated from the gel, dissociated into monomers, and subjected as such to electrophoresis in urea-containing gels. Each gave two adjacent bands. 4. Similarly, after all the light chains as monomers had been subjected to electrophoresis in urea-containing gels, single electrophoretic components were isolated and allowed to dimerize. When examined now as dimers in the absence of urea, each component gave two adjacent bands. 5. These findings are explicable on the following basis. (a) The dimerization of the light chains is specific, at least inasmuch as it occurs between monomers of the same electrophoretic mobilities. (b) With the buffer constant, different light chains undergo different changes in net charge on being transferred from urea-containing to urea-free solution; in this way two different chains of the same initial charge can acquire a charge difference of 1. 6. Experiments with Bence-Jones proteins and other homogeneous light chains gave results substantiating the conclusions (a) and (b). PMID:4174431

  12. The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Geiser, Dawn L.; Zhou, Guoli; Mayo, Jonathan J.; Winzerling, Joy J.

    2012-01-01

    Secreted ferritin is the major iron storage and transport protein in insects. Here we characterize the message and protein expression profiles of yellow fever mosquito (Aedes aegypti) ferritin heavy chain homologue (HCH) and light chain homologue (LCH) subunits in response to iron and bacterial challenge. In vivo experiments demonstrated tissue specific regulation of HCH and LCH expression over time post-blood meal (PBM). Transcriptional regulation of HCH and LCH was treatment specific, with differences in regulation for naïve versus mosquitoes challenged with heat-killed bacteria (HKB). Translational regulation by iron regulatory protein (IRP) binding activity for the iron responsive element (IRE) was tissue specific and time-dependent PBM. However, mosquitoes challenged with HKB showed little change in IRP/IRE binding activity compared to naïve animals. The changes in ferritin regulation and expression in vivo were confirmed with in vitro studies. We challenged mosquitoes with HKB followed by a blood meal to determine the effects on ferritin expression, and demonstrate a synergistic, time-dependent, regulation of expression for HCH and LCH. PMID:23956079

  13. Myosin light chain genes in the turkey (Meleagris gallopavo).

    PubMed

    Chaves, L D; Ostroski, B J; Reed, K M

    2003-01-01

    Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth muscle isoform of myosin light chain (MYL6). The DNA and predicted amino acid sequences of both light chain genes were compared to that of the chicken. Based on the cDNA sequence, oligonucleotide primers were designed to amplify genomic DNA from six of the seven introns of the MYL1 gene. Approximately 5 kb of DNA was sequenced (introns and 3' UTR) and evaluated for the presence of single nucleotide polymorphisms (SNPs). SNPs were verified by sequencing common intron regions from multiple individuals and three polymorphisms were used to genotype pedigreed families. MYL1 is assigned to a turkey linkage group that corresponds to a region of chicken chromosome 7 (GGA7). The results of this study provide genomic reagents for comparative studies of avian muscle components and muscle biology.

  14. Chronic myopathy due to immunoglobulin light chain amyloidosis

    PubMed Central

    Manoli, Irini; Kwan, Justin Y.; Wang, Qian; Rushing, Elisabeth J.; Tsokos, Maria; Arai, Andrew E.; Burch, Warner M.; Dispenzieri, Angela; McPherron, Alexandra C.; Gahl, William A.

    2013-01-01

    Amyloid myopathy associated with a plasma cell dyscrasia is a rare cause of muscle hypertrophy. It can be a challenging diagnosis, since pathological findings are often elusive. In addition, the mechanism by which immunoglobulin light-chain deposition stimulates muscle overgrowth remains poorly understood. We present a 53–year old female with a 10-year history of progressive generalized muscle overgrowth. Congo-red staining and immunohistochemistry revealed perivascular lambda light chain amyloid deposits, apparent only in a second muscle biopsy. The numbers of central nuclei and satellite cells were increased, suggesting enhanced muscle progenitor cell formation. Despite the chronicity of the light chain disease, the patient showed complete resolution of hematologic findings and significant improvement of her muscle symptoms following autologous bone marrow transplantation. This case highlights the importance of early diagnosis and therapy for this treatable cause of a chronic myopathy with muscle hypertrophy. PMID:23465863

  15. Targeted disruption of the porcine immunoglobulin kappa light chain locus.

    PubMed

    Ramsoondar, J; Mendicino, M; Phelps, C; Vaught, T; Ball, S; Monahan, J; Chen, S; Dandro, A; Boone, J; Jobst, P; Vance, A; Wertz, N; Polejaeva, I; Butler, J; Dai, Y; Ayares, D; Wells, K

    2011-06-01

    Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (-/-) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ -/- pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.

  16. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity?

    PubMed

    Pelanda, Roberta

    2014-04-01

    Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.

  17. Influence of Altered Transcription on the Translational Control of Human Ferritin Expression

    NASA Astrophysics Data System (ADS)

    Rouault, Tracey A.; Hentze, Matthias W.; Dancis, Andrew; Caughman, Wright; Harford, Joe B.; Klausner, Richard D.

    1987-09-01

    In this paper, we examine the response of a translational regulatory mechanism when changes in mRNA levels are induced. The gene that encodes the human ferritin heavy chain has been transfected into mouse fibroblasts. Stable transformants that express the human ferritin heavy chain have been isolated. This protein assembles into ferritin polymers and can co-assemble with host mouse ferritin. Biosynthetic rates of the expressed human ferritin varied over a wide range in response to perturbations in iron supply, but total and cytoplasmic messenger RNA levels remained unchanged. When changes in ferritin mRNA levels were induced by treatment with sodium butyrate, proportional changes in the biosynthetic rates of ferritin were observed, but the capacity for modulating biosynthesis in response to alterations in iron availability was preserved. These findings suggest that the final protein biosynthetic rate of a translationally regulated gene depends on both translational regulatory signals and underlying transcription rates.

  18. The immunoglobulin light chain locus of the turkey, Meleagris gallopavo.

    PubMed

    Bao, Yonghua; Wu, Sun; Zang, Yunlong; Wang, Hui; Song, Xiangfeng; Xu, Chunyang; Xie, Bohong; Guo, Yongchen

    2012-06-15

    To date, most jawed vertebrate species encode more than one immunoglobulin light (IgL) chain isotypes. It has been shown that several bird species (chickens, white Pekin or domestic duck, and zebra finches) exclusively express lambda isotype. We analyze here the genomic organization of another bird species turkey IgL genes based on the recently released genome data. The turkey IgL locus located on chromosome 17 spans approximately 75.2kb and contains a single functional V(λ) gene, twenty V(λ) pseudogenes, and a single functional J(λ)-C(λ) block. These data suggest that the genomic organization of bird IgL chain genes seems to be conserved. Ten cDNA clones from turkey Igλ chain containing almost full-length V(λ), J(λ) and C(λ) segments were acquired. The comparison of V(λ) cDNA sequences to all the germline V(λ) segments suggests that turkey species may be generating IgL chain diversity by gene conversion and somatic hypermutation like the chicken. This study provides insights into the immunoglobulin light chain genes in another bird species.

  19. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  20. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite™) assays for diagnosing and monitoring monoclonal gammopathies.

    PubMed

    Kraj, Maria

    2014-01-01

    Immunofixation (IFE) is a standard method for detecting monoclonal immunoglobulins and characterizing its isotype. Recently clonality can also be determined by using immunoglobulin (Ig) heavy chain/light chain immunoassays - HLC, HevyliteTM. HLC separately measures in pairs light chain types of each intact Ig class generating ratios of monoclonal Ig/uninvolved polyclonal Ig concentrations. Studies have shown that HLC and IFE are complementary methods. HLC assays quantify monoclonal proteins and identify monoclonality. It is possible to predict prognosis in multiple myeloma and to monitor response to treatment using HLC ratio. HLC ratio may serve as a parameter for myeloma induced immunoparesis and serve as a new marker for validating remission depth and relapse probabilities.

  1. Ferritin as a reporter gene for MRI: chronic liver over expression of H-ferritin during dietary iron supplementation and aging.

    PubMed

    Ziv, Keren; Meir, Gila; Harmelin, Alon; Shimoni, Eyal; Klein, Eugenia; Neeman, Michal

    2010-06-01

    The iron storage protein, ferritin, provides an important endogenous MRI contrast that can be used to determine the level of tissue iron. In recent years the impact of modulating ferritin expression on MRI contrast and relaxation rates was evaluated by several groups, using genetically modified cells, viral gene transfer and transgenic animals. This paper reports the follow-up of transgenic mice that chronically over-expressed the heavy chain of ferritin (h-ferritin) in liver hepatocytes (liver-hfer mice) over a period of 2 years, with the aim of investigating the long-term effects of elevated level of h-ferritin on MR signal and on the well-being of the mice. Analysis revealed that aging liver-hfer mice, exposed to chronic elevated expression of h-ferritin, have increased R(2) values compared to WT. As expected for ferritin, R(2) difference was strongly enhanced at high magnetic field. Histological analysis of these mice did not reveal liver changes with prolonged over expression of ferritin, and no differences could be detected in other organs. Furthermore, dietary iron supplementation significantly affected MRI contrast, without affecting animal wellbeing, for both wildtype and ferritin over expressing transgenic mice. These results suggest the safety of ferritin over-expression, and support the use of h-ferritin as a reporter gene for MRI.

  2. Enrichment and characterization of ferritin for nanomaterial applications.

    PubMed

    Ghirlando, Rodolfo; Mutskova, Radina; Schwartz, Chad

    2016-01-29

    Ferritin is a ubiquitous iron storage protein utilized as a nanomaterial for labeling biomolecules and nanoparticle construction. Commercially available preparations of horse spleen ferritin, widely used as a starting material, contain a distribution of ferritins with different iron loads. We describe a detailed approach to the enrichment of differentially loaded ferritin molecules by common biophysical techniques such as size exclusion chromatography and preparative ultracentrifugation, and characterize these preparations by dynamic light scattering, and analytical ultracentrifugation. We demonstrate a combination of methods to standardize an approach for determining the chemical load of nearly any particle, including nanoparticles and metal colloids. Purification and characterization of iron content in monodisperse ferritin species is particularly critical for several applications in nanomaterial science.

  3. Enrichment and characterization of ferritin for nanomaterial applications

    NASA Astrophysics Data System (ADS)

    Ghirlando, Rodolfo; Mutskova, Radina; Schwartz, Chad

    2016-01-01

    Ferritin is a ubiquitous iron storage protein utilized as a nanomaterial for labeling biomolecules and nanoparticle construction. Commercially available preparations of horse spleen ferritin, widely used as a starting material, contain a distribution of ferritins with different iron loads. We describe a detailed approach to the enrichment of differentially loaded ferritin molecules by common biophysical techniques such as size exclusion chromatography and preparative ultracentrifugation, and characterize these preparations by dynamic light scattering, and analytical ultracentrifugation. We demonstrate a combination of methods to standardize an approach for determining the chemical load of nearly any particle, including nanoparticles and metal colloids. Purification and characterization of iron content in monodisperse ferritin species is particularly critical for several applications in nanomaterial science.

  4. Serologically defined V region subgroups of human lambda light chains.

    PubMed

    Solomon, A; Weiss, D T

    1987-08-01

    The availability of numerous antisera prepared against lambda-type Bence Jones proteins and lambda chains of known amino acid sequence has led to the differentiation and classification of human lambda light chains into one of five V lambda subgroups. The five serologically defined subgroups, V lambda I, V lambda II, V lambda III, V lambda IV, and V lambda VI, correspond to the chemical classification that is based on sequence homologies in the first framework region (FR1). Proteins designated by sequence as lambda V react with specific anti-lambda II antisera and are thus included in the V lambda II subgroup classification. The isotypic nature of the five V lambda subgroups was evidenced through analyses of lambda-type light chains that were isolated from the IgG of normal individuals. Based on analyses of 116 Bence Jones proteins, the frequency of distribution of the lambda I, lambda II/V, lambda III, lambda IV, and lambda VI proteins in the normal lambda chain population is estimated to be 27%, 37%, 23%, 3%, and 10%, respectively. This distribution of V lambda subgroups was comparable to that found among 82 monoclonal Ig lambda proteins. Considerable V lambda intragroup antigenic heterogeneity was also apparent. At least two sub-subgroups were identified among each of the five major V lambda subgroups, implying the existence of multiple genes in the human V lambda genome. The V lambda classification of 54 Ig lambda proteins obtained from patients with primary or multiple myeloma-associated amyloidosis substantiated the preferential association of lambda VI light chains with amyloidosis AL and the predominance of the normally rare V lambda VI subgroup in this disease. PMID:3110284

  5. Structural and Thermodynamic Characterization of a Cytoplasmic Dynein Light Chain-Intermediate Chain Complex

    SciTech Connect

    Williams,J.; Roulhac, P.; Roy, A.; Vallee, R.; Fitzgerald, M.; Hendrickson, W.

    2007-01-01

    Cytoplasmic dynein is a microtubule-based motor protein complex that plays important roles in a wide range of fundamental cellular processes, including vesicular transport, mitosis, and cell migration. A single major form of cytoplasmic dynein associates with membranous organelles, mitotic kinetochores, the mitotic and migratory cell cortex, centrosomes, and mRNA complexes. The ability of cytoplasmic dynein to recognize such diverse forms of cargo is thought to be associated with its several accessory subunits, which reside at the base of the molecule. The dynein light chains (LCs) LC8 and TcTex1 form a subcomplex with dynein intermediate chains, and they also interact with numerous protein and ribonucleoprotein partners. This observation has led to the hypothesis that these subunits serve to tether cargo to the dynein motor. Here, we present the structure and a thermodynamic analysis of a complex of LC8 and TcTex1 associated with their intermediate chain scaffold. The intermediate chains effectively block the major putative cargo binding sites within the light chains. These data suggest that, in the dynein complex, the LCs do not bind cargo, in apparent disagreement with a role for LCs in dynein cargo binding interactions.

  6. Tertiary structure of human {Lambda}6 light chains.

    SciTech Connect

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center /Graduate School of Medicine

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues that distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased protein

  7. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    SciTech Connect

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  8. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; et al

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  9. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.

    PubMed

    Wu, Fan; Guo, Xiaohua; Xu, Jing; Wang, Weiju; Li, Bingling; Huang, Qiaobing; Su, Lei; Xu, Qiulin

    2016-03-01

    We have previously reported that advanced glycation end products activated Rho-associated protein kinase and p38 mitogen-activated protein kinase, causing endothelial hyperpermeability. However, the mechanisms involved were not fully clarified. Here, we explored the role of myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. Myosin light chain phosphorylation significantly increased by advanced glycation end products in endothelial cells in a time- and dose-dependent manner, indicating that myosin light chain phosphorylation is involved in the advanced glycation end product pathway. Advanced glycation end products also induced myosin phosphatase-targeting subunit 1 phosphorylation, and small interfering RNA knockdown of the receptor for advanced glycation end products, or blocking myosin light chain kinase with its inhibitor, ML-7, or small interfering RNA abated advanced glycation end product-induced myosin light chain phosphorylation. Advanced glycation end product-induced F-actin rearrangement and endothelial hyperpermeability were also diminished by inhibition of receptor for advanced glycation end product or myosin light chain kinase signalling. Moreover, inhibiting myosin light chain kinase with ML-7 or blocking receptor for advanced glycation end product with its neutralizing antibody attenuated advanced glycation end product-induced microvascular hyperpermeability. Our findings suggest a novel role for myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability.

  10. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  11. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism.

    PubMed

    Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

    2014-10-10

    Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.

  12. Photoacoustic molecular imaging of ferritin as a reporter gene

    NASA Astrophysics Data System (ADS)

    Ha, S.; Carson, A.; Kim, K.

    2012-02-01

    Spectral analysis of photoacoustic (PA) molecular imaging (PMI) of ferritin expressed in human melanoma cells (SK-24) was performed in vitro. Ferritin is a ubiquitously expressed protein which stores iron that can be detected by PA imaging, allowing ferritin to act as a reporter gene. To over-express ferritin, SK-24 cells were co-transfected with plasmid expressing Heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using LipofectamineTM 2000. Non-transfected SK-24 cells served as a negative control. Fluorescent imaging of EGFP confirmed transfection and transgene expression in co-transfected cells. To detect iron accumulation in SK-24 cells, a focused high frequency ultrasonic transducer (60 MHz, f/1.5), synchronized to a pulsed laser (<20mJ/cm2), was used to scan the PA signal from 680 nm to 950 nm (in 10 nm increments) from the surface of the 6-well culturing plate. PA signal intensity from H-FT transfected SK-24 cells was not different from that of non-transfected SK-24 cells at wavelengths less than 770 nm, but was over 4 dB higher than non-transfected SK-24 cells at 850 ~ 950 nm. Fluorescent microscopy indicates significant accumulation of ferritin in H-FT transfected SK-24 cells, with little ferritin expression in non-transfected SK-24 cells. The PA spectral analysis clearly differentiates transfected SK-24 cells from nontransfected SK-24 cells with significantly increased iron signal at 850 ~ 950 nm, and these increased signals were associated with transfection of H-FT plasmid. As such, the feasibility of ferritin as a reporter gene for PMI has been demonstrated in vitro. The use of ferritin as a reporter gene represents a new concept for PA imaging, and may provide various opportunities for molecular imaging and basic science research.

  13. Risk factors for venous thromboembolism in immunoglobulin light chain amyloidosis

    PubMed Central

    Bever, Katherine M.; Masha, Luke I.; Sun, Fangui; Stern, Lauren; Havasi, Andrea; Berk, John L.; Sanchorawala, Vaishali; Seldin, David C.; Sloan, J. Mark

    2016-01-01

    Patients with immunoglobulin light chain amyloidosis are at risk for both thrombotic and bleeding complications. While the hemostatic defects have been extensively studied, less is known about thrombotic complications in this disease. This retrospective study examined the frequency of venous thromboembolism in 929 patients with immunoglobulin light chain amyloidosis presenting to a single referral center, correlated risk of venous thromboembolism with clinical and laboratory factors, and examined complications of anticoagulation in this population. Sixty-five patients (7%) were documented as having at least one venous thromboembolic event. Eighty percent of these patients had events within one year prior to or following diagnosis. Lower serum albumin was associated with increased risk of VTE, with a hazard ratio of 4.30 (CI 1.60–11.55; P=0.0038) for serum albumin less than 3 g/dL compared to serum albumin greater than 4 g/dL. Severe bleeding complications were observed in 5 out of 57 patients with venous thromboembolism undergoing treatment with anticoagulation. Prospective investigation should be undertaken to better risk stratify these patients and to determine the optimal strategies for prophylaxis against and management of venous thromboembolism. PMID:26452981

  14. Structure and diversity of Mexican axolotl lambda light chains.

    PubMed

    André, S; Guillet, F; Charlemagne, J; Fellah, J S

    2000-11-01

    We report here the structure of cDNA clones encoding axolotl light chains of the lambda type. A single IGLC gene and eight different potential IGLV genes belonging to four different families were detected. The axolotl Cgamma domain has several residues or stretches of residues that are typically conserved in mammalian, avian, and Xenopus Cgamma, but the KATLVCL stretch, which is well conserved in the Cgamma and T-cell receptor Cbeta domains of many vertebrate species, is not well conserved. All axolotl Vgamma sequences closely match several human and Xenopus Vgamma-like sequences and, although the axolotl Cgamma and Vgamma sequences are very like their tetrapod homologues, they are not closely related to nontetrapod L chains. Southern blot experiments suggested the presence of a single IGLC gene and of a limited number of IGLV genes, and analysis of IGLV-J junctions clearly indicated that at least three of the IGLJ segments can associate with IGLV1, IGLV2, or IGLV3 subgroup genes. The overall diversity of the axolotl Vgamma CDR3 junctions seems to be of the same order as that of mammalian Vgamma chains. However, a single IGLV4 segment was found among the 45 cDNAs analyzed. This suggests that the axolotl IGL locus may have a canonical tandem structure, like the mammalian IGK or IGH loci. Immunofluorescence, immunoblotting, and microsequencing experiments strongly suggested that most, if not all L chains are of the gamma type. This may explain in part the poor humoral response of the axolotl. PMID:11132150

  15. H-ferritin and CD68(+) /H-ferritin(+) monocytes/macrophages are increased in the skin of adult-onset Still's disease patients and correlate with the multi-visceral involvement of the disease.

    PubMed

    Ruscitti, P; Cipriani, P; Ciccia, F; Di Benedetto, P; Liakouli, V; Berardicurti, O; Carubbi, F; Guggino, G; Di Bartolomeo, S; Triolo, G; Giacomelli, R

    2016-10-01

    Adult-onset Still's disease (AOSD) patients may show an evanescent salmon-pink erythema appearing during febrile attacks and reducing without fever. Some patients may experience this eruption for many weeks. During AOSD, exceptionally high serum levels of ferritin may be observed; it is an iron storage protein composed of 24 subunits, heavy (H) subunits and light (L) subunits. The ferritin enriched in L subunits (L-ferritin) and the ferritin enriched in H subunits (H-ferritin) may be observed in different tissues. In this work, we aimed to investigate the skin expression of both H-and L-ferritin and the number of macrophages expressing these molecules from AOSD patients with persistent cutaneous lesions. We observed an increased expression of H-ferritin in the skin, associated with an infiltrate in the biopsies obtained from persistent cutaneous lesions of AOSD patients. Furthermore, a positive correlation between H-ferritin skin levels as well as the number of CD68(+) /H-ferritin(+) cells and the multi-visceral involvement of the disease was observed. Our data showed an increased expression of H-ferritin in the skin of AOSD patients, associated with a strong infiltrate of CD68(+) /H-ferritin(+) cells. Furthermore, a correlation between the levels of H-ferritin as well as of the number of CD68(+) /H-ferritin(+) cells and the multi-visceral involvement of the disease was observed. PMID:27317930

  16. A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata).

    PubMed

    Zhang, Yong; Meng, Qingxiong; Jiang, Tiemin; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2003-05-01

    Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which shares high similarity with snail soma ferritin and the H-chains of mammalian ferritins. Oyster ferritin mRNA shows the highest level of expression in the mantle, the organ for shell formation. In situ hybridization analysis revealed that oyster ferritin mRNA is expressed at the highest level at the mantle fold, a region essential for metal accumulation and contributes to metal incorporation into the shell. Taken together, these results suggest that ferritin is involved in shell formation by iron storage. The identification and characterization of oyster ferritin also helps to further understand the structural and functional properties of molluscan ferritins.

  17. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens.

    PubMed

    Schusser, Benjamin; Collarini, Ellen J; Pedersen, Darlene; Yi, Henry; Ching, Kathryn; Izquierdo, Shelley; Thoma, Theresa; Lettmann, Sarah; Kaspers, Bernd; Etches, Robert J; van de Lavoir, Marie-Cecile; Harriman, William; Leighton, Philip A

    2016-09-01

    Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.

  18. Cargo selection by specific kinesin light chain 1 isoforms

    PubMed Central

    Woźniak, Marcin J; Allan, Victoria J

    2006-01-01

    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures. PMID:17093494

  19. Natural history and outcome of light chain deposition disease

    PubMed Central

    Sayed, Rabya H.; Wechalekar, Ashutosh D.; Gilbertson, Janet A.; Bass, Paul; Mahmood, Shameem; Sachchithanantham, Sajitha; Fontana, Marianna; Patel, Ketna; Whelan, Carol J.; Lachmann, Helen J.; Hawkins, Philip N.

    2015-01-01

    Light chain deposition disease (LCDD) is characterized by the deposition of monotypic immunoglobulin light chains in the kidney, resulting in renal dysfunction. Fifty-three patients with biopsy-proven LCDD were prospectively followed at the UK National Amyloidosis Center. Median age at diagnosis was 56 years, and patients were followed for a median of 6.2 years (range, 1.1-14.0 years). Median renal survival from diagnosis by Kaplan-Meier analysis was 5.4 years, and median estimated patient survival was 14.0 years; 64% of patients were alive at censor. Sixty-two percent of patients required dialysis, and median survival from commencement of dialysis was 5.2 years. There was a strong association between hematologic response to chemotherapy and renal outcome, with a mean improvement in glomerular filtration rate (GFR) of 6.1 mL/min/year among those achieving a complete or very good partial hematologic response (VGPR) with chemotherapy, most of whom remained dialysis independent, compared with a mean GFR loss of 6.5 mL/min/year among those achieving only a partial or no hematologic response (P < .009), most of whom developed end-stage renal disease (ESRD; P = .005). Seven patients received a renal transplant, and among those whose underlying clonal disorder was in sustained remission, there was no recurrence of LCDD up to 9.7 years later. This study highlights the need to diagnose and treat LCDD early and to target at least a hematologic VGPR with chemotherapy, even among patients with advanced renal dysfunction, to delay progression to ESRD and prevent recurrence of LCDD in the renal allografts of those who subsequently receive a kidney transplant. PMID:26392598

  20. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  1. Variable domain structure of {kappa}IV human light chain len : high homology to the murine light chain McPC603.

    SciTech Connect

    Huang, D.-B.; Chang, C.-H.; Ainsworth, C.; Johnson, G.; Solomon, A.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center

    1997-12-01

    Antibody light chains of the {kappa} subgroup are the predominant light chain component in human immune responses and are used almost exclusively in the antibody repertoire of mice. Human {kappa} light chains comprise four subgroups. To date, all crystallographic studies of human {kappa} light chains were carried out on proteins of the {kappa}I subgroup. The light chain produced by multiple myeloma patient Len, was of the {kappa}IV subgroup, it differed by only one residue from the germ-line gene encoded protein. The variable domain fragment of the light chain was crystallized from ammonium sulfate in space group C222{sub 1}. The crystal structure was determined by molecular replacement and refined at 1.95 Angstrom resolution to an R-factor of 0.15. Protein Len has six additional residues in its CDR1 segment compared to the {kappa}I proteins previously characterized. The {kappa}IV variable domain. Len, differs in only 23 of 113 residues from murine {kappa} light chain McPC603. The RMS deviation upon superimposing their {alpha}-carbons was 0.69 Angstrom. The CDR1 segment of the human and murine variable domains have the same length and conformation although their amino acid sequences differ in 5 out of 17 residues. Structural features were identified that could account for the significantly higher stability of the human {kappa}IV protein relative to its murine counterpart. This human {kappa}IV light chain structure is the closest human homolog to a murine light chain and can be expected to facilitate detailed structural comparisons necessary for effective humanization of murine antibodies.

  2. INVERTEBRATE FERRITIN: OCCURRENCE IN MOLLUSCA.

    PubMed

    TOWE, K M; LOWENSTAM, H A; NESSON, M H

    1963-10-01

    Ferritin, in both crystalline and paracrystalline forms, occurs in the columnar epithelial cells of the dorsal wall of the radula of the marine chiton Cryptochiton stelleri, order, Polyplacophora. The ferritin occurs in association with the magnetite of the radular teeth. It has been isolated and crystallized in the presence of cadmium sulfate.

  3. Multilayer Ferritin Array for Bionanobattery

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor)

    2009-01-01

    A thin-film electrode for a bio-nanobattery is produced by consecutively depositing arrays of a ferritin protein on a substrate, employing a spin self-assembly procedure. By this procedure, a first ferritin layer is first formed on the substrate, followed by building a second, oppositely-charged ferritin layer on the top of the first ferritin layer to form a bilayer structure. Oppositely-charged ferritin layers are subsequently deposited on top of each other until a desired number of bilayer structures is produced. An ordered, uniform, stable and robust, thin-film electrode material of enhanced packing density is presented, which provides optimal charge density for the bio-nanobattery.

  4. The morphologic spectrum and clinical significance of light chain proximal tubulopathy with and without crystal formation.

    PubMed

    Larsen, Christopher P; Bell, Jane M; Harris, Alexis A; Messias, Nidia C; Wang, Yihan H; Walker, Patrick D

    2011-11-01

    The renal diseases most frequently associated with myeloma include amyloidosis, monoclonal immunoglobulin deposition disease, and cast nephropathy. Less frequently reported is light chain proximal tubulopathy, a disease characterized by κ-restricted crystal deposits in the proximal tubule cytoplasm. Light chain proximal tubulopathy without crystal deposition is only loosely related to the typical light chain proximal tubulopathy, and little is known about this entity. A search was performed of the 10 081 native kidney biopsy samples processed by our laboratory over the past 2 years for cases that had light chain restriction limited to the proximal tubule cytoplasm. A total of 10 cases of light chain proximal tubulopathy without crystal deposition were found representing 3.1% of light chain-related diseases. Nine of these 10 showed λ-light chain restriction. Only three cases of light chain proximal tubulopathy with crystals were found accounting for 0.9% of light chain-related diseases. Two of these three were κ subtype. Plasma cell dyscrasia was unsuspected in seven of the 10 patients with light chain proximal tubulopathy without crystals at the time of renal biopsy. After the biopsy was reported, follow-up was available on 9/10 patients with 9/9 showing a plasma cell dyscrasia including 8/9 with multiple myeloma. We found that light chain proximal tubulopathy without crystal formation, despite being rarely described in the literature, is over three times more common than light chain proximal tubulopathy with crystal formation in our series. And given that it is often associated with previously unrecognized myeloma, it is a critically important diagnosis.

  5. Ferritin-Polymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies

    SciTech Connect

    Y Hu; D Samanta; S Parelkar; S Hong; Q Wang; T Russell; T Emrick

    2011-12-31

    Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylene oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.

  6. Light-chain binding sites on renal brush-border membranes

    SciTech Connect

    Batuman, V.; Dreisbach, A.W.; Cyran, J.

    1990-05-01

    Immunoglobulin light chains are low-molecular-weight proteins filtered at the renal glomerulus and catabolized within the proximal tubular epithelium. Excessive production and urinary excretion of light chains are associated with renal dysfunction. They also interfere with proximal renal tubule epithelial functions in vitro. We studied the binding of 125I-labeled kappa- and lambda-light chains, obtained from the urine of multiple myeloma patients, to rat and human renal proximal tubular brush-border membranes. Light-chain binding to brush borders was also demonstrated immunologically by flow cytometry. Computer analysis of binding data was consistent with presence of a single class of low-affinity, high-capacity, non-cooperative binding sites with relative selectivity for light chains on both rat and human kidney brush-border membranes. The dissociation constants of light chains ranged from 1.6 X 10(-5) to 1.2 X 10(-4) M, and maximum binding capacity ranged from 4.7 +/- 1.3 X 10(-8) to 8.0 +/- 0.9 X 10(-8) (SD) mol/mg protein at 25 degrees C. Kappa- and lambda-light chains competed with each other for binding with comparable affinity constants. Competition by albumin and beta-lactoglobulin, however, was much weaker, suggesting relative site selectivity for light chains. These binding sites probably function as endocytotic receptors for light chains and possibly other low-molecular-weight proteins.

  7. A second immunoglobulin light chain isotype in the rainbow trout.

    PubMed

    Partula, S; Schwager, J; Timmusk, S; Pilström, L; Charlemagne, J

    1996-01-01

    A novel immunoglobulin (Ig) light chain isotype, termed IgL2, has been isolated from trout lymphoid tissues both by reverse transcription - polymerase chain reaction (PCR) and screening of cDNA libraries. The CL domain of the new isotype shares only 29% residues with a recently cloned trout IgL isotype, termed IgL1, which has some similarities to Ckappa and Clambda isotype domains of several vertebrate species. Using anchored PCR, a VL element rearranged to CL2 was isolated. It is a member of a new VL family (VL2) of which four members were sequenced. These differ in the sequence of CDR1 and CDR2 but are remarkably similar in CDR3, i. e., at the junction between VL and JL segments. VL elements are rearranged to novel JL elements which differ from those described for VL1-CL1 rearrangements. Two cDNA clones contained JL-CL2 segments but no VL segments. The JL segments were preceded by typical rearrangements signal sequences [RSS, nonamer-23 base pair (bp) spacer-heptamer]. Further upstream of RSS were located two to three near identical 53 bp repeats, each of which included a 16 bp sequence similar to KI and KII sequences located at similar places in human and mouse Jk1 genes. These sequences are believed to act as binding sites for the protein KLP, which could be a transcriptional factor involved in the synthesis of germline Jk transcripts. Their phylogenic conservation in vertebrates suggests that they have an important role in B-cell differentiation. Remarkably, an RNA species of about 0.7 kilobase is the predominant IgL mRNA in trout spleen and coincides in size with JLCL2 transcripts. Genomic DNA blot analysis indicates that the trout L2 locus has a cluster-like organization similar to the trout L1 locus and the IgL locus of several teleost fish. A phylogenic analysis of VL2 and CL2 corroborates their low similarity to other vertebrate IgL chains and suggests an ancient diversification of the IgL locus. PMID:8881036

  8. Immunoglobulin K light chain deficiency: A rare, but probably underestimated, humoral immune defect.

    PubMed

    Sala, Pierguido; Colatutto, Antonio; Fabbro, Dora; Mariuzzi, Laura; Marzinotto, Stefania; Toffoletto, Barbara; Perosa, Anna R; Damante, Giuseppe

    2016-04-01

    Human immunoglobulin molecules are generated by a pair of identical heavy chains, which identify the immunoglobulin class, and a pair of identical light chains, Kappa or Lambda alternatively, which characterize the immunoglobulin type. In normal conditions, Kappa light chains represent approximately 2/3 of the light chains of total immunoglobulins, both circulating and lymphocyte surface bound. Very few cases of immunoglobulin Kappa or Lambda light chain defects have been reported. Furthermore, the genetic basis of this defect has been extensively explored only in a single case. We report a case of a patient suffering of serious recurrent bacterial infections, which was caused by a very rare form of immunoglobulin disorder, consisting of a pure defect of Kappa light chain. We evaluated major serum immunoglobulin concentrations, as well as total and free Kappa and Lambda light chain concentrations. Lymphocyte phenotyping was also performed and finally we tested the Kappa chain VJ rearrangement as well as the constant Kappa region sequence. Studies performed on VJ rearrangement showed a polyclonal genetic arrangement, whereas the gene sequencing for the constant region of Kappa chain showed a homozygous T to G substitution at the position 1288 (rs200765148). This mutation causes a substitution from Cys to Gly in the protein sequence and, therefore, determines the abnormal folding of the constant region of Kappa chain. We suggest that this defect could lead to an effective reduction of the variability of total antibody repertoire and a consequent defect of an apparently normal immunoglobulin response to common antigens.

  9. Recurrent Light Chain Proximal Tubulopathy in a Kidney Allograft.

    PubMed

    Angioi, Andrea; Amer, Hatem; Fervenza, Fernando C; Sethi, Sanjeev

    2016-09-01

    We describe a rare case of light chain proximal tubulopathy developing in a kidney transplant 12 months following transplantation. The patient was known to have a monoclonal gammopathy of undetermined significance (MGUS) for more than 15 years. A kidney biopsy done to determine the cause of decline in kidney transplant function showed light chain proximal tubulopathy characterized by numerous eosinophilic and fuchsinophilic granules in proximal tubular epithelial cells, which stained for κ light chains on pronase-based immunofluorescence studies. Electron microscopy confirmed the diagnosis and showed numerous amorphous and geometrically shaped inclusions in proximal tubular epithelial cells. Evaluation of free light chains revealed markedly elevated κ light chains and bone marrow biopsy showed 5% to 10% κ light chain-restricted plasma cells. Retrospective evaluation of the native kidney biopsy performed 15 years earlier also showed numerous fuchsinophilic granules in proximal tubules that stained brightly for κ light chains on pronase-based immunofluorescence studies. The patient was treated with a regimen of bortezomib and dexamethasone with good partial hematologic response and improvement of kidney function. To summarize, we describe a case of recurrent light chain proximal tubulopathy in the transplant, which is an unusual but important cause of decreased kidney function in the setting of a monoclonal gammopathy. PMID:27321964

  10. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  11. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  12. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  13. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  14. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  15. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  16. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  17. The use of immunoglobulin light chain assays in the diagnosis of paraprotein-related kidney disease

    PubMed Central

    Yadav, Punit; Leung, Nelson; Sanders, Paul W.; Cockwell, Paul

    2016-01-01

    Kidney involvement is common in paraprotein-related diseases. A diversity of clinical presentations and histopathological features can occur secondary to tissue injury caused by precipitation or deposition of a clonal immunoglobulin, usually an immunoglobulin light chain. The paraprotein is either produced by multiple myeloma or by a clone of B-cell lineage that does not fulfill diagnostic criteria for multiple myeloma. The recent introduction of serum immunoglobulin free light chain assays, which accurately quantify both light chain isotypes to produce a ratio that indicates the presence or absence of a light chain paraprotein, is a major clinical development. However, as the interpretation of the assay can be challenging, the aim of this review is to clarify the role of serum and urinary light chain assays in the screening and diagnosis of paraprotein-related kidney disease. PMID:25296094

  18. Antigen nature and complexity influence human antibody light chain usage and specificity.

    PubMed

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.

  19. Antigen nature and complexity influence human antibody light chain usage and specificity.

    PubMed

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies. PMID:27113164

  20. Light chain editors of anti-DNA receptors in human B cells.

    PubMed

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André; Weigert, Martin

    2014-02-10

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.

  1. Involvement of myosin light-chain kinase in endothelial cell retraction

    SciTech Connect

    Wysolmerski, R.B.; Lagunoff, D. )

    1990-01-01

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

  2. Light and heavy chain deposition disease associated with CH1 deletion

    PubMed Central

    Cohen, Camille; El-Karoui, Khalil; Alyanakian, Marie-Alexandra; Noel, Laure-Hélène; Bridoux, Franck; Knebelmann, Bertrand

    2015-01-01

    Light and heavy chain deposition disease (LHCDD) is a rare complication of monoclonal gammopathy. In all documented cases, LHCDD is the association of deposits of a monoclonal light chain with a normal heavy chain, especially in the kidneys. We describe here a 78-year-old woman whose renal biopsy showed nodular glomerulosclerosis, initially diagnosed as diabetic nephropathy. Detailed kidney biopsy immunofluorescence study corrected the diagnosis to γ1-κ-LHCDD. Advanced immunoblot analysis showed deletion of CH1 in the both blood and kidney heavy chain. We report here, to our knowledge, the first case of γ1 LHCDD associated with a deletion of CH1. PMID:25815184

  3. mRNA regulation of cardiac iron transporters and ferritin subunits in a mouse model of iron overload.

    PubMed

    Brewer, Casey J; Wood, Ruth I; Wood, John C

    2014-12-01

    Iron cardiomyopathy is the leading cause of death in iron overload. Men have twice the mortality rate of women, though the cause is unknown. In hemojuvelin-knockout mice, a model of the disease, males load more cardiac iron than females. We postulated that sex differences in cardiac iron import cause differences in cardiac iron concentration. Reverse transcription polymerase chain reaction was used to measure mRNA of cardiac iron transporters in hemojuvelin-knockout mice. No sex differences were discovered among putative importers of nontransferrin-bound iron (L-type and T-type calcium channels, ZRT/IRT-like protein 14 zinc channels). Transferrin-bound iron transporters were also analyzed; these are controlled by the iron regulatory element/iron regulatory protein (IRE/IRP) system. There was a positive relationship between cardiac iron and ferroportin mRNA in both sexes, but it was significantly steeper in females (p < 0.05). Transferrin receptor 1 and divalent metal transporter 1 were more highly expressed in females than males (p < 0.01 and p < 0.0001, respectively), consistent with their lower cardiac iron levels, as predicted by IRE/IRP regulatory pathways. Light-chain ferritin showed a positive correlation with cardiac iron that was nearly identical in males and females (R(2) = 0.41, p < 0.01; R(2) = 0.56, p < 0.05, respectively), whereas heavy-chain ferritin was constitutively expressed in both sexes. This represents the first report of IRE/IRP regulatory pathways in the heart. Transcriptional regulation of ferroportin was suggested in both sexes, creating a potential mechanism for differential set points for iron export. Constitutive heavy-chain-ferritin expression suggests a logical limit to cardiac iron buffering capacity at levels known to produce heart failure in humans. PMID:25220979

  4. Evidence that ferritin is UV inducible in human skin: part of a putative defense mechanism.

    PubMed

    Applegate, L A; Scaletta, C; Panizzon, R; Frenk, E

    1998-07-01

    As ferritin has been identified as an important factor in antioxidant defense in cultured human skin cells we evaluated the presence of ferritin in human skin in vivo and the modifications following irradiation with UVA I, UVA I + II, and solar simulating light by immunohistochemical analysis. We report that the putative protective protein ferritin is regularly present in the basal layer of unirradiated epidermis in vivo and that the induction of ferritin was dependent on wavelength and cell type. Following UVA I radiation, ferritin increased both in epidermal and in dermal tissue. The same response occurred, although to a lesser extent, with UVA I + II but did not occur following solar simulating radiation. Quantitative analysis for ferritin in cultured keratinocytes and fibroblasts from seven individuals following each UV spectra were also assessed by enzyme-linked immunosorbent assay. The induction of ferritin by UV was highly dependent on the waveband and cell type. UVA I and UVA I + II radiations induced ferritin expression in dermal fibroblasts up to 260% and 200% over basal levels, respectively. Solar simulating radiation produced only a small induction of approximately 130% over basal ferritin levels in dermal fibroblasts. Ferritin increased in cultured fibroblasts as early as 3 h post-UVA with a peak at 6 h that remained until 48 h; there was no observable qualitative or quantitative increase seen in the undifferentiated cultured epidermal keratinocytes. Our findings indicate that the putative defense system of ferritin exists in human skin in vivo and its induction is dependent on UV spectra and cell type. The increased concentrations of this antioxidant in human skin following acute UV radiation could afford increased protection against subsequent oxidative stress.

  5. Reconstitution of heavy chain and light chain 1 in cardiac subfragment-1 from hyperthyroid and euthyroid rabbit hearts.

    PubMed

    Ueda, S; Yamaoki, K; Nagai, R; Yazaki, Y

    1983-01-01

    It is now established that cardiac myosin from hyperthyroid rabbit hearts (TXM) exhibits high Ca2+ ATPase activity. The high Ca2+ ATPase activity of TXM was completely retained in cardiac myosin subfragment-1 (S-1) (1.33 +/- 0.04 mumol Pi/mg per min; euthyroid, 0.51 +/- 0.04). Cardiac S-1 from hyperthyroid and euthyroid rabbits (TXS-1 and NS-1) had the same pattern in SDS-polyacrylamide gel electrophoresis. The possible influence of heavy and light chains of TXM on increasing the ATPase activity was examined by reconstitution in the S-1 preparation. Crosswise reconstitution was performed using cardiac S-1 heavy chain (90,000 daltons) and light chain 1 (LC1) (27,000 daltons) from hyperthyroid and euthyroid hearts. Reconstitution was verified by using radiolabeled LC1. More than 95% of S-1 was recovered with full ATPase activity. When TXS-1 was reconstituted with LC1 from euthyroid hearts, the reconstituted molecule retained high ATPase activity. On the other hand, NS-1 reconstituted with LC1 from hyperthyroid hearts failed to increase the ATPase activity. The ATPase activity of S-1 was determined by the source of the heavy chain. These results suggest that the high Ca2+ ATPase activity of cardiac myosin and S-1 from hyperthyroid animals arises from the molecular alteration of the heavy chain induced by thyroxine administration. PMID:6304826

  6. Adult Fanconi syndrome with monoclonal abnormality of immunoglobulin light chain

    PubMed Central

    Harrison, J. F.; Blainey, J. D.

    1967-01-01

    Two adult cases of the Fanconi syndrome are described, in each of which there was abnormal urinary excretion of immunoglobulin κ-chain. The significance of this finding is discussed in relation to the recognized association between multiple myeloma and the Fanconi syndrome. Images PMID:6016886

  7. Biased Immunoglobulin Light Chain Gene Usage in the Shark.

    PubMed

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-10-15

    This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.

  8. Clathrin light chains: arrays of protein motifs that regulate coated-vesicle dynamics.

    PubMed

    Brodsky, F M; Hill, B L; Acton, S L; Näthke, I; Wong, D H; Ponnambalam, S; Parham, P

    1991-06-01

    Polymerization of clathrin triskelions into clathrin coats and subsequent disassembly by the heat shock protein hsc70 control receptor-mediated pathways of intracellular transport. The clathrin light chains are major regulatory elements in these processes. These polypeptides consist of linear arrays of functional domains with distinctive sequence motifs. Comparison of unicellular and multicellular eukaryotes reveals differences in the numbers of clathrin light chains and in the functional domains they contain. PMID:1909824

  9. Characteristics of light chains of Chara myosin revealed by immunological investigation.

    PubMed

    Kakei, Toshihito; Sumiyoshi, Hiroki; Higashi-Fujime, Sugie

    2012-01-01

    Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca⁺⁺-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively.

  10. Serum-free light-chain assay: clinical utility and limitations.

    PubMed

    Bhole, Malini V; Sadler, Ross; Ramasamy, Karthik

    2014-09-01

    In the last decade, the introduction of the serum-free light-chain (sFLC) assay has been an important advance in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The immunoassay was developed to detect free light chains in serum by using anti-FLC antibodies which specifically recognised epitopes on light chains that were 'hidden' in intact immunoglobulins. Since its introduction in 2001, there have been several publications in the English language literature discussing the clinical utility as well as analytical limitations of the sFLC assay. These studies have highlighted both positive and negative aspects of the assay particularly with regard to its sensitivity and specificity and the technical challenges that can affect its performance. The contribution and significance of the sFLC assay in the management of light-chain myeloma, primary amyloid light-chain (AL) amyloidosis and non-secretory myeloma are well recognised and will be addressed in this review. The aim of this article is to also review the published literature with a view to providing a clear understanding of its utility and limitations in the diagnosis, prognosis and monitoring of plasma dyscrasias including intact immunoglobulin multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). The increasing interest in using this assay in other haematological conditions will also be briefly discussed. PMID:24489083

  11. Immunoglobulin light chain immunohistochemistry revisited, with emphasis on reactive follicular hyperplasia versus follicular lymphoma.

    PubMed

    Weiss, Lawrence M; Loera, Sofia; Bacchi, Carlos E

    2010-05-01

    The identification of monotypic light chains is an important adjunct to the diagnosis of B-cell lymphoma, yet to reliably perform it on formalin-fixed paraffin sections is often difficult. We have evaluated a new set of monoclonal antibodies to kappa and lambda light chains that are reactive in paraffin sections. In reactive lymphoid tissues, polytypic staining was noted in greater than 95% of cases, with strong staining of plasma cells, moderate staining of the follicular dendritic cell network, and weak staining of mantle zone cells. Strong staining of the appropriate light chain was seen in each of the 7 cases of multiple myeloma. In a series of 58 cases of B-cell lymphoma, correlation between the results of immunohistochemistry and flow cytometry was obtained in 36 cases (62%), including 32 cases (21 kappa and 11 lambda) in which a single light chain was expressed. Monotypic staining was also seen in 6 additional cases (10%) in which flow cytometry was negative. Thirty of 46 cases (65%) of follicular lymphoma showed monotypic light chain expression, in contrast to 64 of 67 cases (95%) of reactive lymphoid hyperplasia, which showed polytypic light chain expression. These antibodies may provide an effective adjunct to the diagnosis of B-cell lymphoma in routine diagnostic work.

  12. Serum-free light-chain assay: clinical utility and limitations.

    PubMed

    Bhole, Malini V; Sadler, Ross; Ramasamy, Karthik

    2014-09-01

    In the last decade, the introduction of the serum-free light-chain (sFLC) assay has been an important advance in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The immunoassay was developed to detect free light chains in serum by using anti-FLC antibodies which specifically recognised epitopes on light chains that were 'hidden' in intact immunoglobulins. Since its introduction in 2001, there have been several publications in the English language literature discussing the clinical utility as well as analytical limitations of the sFLC assay. These studies have highlighted both positive and negative aspects of the assay particularly with regard to its sensitivity and specificity and the technical challenges that can affect its performance. The contribution and significance of the sFLC assay in the management of light-chain myeloma, primary amyloid light-chain (AL) amyloidosis and non-secretory myeloma are well recognised and will be addressed in this review. The aim of this article is to also review the published literature with a view to providing a clear understanding of its utility and limitations in the diagnosis, prognosis and monitoring of plasma dyscrasias including intact immunoglobulin multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). The increasing interest in using this assay in other haematological conditions will also be briefly discussed.

  13. Plasmonic graded-chains as deep-subwavelength light concentrators

    NASA Astrophysics Data System (ADS)

    Esteves-López, Natalia; Pastawski, Horacio M.; Bustos-Marún, Raúl A.

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  14. Plasmonic graded-chains as deep-subwavelength light concentrators.

    PubMed

    Esteves-López, Natalia; Pastawski, Horacio M; Bustos-Marún, Raúl A

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency. PMID:25740978

  15. Light Chain Escape in 3 Cases: Evidence of Intraclonal Heterogeneity in Multiple Myeloma from a Single Institution in Poland.

    PubMed

    Kraj, Maria; Kruk, Barbara; Endean, Kelly; Warzocha, Krzysztof; Budziszewska, Katarzyna; Dąbrowska, Monika

    2015-01-01

    We report three cases of light chain escape (LCE) at a single institution in Poland, including an interesting case of biclonal monoclonal gammopathy of undetermined significance (MGUS) that satisfied the criteria for progression to light chain multiple myeloma (LCMM) with a rapid rise in serum free light chain (FLC) levels, following steroidal treatment for simultaneous temporal artery inflammation and polymyalgia rheumatica (PMR). In the three cases discussed, progression of the disease by light chain escape was associated with rapid and severe renal impairment, highlighting the necessity for prompt detection of such free light chain-only producing clones in order to prevent the possible development of irreversible end-organ damage. Interestingly, monitoring of these three patients by serum free light chain assay (sFLC) and retrospective heavy/light chain analysis (HLC) detected this clonal evolution prior to clinical relapse and suggests that these assays represent important additional tools for more accurate monitoring of multiple myeloma patients. PMID:26881153

  16. Light Chain Escape in 3 Cases: Evidence of Intraclonal Heterogeneity in Multiple Myeloma from a Single Institution in Poland

    PubMed Central

    Kraj, Maria; Kruk, Barbara; Endean, Kelly; Warzocha, Krzysztof; Budziszewska, Katarzyna; Dąbrowska, Monika

    2015-01-01

    We report three cases of light chain escape (LCE) at a single institution in Poland, including an interesting case of biclonal monoclonal gammopathy of undetermined significance (MGUS) that satisfied the criteria for progression to light chain multiple myeloma (LCMM) with a rapid rise in serum free light chain (FLC) levels, following steroidal treatment for simultaneous temporal artery inflammation and polymyalgia rheumatica (PMR). In the three cases discussed, progression of the disease by light chain escape was associated with rapid and severe renal impairment, highlighting the necessity for prompt detection of such free light chain-only producing clones in order to prevent the possible development of irreversible end-organ damage. Interestingly, monitoring of these three patients by serum free light chain assay (sFLC) and retrospective heavy/light chain analysis (HLC) detected this clonal evolution prior to clinical relapse and suggests that these assays represent important additional tools for more accurate monitoring of multiple myeloma patients. PMID:26881153

  17. Ferritin associates with marginal band microtubules

    SciTech Connect

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich . E-mail: friedrich.propst@univie.ac.at

    2007-05-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir.

  18. Ferritin metabolism in reticulated-siderocytes.

    PubMed

    Deiss, A; Cartwright, G E

    1970-03-01

    Reticulated-siderocytes (reticulocytes which contain siderotic granules), obtained from the circulation of pigs after vigorous phlebotomy, were incubated in vitro. A rapid disappearance of granules from the reticulocytes was observed over 24 hr. Simultaneously with the decrease in granules, soluble ferritin accumulated in the media and siderotic granules developed in monocytes. The disappearance of the granules from the reticulated-siderocytes was oxygen-dependent and the loss of granules and the accumulation of ferritin in the media were both prevented by the addition of cyanide or dinitrophenol. It is concluded that the ferritin aggregates in the granules of reticulated-siderocytes are dispersed intracellularly into soluble ferritin, that soluble ferritin is excreted from the cell, and that one or both of these steps is dependent upon oxidative metabolism. Blood monocytes are capable of taking up soluble ferritin from the media and converting this into siderotic granules. Thus, a reticulocyte to plasma to monocyte ferritin pathway has been described.

  19. Ferritin metabolism in reticulated-siderocytes

    PubMed Central

    Deiss, Andrew; Cartwright, G. E.

    1970-01-01

    Reticulated-siderocytes (reticulocytes which contain siderotic granules), obtained from the circulation of pigs after vigorous phlebotomy, were incubated in vitro. A rapid disappearance of granules from the reticulocytes was observed over 24 hr. Simultaneously with the decrease in granules, soluble ferritin accumulated in the media and siderotic granules developed in monocytes. The disappearance of the granules from the reticulated-siderocytes was oxygen-dependent and the loss of granules and the accumulation of ferritin in the media were both prevented by the addition of cyanide or dinitrophenol. It is concluded that the ferritin aggregates in the granules of reticulated-siderocytes are dispersed intracellularly into soluble ferritin, that soluble ferritin is excreted from the cell, and that one or both of these steps is dependent upon oxidative metabolism. Blood monocytes are capable of taking up soluble ferritin from the media and converting this into siderotic granules. Thus, a reticulocyte to plasma to monocyte ferritin pathway has been described. Images PMID:5415677

  20. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  1. Roles of heavy and light chains in IgM polymerization.

    PubMed Central

    Bornemann, K D; Brewer, J W; Beck-Engeser, G B; Corley, R B; Haas, I G; Jäck, H M

    1995-01-01

    IgM antibodies are secreted as multisubunit polymers that consist of as many as three discrete polypeptides: mu heavy chains, light (L) chains, and joining (J) chains. We wished to determine whether L chains that are required to confer secretory competence on immunoglobulin molecules must be present for IgM to polymerize--that is, for intersubunit disulfide bonds to form between mu chains. Using a L-chain-loss variant of an IgM-secreting hybridoma, we demonstrated that mu chains were efficiently polymerized independent of L chains, in a manner similar to that observed for conventional microL complexes, and that the mu polymers incorporated J chain. These mu polymers were not secreted but remained associated with the endoplasmic reticulum-resident chaperone BiP (GRP78). This finding is consistent with the endoplasmic reticulum being the subcellular site of IgM polymerization. We conclude that mu chain alone has the potential to direct the polymerization of secreted IgM, a process necessary but not sufficient for IgM to attain secretory competence. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761423

  2. Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.

    PubMed

    Borejdo, Julian; Ushakov, Dmitry S; Akopova, Irina

    2002-06-01

    Myosin head consists of a globular catalytic domain and a long alpha-helical regulatory domain. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a "swing" of the regulatory domain. The proximal end of the regulatory domain contains the essential light chain 1 (LC1). This light chain can interact through the N and C termini with actin and myosin heavy chain. The interactions may inhibit the motion of the proximal end. In consequence the motion of the distal end (containing regulatory light chain, RLC) may be different from the motion of the proximal end. To test this possibility, the angular motion of LC1 and RLC was measured simultaneously during muscle contraction. Engineered LC1 and RLC were labeled with red and green fluorescent probes, respectively, and exchanged with native light chains of striated muscle. The confocal microscope was modified to measure the anisotropy from 0.3 microm(3) volume containing approximately 600 fluorescent cross-bridges. Static measurements revealed that the magnitude of the angular change associated with transition from rigor to relaxation was less than 5 degrees for both light chains. Cross-bridges were activated by a precise delivery of ATP from a caged precursor. The time course of the angular change consisted of a fast phase followed by a slow phase and was the same for both light chains. These results suggest that the interactions of LC1 do not inhibit the angular motion of the proximal end of the regulatory domain and that the whole domain rotates as a rigid body.

  3. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  4. Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING.

    PubMed

    Marin-Argany, Marta; Lin, Yi; Misra, Pinaki; Williams, Angela; Wall, Jonathan S; Howell, Kyle G; Elsbernd, Laura R; McClure, Megan; Ramirez-Alvarado, Marina

    2016-09-16

    Light chain (AL) amyloidosis is an incurable human disease characterized by the misfolding, aggregation, and systemic deposition of amyloid composed of immunoglobulin light chains (LC). This work describes our studies on potential mechanisms of AL cytotoxicity. We have studied the internalization of AL soluble proteins and amyloid fibrils into human AC16 cardiomyocytes by using real time live cell image analysis. Our results show how external amyloid aggregates rapidly surround the cells and act as a recruitment point for soluble protein, triggering the amyloid fibril elongation. Soluble protein and external aggregates are internalized into AC16 cells via macropinocytosis. AL amyloid fibrils are shown to be highly cytotoxic at low concentrations. Additionally, caspase assays revealed soluble protein induces apoptosis, demonstrating different cytotoxic mechanisms between soluble protein and amyloid aggregates. This study emphasizes the complex immunoglobulin light chain-cell interactions that result in fibril internalization, protein recruitment, and cytotoxicity that may occur in AL amyloidosis. PMID:27462073

  5. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGES

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Bjorn M.

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  6. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  7. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly.

    PubMed

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  8. Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function

    PubMed Central

    DiBella, Linda M.; Gorbatyuk, Oksana; Sakato, Miho; Wakabayashi, Ken-ichi; Patel-King, Ramila S.; Pazour, Gregory J.; Witman, George B.; King, Stephen M.

    2005-01-01

    Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum. PMID:16195342

  9. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies.

    PubMed

    Sajadi, Mohammad M; Farshidpour, Maham; Brown, Eric P; Ouyang, Xin; Seaman, Michael S; Pazgier, Marzena; Ackerman, Margaret E; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S; Charurat, Manhattan; DeVico, Anthony L; Redfield, Robert R; Lewis, George K

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response.

  10. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis.

    PubMed

    Kondo, Tomo; Isoda, Rieko; Uchimura, Takashi; Sugiyama, Mutsumi; Hamao, Kozue; Hosoya, Hiroshi

    2012-01-13

    Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II. PMID:22166199

  11. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  12. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    SciTech Connect

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence show differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.

  13. Systemic immunoglobulin light-chain amyloidosis presenting hematochezia as the initial symptom.

    PubMed

    Kon, Tetsuo; Nakagawa, Naoki; Yoshikawa, Fumitsugu; Haba, Kazunao; Kitagawa, Nagako; Izumi, Michihiro; Kumazaki, Setsuo; Ishida, Satoshi; Aikawa, Ryuichi

    2016-08-01

    Immunoglobulin light-chain (AL) amyloidosis is characterized by the deposition of insoluble fibrils composed of immunoglobulin light chains secreted by monoclonal plasma cells. Given the recent advances in the therapy of AL amyloidosis, it is important to diagnose this disease as early as possible. Herein, we describe the case of a 62-year-old man with hepatitis C virus (HCV)-related cirrhosis presenting with hematochezia. Colonoscopy showed multiple submucosal hematomas within the region ranging from the transverse colon to the sigmoid colon. Kappa immunoglobulin light-chain amyloid deposition was also detected. Bone marrow examination revealed a monoclonal abnormal plasma cell population. Thus, the patient was diagnosed with systemic immunoglobulin light-chain amyloidosis. The hematochezia was conservatively managed. However, because of liver failure caused by liver cirrhosis, the patient developed massive pleural effusion and died of respiratory failure. Postmortem examination revealed amyloid deposition in the esophagus, stomach, duodenum, ileum, descending colon, pancreas, heart, and lung. In these organs, amyloid deposition was limited to the vascular wall. We concluded that AL amyloidosis can present hematochezia arising from submucosal hematoma in the large colon before other systemic symptoms appear.

  14. Systemic immunoglobulin light-chain amyloidosis presenting hematochezia as the initial symptom.

    PubMed

    Kon, Tetsuo; Nakagawa, Naoki; Yoshikawa, Fumitsugu; Haba, Kazunao; Kitagawa, Nagako; Izumi, Michihiro; Kumazaki, Setsuo; Ishida, Satoshi; Aikawa, Ryuichi

    2016-08-01

    Immunoglobulin light-chain (AL) amyloidosis is characterized by the deposition of insoluble fibrils composed of immunoglobulin light chains secreted by monoclonal plasma cells. Given the recent advances in the therapy of AL amyloidosis, it is important to diagnose this disease as early as possible. Herein, we describe the case of a 62-year-old man with hepatitis C virus (HCV)-related cirrhosis presenting with hematochezia. Colonoscopy showed multiple submucosal hematomas within the region ranging from the transverse colon to the sigmoid colon. Kappa immunoglobulin light-chain amyloid deposition was also detected. Bone marrow examination revealed a monoclonal abnormal plasma cell population. Thus, the patient was diagnosed with systemic immunoglobulin light-chain amyloidosis. The hematochezia was conservatively managed. However, because of liver failure caused by liver cirrhosis, the patient developed massive pleural effusion and died of respiratory failure. Postmortem examination revealed amyloid deposition in the esophagus, stomach, duodenum, ileum, descending colon, pancreas, heart, and lung. In these organs, amyloid deposition was limited to the vascular wall. We concluded that AL amyloidosis can present hematochezia arising from submucosal hematoma in the large colon before other systemic symptoms appear. PMID:27318996

  15. Structure of the light chain-binding domain of myosin V

    PubMed Central

    Terrak, Mohammed; Rebowski, Grzegorz; Lu, Renne C.; Grabarek, Zenon; Dominguez, Roberto

    2005-01-01

    Myosin V is a double-headed molecular motor involved in organelle transport. Two distinctive features of this motor, processivity and the ability to take extended linear steps of ≈36 nm along the actin helical track, depend on its unusually long light chain-binding domain (LCBD). The LCBD of myosin V consists of six tandem IQ motifs, which constitute the binding sites for calmodulin (CaM) and CaM-like light chains. Here, we report the 2-Å resolution crystal structure of myosin light chain 1 (Mlc1p) bound to the IQ2–IQ3 fragment of Myo2p, a myosin V from Saccharomyces cerevisiae. This structure, combined with FRET distance measurements between probes in various CaM–IQ complexes, comparative sequence analysis, and the previously determined structures of Mlc1p-IQ2 and Mlc1p-IQ4, allowed building a model of the LCBD of myosin V. The IQs of myosin V are distributed into three pairs. There appear to be specific cooperative interactions between light chains within each IQ pair, but little or no interaction between pairs, providing flexibility at their junctions. The second and third IQ pairs each present a light chain, whether CaM or a CaM-related molecule, bound in a noncanonical extended conformation in which the N-lobe does not interact with the IQ motif. The resulting free N-lobes may engage in protein–protein interactions. The extended conformation is characteristic of the single IQ of myosin VI and is common throughout the myosin superfamily. The model points to a prominent role of the LCBD in the function, regulation, and molecular interactions of myosin V. PMID:16120677

  16. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  17. Characterization of DLC-A and DLC-B, two families of cytoplasmic dynein light chain subunits.

    PubMed Central

    Gill, S R; Cleveland, D W; Schroer, T A

    1994-01-01

    Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor composed of two heavy chains (approximately 530 kDa), three intermediate chains (approximately 74 kDa), and a family of approximately 52-61 kDa light chains. Although the approximately 530 kDa subunit contains the motor and microtubule binding domains of the complex, the functions of the smaller subunits are not known. Using two-dimensional gel electrophoresis and proteolytic mapping, we show here that the light chains are composed of two major families, a higher M(r) family (58, 59, 61 kDa; dynein light chain group A [DLC-A]) and lower M(r) family (52, 53, 55, 56 kDa; dynein light chain group B [DLC-B]). Dissociation of the cytoplasmic dynein complex with potassium iodide reveals that all light chain polypeptides are tightly associated with the approximately 530 kDa heavy chain, whereas the approximately 74 kDa intermediate chain polypeptides are more readily extracted. Treatment with alkaline phosphatase alters the mobility of four of the light chain polypeptides, indicating that these subunits are phosphorylated. Sequencing of a cDNA clone encoding one member of the DLC-A family reveals a predicted globular structure that is not homologous to any known protein but does contain numerous potential phosphorylation sites and a consensus nucleotide-binding motif. Images PMID:7949421

  18. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans

    PubMed Central

    Wojtovich, Andrew P.; Wei, Alicia Y.; Sherman, Teresa A.; Foster, Thomas H.; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  19. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans.

    PubMed

    Wojtovich, Andrew P; Wei, Alicia Y; Sherman, Teresa A; Foster, Thomas H; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the 'singlet oxygen generator' miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  20. Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire.

    PubMed

    de Wildt, R M; Hoet, R M; van Venrooij, W J; Tomlinson, I M; Winter, G

    1999-01-22

    In the bone marrow, diversity in the primary antibody repertoire is created by the combinatorial rearrangement of different gene segments and by the association of different heavy and light chains. During the secondary response in the germinal centres, antibodies are diversified by somatic mutation and possibly by further rearrangements, or "receptor editing". Here, we have analysed the pairings of heavy and light chain variable domains (VH and VL) in 365 human IgG+ B cells from peripheral blood, and established that these pairings are largely random. The repertoire is dominated by a limited number of pairings of segments and folds. Among these pairings we identified two identical mutated heavy chains in combination with two different mutated light chains (one kappa and one lambda). This shows that receptor editing occurs in the human periphery and that the same antibody lineage can be subjected to both receptor editing and somatic hypermutation. This suggests that receptor editing may be used together with somatic mutation for the affinity maturation of antibodies. We also propose that receptor editing has shaped variable gene segment use and the evolution of V gene families.

  1. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain

    PubMed Central

    Ichikawa, Muneyoshi; Saito, Kei; Yanagisawa, Haru-aki; Yagi, Toshiki; Kamiya, Ritsu; Yamaguchi, Shin; Yajima, Junichiro; Kushida, Yasuharu; Nakano, Kentaro; Numata, Osamu; Toyoshima, Yoko Y.

    2015-01-01

    The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule. PMID:26399296

  2. On the mineral core of ferritin-like proteins: structural and magnetic characterization

    NASA Astrophysics Data System (ADS)

    García-Prieto, A.; Alonso, J.; Muñoz, D.; Marcano, L.; Abad Díaz de Cerio, A.; Fernández de Luis, R.; Orue, I.; Mathon, O.; Muela, A.; Fdez-Gubieda, M. L.

    2015-12-01

    It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM

  3. Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration.

    PubMed

    Finazzi, Dario; Arosio, Paolo

    2014-10-01

    Iron is an abundant transition metal that is essential for life, being associated with many enzyme and oxygen carrier proteins involved in a variety of fundamental cellular processes. At the same time, the metal is potentially toxic due to its capacity to engage in the catalytic production of noxious reactive oxygen species. The control of iron availability in the cells is largely dependent on ferritins, ubiquitous proteins with storage and detoxification capacity. In mammals, cytosolic ferritins are composed of two types of subunits, the H and the L chain, assembled to form a 24-mer spherical cage. Ferritin is present also in mitochondria, in the form of a complex with 24 identical chains. Even though the proteins have been known for a long time, their study is a very active and interesting field yet. In this review, we will focus our attention to mammalian cytosolic and mitochondrial ferritins, describing the most recent advancement regarding their storage and antioxidant function, the effects of their genetic mutations in human pathology, and also the possible involvement in non-iron-related activities. We will also discuss recent evidence connecting ferritins and the toxicity of iron in a set of neurodegenerative disorder characterized by focal cerebral siderosis.

  4. Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis.

    PubMed

    Galay, Remil Linggatong; Aung, Kyaw Min; Umemiya-Shirafuji, Rika; Maeda, Hiroki; Matsuo, Tomohide; Kawaguchi, Hiroaki; Miyoshi, Noriaki; Suzuki, Hiroshi; Xuan, Xuenan; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2013-05-15

    Ticks are obligate hematophagous parasites and important vectors of diseases. The large amount of blood they consume contains great quantities of iron, an essential but also toxic element. The function of ferritin, an iron storage protein, and iron metabolism in ticks need to be further elucidated. Here, we investigated the function a newly identified secreted ferritin from the hard tick Haemaphysalis longicornis (HlFER2), together with the previously identified intracellular ferritin (HlFER1). Recombinant ferritins, expressed in Escherichia coli, were used for anti-serum preparation and were also assayed for iron-binding activity. RT-PCR and western blot analyses of different organs and developmental stages of the tick during blood feeding were performed. The localization of ferritins in different organs was demonstrated through an indirect immunofluorescent antibody test. RNA interference (RNAi) was performed to evaluate the importance of ferritin in blood feeding and reproduction of ticks. The midgut was also examined after RNAi using light and transmission electron microscopy. RT-PCR showed differences in gene expression in some organs and developmental stages. Interestingly, only HlFER2 was detected in the ovary during oviposition and in the egg despite the low mRNA transcript. RNAi induced a reduction in post-blood meal body weight, high mortality and decreased fecundity. The expression of vitellogenin genes was affected by silencing of ferritin. Abnormalities in digestive cells, including disrupted microvilli, and alteration of digestive activity were also observed. Taken altogether, our results show that the iron storage and protective functions of ferritin are crucial to successful blood feeding and reproduction of H. longicornis. PMID:23393286

  5. A novel antibody light chain dimer: Implications for T-cell receptor structure

    SciTech Connect

    Schiffer, M.; Chang, Chong-Hwan; Solomon, A.; Stevens, F.J.

    1989-01-01

    The dimeric structures of antibody light chains produced in patients with multiple myeloma (Bence Jones proteins) have for some time been studied chemically and crystallographically as models of the antigen binding fragment (Fab) of an antibody. The conformational concordance of Fabs and a Bence Jones dimer was demonstrated by the initial immunoglobulin crystallographic structures. We have recently described the structure of a second intact light chain, the lambda-type protein Loc. The Loc protein exhibits an unanticipated protruding arrangement of its complementarity-determining residues. Grooves on each side of the protrusion may function as separate binding sites. In this report, we examine the Loc structure and its intracrystalline interactions in more detail and consider aspects of this structure that may possess implications for models of a nonantibody constituent of the immunoglobulin superfamily, the T-cell antigen receptor. 26 refs., 3 figs., 1 tab.

  6. Light-chain deposition disease of the kidney: a case report.

    PubMed

    Darouich, Sihem; Goucha, Rym; Jaafoura, Mohamed Habib; Zekri, Semy; Kheder, Adel; Maiz, Hedi Ben

    2012-04-01

    A 41-year-old man was admitted for evaluation of nephrotic syndrome associated with microhematuria, hypertension, and moderate renal failure. In serum and urine samples, monoclonal IgG-lambda was detected. Bone marrow examination showed normal representation of all cell lines with normal range of plasma cells. Renal biopsy demonstrated diabetes-like nodular glomerulosclerosis. Immunofluorescence failed to demonstrate the presence of kappa or lambda light chains in the kidney. Electron microcopy showed granular electron-dense deposits along the glomerular basement membranes and in the mesangial nodules. The patient was diagnosed as having light-chain deposition disease (LCDD) without evidence of plasma cell dyscrasia. This report was designed to stress the significant challenges that remain in the diagnosis of LCDD-related glomerulopathy. The salient morphological features that help in making an accurate diagnosis are discussed. PMID:22471437

  7. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  8. Light-chain deposition disease of the kidney: a case report.

    PubMed

    Darouich, Sihem; Goucha, Rym; Jaafoura, Mohamed Habib; Zekri, Semy; Kheder, Adel; Maiz, Hedi Ben

    2012-04-01

    A 41-year-old man was admitted for evaluation of nephrotic syndrome associated with microhematuria, hypertension, and moderate renal failure. In serum and urine samples, monoclonal IgG-lambda was detected. Bone marrow examination showed normal representation of all cell lines with normal range of plasma cells. Renal biopsy demonstrated diabetes-like nodular glomerulosclerosis. Immunofluorescence failed to demonstrate the presence of kappa or lambda light chains in the kidney. Electron microcopy showed granular electron-dense deposits along the glomerular basement membranes and in the mesangial nodules. The patient was diagnosed as having light-chain deposition disease (LCDD) without evidence of plasma cell dyscrasia. This report was designed to stress the significant challenges that remain in the diagnosis of LCDD-related glomerulopathy. The salient morphological features that help in making an accurate diagnosis are discussed.

  9. Light Chain Deposition Disease Presenting as Cholestatic Jaundice: A Case Report

    PubMed Central

    Kumar, Prasanna N.

    2012-01-01

    Light-chain deposition disease (LCDD) is characterized by tissue deposition of the immunoglobulin light chains in multiple organs. These deposits appear similar to amyloid on routine sections, but differ in their staining properties and ultrastructural appearance. The deposits of LCCD are non -Congophilic and do not exhibit a fibrillar ultrastructure; while, the proteinaceous substance seen in primary amyloidosis is Congo red positive and fibrillar. One of the most common organs to be involved in LCDD is the kidney. Earlier reports on cases of LCDD have mostly shown simultaneous liver and renal involvement, there are very few cases in the literature describing LCDD of the liver without renal involvement. This report describes a patient who presented with severe cholestatic jaundice and liver cell failure with normal renal function. PMID:22359728

  10. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.

    PubMed

    Blancas-Mejía, Luis M; Hammernik, Jared; Marin-Argany, Marta; Ramirez-Alvarado, Marina

    2015-02-20

    Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates. PMID:25538238

  11. Phage Display and Peptide Mapping of an Immunoglobulin Light Chain Fibril-Related Conformational Epitope†

    PubMed Central

    O’Nuallain, Brian; Allen, Amy; Ataman, Demet; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2008-01-01

    Amyloid fibrils and partially unfolded intermediates can be distinguished serologically from native amyloidogenic precursor proteins or peptides. In this regard, we previously had reported that mAb 11-1F4, generated by immunizing mice with a thermally denatured variable domain (VL) fragment of the human κ4 Bence Jones protein Len, bound to a non-native conformational epitope located within the N-terminal 18 residues of fibrillar, as well as partially denatured, Ig light chains (O’Nuallain B. et al. (2006) Biochemistry 46, 1240–247). To define further the antibody binding site, we used random peptide phage display and epitope mapping of VL Len using wild-type and alanine-mutated Len peptides where it was shown that the antibody epitope was reliant on up to 10 of the first 15 residues of protein Len. Comparison of Vκ and Vλ N-terminal germline consensus sequences with protein Len and 11-1F4-binding phages indicated that this antibody’s cross-reactivity with light chains was related to an invariant proline at position(s) 7 and/or 8, bulky hydrophobic residues at positions 11 and 13, and additionally, to the ability to accommodate amino acid diversity at positions 1–4. Sequence alignments of the phage peptides revealed a central proline, often flanked by aromatic residues. Taken together, these results have provided evidence for the structural basis of the specificity of 11-1F4 for both κ and λ light chain fibrils. We posit that the associated binding site involves a rare type VI β-turn or touch-turn that is anchored by a cis-proline residue. The identification of an 11-1F4-related mimotope should facilitate development of pan-light chain fibril-reactive antibodies that could be used in the diagnosis and treatment of patients with AL amyloidosis. PMID:17944486

  12. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    PubMed

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.

  13. EPR and CD spectroscopy of fast myosin light chain conformation during binding of trifluoperazine.

    PubMed

    Huang, W; Wilson, G J; Brown, L J; Lam, H; Hambly, B D

    1998-10-15

    The conformations of isolated rabbit fast myosin light chains (LCs) were modified using trifluoperazine (TFP), the hydrophobic calmodulin inhibitor. CD spectroscopy showed that TFP altered secondary structural content of the LCs, with half-maximal effects at TFP concentrations of approximately 14-50 microM, which is within the range required to alter muscle fiber contraction in both agonistic and antagonistic ways [Kurebayashi, N. & Ogawa, Y. (1988) J. Physiol. 403, 407-424]. EPR spectroscopy provided structural information from paramagnetic probes on C-terminal domain surfaces. In the absence of TFP, tauR (rotational correlation time) was 1.6 ns for both alkali light chains (ALCs) and 1.8 ns for light chain 2 (LC2). This was faster than expected for proteins of this size (approximately 10 ns). TFP progressively recruited the probes into populations with tauR sevenfold to 12-fold slower, with half-maximal effects at a TFP concentration of approximately 370-800 microM. The differences probably indicate that CD spectroscopy detects changes in protein conformation due to 'specific' TFP binding at the LC hydrophobic core, while less specific binding at higher TFP concentrations is required to effect conformational changes on the protein surfaces near the paramagnetic probes. TFP binding was generally not cooperative. Comparative sequence analysis between calmodulin, troponin C, and myosin LCs indicated considerable conservation between residues expected to bind TFP.

  14. What is new in diagnosis and management of light chain amyloidosis?

    PubMed

    Palladini, Giovanni; Merlini, Giampaolo

    2016-07-14

    Light chain (AL) amyloidosis is caused by a usually small plasma cell clone producing a misfolded light chain that deposits in tissues. Survival is mostly determined by the severity of heart involvement. Recent studies are clarifying the mechanisms of cardiac damage, pointing to a toxic effect of amyloidogenic light chains and offering new potential therapeutic targets. The diagnosis requires adequate technology, available at referral centers, for amyloid typing. Late diagnosis results in approximately 30% of patients presenting with advanced, irreversible organ involvement and dying in a few months despite modern treatments. The availability of accurate biomarkers of clonal and organ disease is reshaping the approach to patients with AL amyloidosis. Screening of early organ damage based on biomarkers can help identify patients with monoclonal gammopathy of undetermined significance who are developing AL amyloidosis before they become symptomatic. Staging systems and response assessment based on biomarkers facilitate the design and conduction of clinical trials, guide the therapeutic strategy, and allow the timely identification of refractory patients to be switched to rescue therapy. Treatment should be risk-adapted. Recent studies are linking specific characteristics of the plasma cell clone to response to different types of treatment, moving toward patient-tailored therapy. In addition, novel anti-amyloid treatments are being developed that might be combined with anti-plasma cell chemotherapy. PMID:27053535

  15. Tumor Stiffness Is Unrelated to Myosin Light Chain Phosphorylation in Cancer Cells

    PubMed Central

    Fry, Madeline; Greene, Madelyne; Chernaya, Olga; Hu, Wen-Yang; Chew, Teng-Leong; Mahmud, Nadim; Kadkol, Shrihari S.; Glover, Sarah; Prins, Gail; Strakova, Zuzana; de Lanerolle, Primal

    2013-01-01

    Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors. PMID:24224004

  16. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  17. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  18. A novel monoclonal antibody against the constant region of goose immunoglobulin light chain.

    PubMed

    Guo, Yongli; Gao, Mingchun; Ma, Bo; Sheng, Qiaoling; Wang, Qian; Liu, Dandan; Wang, Junwei

    2014-04-01

    A monoclonal antibody (MAb) against the antigenic determinant of the constant region of goose immunoglobulin light chain (GoIgCL) was produced and characterized for the first time here. Goose immunoglobulin (Ig) in serum was purified by immunoaffinity chromatography and the resulting protein was used as immunogen to immunize BALB/c mice. At the same time, the GoIgCL gene was expressed and purified as the screening antigen for selecting MAb against GoIgCL. One hybridoma that produces antibodies against GoIgCL was selected by indirect ELISA. Then the characterization of the MAb was analyzed by ELISA, Western blot, and flow cytometry. It was found to be IgG1 with κ light chain; the MAB has high specificity to Ig in goose serum, bile, and B lymphocytes from peripheral blood, reacts only with the light chain of goose Ig, and can distinguish Ig from other birds. Therefore, the MAb generated in this study can be used as a specific reagent for detection of goose disease-specific antibodies and as a powerful tool for basic immunology research on geese.

  19. Atomic Force Microscope Conductivity Measurements on Single Ferritin Molecules

    NASA Astrophysics Data System (ADS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2003-10-01

    We will present electrical measurement on the conductivity of ferritin molecules by conductive AFM. The high stability of ferritin relative to other proteins makes them attractive for nanotechnology applications such as nanoscale batteries. Ferritins are very stable, biological molecules found widely distributed in nature that are responsible for metabolic control of iron in living systems. Ferritins consist of 24 protein subunits that are arrayed to form spherical molecules 12 nm in external diameter with a hollow interior about 8 nm in diameter. The hollow ferritin interior can be filled with up to 4500 iron atoms as Fe(OH)3. Ferritin molecules were self assembled on gold surfaces to form a single ferritin monolayer. AFM was used to study this assembly on atomically flat gold surfaces. Conductivity of the ferritin protein shell of single ferritin molecule was investigated by conductive AFM and compared to conductivity measurements on films of ferritin molecules.

  20. Anti-cardiolipin/beta-2 glycoprotein activities co-exist on human anti-DNA antibody light chains.

    PubMed

    Kumar, Sanjeev; Nagl, Sylvia; Kalsi, J K; Ravirajan, C T; Athwal, Dee; Latchman, David S; Pearl, Laurence H; Isenberg, David A

    2003-12-01

    We have recently shown that the human anti-DNA antibodies B3 and 33H11 also bind cardiolipin and that the anti-autoantigen activity resides predominantly on their lambda light chains. We now show that the two auto-antibodies possess strong reactivity to the plasma-protein 2-Glycoprotein I (beta2-GPI) also. Utilizing chain shuffling experiments involving an unrelated anti-p185 antibody 4D5 with insignificant reactivity to cardiolipin or to beta2-GPI, we now demonstrate that hybrid Fabs with constituent light chain, but not the heavy chain, of B3 or 33H11, exhibit anti-cardiolipin activity. Furthermore, the constructs possessing the auto-antibody-derived light chain also exhibited significant reactivity to beta2-GPI. The results suggest that anti-DNA, anti-cardiolipin and anti-beta2-GPI activities co-exist on the light chains of the antibodies studied and, importantly, these activities could be transferred to antibody constructs by their light chains alone. Computer-generated models of the three-dimensional structures of the auto-antibodies and their hybrids, suggest predominant interaction of their light chains with domain IV of beta2-GPI.

  1. Production and characterization of monoclonal antibodies specific for kappa and. gamma. light chain types of porcine immunoglobulins

    SciTech Connect

    McCauley, I.; Kim, Y.B.

    1986-03-05

    It has been difficult to raise specific antisera to the light chain types of pigs because of the difficulty in isolating sufficient pure material from polyclonal immunoglobulin. The authors have taken an approach based upon the characterization of a number of monoclonal antibodies (MoAb) raised against porcine IgG in order to obtain antisera specific for light chain types. Spleen cells from mice immunized with porcine IgG were fused with myeloma P3x63-Ag 653. Hybridomas were screened by an ELISA technique against pure porcine light chains coated on microtiter plates. Five clones specific for light chains were isolated. MoAb from these clones have been characterized by sequential immunoprecipitation of /sup 125/I labelled light chains. The pattern of reactivities show that the MoAb can be classified into two mutually exclusive groups, each of which precipitate approximately equal amounts of the labelled light chains. The type specificity of these groups has been determined by utilizing the cross-reaction between anti-human kappa and ..gamma.. with porcine light chains and the groups of MoAb in sequential immunoprecipitations. The MoAb were used in an immunofluorescence study of porcine B lymphocytes. The anti-..gamma.. MoAb stained 57% and the anti-kappa, 43% of total B lymphocytes.

  2. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains

    PubMed Central

    Kollmar, Martin

    2006-01-01

    Background Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. Results The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins. The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree

  3. Binding of nascent collagen by amyloidogenic light chains and amyloid fibrillogenesis in monolayers of human fibrocytes.

    PubMed

    Harris, D L; King, E; Ramsland, P A; Edmundson, A B

    2000-01-01

    Light (L) chain dimers expressed by multiple myeloma cells and collected as Bence-Jones proteins from the urine of human subjects were tested for their ability to form deposits in fibroblast monolayer cell cultures. Bence-Jones proteins from subjects with primary amyloidosis associated with L chains were shown to form fibrillar deposits by the in vitro assay introduced in this report. Filaments interspersed with nascent collagen could be detected after only 48 h. Deposition of L chains continued over a period of 72 h culminating in the appearance of dense fibrils with widths of 80-100 A and a variety of lengths. Formation of amyloid-like fibrils was accompanied by interference with the maturation of the collagen produced by the fibroblast cells. Fibrils composed of the Mcg lambda-type L chain were deposited between collagen fibers, thus expanding them laterally and leading to their partial disintegration. Mature collagen was completely missing from fibroblast monolayers exposed to the Sea lambda chain and the Jen kappa chain. Collagen with the characteristic striped pattern matured normally in control samples, such as those not dosed with amyloid precursors or those treated with a non-amyloidogenic Bence-Jones protein (e.g., the Hud lambda chain dimer). By immunochemical techniques using fluorescein- and gold-labeled anti-L chain antibodies, amyloidogenic L chains were shown to decorate the strands of nascent collagen. This observation suggests that amyloidogenic L chains are concentrated in the extracellular matrix by monovalent antigen-antibody type reactions. The capacity of the Mcg L chain dimer to bind collagen-derived sequences was tested by soaking crystals with a collagenase substrate, PZ-Pro-Leu-Gly-Pro-D-Arg. Difference Fourier analysis at 2.7 A resolution indicated that the PZ-peptide is a site-filling ligand. It could not be removed from the active site by perfusion of the crystal with ammonium sulfate crystallizing media. Similar experiments with the

  4. Magnetic properties of artificially synthesized ferritins

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(μpH/kBT)+χaH, the effective magnetic moment μp is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  5. The Roadblock light chains are ubiquitous components of cytoplasmic dynein that form homo- and heterodimers.

    PubMed

    Nikulina, Karina; Patel-King, Ramila S; Takebe, Sachiko; Pfister, K Kevin; King, Stephen M

    2004-04-01

    The Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers. This is the first report of heterodimer formation by any cytoplasmic dynein component, and it further enlarges the number of potential cytoplasmic dynein isoforms available for binding specific cellular cargoes. In addition, we have generated an antibody that specifically recognizes Robl light chains and shows a 5-10 fold preference for Robl2 over Robl1. Using this antibody, we show that Robl is a ubiquitous cytoplasmic dynein component, being found in samples purified from brain, liver, kidney, and testis. Immunofluorescence analysis reveals that Robl is present in punctate organelles in rat neuroblastoma cells. In testis, Robl is found in Leydig cells, spermatocytes, and sperm flagella.

  6. Serum ferritin in juvenile chronic polyarthritis.

    PubMed Central

    Craft, A W; Eastham, E J; Bell, J I; Brigham, K

    1977-01-01

    Six children with juvenile chronic polyarthritis were studied and their disease activity correlated with haematological values including serum ferritin. The latter is often raised above reference values, but even when within them appears to fluctuate significantly and correlates more closely with disease activity than any of the other parameters measured. We conclude that the serial measurement of serum ferritin may be a useful guide to the management of such children. PMID:879866

  7. Significance of Ferritin in Recurrent Oral Ulceration

    PubMed Central

    K., Sumathi; B., Shanthi; Palaneeswari M., Subha; Devi A.J., Manjula

    2014-01-01

    Background: Ferritin is the storage form of iron. Hence, the sensitive test which can be used for diagnosing iron deficiency anaemia is estimation of ferritin in serum. One of the causative factors of oral ulceration is nutritional deficiency, which includes iron also. Aim: To study the meaningful association between recurrent oral ulcer and ferritin. Materials and Methods: Fifty oral ulcer cases which were diagnosed clinically in the ENT Department of Sree Balaji Medical College and Hospital and Twenty Five controls were included in this study. Serum ferritin was estimated by doing a particle enhanced turbidimetric immunoassay for both cases and controls. Results: 66% of cases had decreased ferritin values and 34% had normal values, which was significant. Conclusion: From this study, it can be concluded that it is mandatory to screen oral ulcer patients for iron deficiency anaemia by estimating serum ferritin and it is also advisable for the patients to have iron supplementation on regular basis, along with diet rich in iron in addition to vitamins. PMID:24783067

  8. Clathrin light chain B: gene structure and neuron-specific splicing.

    PubMed Central

    Stamm, S; Casper, D; Dinsmore, J; Kaufmann, C A; Brosius, J; Helfman, D M

    1992-01-01

    The clathrin light chains are components of clathrin coated vesicles, structural constituents involved in endocytosis and membrane recycling. The clathrin light chain B (LCB) gene encodes two isoforms, termed LCB2 and LCB3, via an alternative RNA splicing mechanism. We have determined the structure of the rat clathrin light chain B gene. The gene consists of six exons that extend over 11.9 kb. The first four exons and the last exon are common to the LCB2 and LCB3 isoforms. The fifth exon, termed EN, is included in the mRNA in brain, giving rise to the brain specific form LCB2 but is excluded in other tissues, generating the LCB3 isoform. Primary rat neuronal cell cultures express predominantly the brain specific LCB2 isoform, whereas primary rat cultures of glia express only the LCB3 isoform, suggesting that expression of the brain-specific LCB2 form is limited to neurons. Further evidence for neuronal localization of the LCB2 form is provided using a teratocarcinoma cell line, P19, which can be induced by retinoic acid to express a neuronal phenotype, concomitant with the induction of the LCB2 form. In order to determine the sequences involved in alternative splice site selection, we constructed a minigene containing the alternative spliced exon EN and its flanking intron and exon sequences. This minigene reflects the splicing pattern of the endogenous gene upon transfection in HeLa cell and primary neuronal cell cultures, indicating that this region of the LCB gene contains all the necessary information for neuron-specific splicing. Images PMID:1408826

  9. Molecular characterization of the immunoglobulin light chain variable region repertoire of human autoantibodies

    SciTech Connect

    Victor, K.D.

    1992-01-01

    The molecular structures of the light chain variable regions encoding human autoantibodies have been studied in detail. The variable region repertoire among this group of antibodies is diverse. There is no evidence for preferential utilization of specific V[sub L] gene families or over-representation of certain V[sub L] gene segments in autoantibodies. Many autoreactive antibodies utilize direct copies of known germline gene segments with little evidence of somatic mutation, supporting the conclusion that at least some germline gene segments encode autoreactivity. Additionally, the structures of several autoantibodies are clearly the product of somatic mutation. Lastly, affinity maturation has been demonstrated in two clonally related IgM rheumatoid factors suggestive of an antigen driven response. The heterogeneity of the V[sub L] region repertoire in human autoantibodies challenges evidence in the literature suggesting that the majority of human autoantibodies utilize the same or closely related germline gene segments with no evidence of somatic mutation. In addition, this study has documented that variation in the length of the light chain is a common feature in human antibodies. Length variation is confined to the V[sub k]-J[sub k] joint of CDR3 and occurs in all V[sub k] gene families. Analysis of the structures of the V[sub k]-J[sub k] joints suggests that both germline derived and non-germline encoded nucleotides (N-segments), probably the result of terminal deoxynucleotidyl transferase activity, contribute to the junctional diversity of the immunoglobulin light chain variable region. Thus, length variation at the V[sub L]-J[sub L] joint is a frequent event having the potential to expand the diversity of the antibody molecule.

  10. Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity.

    PubMed

    Blancas-Mejía, Luis M; Ramirez-Alvarado, Marina

    2016-05-31

    Light chain amyloidosis is a protein misfolding disease in which immunoglobulin light chains aggregate as insoluble fibrils that accumulate in extracellular deposits. Amyloid fibril formation in vitro has been described as a nucleation-polymerization, autocatalytic reaction in which nascent fibrils catalyze formation of new fibrils, recruiting soluble protein into the fibril. In this context, it is also established that preformed fibrils or "seeds" accelerate fibril formation. In some cases, seeds with a substantially different sequence are able to accelerate the reaction, albeit with a lower efficiency. In this work, we studied the recruitment and addition of monomers in the presence of seeds of five immunoglobulin light chain proteins, covering a broad range of protein stabilities and amyloidogenic properties. Our data reveal that in the presence of homologous or heterologous seeds, the fibril formation reactions become less stochastic than de novo reactions. The kinetics of the most amyloidogenic proteins (AL-T05 and AL-09) do not present significant changes in the presence of seeds. Amyloidogenic protein AL-103 presented fairly consistent acceleration with all seeds. In contrast, the less amyloidogenic proteins (AL-12 and κI) presented dramatic differential effects that are dependent on the kind of seed used. κI had a poor efficiency to elongate preformed fibrils. Together, these results indicate that fibril formation is kinetically determined by the conformation of the amyloidogenic precursor and modulated by the differential ability of each protein to either nucleate or elongate fibrils. We observe morphological and conformational properties of some seeds that do not favor elongation with some proteins, resulting in a delay in the reaction. PMID:27158939

  11. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury.

    PubMed

    Huang, Qiaobing; Xu, Wenjuan; Ustinova, Elena; Wu, Mack; Childs, Ed; Hunter, Felicia; Yuan, Sarah

    2003-10-01

    Although the critical role of systemic inflammatory edema in the development of multiple organ failure in patients with massive burns has been fully recognized, the precise mechanisms responsible for the accumulation of blood fluid and proteins in tissues remote from the burn wound are poorly understood. The aim of this study was to test the hypothesis that circulating factors released during thermal injury cause microvascular leakage by triggering endothelial cell contraction and barrier dysfunction. A third-degree scald burn was induced in rats on the dorsal skin covering 25% total body surface area. The microcirculation and transvascular flux of albumin were observed in the rat mesentery using intravital fluorescence microscopy. The direct effect of circulating factors on microvascular barrier function was assessed by measuring the apparent permeability coefficient of albumin in isolated rat mesenteric venules during perfusion of plasma freshly withdrawn from burned rats. The in vivo study showed that the transvenular flux of albumin was significantly increased over a 6-h period with a maximal response seen at 3 h postburn. Importantly, perfusion of noninjured venules with burn plasma induced a time-dependent increase in albumin permeability. Pharmacological inhibition of protein kinase C, Src tyrosine kinases, or mast cell activation did not significantly affect the hyperpermeability response; however, blockage of myosin light chain phosphorylation with the myosin light chain kinase inhibitor ML-7 greatly attenuated the burn-induced increase in venular permeability in a dose-related pattern. The results support a role for endogenous circulating factors in microvascular leakage during burns. Myosin light chain phosphorylation-dependent endothelial contractile response may serve as an end-point effector leading to microvascular barrier dysfunction. PMID:14501951

  12. Light chain amyloidosis of the urinary bladder. A site restricted deposition of an externally produced immunoglobulin

    PubMed Central

    Livneh, A; Shtrasburg, S; Martin, B; Baniel, J; Gal, R; Pras, M

    2001-01-01

    Aims—To identify the amyloid protein in a patient with amyloidosis localised to the urinary bladder, and to see whether subtyping of the protein by sequence analysis increases the understanding of the selection of the urinary bladder as the site of amyloid deposition. Methods—A patient with gross haematuria and a congophilic mass in his urinary bladder was evaluated further. Characterisation of the amyloid protein was performed using conventional histological and immunohistochemical methods. Determination of the N-terminal amino acid sequence of the amyloid protein was performed using protein sequencers. Results—The patient's history, physical examination, and laboratory evaluation excluded the involvement of other organs, justifying a diagnosis of amyloidosis localised to the urinary bladder. Histological and immunological studies showed that the amyloid protein deposited in the urinary bladder of the patient was probably of the amyloid light chain type. No plasma cells or lymphocytes were seen in sections of the urinary bladder and lower ureter adjacent to the amyloid deposits. Molecular analysis showed the sequence NFMLTQPHSISGSPG, which assigned the amyloid protein to either the VλI or the VλVI immunoglobulin (Ig) light chain families. Conclusions—The findings suggest that the amyloid protein in this patient originated outside the urinary bladder. The heterogeneity of the Ig proteins in known cases of amyloidosis of the lower urinary tract suggests that the amino acid residues, which determine the Vλ subtyping, have no major role in restricting the deposited protein to the urinary bladder. Key Words: primary amyloidosis • urinary bladder • λ light chain • amino acid sequence PMID:11729210

  13. Light chain editing in kappa-deficient animals: a potential mechanism of B cell tolerance

    PubMed Central

    1994-01-01

    The genetic organization of the kappa and lambda light chain loci permits multiple, successive rearrangement attempts at each allele. Multiple rearrangements allow autoreactive B cells to escape clonal deletion by editing their surface receptors. Editing may also facilitate efficient B cell production by salvaging cells with nonproductive light chain (L chain) rearrangements. To study receptor editing of kappa L chains, we have characterized B cells from mice hemizygous for the targeted inactivation of kappa (JCkD/wt) which have an anti-DNA heavy chain transgene, 3H9. Hybridomas from JCkD/wt mice exhibited an increased frequency of rearrangements to downstream Jk segments (such as Jk5) compared with most surveys from normal mice, consistent with receptor editing by sequential kappa locus rearrangements in JCkD/wt. We observed an even higher frequency of rearrangements to Jk5 in 3H9 JCkD/wt animals compared with nontransgenic JCkD/wt, consistent with editing of autoreactive kappa in 3H9 JCkD/wt. We also recovered a large number of 3H9 JCkD/wt lines with Vk12/13-Jk5 rearrangements and could demonstrate by PCR and Southern analysis that up to three quarters of these lines underwent multiple kappa rearrangements. To investigate editing at the lambda locus, we used homozygous kappa-deficient animals (JCkD/JCkD and 3H9 JCkD/JCkD). The frequencies of V lambda 1 and V lambda 2 rearrangements among splenic hybridomas in 3H9 JCkD/JCkD were reduced by 75% whereas V lambda X was increased 5-10-fold, compared with nontransgenic JCkD/JCkD animals. This indicates that V lambda 1 and V lambda 2 are negatively regulated in 3H9 JCkD/JCkD, consistent with earlier studies that showed that the 3H9 heavy chain, in combination with lambda 1 binds DNA. As successive lambda rearrangements to V lambda X do not inactivate V lambda 1, the consequence of lambda editing in 3H9 JCkD/JCkD would be failed allelic exclusion at lambda. However, analysis of 18 3H9 JCkD/JCkD hybridomas with V lambda 1

  14. High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis.

    PubMed

    Hassan-Smith, G; Durant, L; Tsentemeidou, A; Assi, L K; Faint, J M; Kalra, S; Douglas, M R; Curnow, S J

    2014-11-15

    Cerebrospinal fluid (CSF) analysis is routinely used in the diagnostic work-up of multiple sclerosis (MS), by detecting CSF-specific oligoclonal bands (OCB). More recently, several studies have reported CSF free light chains (FLC) as an alternative. We show that absolute CSF κFLC concentrations were highly sensitive - more than OCB testing - and specific for clinically isolated syndrome, relapsing remitting and primary progressive MS. Measurement of κFLC alone was sufficient. Our results suggest that CSF κFLC levels measured by nephelometry, if validated in a larger series, are a preferred test to OCB analysis in the diagnostic work-up of patients suspected of having MS.

  15. Effect of specimen type on free immunoglobulin light chains analysis on the Roche Diagnostics cobas 8000 analyzer.

    PubMed

    Nelson, Louis S; Steussy, Bryan; Morris, Cory S; Krasowski, Matthew D

    2015-01-01

    The measurement of free immunoglobulin light chains is typically performed on serum; however, the use of alternative specimen types has potential benefits. Using the Freelite™ kappa and lambda free light chains assay on a Roche Diagnostics cobas 8000 c502 analyzer, we compared three specimen types (serum, EDTA-plasma and lithium heparin plasma separator gel-plasma) on 100 patients. Using Deming regression and eliminating outliers (limiting data to light chain concentrations below 400 mg/L), the three specimen types showed comparable results for kappa light chain concentration, lambda light chain concentration, and kappa/lambda ratio with slopes close to 1.0 and y-intercepts close to zero. EDTA-plasma showed slightly more positive bias relative to serum than lithium heparin. Analysis using EDTA-plasma and lithium heparin plasma showed comparable linearity, precision, and temperature stability. A single sample showing hook effect (not in the comparison set) gave comparable results using either plasma specimen type. For the Freelite™ kappa and lambda free light chains assay, both EDTA-plasma or lithium heparin-plasma can serve as acceptable substitutes for serum, at least for the Roche cobas 8000 analyzer. PMID:26682113

  16. Structural Characterization of the Partially Folded Intermediates of An Immunoglobulin Light Chain Leading to Amyloid Fibrillation And Amorphous Aggregation

    SciTech Connect

    Qin, Z.; Hu, D.; Zhu, M.; Fink, A.L.; /UC, Santa Cruz

    2007-07-12

    Immunoglobulin light chain deposition diseases involve various types of extracellular deposition of light chain variable domains, including amyloid fibrils and amorphous deposits. The decreased thermodynamic stability of the light chain is believed to be the major factor leading to fibrillation. However, the differences in the nature of the deposits among the light chain deposition diseases raise the question of whether the mechanisms leading to fibrillar or amorphous aggregation is different. In this study, we generated two partially folded intermediates of the light chain variable domain SMA in the presence of guanidine hydrochloride (GuHCl) and characterized their conformations. The more unfolded intermediate formed fibrils most rapidly, while the more native-like intermediate predominantly led to amorphous deposits. The results also show that the monomeric, rather than the dimeric state, was critical for fibrillation. The data also indicate that fibril elongation involves addition of a partially unfolded intermediate, rather than the native state. We postulate that a more highly unfolded intermediate is more suited to undergo the topological rearrangements necessary to form amyloid fibrils than a more structured one and that this also correlates with increased destabilization. In the case of light chain aggregation, it appears that more native-like intermediate conformations are more prone to form amorphous deposits.

  17. Vascular Accessibility of Endothelial Targeted Ferritin Nanoparticles.

    PubMed

    Khoshnejad, Makan; Shuvaev, Vladimir V; Pulsipher, Katherine W; Dai, Chuanyun; Hood, Elizabeth D; Arguiri, Evguenia; Christofidou-Solomidou, Melpo; Dmochowski, Ivan J; Greineder, Colin F; Muzykantov, Vladimir R

    2016-03-16

    Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10-50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20-25 nm and ∼4-5 Ab (or ∼7-9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that (i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and (ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers. PMID:26718023

  18. Microinjection of antibodies to the calpactin I light chain in MDBK cells causes precipition of the cytoskeletal calpactin I complex without affecting the distribution of related proteins.

    PubMed

    Glenney, J R

    1990-01-01

    The calpactin I complex is composed of two heavy chain (39K) and two light chain (11K) subunits. The heavy chain is a member of a protein family that includes lipocortins, endonexin and chromobindins while the light chain is a member of the S100 family (7 distinct members are known). We have found that the kidney epithelial cell line MDBK expresses four members of the heavy chain family and two members of the light chain protein family. Antibodies to the light chain of calpactin I were found to cause the precipitation of injected antibody together with the associated heavy chain without apparent effect on the distribution of related proteins. This suggests a differential targeting of various members of the calpactin heavy and light chain families even within the same cell.

  19. Effect of Lysine Modification on the Stability and Cellular Binding of Human Amyloidogenic Light Chains

    SciTech Connect

    O'Neill, Hugh Michael; Davern, Sandra M.; Murphy, Charles L.; Wall, Jonathan; Deborah, Weiss T.; Solomon, Alan

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescent microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichorism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  20. Four structural risk factors identify most fibril-forming kappa light chains.

    SciTech Connect

    Stevens, F. J.; Biosciences Division

    2000-09-01

    Antibody light chains (LCs) comprise the most structurally diverse family of proteins involved in amyloidosis. Many antibody LCs incorporate structural features that impair their stability and solubility, leading to their assembly into fibrils and to their subsequent pathological deposition when produced in excess during multiple myeloma and primary amyloidosis. The particular amino acid variations in antibody LCs that account for fibril formation and amyloidogenesis have not been identified. This study focuses on amyloidogenesis within the Kl family of human LCs. Reanalysis of the current database of primary structures of proteins from more than 100 patients who produced Kl LCS, 37 of which were amyloidogenic, reveals apparent structural features that may contribute to amyloidosis. These features include loss of conserved residues or the gain of particular residues through mutation at sites involving a repertoire of approximately 20% of the amino acid positions in the light chain variable domain (V{sub L}). Moreover, 80% of all K1 amyloidogenic V{sub L}s are identifiable by the presence of at least one of three single-site substitutions or the acquisition of an N-linked glycosylation site through mutations. These findings suggest that it is feasible to predict fibril propensity by analysis of primary structure.

  1. CaMKII in addition to MLCK contributes to phosphorylation of regulatory light chain in cardiomyocytes.

    PubMed

    Eikemo, Hilde; Moltzau, Lise Román; Hussain, Rizwan I; Nguyen, Cam H T; Qvigstad, Eirik; Levy, Finn Olav; Skomedal, Tor; Osnes, Jan-Bjørn

    2016-02-26

    The aim was to identify kinase activities involved in the phosphorylation of regulatory light chain (RLC) in situ in cardiomyocytes. In electrically stimulated rat cardiomyocytes, phosphatase inhibition by calyculin A unmasked kinase activities evoking an increase of phosphorylated RLC (P-RLC) from about 16% to about 80% after 80 min. The phosphorylation rate in cardiomyocytes was reduced by about 40% by the myosin light chain kinase (MLCK) inhibitor, ML-7. In rat ventricular muscle strips, calyculin A induced a positive inotropic effect that correlated with P-RLC levels. The inotropic effect and P-RLC elevation were abolished by ML-7 treatment. The kinase activities phosphorylating RLC in cardiomyocytes were reduced by about 60% by the non-selective kinase inhibitor staurosporine and by about 50% by the calmodulin antagonist W7. W7 eliminated the inhibitory effect of ML-7, suggesting that the cardiac MLCK is Ca(2+)/calmodulin (CaM)-dependent. The CaM-dependent kinase II (CaMKII) inhibitor KN-93 attenuated the calyculin A-induced RLC phosphorylation by about 40%, indicating a contribution from CaMKII. The residual phosphorylation in the presence of W7 indicated that also CaM-independent kinase activities might contribute. RLC phosphorylation was insensitive to protein kinase C inhibition. In conclusion, in addition to MLCK, CaMKII phosphorylates RLC in cardiomyocytes. Involvement of other kinases cannot be excluded.

  2. A Case of Abdominal Aortic Retroperitoneal and Mesenteric Amyloid Light Chain Amyloidoma

    PubMed Central

    Yokota, Kazuhiro; Kishida, Dai; Kayano, Hidekazu; Yazaki, Masahide; Shimada, Yuki; Akiyama, Yuji

    2016-01-01

    We report the case of a Japanese woman with amyloid light chain (AL) amyloidoma in the abdominal aortic retroperitoneum and mesentery. Irregular soft tissue mass lesions with calcification in the abdominal aortic retroperitoneum and mesentery were initially detected by computed tomography at another hospital. The lesions gradually compressed the duodenum, causing symptoms of bowel obstruction. The patient was clinically diagnosed with retroperitoneal fibrosis, and prednisolone was administered at a dose of 40 mg/day. However, the lesions did not change in size and her symptoms continued. She was transferred to our hospital and underwent mesenteric biopsy for histopathology using abdominal laparotomy. The histopathological and immunohistological findings of the mesenteric specimen demonstrated lambda light chain deposition. Accordingly, the patient was finally diagnosed with AL amyloidoma with no evidence of systemic amyloidosis. After laparotomy, her general condition worsened because of complications of pneumonia and deep vein thrombosis. She died suddenly from acute myocardial infarction. We have concluded that abdominal aortic retroperitoneal and mesenteric AL amyloidoma may have very poor prognoses in accordance with previous reports. In addition, the size and location of AL amyloidoma directly influence the prognosis. We suggest that early histopathology is important for improving prognosis. PMID:27752386

  3. Immunoglobulin Light-Chain Amyloidosis: From Basics to New Developments in Diagnosis, Prognosis and Therapy.

    PubMed

    Muchtar, Eli; Buadi, Francis K; Dispenzieri, Angela; Gertz, Morie A

    2016-01-01

    Immunoglobulin amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, where the culprit amyloidogenic protein is immunoglobulin light chains produced by marrow clonal plasma cells. AL amyloidosis is an infrequent disease, and since presentation is variable and often nonspecific, diagnosis is often delayed. This results in cumulative organ damage and has a negative prognostic effect. AL amyloidosis can also be challenging on the diagnostic level, especially when demonstration of Congo red-positive tissue is not readily obtained. Since as many as 31 known amyloidogenic proteins have been identified to date, determination of the amyloid type is required. While several typing methods are available, mass spectrometry has become the gold standard for amyloid typing. Upon confirming the diagnosis of amyloidosis, a pursuit for organ involvement is essential, with a focus on heart involvement, even in the absence of suggestive symptoms for involvement, as this has both prognostic and treatment implications. Details regarding initial treatment options, including stem cell transplantation, are provided in this review. AL amyloidosis management requires a multidisciplinary approach with careful patient monitoring, as organ impairment has a major effect on morbidity and treatment tolerability until a response to treatment is achieved and recovery emerges.

  4. [Clinical usefulness of serum free light chain measurement in monoclonal gammopathy].

    PubMed

    Shimazaki, Chihiro; Murakami, Hirokazu; Sawamura, Morio; Matsuda, Masayuki; Kinoshita, Tomohiro; Hata, Hiroyuki; Sugiura, Isamu; Tsushita, Keitaroh; Nagura, Eiichi; Kosugi, Hiroshi; Itoh, Junji; Shimizu, Kazuyuki

    2010-04-01

    Recently, a highly sensitive assay (FREELITE) capable of measuring serum immunoglobulin-free light chains (FLC) was developed. An abnormal kappa/lambda ratio supports the presence of clonal plasma cell expansion. Using this assay, we measured serum and urine samples of 178 healthy volunteers, 184 patients with polyclonal gamma-globulinemia and 150 patients with monoclonal gamma-globulinemia. The diagnostic sensitivity of the FLC assays for monoclonal gammopathies was 88.0% and the specificity for healthy volunteers and polyclonal gammopathies was 96.1%. The minimal detection sensitivity of this assay for serum FLC was 0.3 mg/l and was greater than 100-fold more sensitive than serum protein electrophoresis (SPE). The combination of FLC with SPE and immunoelectrophoresis identified 99% of patients with monoclonal gammopathies. Effective treatment often leads to a more rapid reduction of the involved FLC level relative to the intact immunoglobulin or total light chain concentration because the half-life of FLC is <6 hours. These observations suggest that FREELITE is useful for diagnosis, disease monitoring and assessment of response to treatment in patients with monoclonal gammopathies such as multiple myeloma and AL amyloidosis.

  5. Multiple myeloma-associated skin light chain amyloidosis: A case of misdiagnosis

    PubMed Central

    XIAO, LI; LIN, FENGXIA; XIAO, RONG; HU, CHUN; DENG, MINGYANG; LI, DAIQIANG; SHE, XIAOLING; LIU, FUYOU; SUN, LIN

    2016-01-01

    The present study reports the case of a 42-year-old male with multiple myeloma (MM)-associated skin light chain amyloidosis who presented with skin purpura as the initial symptom, which was misdiagnosis as Henoch-Schönlein purpura nephritis prior to admission to the Second Xiangya Hospital (Changsha, Hunan, China). The patient presented with purpura, papules petechiae and spontaneous ecchymosis, which was located scattered around the neck, chest and limbs, accompanied by a small amount of bleeding in the conjunctival and oral mucosa, and a swollen tongue. Upon laboratory examination, the serum immunological change showed increased serum immunoglobulin G and λ light chain levels, and a urine Bence Jones protein level of >1 g/24 h. This was accompanied with an abnormal result for immunofixation electrophoresis, and positive staining with Congo red showing apple-green birefringence in skin biopsy specimens. Thus, the patient was diagnosed with MM-associated skin amyloidosis with the initial symptom of skin purpura. Following treatment with chemotherapy consisting of prednisone and bortezomib, the skin lesions markedly improved. The present study indicates that the presentation of skin purpura in systemic amyloidosis associated with MM may be an important aid in the diagnosis and direct treatment of this disease in the clinic. PMID:27284363

  6. Inhibition of pathologic immunoglobulin free light chain production by small interfering RNA molecules

    PubMed Central

    Phipps, Jonathan E.; Kestler, Daniel P.; Foster, James S.; Kennel, Stephen J.; Donnell, Robert; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2010-01-01

    Objectives Morbidity and mortality occurring in patients with multiple myeloma, AL amyloidosis, and light chain deposition disease can result from the pathologic deposition of monoclonal Ig light chains (LCs) in kidneys and other organs. To reduce synthesis of such components, therapy for these disorders typically has involved anti-plasma cell agents; however, this approach is not always effective and can have adverse consequences. We have investigated another means to achieve this objective; namely, RNA interference (RNAi). Materials and Methods SP2/O mouse myeloma cells were stably transfected with a construct encoding a λ6 LC (Wil) under control of the CMV promoter, while λ2-producing myeloma cell line RPMI 8226 was purchased from the ATCC. Both were treated with small interfering RNA (siRNA) directed specifically to the V, J, or C portions of the molecules and then analyzed by ELISA, flow cytometry and real time PCR. Results Transfected cells were found to constitutively express detectable quantities of mRNA and protein Wil and, after exposure to siRNAs, an ~40% reduction in mRNA and LC production was evidenced at 48 hours. An even greater effect was seen with the 8226 cells. Conclusion Our results have shown that RNAi can markedly reduce LC synthesis and provide the basis for testing the therapeutic potential of this strategy using in vivo experimental models of multiple myeloma. PMID:20637260

  7. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction.

    PubMed

    Stroka, Kimberly M; Aranda-Espinoza, Helim

    2011-08-11

    A vast amount of work has been dedicated to the effects of shear flow and cytokines on leukocyte transmigration. However, no studies have explored the effects of substrate stiffness on transmigration. Here, we investigated important aspects of endothelial cell contraction-mediated neutrophil transmigration using an in vitro model of the vascular endothelium. We modeled blood vessels of varying mechanical properties using fibronectin-coated polyacrylamide gels of varying physiologic stiffness, plated with human umbilical vein endothelial cell (HUVEC) monolayers, which were activated with tumor necrosis factor-α. Interestingly, neutrophil transmigration increased with increasing substrate stiffness below the endothelium. HUVEC intercellular adhesion molecule-1 expression, stiffness, cytoskeletal arrangement, morphology, and cell-substrate adhesion could not account for the dependence of transmigration on HUVEC substrate stiffness. We also explored the role of cell contraction and observed that large holes formed in endothelium on stiff substrates several minutes after neutrophil transmigration reached a maximum. Further, suppression of contraction through inhibition of myosin light chain kinase normalized the effects of substrate stiffness by reducing transmigration and eliminating hole formation in HUVECs on stiff substrates. These results provide strong evidence that neutrophil transmigration is regulated by myosin light chain kinase-mediated endothelial cell contraction and that this event depends on subendothelial cell matrix stiffness. PMID:21652678

  8. Clathrin light chains' role in selective endocytosis influences antibody isotype switching.

    PubMed

    Wu, Shuang; Majeed, Sophia R; Evans, Timothy M; Camus, Marine D; Wong, Nicole M L; Schollmeier, Yvette; Park, Minjong; Muppidi, Jagan R; Reboldi, Andrea; Parham, Peter; Cyster, Jason G; Brodsky, Frances M

    2016-08-30

    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules. PMID:27540116

  9. Cloning and characterization of a dynein light chain gene from Puccinia striiformis f. sp. tritici.

    PubMed

    Liu, Jie; Zhang, Qiong; Chang, Qing; Wang, Qiuling; Han, Lina; Liu, Jia; Li, Man; Zhuang, Hua; Kang, Zhensheng

    2014-07-01

    Stripe rust is one of the most serious wheat diseases worldwide. The fungus Puccinia striiformis f. sp. tritici (Pst), the causal agent of this disease, is an obligate biotrophic basidiomycete fungus. Numerous studies have shown that dyneins play important roles during fungal growth and propagation. However, knowledge is limited regarding the function of dyneins in Pst. In this study, we cloned the dynein light chain gene PsDLC1 from Pst and characterized its expression. The function of PsDLC1 was determined by heterologous mutant complementation. Expression of PsDLC1 in Aspergillus nidulans partially complemented the defects of the ΔnudG mutant, indicating that PsDLC1 belongs to the dynein light chain LC8 family. In addition, PsDLC1 was identified in Pst using virus-induced gene silencing (VIGS). Knockdown of PsDLC1 produces no significant effect on Pst growth and development, indicating that PsDLC1 is unnecessary for Pst infection of wheat.

  10. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis. PMID:27548633

  11. Two ferritin subunits from disk abalone (Haliotis discus discus): cloning, characterization and expression analysis.

    PubMed

    De Zoysa, Mahanama; Lee, Jehee

    2007-09-01

    Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5'UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 microg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.

  12. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains

    PubMed Central

    Ramos, Carlos A.; Savoldo, Barbara; Torrano, Vicky; Ballard, Brandon; Zhang, Huimin; Dakhova, Olga; Liu, Enli; Carrum, George; Kamble, Rammurti T.; Gee, Adrian P.; Mei, Zhuyong; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Dotti, Gianpietro

    2016-01-01

    BACKGROUND. Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan–B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment. METHODS. We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used. RESULTS. κ.CART expansion peaked 1–2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2–17 months. No toxicities attributable to κ.CARTs were observed. CONCLUSION. κ.CART infusion is feasible and safe and can lead to complete clinical responses. TRIAL REGISTRATION. ClinicalTrials.gov NCT00881920. FUNDING. National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018. PMID:27270177

  13. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    PubMed

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein

  14. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    PubMed

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein

  15. Iron and ADHD: Time to Move beyond Serum Ferritin Levels

    ERIC Educational Resources Information Center

    Donfrancesco, Renato; Parisi, Pasquale; Vanacore, Nicola; Martines, Francesca; Sargentini, Vittorio; Cortese, Samuele

    2013-01-01

    Objective: (a) To compare serum ferritin levels in a sample of stimulant-naive children with ADHD and matched controls and (b) to assess the association of serum ferritin to ADHD symptoms severity, ADHD subtypes, and IQ. Method: The ADHD and the control groups included 101 and 93 children, respectively. Serum ferritin levels were determined with…

  16. Cytoprotective Effect of Ferritin H in Renal Ischemia Reperfusion Injury

    PubMed Central

    2015-01-01

    Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury. PMID:26379029

  17. Purification, Characterization, and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkii.

    PubMed

    Zhang, Yong-Xia; Chen, Heng-Li; Maleki, Soheila J; Cao, Min-Jie; Zhang, Ling-Jing; Su, Wen-Jin; Liu, Guang-Ming

    2015-07-15

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in shrimp. In this study, MLC with a molecular mass of 18 kDa was purified from crayfish (Procambarus clarkii) muscle. Its physicochemical characterization showed that the purified MLC is a glycoprotein with 4.3% carbohydrate, highly stable to heat, acid-alkali, and digestion, and weakly retains IgE-binding activity when its secondary structure was altered. Serological assays suggested that conformational epitopes predominate over linear epitopes in the purified MLC. Two isoforms of the MLC gene (MLC1 and MLC2) were cloned, and the purified MLC was identified as MLC1. Analysis of the secondary and tertiary structures of the MLCs indicated that MLC1 has four conformational epitopes and three linear epitopes, whereas MLC2 had a major conformational epitope and three linear epitopes. These results are significant for understanding hypersensitization of humans to crayfish.

  18. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy.

    PubMed

    Falk, Rodney H; Alexander, Kevin M; Liao, Ronglih; Dorbala, Sharmila

    2016-09-20

    The amyloidoses are a group of protein-folding disorders in which ≥1 organ is infiltrated by proteinaceous deposits known as amyloid. The deposits are derived from 1 of several amyloidogenic precursor proteins, and the prognosis of the disease is determined both by the organ(s) involved and the type of amyloid. Amyloid involvement of the heart (cardiac amyloidosis) carries the worst prognosis of any involved organ, and light-chain (AL) amyloidosis is the most serious form of the disease. The last decade has seen considerable progress in understanding the amyloidoses. In this review, current and novel approaches to the diagnosis and treatment of cardiac amyloidosis are discussed, with particular reference to AL amyloidosis in the heart. PMID:27634125

  19. Proliferative glomerulonephritis with monoclonal immunoglobulin deposition disease: The utility of routine staining with immunoglobulin light chains

    PubMed Central

    Gowda, K. K.; Nada, R.; Ramachandran, R.; Joshi, K.; Tewari, R.; Kohli, H. S.; Jha, V.; Gupta, K. L.

    2015-01-01

    Proliferative glomerulonephritis occurring as a consequence of monoclonal glomerular deposits of IgG is uncommon. It is a form of renal involvement in monoclonal gammopathy that mimics immune complex glomerulonephritis. Here, we report the first series of proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) from the Indian subcontinent highlighting use of light chain immunofluorescence (IF) in routine renal biopsy interpretation. We retrieved 6 patients diagnosed as proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) out of 160 biopsies (3.7%) with membranoproliferative patterns over 5 1/2 years (2009–2014), one of whom had recurrence 6 months post-renal transplant. Four (67%) patients presented with rapidly progressive renal failure and two (33%) with nephrotic syndrome. None of these patients had overt multiple myeloma. The predominant histologic pattern was membranoproliferative with all the biopsies showing IgG3 Kappa deposits on IF. The deposits were primarily subendothelial on electron microscopy. PMID:26664209

  20. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  1. Recurrent Syncope and Cardiac Arrest in a Patient with Systemic Light Chain Amyloidosis Treated with Bortezomib.

    PubMed

    Jaipaul, Navin; Pi, Alexander; Zhang, Zhiwei

    2016-05-10

    About 10-15% of patients with multiple myeloma develop light chain (AL) amyloidosis. AL amyloidosis is a systemic disease that may involve multiple organs, often including the heart. It may present clinically with bradyarrhythmia and syncope. The proteasome inhibitor bortezomib has been used with clinical efficacy in treating patients with AL amyloidosis but also implicated as a possible cause of cardiomyocyte injury. We report a case of a 48-year-old man with AL amyloidosis and increased frequency of syncope and cardiac arrest after starting bortezomib. The biologic and clinical plausibility of a heightened risk for cardiac arrest in patients with cardiac AL amyloidosis and history of syncope being treated with bortezomib is a possibility that is not well documented in the medical literature and warrants further investigation. PMID:27499835

  2. Recurrent Syncope and Cardiac Arrest in a Patient with Systemic Light Chain Amyloidosis Treated with Bortezomib

    PubMed Central

    Jaipaul, Navin; Pi, Alexander; Zhang, Zhiwei

    2016-01-01

    About 10-15% of patients with multiple myeloma develop light chain (AL) amyloidosis. AL amyloidosis is a systemic disease that may involve multiple organs, often including the heart. It may present clinically with bradyarrhythmia and syncope. The proteasome inhibitor bortezomib has been used with clinical efficacy in treating patients with AL amyloidosis but also implicated as a possible cause of cardiomyocyte injury. We report a case of a 48-year-old man with AL amyloidosis and increased frequency of syncope and cardiac arrest after starting bortezomib. The biologic and clinical plausibility of a heightened risk for cardiac arrest in patients with cardiac AL amyloidosis and history of syncope being treated with bortezomib is a possibility that is not well documented in the medical literature and warrants further investigation. PMID:27499835

  3. Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.

    PubMed

    Wong, Yao Liang; Rice, Sarah E

    2010-06-29

    Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding. PMID:20547877

  4. Cloning of immunoglobulin kappa light chain genes from mouse liver and myeloma MOPC 173.

    PubMed

    Steinmetz, M; Zachau, H G; Mach, B

    1979-07-25

    The organization of the kappa chain constant region gene was compared in DNA from an immunoglobulin-producing mouse myeloma (MOPC 173) and from liver. In situ hybridization using the Southern blotting technique revealed constant region gene-containing EcoRI-DNA fragments of 14 and 20 kb in the myeloma tissue whereas one EcoRI-DNA fragment with a length of 15 kb was found in liver DNA. After enrichment by RPC-5 chromatography and preparative electrophoresis the 14 kb fragment from MOPC 173 DNA and the 15 kb fragment from liver DNA were cloned in the bacteriophage lambda vector Charon 4A using in vitro packaging. Extensive characterization of the two fragments by restriction endonuclease mapping, in situ hybridization, and electron microscopy (R-loop and heteroduplex) showed that both fragments contain the constant region but no MOPC 173 variable region gene. Both fragments are homologous over a length of 12.5 kb including the constant region but differ from one another starting about 2.7 kb from the 5' end of the constant region gene. This indicates that the 14 kb EcoRI-DNA fragment from the myeloma tissue clearly resulted from somatic DNA rearrangement although it does not seem to carry the MOPC 173 variable region gene. These observations suggest that somatic DNA rearrangement of immunoglobulin light chain genes can involve both homologous chromosomes.Images

  5. Conventional Kinesin Holoenzymes Are Composed of Heavy and Light Chain Homodimers†

    PubMed Central

    DeBoer, Scott R.; You, YiMei; Szodorai, Anita; Kaminska, Agnieszka; Pigino, Gustavo; Nwabuisi, Evelyn; Wang, Bin; Estrada-Hernandez, Tatiana; Kins, Stefan; Brady, Scott T.; Morfini, Gerardo

    2009-01-01

    Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations. PMID:18361505

  6. An outer arm dynein light chain acts in a conformational switch for flagellar motility

    PubMed Central

    Patel-King, Ramila S.

    2009-01-01

    A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633

  7. The regulation of RhoGEF Lfc by dynein light chain Tctex-1

    NASA Astrophysics Data System (ADS)

    Balan, Marc

    Lfc is a guanine nucleotide exchange factor (GEF) that activates the small GTPase RhoA, and its GEF activity is tightly regulated through protein-protein interactions, phosphorylation, and cellular localization. Lfc is anchored to microtubules through its interaction with the dynein light chain Tctex-1, which results in inhibition of Lfc's GEF activity. Here we present a crystallographic structure of Tctex-1 in complex with Lfc with residues 143-155 of Lfc bound at the Tctex-1 dimer interface. Structural alignment of our structure with Tctex-1 in complex with the dynein intermediate chain (DIC) shows the binding site of the DIC peptide and Lfc substantially overlap. Biochemical evidence, NMR perturbations assays and intrinsic fluorescence provide structural validation and support an extension of the Lfc binding site to the andalpha;-helices that may accommodate additional contact points with Tctex-1. We postulate a potential mechanism for Lfcandrsquo;s recruitment to the microtubules through a tripartite complex with Tctex-1 and DIC.

  8. Structure and function of outer dynein arm intermediate and light chain complex

    PubMed Central

    Oda, Toshiyuki; Abe, Tatsuki; Yanagisawa, Haruaki; Kikkawa, Masahide

    2016-01-01

    The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs. PMID:26864626

  9. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle

    PubMed Central

    1988-01-01

    The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges. PMID:3216188

  10. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    SciTech Connect

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  11. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. PMID:25931148

  12. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  13. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy

    PubMed Central

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-01-01

    Abstract Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and 51CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined. PMID:27367983

  14. Identification and functional characterization of a novel ferritin subunit from the tropical sea cucumber, Stichopus monotuberculatus.

    PubMed

    Ren, Chunhua; Chen, Ting; Jiang, Xiao; Wang, Yanhong; Hu, Chaoqun

    2014-05-01

    Ferritin is one of the major non-harm iron storage proteins that found in most cell types of animals, plants and microorganisms. In this study, a ferritin subunit named StmFer was identified from the sea cucumber (Stichopus monotuberculatus) and characterized functionally. The full-length cDNA of StmFer is 1184 bp in size with a 5'-untranslated region (UTR) of 131 bp, a 3'-UTR of 531 bp and an open reading frame of 522 bp that encoding a protein of 173 amino acids with a deduced molecular weight of 19.95 kDa. StmFer possesses both the ferroxidase center of vertebrate ferritin heavy subunit and iron nucleation sites of vertebrate ferritin light subunit. For the gene structure, StmFer contains only three exons separated by two introns. Higher levels of mRNA expression were noticed in intestine and coelomocyte of S. monotuberculatus by northern blot analysis. In in vitro experiments performed in coelomocytes, transcriptional expression of StmFer showed the strongest response to polyriboinosinic polyribocytidylic acid [Poly (I:C)] (9.08 fold up-regulation), followed by lipopolysaccharides (LPS), ferrous chloride (FeCl2) and inactivated bacteria (Vibrio alginolyticus) (7.84, 7.41 and 4.90 fold up-regulation, respectively) after 3 h post-challenge. In addition, the anti-oxidation activity and iron binding capacity of recombinant ferritin protein were demonstrated in this study. As a whole, our study suggested that the ferritin from sea cucumber may play critical roles not only in the cellular and organismic iron homeostasis, but also in the innate immune defense.

  15. Purification and characterization of a stimulator of plasmin generation from the antiangiogenic agent Neovastat: identification as immunoglobulin kappa light chain.

    PubMed

    Boivin, Dominique; Provençal, Mathieu; Gendron, Sébastien; Ratel, David; Demeule, Michel; Gingras, Denis; Béliveau, Richard

    2004-11-15

    We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified. PMID:15488468

  16. Serum enzyme and ferritin concentrations in acute leukaemia.

    PubMed

    Stark, A N; Gailor, K; Langdale, P I; Roberts, B E; Scott, C S

    1987-03-01

    Serum ferritin concentrations were determined in 142 untreated cases of acute leukaemia. No correlation between type of leukaemia as defined by morphology and immunology and the level of serum ferritin was found. Samples were also tested for lactate dehydrogenase (LDH), phosphohexose isomerase (PHI), B-glucuronidase (B-gluc), leucine aminopeptidase (LAP), and C-reactive protein (CRP) levels. Serum ferritin was significantly correlated with serum PHI, LAP, and LDH concentrations but not with leukaemic mass as assessed by total white blood cell count (WBC). Ferritin and CRP levels were also significantly correlated suggesting that ferritin may behave to some extent like an acute phase reactant in acute leukaemia. PMID:3502981

  17. Ferritins as Nanoplatforms for Imaging and Drug Delivery

    PubMed Central

    Zhen, Zipeng; Tang, Wei; Todd, Trever; Xie, Jin

    2015-01-01

    Introduction Due to unique architecture and surface properties, ferritin has emerged as an important class of biomaterial. Many studies suggest that ferritin and its derivatives hold great potential in a wide range of bio-applications. Areas covered In this review, we summarize recent progress on employing ferritins as a platform to construct functional nanoparticles for applications in magnetic resonance imaging (MRI), optical imaging, cell tracking, and drug delivery. Expert opinion As a natural polymer, ferritins afford advantages such as high biocompatibility, good biodegradability, and a relatively long plasma half-life. These attributes put ferritins ahead of conventional materials in clinical translation for imaging and drug delivery purposes. PMID:25070839

  18. Experimental glomerulonephritis in the mouse associated with mesangial deposition ofautologous ferritin immune complexes.

    PubMed

    Stilmant, M M; Couser, W G; Cotran, R S

    1975-06-01

    Mice undergoing prolonged (5 to 8 weeks) immunization with cadium-free feeritin were studied 1 to 32 days following the last ferritin injection. Urine protein was measured and renal tissue examined by light, immunofluorescence, and electron microscopy. Immunized animals developed significant proteinuria and circulating antibody to ferritin.by light microscopy, proetinuric animals had a proliferative glomerular lesion with mesangial hypercellularity and martrix increase, focal and segmental necrosis, fibrin deposits, and occasional crescents. Iron stains revealed prominent mesangial iron deposition. In immunized animals, IgG and C3 deposits were localized mainly in the mesanglium. Electron microscopic studies revealed marked deposition of ferratin complexesexpanded mesangial matrix and mesangial interposition. Ferratin immune complexes were also visualized in epithelial spaces. In the latter location ferritin immune complexes occasionally formed characteristic electron-dense subepithelial deposits. In this model, mesangial and subepithelial localization of autologous ferritin immune complexes is associated with development of glomerulonephritis and characteristic mesangial lesions resembling those seen in some types of human glomerulonephritis.

  19. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    PubMed

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  20. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    PubMed

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals. PMID:25301585

  1. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

    PubMed Central

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-01-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex. PMID:24989795

  2. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.

    PubMed

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-09-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

  3. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    PubMed

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p < 0.001). NSE mRNA levels did not significantly differ between prediabetic patients with and without peripheral neuropathy (p > 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  4. Comparing domain interactions within antibody Fabs with kappa and lambda light chains

    PubMed Central

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W.; Dickey, Mark; Froning, Karen; Conner, Elaine M.; Cujec, Thomas P.; Demarest, Stephen J.

    2016-01-01

    ABSTRACT IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates. PMID:27454112

  5. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  6. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  7. Monitoring serum free light chains in patients with multiple myeloma who achieved negative immunofixation after allogeneic stem cell transplantation.

    PubMed

    Mösbauer, Ulrike; Ayuk, Francis; Schieder, Heike; Lioznov, Michael; Zander, Axel R; Kröger, Nicolaus

    2007-02-01

    Monitoring of serum free immunoglobulin light chains (FLC) in 26 myeloma patients who achieved immunofixation negativity after allografting showed a decrease of FLC at a median of 128 days before immunofixation negativity. In patients who subsequently relapsed, a 25% increase of FLC was observed at a median of 98 days before immunofixation positivity.

  8. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions.

    PubMed

    Milani, Paolo; Palladini, Giovanni; Merlini, Giampaolo

    2016-01-01

    The introduction of the serum-free light-chain (S-FLC) assay has been a breakthrough in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The first method, proposed in 2001, quantifies serum-free light-chains using polyclonal antibodies. More recently, assays based on monoclonal antibodies have entered into clinical practice. S-FLC measurement plays a central role in the screening for multiple myeloma and related conditions, in association with electrophoretic techniques. Analysis of S-FLC is essential in assessing the risk of progression of precursor diseases to overt plasma cell dyscrasias. It is also useful for risk stratification in solitary plasmacytoma and AL amyloidosis. The S-FLC measurement is part of the new diagnostic criteria for multiple myeloma, and provides a marker to follow changes in clonal substructure over time. Finally, the evaluation of S-FLC is fundamental for assessing the response to treatment in monoclonal light chain diseases. PMID:27467897

  9. pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes.

    PubMed

    Wolf, Adrian; Moulin, Emilie; Cid, Juan-José; Goujon, Antoine; Du, Guangyan; Busseron, Eric; Fuks, Gad; Giuseppone, Nicolas

    2015-03-11

    A logic gate based on a bistable [c2] daisy chain rotaxane decorated with lateral triarylamine units is described, giving rise to an INHIBIT logic function using proton concentration and light as inputs, and producing dual color change and supramolecular self-assembly as outputs. PMID:25661046

  10. Hematogones With Lambda Light Chain Restriction in a 4-Year-Old Boy With Burkitt Lymphoma: A Potential Diagnostic Pitfall

    PubMed Central

    Guillory, Tesha; Li, Shiyong; Bergsagel, Daniel J.; Weinzierl, Elizabeth; Bunting, Silvia T.

    2016-01-01

    Hematogones are immature normal B cell precursors with a characteristic immunophenotype profile on flow cytometry that typically do not express surface immunoglobulin light chains. In this report, we describe a case in which the hematogones exhibit light chain restriction. Our patient was a 4-year-old boy with a complicated medical history involving treatment for a presumed bilateral Wilms tumor of the kidney that on later resection was diagnosed as Burkitt lymphoma. Flow cytometry analysis of his bone marrow revealed a small distinct population of cells expressing dim cluster of differentiation (CD)10, CD19, CD22, CD38, dim CD58, human leukocyte antigen–D related (HLA-DR), and dim CD45, which are characteristic of hematogones. These cells, however, demonstrated dim surface immunoglobulin lambda light-chain restriction. Molecular study results for immunoglobulin heavy and kappa light-chain gene rearrangements were negative. We present this case to raise awareness of the potential pitfalls of working up bone marrow for involvement by B cell lymphoproliferative disorder. PMID:27069035

  11. Restricted Immunoglobulin Variable Region (Ig V) Gene Expression Accompanies Secondary Rearrangements of Light Chain Ig V Genes in Mouse Plasmacytomas

    PubMed Central

    Diaw, Lena; Siwarski, David; Coleman, Allen; Kim, Jennifer; Jones, Gary M.; Dighiero, Guillaume; Huppi, Konrad

    1999-01-01

    The many binding studies of monoclonal immunoglobulin (Ig) produced by plasmacytomas have found no universally common binding properties, but instead, groups of plasmacytomas with specific antigen-binding activities to haptens such as phosphorylcholine, dextrans, fructofuranans, or dinitrophenyl. Subsequently, it was found that plasmacytomas with similar binding chain specificities not only expressed the same idiotype, but rearranged the same light (VL) and heavy (VH) variable region genes to express a characteristic monoclonal antibody. In this study, we have examined by enzyme-linked immunosorbent assay five antibodies secreted by silicone-induced mouse plasmacytomas using a broader panel of antigens including actin, myosin, tubulin, single-stranded DNA, and double-stranded DNA. We have determined the Ig heavy and light chain V gene usage in these same plasmacytomas at the DNA and RNA level. Our studies reveal: (a) antibodies secreted by plasmacytomas bind to different antigens in a manner similar to that observed for natural autoantibodies; (b) the expressed Ig heavy genes are restricted in V gene usage to the VH-J558 family; and (c) secondary rearrangements occur at the light chain level with at least three plasmacytomas expressing both κ and λ light chain genes. These results suggest that plasmacytomas use a restricted population of B cells that may still be undergoing rearrangement, thereby bypassing the allelic exclusion normally associated with expression of antibody genes. PMID:10562316

  12. Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites.

    PubMed

    Tosha, Takehiko; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C

    2010-10-20

    Ferritin nanocages synthesize ferric oxide minerals, containing hundreds to thousands of Fe(III) diferric oxo/hydroxo complexes, by reactions of Fe(II) ions with O(2) at multiple di-iron catalytic centers. Ferric-oxy multimers, tetramers, and/or larger mineral nuclei form during postcatalytic transit through the protein cage, and mineral accretion occurs in the central cavity. We determined how Fe(II) substrates can access catalytic sites using frog M ferritins, active and inactivated by ligand substitution, crystallized with 2.0 M Mg(II) ± 0.1 M Co(II) for Co(II)-selective sites. Co(II) inhibited Fe(II) oxidation. High-resolution (<1.5 Å) crystal structures show (1) a line of metal ions, 15 Å long, which penetrates the cage and defines ion channels and internal pores to the nanocavity that link external pores to the cage interior, (2) metal ions near negatively charged residues at the channel exits and along the inner cavity surface that model Fe(II) transit to active sites, and (3) alternate side-chain conformations, absent in ferritins with catalysis eliminated by amino acid substitution, which support current models of protein dynamics and explain changes in Fe-Fe distances observed during catalysis. The new structural data identify a ∼27-Å path Fe(II) ions can follow through ferritin entry channels between external pores and the central cavity and along the cavity surface to the active sites where mineral synthesis begins. This "bucket brigade" for Fe(II) ion access to the ferritin catalytic sites not only increases understanding of biological nanomineral synthesis but also reveals unexpected design principles for protein cage-based catalysts and nanomaterials.

  13. Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.

    PubMed

    Chantler, P D; Tao, T

    1986-11-01

    Interhead fluorescence energy transfer studies between probes located at translationally equivalent sites on the two heads of scallop myosin indicates that the distance between such sites is no less than 50 A. Regulatory light chains, possessing either one (Mercenaria, chicken gizzard) or two (Loligo, rabbit skeletal) sulfhydryl groups, were modified either with 1,5-IAEDANS (N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine), as energy transfer donor, or with IAF (5-(iodoacetamido)fluorescein) or DABMI (4-dimethylaminophenylazophenyl-4'-maleimide), as energy transfer acceptor. The sulfhydryl groups on these light chains are located at different positions within the regulatory light-chain primary sequence; this enables one to probe a variety of locations, with respect to regulatory light-chain topology, on each myosin head. These independently modified regulatory light chains were added back to desensitized scallop myosin under a variety of conditions, including biphasic re-addition, the aim being to maximize the number of interhead energy transfer couples present. The efficiency of energy transfer was determined on the same samples by both steady-state and time-decay techniques. Results obtained by these two techniques were in good agreement with each other and indicated that the efficiency of energy transfer did not exceed 20% in any of the hybrids studied. Transfer efficiencies were invariant, irrespective of the presence or absence of MgATP, calcium or actin, either separately or in combination. Results using heavy meromyosin at low ionic strength were identical. It is shown that these results, in conjunction with the results of recent crosslinking studies performed on comparable myosin hybrids, may place certain restrictions on the configurations of the two heads of myosin.

  14. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  15. Sequence analysis of the myosin regulatory light chain gene of the vestimentiferan Riftia pachyptila.

    PubMed

    Ravaux, J; Hassanin, A; Deutsch, J; Gaill, F; Markmann-Mulisch, U

    2001-01-24

    We have isolated and characterized a cDNA (DNA complementary to RNA) clone (Rf69) from the vestimentiferan Riftia pachyptila. The cDNA insert consists of 1169 base pairs. The aminoacid sequence deduced from the longest reading frame is 193 residues in length, and clearly characterized it as a myosin regulatory light chain (RLC). The RLC primary structure is described in relation to its function in muscle contraction. The comparison with other RLCs suggested that Riftia myosin is probably regulated through its RLC either by phosphorylation like the vertebrate smooth muscle myosins, and/or by Ca2+-binding like the mollusk myosins. Riftia RLC possesses a N-terminal extension lacking in all other species besides the earthworm Lumbricus terrestris. Aminoacid sequence comparisons with a number of RLCs from vertebrates and invertebrates revealed a relatively high identity score (64%) between Riftia RLC and the homologous gene from Lumbricus. The relationships between the members of the myosin RLCs were examined by two phylogenetic methods, i.e. distance matrix and maximum parsimony. The resulting trees depict the grouping of the RLCs according to their role in myosin activity regulation. In all trees, Riftia RLC groups with RLCs that depend on Ca2+-binding for myosin activity regulation. PMID:11223252

  16. Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

    PubMed Central

    Grindrod, Scott; Suy, Simeng; Fallen, Shannon; Eto, Masumi; Toretsky, Jeffrey; Brown, Milton L.

    2011-01-01

    Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype. PMID:22655237

  17. Functions of Myosin Light Chain-2 (MYL2) In Cardiac Muscle and Disease

    PubMed Central

    Sheikh, Farah; Lyon, Robert C.; Chen, Ju

    2015-01-01

    Myosin light chain-2 (MYL2, also called MLC-2) is an ∼19 kDa sarcomeric protein that belongs to the EF-hand calcium binding protein superfamily and exists as three major isoforms encoded by three distinct genes in mammalian striated muscle. Each of the three different MLC-2 genes (MLC-2f; fast twitch skeletal isoform, MLC-2v; cardiac ventricular and slow twitch skeletal isoform, MLC-2a; cardiac atrial isoform) has a distinct developmental expression pattern in mammals. Genetic loss-of-function studies in mice demonstrated an essential role for cardiac isoforms of MLC-2, MLC-2v and MLC-2a, in cardiac contractile function during early embryogenesis. In the adult heart, MLC-2v function is regulated by phosphorylation, which displays a specific expression pattern (high in epicardium and low in endocardium) across the heart. These data along with new data from computational models, genetic mouse models, and human studies have revealed a direct role for MLC-2v phosphorylation in cross-bridge cycling kinetics, calcium-dependent cardiac muscle contraction, cardiac torsion, cardiac function and various cardiac diseases. This review focuses on the regulatory functions of MLC-2 in the embryonic and adult heart, with an emphasis on phosphorylation-driven actions of MLC-2v in adult cardiac muscle, which provide new insights into mechanisms regulating myosin cycling kinetics and human cardiac diseases. PMID:26074085

  18. Regulatory and structural motifs of chicken gizzard myosin light chain kinase.

    PubMed Central

    Olson, N J; Pearson, R B; Needleman, D S; Hurwitz, M Y; Kemp, B E; Means, A R

    1990-01-01

    The amino acid sequence for chicken smooth muscle myosin light chain kinase (smMLCK) was deduced from a full-length cDNA. This has allowed definition of both the complete sequence of the inactive 64-kDa proteolytic fragment, which contains the pseudosubstrate autoregulatory sequence, and of the active 61-kDa Ca2+/calmodulin-independent fragment, which lacks the autoregulatory domain. Comparison of the two sequences shows that the autoregulatory domain extends from Asn-780 to Arg-808. The peptide Leu-774 to Ser-787 does not inhibit smMLCK, whereas peptides of similar or shorter length from the pseudosubstrate region (Ser-787 to Val-807) are potent inhibitors. These data define the autoregulatory region as being contained within and probably identical to the pseudosubstrate domain. The catalytic and regulatory regions are flanked by several copies of 100-amino acid segments containing one of two consensus motifs. These motifs are absent from mammalian skeletal muscle MLCK or from Dictyostelium discoideum MLCK but are present in the Caenorhabditis elegans unc-22 gene product and the titin molecule of skeletal muscle myofibrils. These results indicate that the amino acid sequence of smMLCK encodes multiple functional motifs in addition to the catalytic domain. PMID:2315320

  19. Prognostic value of serum heavy/light chain ratios in patients with POEMS syndrome.

    PubMed

    Wang, Chen; Su, Wei; Cai, Qian-Qian; Cai, Hao; Ji, Wei; Di, Qian; Duan, Ming-Hui; Cao, Xin-Xin; Zhou, Dao-Bin; Li, Jian

    2016-07-01

    POEMS syndrome is a rare plasma cell dyscrasia. Serum concentrations of the monoclonal protein in this disorder are typically low, and inapplicable to monitor disease activity in most cases, resulting in limited practical and prognostic values. Novel immunoassays measuring isotype-specific heavy/light chain (HLC) pairs showed its utility in disease monitoring and outcome prediction in several plasma cell dyscrasias. We report results of HLC measurements in 90 patients with POEMS syndrome. Sixty-six patients (73%; 95% confidence interval, 63-82%) had an abnormal HLC ratio at baseline. It could stratify the risk of disease relapse and was strongly associated with worse progression-free survival in a multivariate analysis (P = 0.021; hazard ratio [HR] 6.89, 95% CI 1.34-35.43). After therapy, HLC ratios improved, with 43 patients (48%) remaining abnormal. The post-therapeutic HLC ratio, if abnormal, also remained as an independent prognostic factor associated with worse progression-free survival (P = 0.019; HR 4.30, 95% CI 1.27-14.56). These results suggest the prognostic utility of HLC ratios in clinical management of POEMS patients.

  20. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation.

    PubMed

    Hoar, P E; Kerrick, W G

    1988-08-01

    Two effects of Mn2+ on skinned fibers from chicken gizzard smooth muscle were observed, dependent on the presence or absence of dithiothreitol (DTT) reducing agent. One involves protein oxidation (in the absence of DTT) with production of a "latch"-like state, and the other involves direct Mn2+ activation of contractile proteins. Cells activated by Mn2+ in the presence of ATP and the absence of Ca2+, Mg2+ and DTT did not relax when transferred to normal relaxing solutions. In contrast, when 5 mM DTT was included in the Mn2+ contracting solution to prevent protein oxidation by Mn2+, the cells still contracted when exposed to Mn2+, but relaxed rapidly when the Mn2+ was removed. In the presence of DTT both the Mn2+ activation and the relaxation following removal of Mn2+ were more rapid than normal Ca2+-activated contractions and relaxations. The skinned fibers activated by Mn2+ in the absence of DTT showed little active shortening unless DTT was added. This rigor-like state is probably due to oxidation of contractile proteins since the cells relaxed when exposed to a relaxing solution containing DTT (50 mM) and then contracted again in response to Ca2+ and relaxed normally. The Mn2+ activation was not associated with myosin light chain phosphorylation, in contrast to Ca2+-activated contractions. PMID:3186428

  1. Urine immunofixation electrophoresis remains important and is complementary to serum free light chain.

    PubMed

    Levinson, Stanley S

    2011-11-01

    Articles have debated whether or not urine analysis remains valuable for identifying monoclonal gammopathies. A general impression is that the newer serum free light chain (FLC) assay is more analytically sensitive, more quantitative and simpler to perform. Many laboratory directors may have seized on the idea of eliminating urine analysis because it is a tedious procedure and requires expert interpretation while most laboratories can perform automated serum FLC assay. Others have concluded that urine immunofixation electrophoresis (IFE) optimizes the diagnostic sensitivity and should be included when there is a clinical indication. Here, I show that papers faulting urine analysis often used inappropriate urine methodology and this helps explain why there was misinterpretation. Moreover, the literature, shows urine IFE is often more sensitive for identifying low-level monoclonal FLC than the serum assay because urine IFE is as sensitive when performed appropriately and generally more specific. Besides, the reference range for serum FLC assay is unclear which is a great problem in assessing response to treatment and in identifying diseases when there is low concentration monoclonal FLC. I conclude that urine IFE remains important and is complementary to serum FLC assay, although the best algorithms for use remains to be elucidated.

  2. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.

    PubMed

    Paiva, Bruno; Martinez-Lopez, Joaquin; Corchete, Luis A; Sanchez-Vega, Beatriz; Rapado, Inmaculada; Puig, Noemi; Barrio, Santiago; Sanchez, Maria-Luz; Alignani, Diego; Lasa, Marta; García de Coca, Alfonso; Pardal, Emilia; Oriol, Alberto; Garcia, Maria-Esther Gonzalez; Escalante, Fernando; González-López, Tomás J; Palomera, Luis; Alonso, José; Prosper, Felipe; Orfao, Alberto; Vidriales, Maria-Belen; Mateos, María-Victoria; Lahuerta, Juan-Jose; Gutierrez, Norma C; San Miguel, Jesús F

    2016-06-16

    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs. PMID:27069257

  3. Burden of cytogenetically abnormal plasma cells in light chain amyloidosis and their prognostic relevance.

    PubMed

    Kim, Seon Young; Im, Kyongok; Park, Si Nae; Kim, Jung-Ah; Yoon, Sung-Soo; Lee, Dong Soon

    2016-05-01

    We performed cytoplasmic fluorescence in situ hybridization assays of light chain amyloidosis (AL). In total, 234 patients were enrolled: 28 patients with AL, 24 with monoclonal gammopathy of undetermined significance (MGUS), and 182 with multiple myeloma (MM). Chromosomal abnormalities were detected in 13 of 22 (59%) AL patients without MM. All 13 patients demonstrated IGH rearrangement, and t(11;14)/IGH-CCND1 was most frequent (32%). Chromosome gain was not observed in AL patients without MM. These findings were dissimilar to findings in MGUS patients, in whom trisomy 9 was the most frequent abnormality. Of 6 AL patients with MM, 5 (83%) patients had cytogenetic abnormalities: 1q gain (4/6, 67%), gains of chromosome 9 (3/6, 50%), IGH rearrangement and RB1 (13q) deletions (2/6 each, 33%). The percentage of clonal plasma cells among total plasma cells was variable (median, 75%; range, 16-100%) for AL patients without MM, which was lower than the results for MM patients (median 100%). The overall survival of AL patients without MM was not significantly different according to the presence of cytogenetic abnormalities (P=0.510). In summary, among Korean AL patients, IGH rearrangement was the most frequent cytogenetic abnormality and cytogenetic aberration patterns differ compared with MGUS and MM patients. PMID:27015231

  4. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    PubMed

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  5. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  6. [The role of the assessment of heavy/light chain pairs of immunoglobulin in monoclonal gammopathies].

    PubMed

    Ščudla, Vlastimil; Pika, Tomáš; Minařík, Jiří

    2015-01-01

    The aim of the paper is to inform about the contribution of novel, highly sensitive analytic technique for the assessment of serum immunoglobulins (Hevylite), enabling separate quantitative assessment of heavy/light chain pairs of immunoglobulin (HLC), i. e. the monoclonal ("involved") and polyclonal ("noninvolved") isotype including their ratio (HLC-r) in monoclonal gammopathies. We particularly target the characteristics of this technique, the compari-son of its clinical contribution with standard methods used in the diagnostics, course and the detection of relapse and progression of the disease, as well as the stratification, assessment of therapeutic outcome and prognosis in monoclonal gammopathy of undetermined significance, multiple myeloma, Waldenström´s macroglobulinemia, systemic AL-amyloidosis and some non-Hodgkin lymphomas. Present results show that in comparison with existing routinely used techniques the Hevylite method enriches clinical practice with the assessment of serum levels of "uninvolved" Ig. It enables the evaluation of the depth of "immunoparesis", and the determination of HLC-r index that is needful for the stratification of MM into "risk cohorts". It also contributes to prognostic assessment and improvement of the evaluation of the depth of therapeutic response. In MGUS individuals the HLC-r index provides information about the risk of malignant transformation. We await the results of ongoing validation studies that are expected to provide specific indications for Hevylite technique for MG in routine practice.

  7. Developmental Expression of IL-2-Receptor Light Chain (CD25) in the Chicken Embryo

    PubMed Central

    Fedecka-Bruner, Barbara; Penninger, Josef; Vaigot, Pierre; Lehmann, Anne; Martínez-A., Carlos

    1991-01-01

    Thymocyte differentiation obeys the same fundamental principles in mammals as in avian species. This parallelism does not only affect the developmentally controlled acquisition of CD3, 4, 8, and TcR isotype expression, but also concerns CD25, the light chain of the interleukin-2 receptor (IL-2R). On chicken thymocytes, surface CD25, which is recognized by the monoclonal antibody INN Ch16, is first observed during day 11 of embryonic life, and peaks at day 14, when it is expressed by about one-third of all lymphoid cells. CD25 is found on subsets of all ,thymocyte populations as defined by TcRαβ, TcRγδ, 2, CD4, and CD8 expression, cortical or medullary localization, and is also present on a subset of intrathymic nurse-cell lymphocytes. These findings suggest phylogenetic conservation of the IL-2/IL-2R-triggered differentiation pathway previously described for mammalian species, thus under-lining its probable functional importance. PMID:1840381

  8. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains.

    SciTech Connect

    Dul, J. L.; Davis, D. P.; Williamson, E. K.; Stevens, F. J.; Argon, Y.; Univ. of Chicago

    2001-02-19

    In light chain (LC) amyloidosis an immunoglobulin LC assembles into fibrils that are deposited in various tissues. Little is known about how these fibrils form in vivo. We previously showed that a known amyloidogenic LC, SMA, can give rise to amyloid fibrils in vitro when a segment of one of its {beta} sheets undergoes a conformational change, exposing an Hsp70 binding site. To examine SMA aggregation in vivo, we expressed it and its wild-type counterpart, LEN, in COS cells. While LEN is rapidly oxidized and subsequently secreted, newly synthesized SMA remains in the reduced state. Most SMA molecules are dislocated out of the ER into the cytosol, where they are ubiquitinylated and degraded by proteasomes. A parallel pathway for molecules that are not degraded is condensation into perinuclear aggresomes that are surrounded by vimentin-containing intermediate filaments and are dependent upon intact microtubules. Inhibition of proteasome activity shifts the balance toward aggresome formation. Intracellular aggregation is decreased and targeting to proteasomes improved by overexpression of the cytosolic chaperone Hsp70. Importantly, transduction into the cell of an Hsp70 target peptide, derived from the LC sequence, also reduces aggresome formation and increases SMA degradation. These results demonstrate that an amyloidogenic LC can aggregate intracellularly despite the common presentation of extracellular aggregates, and that a similar molecular surface mediates both in vitro fibril formation and in vivo aggregation. Furthermore, rationally designed peptides can be used to suppress this aggregation and may provide a feasible therapeutic approach.

  9. Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon.

    PubMed

    Fejtova, Anna; Davydova, Daria; Bischof, Ferdinand; Lazarevic, Vesna; Altrock, Wilko D; Romorini, Stefano; Schöne, Cornelia; Zuschratter, Werner; Kreutz, Michael R; Garner, Craig C; Ziv, Noam E; Gundelfinger, Eckart D

    2009-04-20

    Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.

  10. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast.

    PubMed

    Chang, Jinlan; Tower, Robert J; Lancaster, David L; Rachubinski, Richard A

    2013-10-15

    Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.

  11. Dictyostelium discoideum myosin: Isolation and characterization of cDNAs encoding the essential light chain

    SciTech Connect

    Chisholm, R.L.; Rushforth, A.M.; Pollenz, R.S.; Kuczmarski, E.R.; Tafuri, S.R.

    1988-02-01

    The authors used an antibody specific for Dictyostelium discoideum myosin to screen a lambdagt11 cDNA expression library to obtain cDNA clones which encode the Dictyostelium essential myosin light chain (EMLC). The amino acid sequence predicted from the sequence of the cDNA clone showed 31.5% identity with the amino acid sequence of the chicken EMLC. Comparisons of the Dictyostelium EMLC, a nonmuscle cell type, with EMLC sequences from similar MLCs of skeletal- and smooth-muscle origin, showed distinct regions of homology. Much of the observed homology was localized to regions corresponding to consensus Ca/sup 2 +/-binding of E-F hand domains. Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the EMLC. Examination of the pattern of EMLC mRNA expression showed that a significant increase in EMLC message levels occurred during the first few hours of development, coinciding with increased actin expression and immediately preceding the period of maximal chemotactic activity.

  12. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  13. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  14. Regulatory Light Chain Mutations Associated with Cardiomyopathy Affect Myosin Mechanics and Kinetics

    PubMed Central

    Greenberg, Michael J.; Watt, James D.; Jones, Michelle; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2009-01-01

    The myosin regulatory light chain (RLC) wraps around the alpha helical neck region of myosin. This neck region has been proposed to act as a lever arm, amplifying small conformational changes in the myosin head to generate motion. The RLC serves an important structural role, supporting the myosin neck region and a modulatory role, tuning the kinetics of the actin myosin interaction. Given the importance of the RLC, it is not surprising that mutations of the RLC can lead to familial hypertrophic cardiomyopathy (FHC), the leading cause of sudden cardiac death in people under 30. Population studies identified two FHC mutations located near the cationic binding site of the RLC, R58Q and N47K. Although these mutations are close in sequence, they differ in clinical presentation and prognosis with R58Q showing a more severe phenotype. We examined the molecular based changes in myosin that are responsible for the disease phenotype by purifying myosin from transgenic mouse hearts expressing mutant myosins and examining actin filament sliding using the in vitro motility assay. We found that both R58Q and N47K showed reductions in force compared to the wild type that could result in compensatory hypertrophy. Furthermore, we observed a higher ATPase rate and an increased activation at submaximal calcium levels for the R58Q myosin that could lead to decreased efficiency and incomplete cardiac relaxation, potentially explaining the more severe phenotype for the R58Q mutation. PMID:18929571

  15. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins.

    PubMed

    Ruvinsky, Anatoly M; Vakser, Ilya A; Rivera, Mario

    2014-03-21

    Ferritin-like molecules show a remarkable combination of the evolutionary conserved activity of iron uptake and release that engage different pores in the conserved ferritin shell. It was hypothesized that pore selection and iron traffic depend on dynamic allostery with no conformational changes in the backbone. In this study, we detect the allosteric networks in Pseudomonas aeruginosa bacterioferritin (BfrB), bacterial ferritin (FtnA), and bullfrog M and L ferritins (Ftns) by a network-weaving algorithm (NWA) that passes threads of an allosteric network through highly correlated residues using hierarchical clustering. The residue-residue correlations are calculated in the packing-on elastic network model that introduces atom packing into the common packing-off model. Applying NWA revealed that each of the molecules has an extended allosteric network mostly buried inside the ferritin shell. The structure of the networks is consistent with experimental observations of iron transport: The allosteric networks in BfrB and FtnA connect the ferroxidase center with the 4-fold pores and B-pores, leaving the 3-fold pores unengaged. In contrast, the allosteric network directly links the 3-fold pores with the 4-fold pores in M and L Ftns. The majority of the network residues are either on the inner surface or buried inside the subunit fold or at the subunit interfaces. We hypothesize that the ferritin structures evolved in a way to limit the influence of functionally unrelated events in the cytoplasm on the allosteric network to maintain stability of the translocation mechanisms. We showed that the residue-residue correlations and the resultant long-range cooperativity depend on the ferritin shell packing, which, in turn, depends on protein sequence composition. Switching from the packing-on to the packing-off model reduces correlations by 35%-38% so that no allosteric network can be found. The influence of the side-chain packing on the allosteric networks explains the

  16. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins

    SciTech Connect

    Ruvinsky, Anatoly M.; Vakser, Ilya A.; Rivera, Mario

    2014-03-21

    Ferritin-like molecules show a remarkable combination of the evolutionary conserved activity of iron uptake and release that engage different pores in the conserved ferritin shell. It was hypothesized that pore selection and iron traffic depend on dynamic allostery with no conformational changes in the backbone. In this study, we detect the allosteric networks in Pseudomonas aeruginosa bacterioferritin (BfrB), bacterial ferritin (FtnA), and bullfrog M and L ferritins (Ftns) by a network-weaving algorithm (NWA) that passes threads of an allosteric network through highly correlated residues using hierarchical clustering. The residue-residue correlations are calculated in the packing-on elastic network model that introduces atom packing into the common packing-off model. Applying NWA revealed that each of the molecules has an extended allosteric network mostly buried inside the ferritin shell. The structure of the networks is consistent with experimental observations of iron transport: The allosteric networks in BfrB and FtnA connect the ferroxidase center with the 4-fold pores and B-pores, leaving the 3-fold pores unengaged. In contrast, the allosteric network directly links the 3-fold pores with the 4-fold pores in M and L Ftns. The majority of the network residues are either on the inner surface or buried inside the subunit fold or at the subunit interfaces. We hypothesize that the ferritin structures evolved in a way to limit the influence of functionally unrelated events in the cytoplasm on the allosteric network to maintain stability of the translocation mechanisms. We showed that the residue-residue correlations and the resultant long-range cooperativity depend on the ferritin shell packing, which, in turn, depends on protein sequence composition. Switching from the packing-on to the packing-off model reduces correlations by 35%–38% so that no allosteric network can be found. The influence of the side-chain packing on the allosteric networks explains the

  17. Serum ferritin levels in hemoglobin H disease.

    PubMed

    Galanello, R; Melis, M A; Paglietti, E; Cornacchia, G; de Virgiliis, S; Cao, A

    1983-01-01

    This study shows that hemoglobin H disease patients aged between 0.5 and 44 years, usually (27 out of 30) have normal serum ferritin levels according to age. This reconfirms that in this disease there are usually normal iron stores. However, in a few patients (3 out of 30) increased levels were found. This may be due to inappropriate iron medication, transfusions or associated idiopathic hereditary hemocromatosis gene.

  18. Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS

    PubMed Central

    Katzmann, JA; Clark, R; Kyle, RA; Larson, DR; Therneau, TM; Melton, LJ; Benson, JT; Colby, CL; Dispenzieri, A; Landgren, O; Kumar, S; Bradwell, AR; Cerhan, JR; Rajkumar, SV

    2013-01-01

    We hypothesized that the suppression of uninvolved immunoglobulin in monoclonal gammopathy of undetermined significance (MGUS) as detected by suppression of the isotype-specific heavy and light chain (HLC-pair suppression) increases the risk of progression to malignancy. This approach required quantitation of individual heavy/light chains (for example, IgGλ in IgGκ MGUS patients). Of 1384 MGUS patients from Southeastern Minnesota seen at the Mayo Clinic from 1960 to 1994, baseline serum samples obtained within 30 days of diagnosis were available in 999 persons. We identified HLC-pair suppression in 27% of MGUS patient samples compared with 11% of patients with suppression of uninvolved IgG, IgA or IgM. HLC-pair suppression was a significant risk factor for progression (hazard ratio (HR), 2.3; 95% confidence interval (CI) 1.5–3.7; P<0.001). On multivariate analysis, HLC-pair suppression was an independent risk factor for progression to malignancy in combination with serum M-spike size, heavy chain isotype and free light chain ratio (HR, 1.8; 95% CI, 1.1–3.00; P = 0.018). The finding that HLC-pair suppression predicts progression in MGUS and occurs several years before malignant transformation has implications for myeloma biology. PMID:22781594

  19. Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas

    PubMed Central

    KOKOVIC, IRA; NOVAKOVIC, BARBARA JEZERSEK; NOVAKOVIC, SRDJAN

    2015-01-01

    Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis. PMID:25501347

  20. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  1. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia

    PubMed Central

    Woollacott, Ione O.C.; Dick, Katrina M.; Brotherhood, Emilie; Gordon, Elizabeth; Fellows, Alexander; Toombs, Jamie; Druyeh, Ronald; Cardoso, M. Jorge; Ourselin, Sebastien; Nicholas, Jennifer M.; Norgren, Niklas; Mead, Simon; Andreasson, Ulf; Blennow, Kaj; Schott, Jonathan M.; Fox, Nick C.; Warren, Jason D.; Zetterberg, Henrik

    2016-01-01

    Objective: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. Methods: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. Results: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). Conclusions: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes. PMID:27581216

  2. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level. PMID:26116789

  3. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  4. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    SciTech Connect

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  5. Immunoparesis status in immunoglobulin light chain amyloidosis at diagnosis affects response and survival by regimen type

    PubMed Central

    Muchtar, Eli; Dispenzieri, Angela; Kumar, Shaji K.; Dingli, David; Lacy, Martha Q.; Buadi, Francis K.; Hayman, Suzanne R.; Kapoor, Prashant; Leung, Nelson; Chakraborty, Rajshekhar; Russell, Stephen; Lust, John A.; Lin, Yi; Go, Ronald S.; Zeldenrust, Steven; Kyle, Robert A.; Rajkumar, S. Vincent; Gertz, Morie A.

    2016-01-01

    Clinical tools to guide in the appropriate treatment selection in immunoglobulin light chain (AL) amyloidosis are not well developed. We evaluated the response and outcome for various regimens at first-line treatment (n=681) and first progression (n=240) stratified by the immunoparesis status at diagnosis. Immunoparesis was assessed by the average relative difference of the uninvolved immunoglobulins, classifying patients into a negative average relative difference (i.e. significant immunoparesis) or a positive average relative difference (no/modest immunoparesis). Treatment was categorized as autologous stem cell transplant and four non-transplant regimens (melphalan-based; bortezomib-based, immunomodulatory drug-based and dexamethasone alone). Patients with significant immunoparesis who underwent stem cell transplant had a significantly lower rate of very good partial response or better response (58%), progression-free survival (median 30 months) and overall survival (108 months), compared to those without significant immunoparesis (80%, 127 months, median not reached, respectively; P<0.001 for all comparisons). Among the non-transplant regimens, melphalan resulted in an unfavorable progression-free survival (11 vs. 27 months; P<0.001) and overall survival (30 vs. 74 months; P=0.001) in patients with significant immunoparesis compared to those without significant immunoparesis. In contrast, no significant difference in outcomes between the immunoparesis groups was seen for those treated with bortezomib or immunomodulatory drugs. At first progression, immunoparesis status did not impact response or survival of any regimen. Melphalan at first-line provided poorer outcomes for patients with significant immunoparesis, while bortezomib or immunomodulatory drugs were more likely to overcome the adverse prognosis associated with significant immunoparesis. PMID:27479823

  6. Early Reduction of Serum-Free Light Chains Associates with Renal Recovery in Myeloma Kidney

    PubMed Central

    Cockwell, Paul; Stringer, Stephanie; Bradwell, Arthur; Cook, Mark; Gertz, Morie A.; Dispenzieri, Angela; Winters, Jeffrey L.; Kumar, Shaji; Rajkumar, S. Vincent; Kyle, Robert A.; Leung, Nelson

    2011-01-01

    Myeloma kidney is the major cause of severe irreversible renal failure in patients with multiple myeloma. This tubulointerstitial injury is a direct consequence of high concentrations of circulating monoclonal free light chains (FLCs) produced by a clonal expansion of plasma cells. Early reduction of serum FLCs associates with renal recovery, but the target threshold of reduction to facilitate renal recovery is unknown. To determine the relationship between the achieved FLC reduction and renal recovery, we identified 39 patients with biopsy-proven myeloma kidney, the majority of whom had severe renal failure at presentation (median estimated GFR 9 ml/min per 1.73 m2). In a multivariable analysis incorporating demographic, hematologic, and renal variables, only the achieved FLC reduction significantly predicted renal recovery (P = 0.003). The relationship between renal recovery and FLC reduction was linear with no absolute threshold for FLC reduction. A 60% reduction in FLCs by day 21 associated with recovery of renal function for 80% of the population. Patient survival strongly associated with renal recovery: the median survival was 42.7 months (range 0 to 80) among those who recovered function compared with 7.8 months (range 0 to 54) among those who did not (P < 0.02). Cox-regression analysis demonstrated that the first presentation of myeloma, the kappa isotype of FLC, and renal recovery were independent predictors of survival. In conclusion, recovery of renal function in myeloma kidney depends on early reduction of serum FLCs, and this recovery associates with a significant survival advantage. PMID:21511832

  7. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  8. [Role of phosphatidylinositol 3-kinase and myosin light chain kinase during the activation of thrombin receptors].

    PubMed

    Han, Yue; Gao, Hai-Li; Zhang, Wei; Bai, Xia; Dai, Lan; Sheng, Wen-Hong; Sun, Ai-Ning; Wu, De-Pei; Wang, Zhao-Yue; Ruan, Chang-Geng

    2009-06-01

    The objective of study was to compare the influences of wortmannin on platelet aggregation and platelet membrane surface glycoproteins GPIb expression after thrombin receptor activation, and to investigate the role of phosphatidylinositol 3-kinase (PI3-K) and myosin light chain kinase (MLCK) in the course of thrombin receptor activation. Peptide SFLLRN (PAR1-AP) and AYPGKF (PAR4-AP) were used for stimulating platelet, and the changes of platelet aggregation and GPIb were analyzed with 100 nmol/L wortmannin (inhibitor of PI3-K) and 10 micromol/L wortmannin (inhibitor of MLCK). The results indicated that the platelet activation was influenced by either concentration of wortmannin in response to PAR stimulation. Platelet aggregation was apparently inhibited by 10 micromol/L wortmannin through both PAR peptides, and was slightly inhibited by 100 nmol/L wortmannin only under PAR1-AP activation. In addition, GPIbalpha internalization was partly inhibited by 100 nmol/L wortmannin in response to PAR1 (p < 0.05 at 1, 2, 5 min) and PAR4 (p < 0.05 at 2, 5, 10 min) activation. Meanwhile, 10 micromol/L wortmannin induced little change for GPIbalpha centralisation in the course of PAR activation, with a delayed restoration of surface GPIbalpha observed under PAR1-AP activation, and no change of GPIbalpha redistribution existed under PAR4-AP activation. It is concluded that the different roles of PI3-K and MLCK exist in the course of thrombin receptor activation. PI3-K accelerates the short course of GPIb centralisation for two PAR signal pathways, while MLCK inhibits the restoration of GPIbalpha in PAR1 pathway. PMID:19549383

  9. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells. PMID:24162233

  10. Factor VII Light Chain-Targeted Lidamycin Shows Intensified Therapeutic Efficacy for Liver Cancer

    PubMed Central

    Liu, Xiujun; Xu, Shuangshuang; Li, Caihong; Zhang, Yang; Yang, Jie; Zheng, Junnian

    2012-01-01

    Abstract The overexpression of tissue factor (TF) observed in numerous cancer cells and clinical samples of human cancers makes TF an ideal target for cancer therapy. The purpose of this study is to develop a TF-targeting energized fusion protein hlFVII-LDP-AE, which is composed of a human Factor VII light chain (hlFVII) as the targeting domain conjugated to the cytotoxic antibiotic lidamycin (LDM, LDP-AE) as the effector domain. The potential efficacy of hlFVII-LDP-AE for cancer therapy was tested in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays and in vivo with a BALB/c nude mouse xenograft model of human liver cancer line HepG2. The inhibitory concentration (IC50) value of hlFVII-LDP-AE varied from 0.15 to 0.64 nM for the various human tumor lines. hlFVII-LDP-AE showed a tumor growth inhibition rate of 90.6% at the dose of 0.6 mg/kg in in vivo animal experiments. The mechanism through which hlFVII-LDP-AE inhibits tumor growth also was determined by Hoechst 33342 staining and Tdt-mediated dUTP nick-end labeling (TUNEL) assay. hlFVII-LDP-AE causes tumor cell death through inducing chromatin condensation and cleavage of genomic DNA. These findings suggest that the hlFVII-LDP-AE protocol is efficacious and tolerated in the mouse model of human liver cancer HepG2 and has clinical applicability for treating cancer patients. PMID:22651685

  11. Ferritins: dynamic management of biological iron and oxygen chemistry.

    PubMed

    Liu, Xiaofeng; Theil, Elizabeth C

    2005-03-01

    Ferritins are spherical, cage-like proteins with nanocavities formed by multiple polypeptide subunits (four-helix bundles) that manage iron/oxygen chemistry. Catalytic coupling yields diferric oxo/hydroxo complexes at ferroxidase sites in maxi-ferritin subunits (24 subunits, 480 kDa; plants, animals, microorganisms). Oxidation occurs at the cavity surface of mini-ferritins/Dps proteins (12 subunits, 240 kDa; bacteria). Oxidation products are concentrated as minerals in the nanocavity for iron-protein cofactor synthesis (maxi-ferritins) or DNA protection (mini-ferritins). The protein cage and nanocavity characterize all ferritins, although amino acid sequences diverge, especially in bacteria. Catalytic oxidation/di-iron coupling in the protein cage (maxi-ferritins, 480 kDa; plants, bacteria and animal cell-specific isoforms) or on the cavity surface (mini-ferritins/Dps proteins, 280 kDa; bacteria) initiates mineralization. Gated pores (eight or four), symmetrically arranged, control iron flow. The multiple ferritin functions combine pore, channel, and catalytic functions in compact protein structures required for life and disease response.

  12. Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.

    PubMed

    Lalli, Daniela; Turano, Paola

    2013-11-19

    Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of

  13. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-01

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  14. New Light Chain Amyloid Response Criteria Help Risk Stratification of Patients by Day 100 after Autologous Hematopoietic Cell Transplantation.

    PubMed

    D'Souza, Anita; Huang, Jiaxing; Hari, Parameswaran

    2016-04-01

    Hematologic response criteria in light chain (AL) amyloidosis were updated in 2012 to incorporate free light chain responses. These criteria have been validated in autologous hematopoietic cell transplantation in AL at 6 and 12 months after transplantation. Using a transplantation registry, we assessed day 100 responses in AL amyloidosis. We validate the prognostic significance of the new criteria at this time point. Further, we show that patients who do not achieve at least a very good partial response by this time point have equally worse outcomes, regardless of depth of response (partial versus no response). Thus, we conclude that the new criteria help identify the poor responders by day 100 after transplantation and that this subset of patients should be studied for early evaluation in consolidation trials.

  15. [Secondary monoclonal gammopathy after bone marrow autotransplantation as a cause of worse renal function in light chain immunoglobulin deposition disease].

    PubMed

    Rekhtina, I G; Mendeleeva, L P; Stolyarevich, E S; Gal'tseva, I V; Povilaitite, P E; Biryukova, L S

    2016-01-01

    The paper describes a clinical case of a female woman with nephropathy due to light chain deposition disease caused by secretion of κ Bence-Jones protein. Complete immunochemical remission was achieved after induction therapy using a bortezomib + cyclophosphamide + dexamethasone regimen. Renal function remained unchanged (glomerular filtration rate 16 ml/min), there was a reduction in proteinuria from 5.8 to 2.6 g/day. High-dose melphalan (200 mg/m2) chemotherapy with peripheral blood stem cell autotransplantation was performed as consolidation of remission. A year posttransplantation, there was no secretion of κ light chains; however, monoclonal IgG lambda emerged in a quantity of 3.2 g/l. At the same period, nephrotic syndrome became progressive (daily proteinuria 12 g) and dialysis-dependent renal failure developed. A repeat renal biopsy specimen revealed changes, suggesting that there was a decrease in renal deposits of κ light chains. Simultaneously with this, the obvious negative trend as progressive nephrosclerosis and fixation of IgG and λ light chains in the glomeruli (in the sclerotic areas) cause IgGλ monoclonal protein to be involved in the genesis of further kidney injury. Attention is also paid to different characteristics of capillary wall deposits by density (according to the electron microscopic findings), which may point to their different qualitative composition and possibly different formation duration. Papaprotein Gλ disappeared after a year without therapy, suggesting its reactivity. The findings confirm that worse renal function is caused by the action of paraprotein Gλ due to secondary (after autologous hematopoietic stem cells transplantation) monoclonal gammopathy.

  16. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  17. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain

    PubMed Central

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D.

    2015-01-01

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40–45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC’s location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  18. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  19. [Secondary monoclonal gammopathy after bone marrow autotransplantation as a cause of worse renal function in light chain immunoglobulin deposition disease].

    PubMed

    Rekhtina, I G; Mendeleeva, L P; Stolyarevich, E S; Gal'tseva, I V; Povilaitite, P E; Biryukova, L S

    2016-01-01

    The paper describes a clinical case of a female woman with nephropathy due to light chain deposition disease caused by secretion of κ Bence-Jones protein. Complete immunochemical remission was achieved after induction therapy using a bortezomib + cyclophosphamide + dexamethasone regimen. Renal function remained unchanged (glomerular filtration rate 16 ml/min), there was a reduction in proteinuria from 5.8 to 2.6 g/day. High-dose melphalan (200 mg/m2) chemotherapy with peripheral blood stem cell autotransplantation was performed as consolidation of remission. A year posttransplantation, there was no secretion of κ light chains; however, monoclonal IgG lambda emerged in a quantity of 3.2 g/l. At the same period, nephrotic syndrome became progressive (daily proteinuria 12 g) and dialysis-dependent renal failure developed. A repeat renal biopsy specimen revealed changes, suggesting that there was a decrease in renal deposits of κ light chains. Simultaneously with this, the obvious negative trend as progressive nephrosclerosis and fixation of IgG and λ light chains in the glomeruli (in the sclerotic areas) cause IgGλ monoclonal protein to be involved in the genesis of further kidney injury. Attention is also paid to different characteristics of capillary wall deposits by density (according to the electron microscopic findings), which may point to their different qualitative composition and possibly different formation duration. Papaprotein Gλ disappeared after a year without therapy, suggesting its reactivity. The findings confirm that worse renal function is caused by the action of paraprotein Gλ due to secondary (after autologous hematopoietic stem cells transplantation) monoclonal gammopathy. PMID:27296267

  20. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    PubMed

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  1. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    PubMed Central

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  2. CaMKII and at least two unidentified kinases phosphorylate regulatory light chain in non-contracting cardiomyocytes.

    PubMed

    Eikemo, Hilde; Moltzau, Lise Román; Nguyen, Cam H T; Levy, Finn Olav; Skomedal, Tor; Osnes, Jan-Bjørn

    2016-08-12

    In cardiac tissue, regulatory light chain (RLC, myosin light chain 2) phosphorylation (Ser(15)) leads to modulation of muscle contraction through Ca(2+)-sensitization. To elucidate which kinases that are involved in the basal (diastolic phase) RLC phosphorylation, we studied non-contracting adult rat cardiomyocytes. RLC kinase activities in situ were unmasked by maximally inhibiting myosin light chain phosphatase (MLCP) by calyculin A in the absence and presence of various protein kinase inhibitors. Surprisingly MLCK did not contribute to the phosphorylation of RLC in the non-contracting cardiomyocytes. Two kinase activity groups were revealed by different sensitivities to staurosporine. The fraction with the highest sensitivity to staurosporine was inhibited by KN-93, a selective CaMKII inhibitor, producing a 23% ± 7% reduction in RLC phosphorylation. Calmodulin antagonism (W7) and reduction in Ca(2+) (EGTA) combined with low concentration of staurosporine caused a larger decrease in RLC phosphorylation than staurosporine alone. These data strongly suggest that in addition to CaMKII, there is another Ca(2+)/calmodulin-dependent kinase and a Ca(2+)/calmodulin-independent kinase phosphorylating RLC. Thus the RLC phosphorylation seems to be ensured by redundant kinase activities.

  3. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  4. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates

    PubMed Central

    Alcala, Diego B.; Haldeman, Brian D.; Brizendine, Richard K.; Krenc, Agata K.; Baker, Josh E.; Rock, Ronald S.; Cremo, Christine R.

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat/Km) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. PMID:27528075

  5. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa.

    PubMed

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; Cruz e Silva, Edgar da; Fardilha, Margarida

    2014-04-01

    Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.

  6. Neurofilament light chain level is a weak risk factor for the development of MS

    PubMed Central

    Arrambide, Georgina; Eixarch, Herena; Villar, Luisa M.; Alvarez-Cermeño, José C.; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J.; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-01

    Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. PMID:27521440

  7. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    PubMed

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal

  8. Long term outcomes of cardiac transplant for immunoglobulin light chain amyloidosis: The Mayo Clinic experience

    PubMed Central

    Grogan, Martha; Gertz, Morie; McCurdy, Arleigh; Roeker, Lindsey; Kyle, Robert; Kushwaha, Sudhir; Daly, Richard; Dearani, Joseph; Rodeheffer, Richard; Frantz, Robert; Lacy, Martha; Hayman, Suzanne; McGregor, Christopher; Edwards, Brooks; Dispenzieri, Angela

    2016-01-01

    AIM: To determine the outcome of orthotopic heart transplantation (OHT) in immunoglobulin light chain (AL) amyloidosis. METHODS: The medical records of patients with AL who underwent orthotopic heart transplantation at the Mayo Clinic in Rochester Minnesota from 1992 to 2011 were reviewed. Patients met at least one of the following at: New York Heart Association class IV heart failure, ventricular thickness > 15 mm, ejection fraction < 40%. Selection guidelines for heart transplant included age < 60 years, absence of multiple myeloma and significant extra-cardiac organ involvement. Baseline characteristics including age, gender, organ involvement, and New York Heart Association functional class were recorded. Laboratory data, waiting time until heart transplant, and type of treatment of the underlying plasma cell disorder were recorded. Survival from the time of OHT was calculated using Kaplan-Meier survival curves. Survival of patients undergoing OHT for AL was compared to that of non-amyloid patients undergoing OHT during the same time period. RESULTS: Twenty-three patients (median age 53 years) with AL received OHT. There were no deaths in the immediate perioperative period. Twenty patients have died post OHT. For the entire cohort, the median overall survival was 3.5 years (95%CI: 1.2, 8.2 years). The 1-year survival post OHT was 77%, the 2-year survival 65%, and the 5-year survival 43%. The 5-year survival for non-amyloid patients undergoing OHT during the same era was 85%. Progressive amyloidosis contributed to death in twelve patients. Of those without evidence of progressive amyloidosis, the cause of death included complications of autologous hematopoietic stem cell transplantation for 3 patients, post-transplant lymphoproliferative disorder for 2 patients; and for the remaining one death was related to each of the following causes: acute rejection; cardiac vasculopathy; metastatic melanoma; myelodysplastic syndrome; and unknown. Eight patients had

  9. Ferritins: iron/oxygen biominerals in protein nanocages.

    PubMed

    Theil, Elizabeth C; Matzapetakis, Manolis; Liu, Xiaofeng

    2006-10-01

    Ferritin protein nanocages that form iron oxy biominerals in the central nanometer cavity are nature's answer to managing iron and oxygen; gene deletions are lethal in mammals and render bacteria more vulnerable to host release of antipathogen oxidants. The multifunctional, multisubunit proteins couple iron with oxygen (maxi-ferritins) or hydrogen peroxide (mini-ferritins) at catalytic sites that are related to di-iron sites oxidases, ribonucleotide reductase, methane monooxygenase and fatty acid desaturases, and synthesize mineral precursors. Gated pores, distributed symmetrically around the ferritin cages, control removal of iron by reductants and chelators. Gene regulation of ferritin, long known to depend on iron and, in animals, on a noncoding messenger RNA (mRNA) structure linked in a combinatorial array to functionally related mRNA of iron transport, has recently been shown to be linked to an array of proteins for antioxidant responses such as thioredoxin and quinone reductases. Ferritin DNA responds more to oxygen signals, and ferritin mRNA responds more to iron signals. Ferritin genes (DNA and RNA) and protein function at the intersection of iron and oxygen chemistry in biology.

  10. Serum ferritin and anemia in trained female athletes.

    PubMed

    Ashenden, M J; Martin, D T; Dobson, G P; Mackintosh, C; Hahn, A G

    1998-09-01

    The aim of this study was to establish whether extremely low serum ferritin values in female athletes were associated with indications of iron deficiency anemia and whether serum ferritin values were influenced by the type of training or participants' body size. Hematological data collected during 6 years at the Australian Institute of Sport were reviewed to quantify changes in serum ferritin concentration associated with training and to establish whether decrements in serum ferritin were associated with any change in hemoglobin concentration, mean corpuscular volume, or mean corpuscular hemoglobin concentration. Mean serum ferritin concentrations of 7.5 microg x L(-1) were not associated with any indication of iron-deficiency anemia. Serum ferritin declined by approximately 25% with the onset of rigorous daily training (p < .01) whether training was predominantly weight-bearing or non-weight-bearing. Rowers had significantly higher ferritin concentrations than basketball players of similar stature (p=.02). We conclude that considerable background information such as the stage of training, specific sport, and previous blood results should be sought when interpreting serum ferritin concentrations in female athletes.

  11. Ferritin family proteins and their use in bionanotechnology

    PubMed Central

    He, Didi; Marles-Wright, Jon

    2015-01-01

    Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines. PMID:25573765

  12. Pre-Crystallization State of Ferritin at Low Temperature

    NASA Astrophysics Data System (ADS)

    Boutet, Sebastien

    2005-03-01

    In the course of a systematic exploration of the crystallization kinetics and conditions of the protein ferritin using x-rays, we discovered an unexpected new state of aggregation of the protein at low temperature. This new state was found to form reversibly below the freezing point of the solution. Using Small Angle X-ray Scattering (SAXS), we studied the properties of solutions of ferritin upon cooling and found that ferritin molecules form clusters of varying size and structures depending on the temperature and the thermal history of the sample. Simulations of the SAXS patterns were made using various cluster structures and these show that clusters of roughly 50 molecules form upon freezing. The structure was found to be similar to the FCC structure of macroscopic ferritin crystals which leads us to the conclusion that these clusters may be precursor states to the crystallization of ferritin.

  13. [Seasonal changes in phosphorylation of myosin regulatory light chains and C-protein in myocardium of hibernating ground squirrel Citellus undulatus].

    PubMed

    Malyshev, S L; Osipova, D A; Vikhliantsev, I M; Podlubnaia, Z A

    2006-01-01

    A comparative study concerning the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of hibernating ground squirrel Citellus undulatus during the periods of hibernation and activity was carried out. During hibernation, regulatory light chains of ground squirrel were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averages 40-45% of their total amount. The extent of phosphorylation of the cardiac C-protein during hibernation is about two times higher than that in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.

  14. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain.

    PubMed

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  15. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  16. Abnormally high serum ferritin levels among professional road cyclists

    PubMed Central

    Zotter, H; Robinson, N; Zorzoli, M; Schattenberg, L; Saugy, M; Mangin, P

    2004-01-01

    Background: An international, longitudinal medical follow up examination of male professional road cyclists revealed excessively elevated serum ferritin levels. Objective: To evaluate the importance of elevated ferritin values among professional cyclists, their relationship with age and nationality, and their evolution over 3 years. Methods: Over 1000 serum ferritin values were collected. Other parameters were included in order to exclude conditions which might have increased ferritin levels without changing body iron stores. Results: In 1999, over 45% of riders displayed ferritin values above 300 ng/ml and one fourth levels over 500 ng/ml. These percentages had decreased to 27% and 9%, respectively, 3 years later, while the overall average, which was above the normal limits in 1999, had decreased by 33% in 3 years. Older cyclists had higher ferritin values than younger cyclists. There was also a relationship between ferritin levels and the nationality of the cyclists. Analysis of 714 riders in 2000 and 2002 showed only a slight and insignificant decrease in the mean ferritin value although those with initially elevated iron stores had a much greater decrease. Conclusion: Professional road cyclists used excessive iron supplementation leading to high serum ferritin levels correlating with increased body iron stores. Although the situation progressively improved over 3 years, it remains worrying as increased body iron stores are related to health complications. Therefore, prevention in addition to the fight against doping should be a main goal of the UCI. Aggressive therapy for athletes with excessive ferritin values should be carried out at or before the end of their careers. PMID:15562163

  17. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  18. Follow-up of IgD-κ multiple myeloma by monitoring free light chains and total heavy chain IgD: A case report

    PubMed Central

    De Santis, Elena; Masi, Serena; Cordone, Iole; Pisani, Francesco; Zuppi, Cecilia; Mattei, Fabrizio; Conti, Laura; Cigliana, Giovanni

    2016-01-01

    Immunoglobulin (Ig)D-κ multiple myeloma (MM) is a rare neoplastic disease characterized by an aggressive and rapidly progressing course, which constitutes only a very small proportion of all MM cases. In the present report, the clinical case of a 51-year-old Caucasian woman diagnosed with IgD-κ MM is described. The patient underwent different chemotherapeutic treatments subsequently to a single autologous stem cell transplantation. Despite the inherent difficulty of monitoring IgD levels and performing serum immunofixation electrophoresis, the clinical outcome of the patient was almost uniquely monitored by measuring the levels of κ and λ free light chains (FLCs) and total heavy chain IgD. The data suggest the non-invasive potential and usefulness of FLCs evaluation for early detection of stringent complete remission, follow-up and early detection of disease relapse. In addition, this diagnostic procedure has successfully been employed for the therapeutic monitoring of the present patient, and may represent a very helpful, non-invasive tool for the follow-up of IgD myeloma patients without the requirement of serial bone marrow aspirate. PMID:27588135

  19. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis

    PubMed Central

    Feng, Zhonghui; Okada, Satoshi; Cai, Guoping; Zhou, Bing; Bi, Erfei

    2015-01-01

    MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species. PMID:25631819

  20. Heavy chain (LvH) and light chain (LvL) of lipovitellin (Lv) of zebrafish can both bind to bacteria and enhance phagocytosis.

    PubMed

    Liang, Xue; Hu, Yu; Feng, Shuoqi; Zhang, Shicui; Zhang, Yu; Sun, Chen

    2016-10-01

    Lipovitellin (Lv) is an apoprotein in oviparous animals. Lv consists of a heavy chain (LvH) and a light chain (LvL) which are traditionally regarded as energy reserves for developing embryos. Recently, Lv has been shown to be involved in immune defense of developing embryos in fish. However, it remains unknown if each of LvH and LvL possesses immune activity; and if so, whether or not they function similarly. Here we clearly demonstrated that recombinant LvH (rLvH) and LvL (rLvL) from zebrafish vg1 gene bound to both the Gram-negative bacteria Escherichia coli and Vibrio anguillarum and the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus as well as the pathogen-associated molecular patterns LPS, LTA and PGN. In addition, both rLvH and rLvL were able to enhance the phagocytosis of bacteria E. coli and S. aureus by macrophages. All these data suggest that both LvH and LvL, in addition to being energy reserves, are also maternal immune-relevant factors capable of interacting with invading bacteria in zebrafish embryos/larvae. PMID:27185202

  1. Beta-2-glycoprotein specificity of human anti-phospholipid antibody resides on the light chain: a novel mechanism for acquisition of cross-reactivity by an autoantibody.

    PubMed

    Kumar, Sanjeev; Nagl, Sylvia; Kalsi, Jatinderpal K; Ravirajan, Chelliah T; Athwal, Dee; Latchman, David S; Pearl, Laurence H; Isenberg, David A

    2005-01-01

    We have recently shown that the anti-cardiolipin activity of human anti-phospholipid antibody UK4 (lambda) resides on its heavy chain. We now show that UK4 possesses strong reactivity to the plasma-protein beta2-Glycoprotein I (beta2-GPI) also. Utilizing chain shuffling experiments involving an unrelated anti-p185 antibody 4D5 (kappa) with no reactivity to beta2-GPI, we now demonstrate that both the constructs possessing the auto-antibody-derived light chain exhibited significant binding to beta2-GPI. However, the construct possessing UK4 heavy chain in association with 4D5 light chain, exhibited no anti-beta2-GPI activity. Furthermore, there was a low increase (approximately 10%) in the binding of UK4 to cardiolipin in the presence of beta2-GPI. The results demonstrate that anti-beta2-GPI activity resides on UK4 light chain and, importantly, this activity could be transferred to a novel antibody construct via the light chain alone. Computer-generated models of the three-dimensional structures of UK4 and its hybrids, suggest predominant interaction of UK4 light chain with domain IV of beta2-GPI. Molecular docking experiments highlight a number of potential sites on beta2-GPI for interaction of UK4 and indicate as to how beta2-GPI recognition may occur primarily via the autoantibody light chain. The study provides first demonstration of the occurrence of anti-phospholipid and anti-beta2-GPI activities separately on heavy and light chains of an autoantibody. The possible mechanisms that such antibodies may employ to recognise their antigens, are discussed.

  2. Magnetic birefringence of natural and synthetic ferritin

    NASA Astrophysics Data System (ADS)

    Koralewski, M.; Pochylski, M.; Mitróová, Z.; Timko, M.; Kopčanský, P.; Melníková, L.

    2011-10-01

    Magnetically induced optical birefringence (Δn) was measured for magnetoferritin (MFer), horse spleen ferritin (HSF) and nanoscale magnetite aqueous suspensions. The anisotropy of optical polarizability was calculated. The average magnetic dipole moment calculated assuming the Langevin model was about 20,000 and 8500 μB per particle, for magnetite nanoparticle and magnetoferritin, respectively. Poor fitting results and the unphysical value of average magnetic moment per Fe ion for MFer excluded the use of the simple Langevin model for description of Δn for this compound. It was deduced that for MFer the estimated average magnetic moment should be about 1125 μB per molecule. A magnetic contribution from the protein shell was found to be negligible. Results from the low-field region permit the calculation of the Cotton-Mouton (C-M) constants and their comparison for the substances studied. It was shown that magnetic birefringence and C-M constant can be powerful parameters in identification of the magnetic core structure of ferritins, especially useful in biomedicine.

  3. Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes.

    PubMed

    Varma, Dileep; Dawn, Amrita; Ghosh-Roy, Anindya; Weil, Sarah J; Ori-McKenney, Kassandra M; Zhao, Yanqiu; Keen, James; Vallee, Richard B; Williams, John C

    2010-02-23

    The ability to rapidly and specifically regulate protein activity combined with in vivo functional assays and/or imaging can provide unique insight into underlying molecular processes. Here we describe the application of chemically induced dimerization of FKBP to create nearly instantaneous high-affinity bivalent ligands capable of sequestering cellular targets from their endogenous partners. We demonstrate the specificity and efficacy of these inducible, dimeric "traps" for the dynein light chains LC8 (Dynll1) and TcTex1 (Dynlt1). Both light chains can simultaneously bind at adjacent sites of dynein intermediate chain at the base of the dynein motor complex, yet their specific function with respect to the dynein motor or other interacting proteins has been difficult to dissect. Using these traps in cultured mammalian cells, we observed that induction of dimerization of either the LC8 or TcTex1 trap rapidly disrupted early endosomal and lysosomal organization. Dimerization of either trap also disrupted Golgi organization, but at a substantially slower rate. Using either trap, the time course for disruption of each organelle was similar, suggesting a common regulatory mechanism. However, despite the essential role of dynein in cell division, neither trap had a discernable effect on mitotic progression. Taken together, these studies suggest that LC occupancy of the dynein motor complex directly affects some, but not all, dynein-mediated processes. Although the described traps offer a method for rapid inhibition of dynein function, the design principle can be extended to other molecular complexes for in vivo studies.

  4. Combined use of free light chain and heavy/light chain ratios allow diagnosis and monitoring of patients with monoclonal gammopathies: Experience of a single institute, with three exemplar case reports

    PubMed Central

    Gagliardi, Alfredo; Carbone, Claudio; Russo, Angela; Cuccurullo, Rosanna; Lucania, Anna; Cioppa, Paola Della; Misso, Gabriella; Caraglia, Michele; Tommasino, Catello; Mastrullo, Lucia

    2016-01-01

    Monoclonal gammopathies are characterized by serum monoclonal component (MC) plus an intact immunoglobulin and a free light chain (FLC), or a combination of both. The measurement of FLC with Freelite® is the standard practice recommended by International Myeloma Working Group guidelines. Recently, Hevylite® heavy/light chains (HLC) assays were introduced to specifically target junctional epitopes between the heavy and light chains of intact immunoglobulins, allowing the independent quantification of the involved (MC) and uninvolved (polyclonal immunoglobulin background) HLC isotype. Between January 2012 and March 2014, 90 patients were examined: 49 multiple myeloma (MM), 6 smoldering MM (SMM) and 35 monoclonal gammopathy of undetermined significance (MGUS). Of these 90 patients, 300 samples were collected at different times. The diagnostic and monitoring contribution of Hevylite A and G assays was assessed in all 90 patients examined. Additionally, 3 representative cases were selected. The Hevylite absolute values and ratio demonstrated high sensitivity and specificity with respect to serum protein electrophoresis and serum immunofixation. The combined use of Hevylite A and G with Freelite was particularly useful in dubious cases with more than one MC or with co-migrating components, as well as in the course of monitoring to assess the independent change of FLC and HLC, possibly reflecting the presence of clonal heterogeneity in the cohort. From this study, it can be concluded that FLC and HLC are independent, useful markers to monitor the MC and to assess with greater specificity and sensitivity the effect of therapy, thereby providing clinical support. Further studies are required to assess the prognostic potential of Hevylite in MGUS and SMM.

  5. Combined use of free light chain and heavy/light chain ratios allow diagnosis and monitoring of patients with monoclonal gammopathies: Experience of a single institute, with three exemplar case reports

    PubMed Central

    Gagliardi, Alfredo; Carbone, Claudio; Russo, Angela; Cuccurullo, Rosanna; Lucania, Anna; Cioppa, Paola Della; Misso, Gabriella; Caraglia, Michele; Tommasino, Catello; Mastrullo, Lucia

    2016-01-01

    Monoclonal gammopathies are characterized by serum monoclonal component (MC) plus an intact immunoglobulin and a free light chain (FLC), or a combination of both. The measurement of FLC with Freelite® is the standard practice recommended by International Myeloma Working Group guidelines. Recently, Hevylite® heavy/light chains (HLC) assays were introduced to specifically target junctional epitopes between the heavy and light chains of intact immunoglobulins, allowing the independent quantification of the involved (MC) and uninvolved (polyclonal immunoglobulin background) HLC isotype. Between January 2012 and March 2014, 90 patients were examined: 49 multiple myeloma (MM), 6 smoldering MM (SMM) and 35 monoclonal gammopathy of undetermined significance (MGUS). Of these 90 patients, 300 samples were collected at different times. The diagnostic and monitoring contribution of Hevylite A and G assays was assessed in all 90 patients examined. Additionally, 3 representative cases were selected. The Hevylite absolute values and ratio demonstrated high sensitivity and specificity with respect to serum protein electrophoresis and serum immunofixation. The combined use of Hevylite A and G with Freelite was particularly useful in dubious cases with more than one MC or with co-migrating components, as well as in the course of monitoring to assess the independent change of FLC and HLC, possibly reflecting the presence of clonal heterogeneity in the cohort. From this study, it can be concluded that FLC and HLC are independent, useful markers to monitor the MC and to assess with greater specificity and sensitivity the effect of therapy, thereby providing clinical support. Further studies are required to assess the prognostic potential of Hevylite in MGUS and SMM. PMID:27698801

  6. Four things to know about myosin light chains as reporters for non-muscle myosin-2 dynamics in live cells.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2015-02-01

    The interplay between non-muscle myosins-2 and filamentous actin results in cytoplasmic contractility which is essential for eukaryotic life. Concomitantly, there is tremendous interest in elucidating the physiological function and temporal localization of non-muscle myosin-2 in cells. A commonly used method to study the function and localization of non-muscle myosin-2 is to overexpress a fluorescent protein (FP)-tagged version of the regulatory light chain (RLC) which binds to the myosin-2 heavy chain by mass action. Caveats about this approach include findings from recent studies indicating that the RLC does not bind exclusively to the non-muscle myosin-2 heavy chain. Rather, it can also associate with the myosin heavy chains of several other classes as well as other targets than myosin. In addition, the presence of the FP moiety may compromise myosin's enzymatic and mechanical performance. This and other factors to be discussed in this commentary raise questions about the possible complications in using FP-RLC as a marker for the dynamic localization and regulatory aspects of non-muscle myosin-2 motor functions in cell biological experiments.

  7. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  8. Interactions of Yeast Dynein with Dynein Light Chain and Dynactin: GENERAL IMPLICATIONS FOR INTRINSICALLY DISORDERED DUPLEX SCAFFOLDS IN MULTIPROTEIN ASSEMBLIES.

    PubMed

    Jie, Jing; Löhr, Frank; Barbar, Elisar

    2015-09-25

    Intrinsically disordered protein (IDP) duplexes composed of two IDP chains cross-linked by bivalent partner proteins form scaffolds for assembly of multiprotein complexes. The N-terminal domain of dynein intermediate chain (N-IC) is one such IDP that forms a bivalent scaffold with multiple dynein light chains including LC8, a hub protein that promotes duplex formation of diverse IDP partners. N-IC also binds a subunit of the dynein regulator, dynactin. Here we characterize interactions of a yeast ortholog of N-IC (N-Pac11) with yeast LC8 (Dyn2) or with the intermediate chain-binding subunit of yeast dynactin (Nip100). Residue level changes in Pac11 structure are monitored by NMR spectroscopy, and binding energetics are monitored by isothermal titration calorimetry (ITC). N-Pac11 is monomeric and primarily disordered except for a single α-helix (SAH) at the N terminus and a short nascent helix, LH, flanked by the two Dyn2 recognition motifs. Upon binding Dyn2, the only Pac11 residues making direct protein-protein interactions are in and immediately flanking the recognition motifs. Dyn2 binding also orders LH residues of Pac11. Upon binding Nip100, only Pac11 SAH residues make direct protein-protein interactions, but LH residues at a distant sequence position and L1 residues in an adjacent linker are also ordered. The long distance, ligand-dependent ordering of residues reveals new elements of dynamic structure within IDP linker regions.

  9. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites.

  10. Evidence indicating independent assortment of framework and complementarity-determining segments of the variable regions of rabbit light chains. Delineation of a possible J minigene.

    PubMed

    Kabat, E A; Wu, T T; Bilofsky, H

    1980-07-01

    Amino acid sequences of rabbit light chains show considerable evidence of independent assortment of framework (FR) and complementarity-determining (CDR) segments. This suggests that they are coded for by independent genetic units (minigaenes) and that individual light chains are assembled somatically by recombining these units. Identical FR sets with multiple members generally comprise chains with different specificities, whereas identical CDR sets tend to have chains of a single specificity. A J segment, which, by analogy with mouse light chains, is made up of the last two residues of CDR3 plus all of FR4, contained 18 different sets and could contribute to diversity generated by CDR3. The longest segment, FR3, had a very large number of sets. Evidence is presented showing that the number of sets could be substantially reduced by permitting FR3 to be formed by two independently assorting segments comprising residues 57-68 and 69-88.

  11. Construction of multiple recombinant SLA-I proteins by linking heavy chains and light chains in vitro and analyzing their secondary and 3-dimensional structures.

    PubMed

    Gao, Feng-shan; Bai, Jing; Zhang, Qiang; Xu, Chong-bo; Li, Yanmin

    2012-07-10

    Six breeds of swine were used to study the structure of swine leukocyte antigen class I (SLA-I). SLA-I complexes were produced by linking SLA-2 genes and β(2)m genes via a linker encoding a 15 amino acid glycine-rich sequence, (G4S)3, using splicing overlap extension (SOE)-PCR in vitro. The six recombinant SLA-2-linker-β(2)m genes were each inserted into p2X vectors and their expression induced in Escherichia coli TB1. The expressed proteins were detected by SDS-PAGE and western blotting. The maltose binding protein (MBP)-SLA-I fusion proteins were purified by amylose affinity chromatography followed by cleavage with factor Xa and separation of the SLA-I protein monomers from the MBP using a DEAE Ceramic Hyper D F column. The purified SLA-I monomers were detected by circular dichroism (CD) spectroscopy and the 3-dimensional (3D) structure of the constructed single-chain SLA-I molecules were analyzed by homology modeling. Recombinant SLA-2-Linker-β(2)m was successfully amplified from all six breeds of swine by SOE-PCR and expressed as fusion proteins of 84.1 kDa in pMAL-p2X, followed by confirmation by western blotting. After purification and cleavage of the MBP-SLA-I fusion proteins, SLA-I monomeric proteins of 41.6 kDa were separated. CD spectroscopy demonstrated that the SLA-I monomers had an α-helical structure, and the average α-helix, β-sheet, turn and random coil contents were 21.6%, 37.9%, 15.0% and 25.5%, respectively. Homology modeling of recombinant single-chain SLA-I molecules showed that the heavy chain and light chain constituted SLA-I complex with an open antigenic peptide-binding groove. It was concluded that the expressed SLA-I proteins in pMAL-p2X folded correctly and could be used to bind and screen nonameric peptides in vitro.

  12. MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain.

    PubMed Central

    Clark, M J; Gagnon, J; Williams, A F; Barclay, A N

    1985-01-01

    The MRC OX-2 antigen is a rat cell surface glycoprotein of mol. wt. 41 000-47 000 found on neurones, thymocytes, B cells, follicular dendritic cells and endothelium. We now report the amino sequence for this antigen as deduced from the nucleotide sequence of cDNA clones detected by use of an oligonucleotide probe. The sequence contains 248 amino acid residues of which 202 residues are likely to be outside the cell with two domains that show homology with immunoglobulins. The N-terminal domain fits best with Ig V domains and Thy-1 antigen while the C-terminal part is like an Ig C domain. Thus the structure overall is similar to an Ig light chain or the T cell receptor beta chain. Three glycosylation sites are identified on each of the MRC OX-2 antigen domains. Images Fig. 1. Fig. 2. PMID:2862025

  13. Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model.

    PubMed

    Ebenhöh, Oliver; Fucile, Geoffrey; Finazzi, Giovanni; Rochaix, Jean-David; Goldschmidt-Clermont, Michel

    2014-04-19

    Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas, our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.

  14. The importance of screening for serum free light chains in suspected cases of multiple myeloma and their impact on the kidney

    PubMed Central

    Talbot, B; Wright, D; Basnayake, K

    2014-01-01

    Multiple myeloma (MM) is the second most common haematological malignancy in the UK. We present a case series of three patients with light chain only myeloma who had normal serum protein electrophoretic studies at screening and were diagnosed using serum and urine free light chain assessment. This series reiterates the importance of thorough and robust screening for MM in patients presenting with renal disease. We review the up to date literature and we highlight the need to screen patients for MM with a combination of serum electrophoresis/immunofixation and either urinary or serum free light chain measurement and to maintain a high index of suspicion regardless of the presence or absence of proteinuria. We also discuss the emerging role of the serum free light chain assay. PMID:25326567

  15. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  16. Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of gene rearrangement.

    PubMed Central

    Hohman, V S; Schuchman, D B; Schluter, S F; Marchalonis, J J

    1993-01-01

    While the general structure of immunoglobulin chains has remained relatively unchanged throughout evolution, the organization of the genes encoding these molecules differs substantially. To understand how the rearranging immunoglobulin system arose, it is necessary to examine living representatives of the most early vertebrate phyla. Elasmo-branches, which include the sharks, skates, and rays, are the most primitive phylogenetic class of vertebrates from which immunoglobulin DNA sequences have been obtained. In the sandbar shark (Carcharhinus plumbeus), the genes are arranged in individual clusters in which a single variable (V), joining (J), and constant (C) region gene, along with upstream regulatory elements, span a distance of approximately 4.4 kb or approximately 5.8 kb. We report the complete sequence of a genomic clone encoding sandbar shark lambda light chain. A unique finding of our study is that the V and J genes are fused in the germ line. Three additional clones have been shown by DNA sequencing to also have fused V and J genes. The four clones have complementarity-determining regions 3 of various lengths and amino acid sequence variability similar to the products of rearranged genes. Furthermore, analysis by polymerase chain reaction technology revealed an additional 26 genomic clones demonstrating fusion of the V and J segments. Therefore, VJ fusion is the prominent organizational feature of sandbar shark immunoglobulin light chain genes. This finding raises questions concerning the necessity of recombination to produce an antibody repertoire capable of reacting against a diverse array of antigens. Images Fig. 1 Fig. 2 Fig. 3 PMID:8234330

  17. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  18. Electrochemically Controlled Reconstitution of Immobilized Ferritins for Bioelectronic Applications

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hong; King, Glen C.; Watt, Gerald D.

    2007-01-01

    Site-specific reconstituted nanoparticles were fabricated via electrochemically-controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices.

  19. Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase.

    PubMed

    Mamar-Bachi, A; Cox, J A

    1987-12-01

    Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.

  20. [Effect of myosin alkali light chains on myosin subfragment 1 interaction with actin in solution and in ghost muscle fiber].

    PubMed

    Levistkiĭ, D I; Borovikov, Iu S; Nikolaeva, O P; Golitsyna, N L; Poglazov, B F

    1990-09-01

    At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).

  1. β-Arrestin Regulation of Myosin Light Chain Phosphorylation Promotes AT1aR-mediated Cell Contraction and Migration

    PubMed Central

    Simard, Elie; Kovacs, Jeffrey J.; Miller, William E.; Kim, Jihee; Grandbois, Michel; Lefkowitz, Robert J.

    2013-01-01

    Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility. PMID:24255721

  2. Renal Light Chain Deposition Associated with the Formation of Intracellular Crystalline Inclusion Bodies in Podocytes: A Rare Case Report.

    PubMed

    Wang, Yuan-da; Dong, Zhe-yi; Zhang, Xue-guang; Zhang, Wei; Yin, Zhong; Qiu, Qiang; Chen, Xiang-mei

    2016-01-01

    We herein report the case of an elderly woman with bone pain and proteinuria as the main clinical manifestations. The patient was diagnosed with the IgG κ type of multiple myeloma. Her renal pathology consisted of widespread κ light chain protein deposition associated with the formation of large quantities of rod-like crystals in podocytes. This phenomenon is very rare. We explored the significance of this crystal formation via a detailed and descriptive analysis and also performed a literature review, thus providing data to increase the available information about this type of disease.

  3. Production of anti TNF-α antibodies in eukaryotic cells using different combinations of vectors carrying heavy and light chains.

    PubMed

    Balabashin, Dmitriy; Kovalenko, Elena; Toporova, Viktoria; Aliev, Teimur; Panina, Anna; Svirshchevskaya, Elena; Dolgikh, Dmitry; Kirpichnikov, Mikhail

    2015-10-01

    Tumor necrosis factor-α (TNF-α) plays a key role in rheumatoid arthritis and some other autoimmune diseases. Therapy with anti-TNF-α recombinant antibodies (Ab) appears to be highly effective. Production of new hyper-producing eukaryotic cell lines can decrease the treatment cost, which currently is very high. However, due to the complexity of protein transcription, translation, processing, and secretion in mammalian cells, the stages at which antibody expression is affected are still poorly determined. The aim of this work was to compare the productivity of two cell lines developed in CHO DG44 cells, deficient in dihydrofolate reductase, transfected with vectors carrying either heavy (H) or light (L) chains of chimeric antibody under different combinations of selective elements. Both H and L chains were cloned either in pOptiVEC or pcDNA3.3 vectors and different combinations were used to produce HL and LH cell lines. We have shown that Ab production has been low and comparable between HL and LH cells until selection on methotrexate (MTX) when LH but not HL cells have responded with 3.5 times increased productivity. Flow cytometry analysis has demonstrated that intracellular concentration of full size Abs in LH cells was 5.6 times higher than in HL ones due to higher amount of H chain synthesis. No differences in viability between HL and LH cells have been found. We have concluded that the expression of H chain in the pOptiVEC vector, which is responsible for MTX resistance, has led to the suppression of H chain synthesis and limitation in full Ab assembly.

  4. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region

    PubMed Central

    Schroeder, Courtney M; Ostrem, Jonathan ML; Hertz, Nicholas T; Vale, Ronald D

    2014-01-01

    Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo. DOI: http://dx.doi.org/10.7554/eLife.03351.001 PMID:25272277

  5. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing.

    PubMed

    Shen, Shixue; Manser, Tim

    2012-01-01

    Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.

  6. Molecular Cloning and Copy Number Variation of a Ferritin Subunit (Fth1) and Its Association with Growth in Freshwater Pearl Mussel Hyriopsis cumingii

    PubMed Central

    Bai, Zhiyi; Yuan, Yiming; Yue, Genhua; Li, Jiale

    2011-01-01

    Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii. PMID:21818403

  7. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.

  8. IgD multiple myeloma: Clinical, biological features and prognostic value of the serum free light chain assay.

    PubMed

    Djidjik, R; Lounici, Y; Chergeulaïne, K; Berkouk, Y; Mouhoub, S; Chaib, S; Belhani, M; Ghaffor, M

    2015-09-01

    IgD multiple myeloma (MM) is a rare subtype of myeloma, it affects less than 2% of patients with MM. To evaluate the clinical and prognostic attributes of serum free light chains (sFLCs) analysis, we examined 17 cases of IgD MM. From 1998 to 2012, we obtained 1250 monoclonal gammapathies including 590 multiple myeloma and 17 patients had IgD MM. With preponderance of men patients with a mean age at diagnosis of: 59±12years. Patients with IgD MM have a short survival (Median survival=9months). The presenting features included: bone pain (75%), lymphadenopathy (16%), hepatomegaly (25%), splenomegaly (8%), associated AL amyloidosis (6%), renal impairment function (82%), infections (47%), hypercalcemia (37%) and anemia (93%). Serum electrophoresis showed a subtle M-spike (Mean=13.22±10g/L) in all patients associated to a hypogammaglobulinemia. There was an over-representation of Lambda light chain (65%); high serum β2-microglobulin in 91% and Bence Jones proteinuria was identified in 71%. The median rate of sFLCs κ was 19.05mg/L and 296.75mg/L for sFLCs λ. sFLCR was abnormal in 93% of patients and it showed concordance between baseline sFLCR and the survival (P=0.034). The contribution of FLC assay is crucial for the prognosis of patients with IgD MM.

  9. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study

    PubMed Central

    Ami, Diletta; Lavatelli, Francesca; Rognoni, Paola; Palladini, Giovanni; Raimondi, Sara; Giorgetti, Sofia; Monti, Luca; Doglia, Silvia Maria; Natalello, Antonino; Merlini, Giampaolo

    2016-01-01

    Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo. PMID:27373200

  10. Quantification of β region IgA paraproteins - should we include immunochemical "heavy/light chain" measurements? Counterpoint.

    PubMed

    Paolini, Lucia

    2016-06-01

    Serum protein electrophoresis (SPE), serum immunofixation (s-IFE), free light chain measurement (FLC) and nephelometric measurements of total immunoglobulin in serum (IgTot) are some of the laboratory tests required for the management of plasma cell proliferative disorders. The monoclonal protein is usually visible on SPE as a spike (M-spike) in the γ region and the derived densitogram is used to quantify it relative to serum total protein concentration. IgA M-protein, however, often migrates in the β region on SPE and its quantification can be masked by other serum proteins that migrate in this region. The immunoassay Hevylite™ (heavy/light chain, HLC) seems to solve this problem: it quantifies the involved/uninvolved isotype, calculating the ratio IgAκ/IgAλ, considered indicative of clonal proliferation. However, this test seems redundant in the case of artifacts on SPE such as obvious hemolysis or lipemia, or if the IgA M-spike is clearly visible in the β region. In conclusion whereas the IgA HLC assay does not represent an alternative to SPE and s-IFE in the diagnostic patient workup, it may prove to be an alternative to SPE, s-IFE and total IgA quantification in risk stratification and evaluation of response to therapy in patients affected by MM and other monoclonal plasma proliferative disorders.

  11. European trial of free light chain removal by extended haemodialysis in cast nephropathy (EuLITE): A randomised control trial

    PubMed Central

    Hutchison, Colin A; Cook, Mark; Heyne, Nils; Weisel, Katja; Billingham, Lucinda; Bradwell, Arthur; Cockwell, Paul

    2008-01-01

    Background Renal failure is a frequent complication of multiple myeloma and when severe is associated with a greatly increased morbidity and mortality. The principal cause of severe renal failure is cast nephropathy, a direct consequence of high concentrations of monoclonal free light chains (FLCs) in patients' sera. FLC removal by extended haemodialysis, using a high cut-off dialyser, has recently been described as a novel therapeutic option. Methods The EUropean trial of free LIght chain removal by exTEnded haemodialysis in cast nephropathy (EuLITE) trial is a prospective, randomised, multicentre, open label clinical trial to investigate the clinical benefits of FLC removal haemodialysis in patients with cast nephropathy, dialysis dependent acute renal failure and de novo multiple myeloma. Recruitment commenced in May 2008. In total, 90 patients will be recruited. Participants will be randomised, centrally, upon enrolment, to either trial chemotherapy and FLC removal haemodialysis or trial chemotherapy and standard high flux haemodialysis. Trial chemotherapy consists of bortezomib, doxorubicin and dexamethasone. FLC removal haemodialysis is undertaken with two Gambro HCO 1100 dialysers in series using an intensive treatment schedule. The primary outcome for the study is independence of dialysis at 3 months. Secondary outcomes are: duration of dialysis, reduction in serum FLC concentrations; myeloma response and survival. Hypothesis FLC removal haemodialysis will increase the rate of renal recovery in patients with severe renal failure secondary to cast nephropathy in de novo multiple myeloma. Trial registration ISRCTN45967602 PMID:18822172

  12. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  13. [The concurrence of light-chain deposition disease, AL-amyloidosis, and cast nephropathy in a patient with multiple myeloma].

    PubMed

    Rekhtina, I G; Zakharova, E V; Stoliarevich, E S; Sinitsina, M N; Denisova, E N

    2015-01-01

    Despite of the fact that their clinical manifestations are similar, AL-amyloidosis (AL-A) and light chain deposition disease (LCDD) are individual nosological entities in view of considerable differences in their pathogenesis and pathomorphology. The paper describes a rare case of the concurrence of LCDD and AL-A in a patient with multiple myeloma. Clinically, there was dialysis-dependent renal failure, flail leg syndrome, myocardiopathy, and rhabdomyolysis. At the disease onset, his nephrobiopsy specimen could diagnose LCDD and myeloma or cast nephropathy. The disease was characterized by an aggressive course. Despite the administration of innovative agents, the patient had a short-term remission and died from disease progression. Autopsy additionally revealed amyloid deposition in the heart and kidney. The development of AL-A in the presence of prior LCDD may reflect the progression of the tumor and the appearance of an additional subclone of plasma cells that produce amyloidogenic light chains. The uncommonness of this case is that renal amyloid was found in the tubular casts and absent in the glomeruli, which may be considered as a special form--tubular AL-amyloidosis. PMID:26281203

  14. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion.

    PubMed

    Kil, Laurens P; Corneth, Odilia B J; de Bruijn, Marjolein J W; Asmawidjaja, Patrick S; Krause, Arndt; Lubberts, Erik; van Loo, Pieter Fokko; Hendriks, Rudi W

    2015-02-01

    While surrogate light chain (SLC) expression is normally terminated in differentiating pre-B cells, co-expression of SLC and conventional light chains has been reported in a small population of autoreactive peripheral human B cells that accumulate in arthritic joints. Despite this association with autoimmunity the contribution of SLC expressing mature B cells to disease development is still unknown. We studied the pathogenicity of SLC(+) B cells in a panel of mice that transgenically express the SLC components VpreB and λ5 throughout B cell development. Here we report that although VpreB or λ5 expression mildly activated mature B cells, only moderate VpreB expression levels - in the absence of λ5 - enhanced IgG plasma cell formation. However, no autoantibody production was detectable in VpreB or λ5 transgenic mice and VpreB expression could not accelerate autoimmunity. Instead, moderate VpreB expression partially protected mice from induced autoimmune arthritis. In support of a tolerogenic role of SLC-transgenic B cells, we observed that in a dose-dependent manner SLC expression beyond the pre-B cell stage enhanced clonal deletion among immature and transitional B cells and rendered mature B cells anergic. These findings suggest that SLC expression does not propagate autoimmunity, but instead may impose tolerance.

  15. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway. PMID:26634902

  16. Crystal structure of human dynein light chain Dnlc2A: Structural insights into the interaction with IC74

    SciTech Connect

    Liu Junfeng; Wang Zhanxin; Wang Xinquan; Tang Qun; An Xiaomin; Gui Lulu; Liang Dongcai . E-mail: dcliang@sun5.ibp.ac.cn

    2006-10-27

    The human light chain of the motor protein dynein, Dnlc2A, is also a novel TGF-{beta}-signaling component, which is altered with high frequency in epithelial ovarian cancer. It is an important mediator of dynein and the development of cancer, owing to its ability to bind to the dynein intermediate light chain (DIC) IC74 and to regulate TGF-{beta}-dependent transcriptional events. Here we report the 2.1-A crystal structure of Dnlc2A using single anomalous diffraction. The proteins form a homodimer in solution and interact mainly through the helix {alpha}{sub 2}, strand {beta}{sub 3}, and the loop following this strand in each protein to generate a 10-stranded {beta}-sheet core. The surface of the {beta}-sheet core is mainly positively charged and predicted (by software PPI-Pred) to be the site that interacts with other partners. At the same time, the residues 79-82, 88, and 90 of each molecule formed two holes in the core. Residue 89 of each molecule, which is crucial for the DIC binding function of Dnlc2A, is within the holes. On the basis of these observations, we propose that the homodimer is the structural and functional unit maintained by hydrogen bonding interactions and hydrophobic packing, and that the patch of the surface of the {beta}-sheet core is the main area of interaction with other partners. Furthermore, the two holes would be the key sites to interact with IC74.

  17. [EXPRESSION OF THE LIGHT CHAINS OF IMMUNOGLOBULINS IN NORMAL B-CELLS AND SOME B-CELL LYMPHOMAS].

    PubMed

    Khudoleeva, O A; Vorobjev, I A

    2015-01-01

    The quantitative method of determining the level of expression of immunoglobulin light chains on uncompensated data was suggested and used to examine disorders in light chain expression in various B-cell tumors. The average level of expression of the lambda isotype was 4 times higher than the level of expression of kappa isotype. The level of surface and cytoplasmic expression of LC IG varied within wide limits for different people, but there was a high degree of correlation between the levels of expression of kappa and lambda isotypes LC IG as well as between expression of the surface and cytoplasmic forms of each in isotype the same individual. In the majority of B-cell non-Hodgkin's lymphomas correlation between the expression of LC IG on the surface and in the cytoplasm of the cells was diminished. Expression of LC IG in CLL was significantly reduced on the surface of the cells and to a lesser extent--in the cytoplasm. In the case of marginal zone cell lymphoma, LC IG expression level was reduced on the surface of circulating cells and to a lesser extent--in the cytoplasm. In the case of mantle cell lymphoma and DLBCL, expression level of LC IG on the cell surface and in the cytoplasm was the same as in normal B-cells. However, in some cases DLBCL, no LC IG was expressed both on the surface and in the cytoplasm. PMID:26863766

  18. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study.

    PubMed

    Ami, Diletta; Lavatelli, Francesca; Rognoni, Paola; Palladini, Giovanni; Raimondi, Sara; Giorgetti, Sofia; Monti, Luca; Doglia, Silvia Maria; Natalello, Antonino; Merlini, Giampaolo

    2016-01-01

    Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo. PMID:27373200

  19. Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach.

    PubMed

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei

    2016-09-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355

  20. Resonant transmission of light in chains of high-index dielectric particles

    NASA Astrophysics Data System (ADS)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  1. Can Serum Ferritin Level Predict Disease Severity in Patients with Crimean-Congo Hemorrhagic Fever?

    PubMed Central

    Metanat, Maliheh; Sharifi-Mood, Batool; Tabatabaei, Mehdi; Sarraf-Shirazi, Mohammad

    2013-01-01

    Objective: Crimean-Congo hemorrhagic fever (CCHF) is an acute viral disease. Several factors have already been suggested to explain the pathogenesis as well as predict the disease severity. In our study we aim to investigate the role of serum ferritin level as a possible predicting factor of disease severity in these patients. Materials and Methods: We evaluated all patients with laboratory confirmed diagnosis of CCHF who were admitted to Boo-Ali Hospital of Zahedan from May 2011 to June 2012. Confirmation of the disease determined using the presence of anti- CCHFV IgM in the serum by enzyme-linked immunosorbent assay (ELISA) or by polymerase chain reaction(PCR). After ethical approval, patients were categorized into two groups of mild and severe disease according to disseminated intravascular coagulation (DIC) severity using the scoring system of International Society on Thrombosis and Hemostasis (ISTH). Serum ferritin levels were evaluated and compared between these two groups. Receiver operating characteristic (ROC) curve analysis was performed to assess the optimal cutoff value of serum ferritin for predicting the disease severity. Results: A total of 42 patients (36 men, 6 women, age range: 17–78 years) were included in this study, of whom 38% had Persian and 62% had Baloch ethnicity. According to DIC severity score, 54.7% of the patients had severe disease and 45.3% had mild disease. The area under the ROC curve was 0.896 and 95% CI was 0.801–0.991 (p<0.0001). A cut-off point of 1060 ng/dL, had a sensitivity of 78.9%, a specificity of 87%, a positive predictive value of 6% and a negative predictive value of 100%. Positive and negative likelihood ratios for this serum ferritin level were 6.05 and 0.24, respectively. Conclusion: Increased serum ferritin level has a significant positive correlation with disease severity in patients with CCHF and can evaluate the prognosis of these patients with a high sensitivity and specificity. PMID:25610262

  2. A Single Mutation at the Sheet Switch Region Results in Conformational Changes Favoring 6 Light-Chain Fibrillogenesis

    SciTech Connect

    Hernández-Santoyo, A.; Del Pozo Yauner, L; Fuentes-Silva, D; Ortiz, E; Rudiño-Piñera, E; Sánchez-López, R; Horjales, E; Becerril, B; Rodríguez-Romero, A

    2010-01-01

    Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although {lambda} chains, particularly those belonging to the {lambda}6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the {lambda}6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P2{sub 1}2{sub 1}2{sub 1} and C222{sub 1}. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222{sub 1} lattice showed the establishment of intermolecular {beta}-{beta} interactions that involved the N-terminus and {beta}-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in {lambda}6 LCs.

  3. Molecular characterization and expression analysis of four isotypes of immunoglobulin light chain genes in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Wu, Ming-Shan; Cheng, Chao-An; Lin, Chih-Hung; Lee, Chiou-Yueh; Tseng, Shih-Jou; Tzeng, Chyng-Shyan; Chang, Chi-Yao

    2013-03-01

    To date, many immunoglobulin (Ig) genes have been identified in diverse teleost species, but the contributions of different types of light chain (IgL) to the immune response remain unclear. Screening of a stimulated kidney cDNA library from orange-spotted grouper (Osg, Epinephelus coioides) resulted in the identification of 26 full Ig light chain (OsgIgL) coding sequences. These 26 OsgIgLs encoded peptides from 235 to 248 amino acid residues and could be grouped into five variable (V(L)) and four constant (C(L)) isotypes. The C(L) regions contained three conserved cysteine residues that may participate in intra- or inter-chain disulfide bond formation. The four C(L) isotypes could be sub-grouped into two serological types: κ (C(L)-I, C(L)-II and C(L)-III) and σ (C(L)-IV), by phylogenetic analysis. The OsgIgL genes were found to be expressed in various tissues, with greatest levels of expression observed in the head-kidney and spleen. The major expression type was C(L)-I, which comprised 92% and 91% of total OsgIgL gene expression in the head-kidney and spleen, respectively. Transcription of all four C(L) isotypes was differentially affected in response to various immunostimulators, including lipopolysaccharide (LPS), poly I:C and grouper iridovirus (GIV). Induction of OsgIgL genes in response to immunostimulators was particularly dramatic in the spleen, suggesting this organ holds particular importance for the regulation of OsgIgL expression. Furthermore, vaccination of grouper with formalin-inactivated GIV also induced differential patterns of expression in all four OsgIgL isotypes. In summary, the significant and diverse patterns of transcriptional induction observed for OsgIgL isotypes in the spleen and head-kidney imply that each isotype may have unique roles in the immune response.

  4. Surrogate or conventional light chains are required for membrane immunoglobulin mu to activate the precursor B cell transition [published erratum appears in J Exp Med 1997 Jan 6;185(1):183

    PubMed Central

    1996-01-01

    To examine the role of light chains in early B cell development we combined RAG-1 and lambda 5 mutations to produce mice that expressed neither conventional nor surrogate light chains (RAG-1-/-, lambda 5-/- ). Unique heavy and light chain genes were then introduced into the double and single mutant backgrounds. Membrane immunoglobulin (Ig)mu (mIg mu) associated with Ig alpha-Ig beta but was unable to activate the pre-B cell transition in RAG-1-/-lambda 5-/- mice. Either lambda 5 or kappa light chains were sufficient to complement this deficiency. Therefore light chains are absolutely required for a functional Ig signaling module in early B cell development. Our data provide direct evidence for the existence of two pathways for induction of early B cell development: one which is activated through surrogate light chains and mIg mu, and an alternative pathway which uses conventional light chains and mIg mu. PMID:8920890

  5. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-storing protein) in serum and other body fluids. Measurements of ferritin aid in the diagnosis of diseases affecting iron metabolism, such as hemochromatosis (iron overload) and iron deficiency amemia....

  6. Conceptions and First Results on the Electrocrystallization Behaviour of Ferritin

    SciTech Connect

    Moreno,A.; Rivera, M.

    2005-01-01

    The role of electrochemical processes on Fe and CdSO{sub 4} in the crystallization of horse spleen ferritin has been investigated using the cyclic voltammetry technique. It was found that although both species exhibit important redox properties in the presence of an external applied potential, CdSO4 played a leading role not only in the nucleation process but also in the growth behavior and morphology of ferritin crystals.

  7. Full-length cloning and phylogenetic analyses of translationally controlled tumour protein and ferritin genes from the Indian white prawn, Fenneropenaeus indicus (H. Milne Edwards).

    PubMed

    Nayak, S; Ramaiah, N; Meena, R M; Sreepada, R A

    2014-02-01

    Elucidation, through molecular analyses, of bacterial afflictions in commercially important aquaculture-reared shrimps is pivotal for the prevention and/or control of disease outbreaks. In this study, we examined the phylogenetic relatedness and compared the possible immune-related functional roles of both translationally controlled tumour protein (TCTP) and ferritin genes with previous studies. Both TCTP and ferritin genes were substantially upregulated in the Indian white prawn, Fenneropenaeus indicus (H. Milne Edwards), post-larvae following bath challenge with the virulent strain of bacteria, Vibrio harveyi D3. Full-length cloning of these genes by rapid amplification of complementary DNA ends -polymerase chain reaction (RACE-PCR) yielded 727-base pair (bp)-long TCTP and 1212-bp-long ferritin gene sequences. Their open reading frames (ORFs) were 507 and 510 bp, respectively. The TCTP-ORF coded for 168 amino acids with three substitutions at positions 37, 141, 155, and the ferritin ORF coded for 170 amino acids with no species-specific substitutions. Phylogenetic analysis suggested the closest relatedness of both TCTP and ferritin from F. indicus to Chinese white prawn, Fenneropenaeus chinensis (Osbeck). In addition to reporting the full-length sequences of these immune-relevant genes, this study highlighted their conserved natures, which perhaps make them important defence-related proteins in the innate immune system of F. indicus.

  8. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development

    PubMed Central

    Blowes, Liisa M.; Missirlis, Fanis; Riesgo-Escovar, Juan R.

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother’s iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development. PMID:26192321

  9. Relationship between Serum Ferritin Levels and Dyslipidemia in Korean Adolescents

    PubMed Central

    Kim, Young-Eun; Roh, Yong-Kyun; Ju, Sang-Yhun; Yoon, Yeo-Joon; Nam, Ga-Eun; Nam, Hyo-Yun; Choi, Jun-Seok; Lee, Jong-Eun; Sang, Jung-Eun; Han, Kyungdo

    2016-01-01

    Background Ferritin is associated with various cardiometabolic risk factors such as dyslipidemia, hypertension, obesity, and insulin resistance in adults. We aimed to study the association between serum ferritin levels and dyslipidemia in adolescents, because dyslipidemia is considered an important modifiable cardiovascular risk factor in the young. Methods We analyzed 1,879 subjects (1,026 boys and 853 girls) from the 2009–2010 Korean National Health and Nutrition Examination Survey IV. Subjects were categorized into quartiles according to their lipid parameters, which were classified according to age and gender. Those in the highest quartile groups for total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride concentrations were diagnosed as having dyslipidemia. Those in the lowest quartile for high-density lipoprotein cholesterol (HDL-C) values were diagnosed with abnormal levels. Results In boys, total cholesterol, LDL-C, and triglyceride concentrations were significantly correlated with serum ferritin levels. In both boys and girls, serum ferritin levels were negatively associated with HDL-C values, even after adjusting for all covariates. Furthermore, there was no significant correlation between serum ferritin levels and total cholesterol, LDL, and triglyceride concentrations in girls. Conclusion Serum ferritin levels were significantly associated with major dyslipidemia parameters, more prominently in boys than in girls, and this association represents a cardiometabolic risk factor. PMID:27070153

  10. Ferritin, an iron source in meat for Staphylococcus xylosus?

    PubMed

    Vermassen, Aurore; Talon, Régine; Leroy, Sabine

    2016-05-16

    Staphylococcus xylosus is frequently isolated from food of animal origin. Moreover, this species is one of the major starter cultures used for meat fermentation. Iron is a key element for growth and survival of bacteria. Meat is particularly rich in haemic (myoglobin and haemoglobin) and non-haemic (ferritin and transferrin) iron sources. Ferritin is a storage protein able to capture large quantities of iron. It is highly resistant to microbial attack and few microorganisms can use it as an iron source. Surprisingly, we found that the S. xylosus C2a strain grows in the presence of ferritin as a sole iron source. A three-cistron operon was highly overexpressed under ferritin iron growth conditions. We generated a deletion-insertion in the first gene of the operon and evaluated the phenotype of the mutant. The mutant showed decreased growth because it was less able to acquire iron from ferritin. Transcriptional analysis of the mutant revealed downregulation of several genes involved in the response to oxidative stress. This study characterized for the first time the capacity of a Staphylococcus to use iron from ferritin and revealed that a potential reductive pathway was involved in this acquisition. We hypothesize that this ability could give an advantage to S. xylosus in meat products.

  11. Cellular regulation and molecular interactions of the ferritins.

    PubMed

    Hintze, K J; Theil, E C

    2006-03-01

    Controlling iron/oxygen chemistry in biology depends on multiple genes, regulatory messenger RNA (mRNA) structures, signaling pathways and protein catalysts. Ferritin, a protein nanocage around an iron/oxy mineral, centralizes the control. Complementary DNA (antioxidant responsive element/Maf recognition element) and mRNA (iron responsive element) responses regulate ferritin synthesis rates. Multiple iron-protein interactions control iron and oxygen substrate movement through the protein cage, from dynamic gated pores to catalytic sites related to di-iron oxygenase cofactor sites. Maxi-ferritins concentrate iron for the bio-synthesis of iron/heme proteins, trapping oxygen; bacterial mini-ferritins, DNA protection during starvation proteins, reverse the substrate roles, destroying oxidants, trapping iron and protecting DNA. Ferritin is nature's unique and conserved approach to controlled, safe use of iron and oxygen, with protein synthesis in animals adjusted by dual, genetic DNA and mRNA sequences that selectively respond to iron or oxidant signals and link ferritin to proteins of iron, oxygen and antioxidant metabolism.

  12. Soybean Ferritin Forms an Iron-Containing Oligomer in Tofu Even after Heat Treatment.

    PubMed

    Masuda, Taro

    2015-10-14

    Ferritin, a multimeric iron storage protein distributed in almost all living kingdoms, has been highlighted recently as a nutritional iron source in plant-derived foodstuffs, because ferritin iron is suggested to have high bioavailability. In soybean seeds, ferritin contributes largely to the net iron contents. Here, the oligomeric states and iron contents of soybean ferritin during food processing (especially tofu gel formation) were analyzed. Ferritin was purified from tofu gel as an iron-containing oligomer (approximately 1000 Fe atoms per oligomer), which was composed of two types of subunits similar to the native soybean seed ferritin. Circular dichroism spectra also showed no differences in α-helical structure between native soybean ferritin and tofu ferritin. The present data demonstrate that ferritin was stable during the heat treatment (boiling procedure) in food processing, although partial denaturation was observed at temperatures higher than 80 °C.

  13. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.

  14. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates. PMID:27056571

  15. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  16. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    SciTech Connect

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  17. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  18. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1.

    PubMed

    Smyczynski, C; Kasprzak, A A

    1997-10-28

    The X-ray structure of myosin head (S1) reveals the presence of a long alpha-helical structure that supports both the essential and the regulatory light chains. It has been proposed that small structural changes in the catalytic domain of S1 are amplified by swinging the long alpha-helix (the "lever arm") to produce approximately 11 nm steps. To probe the spatial position of the putative lever in various S1 states, we have measured, by fluorescence resonance energy transfer (FRET), the effect of nucleotides and actin on the distances between Cys-177 of the essential light chain A1 (which is attached to the alpha-helix) and three loci in the catalytic domain. Cys-177 (donor) was labeled with 1,5-IAEDANS. The trinitrophenylated ADP analog (TNP-ADP, acceptor) was used to measure the distance to the active site. Lys-553 at the actin-binding site, labeled with a fluorescein derivative, and Lys-83 modified with trinitrobenzenesulfonic acid served as two other acceptors. FRET measurements were performed for S1 alone, for its complexes with MgADP and MgATP, for the analogs of the transition state of the ATPase reaction, S1.ADP.BeFx, S1.ADP.AlF4, and S1.ADP.VO4, and for acto-S1 in the absence and in the presence of ADP. When the transition state and acto-S1 complexes were formed, the change in the Cys-177 --> Lys-83 distance was <1.1 A, for the distance Cys-177 --> Lys-553, the change was +/-2.5 A. These distance changes correspond to rotations by <10 degrees and approximately 25 degrees, respectively. For the Cys-177 --> TNP-ADP the interprobe separation decreased by approximately 6 A in the presence of BeFx and AlF4- but only 1.9 A in the presence of vanadate; we do not interpret the 6 A change as resulting from the lever rotation. Using the coordinates of the acto-S1 complex, we have computed the expected changes in these distances resulting from rotation of the lever. These changes were much greater than the ones observed. The above results are inconsistent with models

  19. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  20. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    PubMed Central

    Lima, V.V.; Lobato, N.S.; Filgueira, F.P.; Webb, R.C.; Tostes, R.C.; Giachini, F.R.

    2014-01-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  1. Induction of light chain replacement in human plasma cells by caffeine is independent from both the upregulation of RAG protein expression and germ line transcription.

    PubMed

    Tachibana, H; Haruta, H; Ueda, K; Chiwata, T; Yamada, K

    2000-02-25

    When some human plasma cell lines are cultured with concanavalin A, the original light chain is replaced with another light chain which results from secondary VJ recombination (light chain shifting). We examined various intracellular factors involved in the induction of light chain shifting. Light chain shifting can be induced upon treatment with agents with phosphatase inhibitory activity such as caffeine and okadaic acid. Although the plasma cells used express both RAG-1 and RAG-2, the expression level of these proteins was not affected by caffeine or okadaic acid. Transcription of the germ line locus, which correlates to the locus activation for rearrangement, is also not influenced by phosphatase inhibition. However, the amount of signal broken-ended DNA intermediates generated during V(D)J rearrangement was shown to increase upon caffeine or okadaic acid treatment. The inhibitory activity of caffeine on phosphatase was the same as okadaic acid. However, caffeine exhibited much higher activity for VJ coding joint formation than okadaic acid. Therefore, although phosphatase inhibition might act, in part, on a mechanism by which V(D)J recombinase activity is regulated within the human plasma cells, other factor(s) are probably also involved in the process.

  2. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody.

    PubMed

    Vlasak, Josef; Bussat, Marie C; Wang, Shiyi; Wagner-Rousset, Elsa; Schaefer, Mark; Klinguer-Hamour, Christine; Kirchmeier, Marc; Corvaïa, Nathalie; Ionescu, Roxana; Beck, Alain

    2009-09-15

    Despite technological advances, detection of deamidation in large proteins remains a challenge and the use of orthogonal methods is needed for unequivocal assignment. By a combination of cation-exchange separation, papain digestion, and a panel of mass spectrometry techniques we identified asparagine deamidation in light chain complementarity determining region 1 (CDR1) of a humanized IgG1 monoclonal antibody. The reaction yields both Asp and isoAsp, which were assigned by Edman degradation and by isoAsp detection using protein isoaspartate methyltransferase. The deamidated antibody variants were less potent in antigen binding compared to the nondegraded antibody. Changes in near-UV CD spectra, susceptibility to papain cleavage in an adjacent CDR2 loop, and the tendency of the newly formed isoAsp to undergo isomerization suggest local perturbations in the structure of the isoAsp-containing antibody.

  3. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    SciTech Connect

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  4. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana

    2012-01-01

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein dependent and dynein independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable for structural characterization by conventional structural biology techniques due to their large size, low solubility and crystallization difficulties. Here, we report magic angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner LC8-based protein assemblies. We have established site-specific backbone and side chain resonance assignments for the majority of the residues of LC8, and show TALOS+ predicted torsion angles ϕ and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein-protein interactions in larger systems, which cannot be determined by conventional structural studies. PMID:23243318

  5. Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model

    PubMed Central

    Tarigopula, Madhusudhan; Davis, Robert T.; Mungai, Paul T.; Ryba, David M.; Wieczorek, David F.; Cowan, Conrad L.; Violin, Jonathan D.; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Therapeutic approaches to treat familial dilated cardiomyopathy (DCM), which is characterized by depressed sarcomeric tension and susceptibility to Ca2+-related arrhythmias, have been generally unsuccessful. Our objective in the present work was to determine the effect of the angiotensin II type 1 receptor (AT1R) biased ligand, TRV120023, on contractility of hearts of a transgenic mouse model of familial DCM with mutation in tropomyosin at position 54 (TG-E54K). Our rationale is based on previous studies, which have supported the hypothesis that biased G-protein-coupled receptor ligands, signalling via β-arrestin, increase cardiac contractility with no effect on Ca2+ transients. Our previous work demonstrated that the biased ligand TRV120023 is able to block angiotensin-induced hypertrophy, while promoting an increase in sarcomere Ca2+ response. Methods and results We tested the hypothesis that the depression in cardiac function associated with DCM can be offset by infusion of the AT1R biased ligand, TRV120023. We intravenously infused saline, TRV120023, or the unbiased ligand, losartan, for 15 min in TG-E54K and non-transgenic mice to obtain left ventricular pressure–volume relations. Hearts were analysed for sarcomeric protein phosphorylation. Results showed that the AT1R biased ligand increases cardiac performance in TG-E54K mice in association with increased myosin light chain-2 phosphorylation. Conclusion Treatment of mice with an AT1R biased ligand, acting via β-arrestin signalling, is able to induce an increase in cardiac contractility associated with an increase in ventricular myosin light chain-2 phosphorylation. AT1R biased ligands may prove to be a novel inotropic approach in familial DCM. PMID:26045475

  6. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    PubMed Central

    Wong, Raymond; Fabian, Lacramioara; Forer, Arthur; Brill, Julie A

    2007-01-01

    Background Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring. PMID:17509155

  7. Immunoglobulin heavy/light chain analysis enhances the detection of residual disease and monitoring of multiple myeloma patients

    PubMed Central

    Batinić, Josip; Perić, Zinaida; Šegulja, Dragana; Last, James; Prijić, Sanja; Dubravčić, Klara; Volarić, Lidija; Sertić, Dubravka; Radman, Ivo; Bašić-Kinda, Sandra; Matišić, Danica; Batinić, Drago; Labar, Boris; Nemet, Damir

    2015-01-01

    Aim To evaluate the clinical utility of incorporating a novel heavy/light chain immunoassay (HLC) into the existing methods for the assessment of multiple myeloma (MM) patients. Methods Convenience sera samples from 90 previously treated IgG and IgA MM patients in different disease stages were analyzed. The study was conducted in Clinical Hospital Center Zagreb between 2011 and 2013. The collected sera were analyzed by standard laboratory techniques (serum protein electrophoresis, quantification of total immunoglobulins, serum immunofixation, serum free light chain [FLC] assay) and HLC assay. Results HLC ratios outside the normal range were found in 58 of 90 patients, including 28 out of 61 patients with total immunoglobulin measurements within the normal range and 5 out of 23 patients in complete response. Both elevated HLC isotype level and abnormal HLC ratio correlated with the parameters of tumor burden, including percentage of plasma cells in the bone marrow (P < 0.001 and P = 0.002, respectively) and an abnormal serum FLC ratio (for both P < 0.001). In addition, abnormal HLC isotype level correlated with serum beta-2-microglobulin level (P = 0.038). In terms of prognosis, abnormal HLC isotype level and abnormal HLC ratio were significantly associated with shorter overall survival (P < 0.001 and P = 0.002, respectively). Interestingly, suppression of the uninvolved (polyclonal) isotype pair, but not other non-myeloma immunoglobulin isotypes, was also associated with a shorter overall survival (P = 0.021). In a multivariate analysis, an abnormal HLC ratio and β2-microglobulin level >3.5mg/L were independent risk factors for survival. Conclusion The new HLC assay has greater sensitivity in detecting monoclonal protein, correlates with tumor burden markers, and affects patients' outcome. PMID:26088851

  8. Anti-nociceptive effect of a conjugate of substance P and light chain of botulinum neurotoxin type A.

    PubMed

    Mustafa, Golam; Anderson, Ethan M; Bokrand-Donatelli, Yvonne; Neubert, John K; Caudle, Robert M

    2013-11-01

    Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. Then, once inside the cell the toxin would inhibit the neurons' activity without killing the neurons, thereby providing pain relief without lesioning the nervous system. In an effort to inactivate the nociceptive neurons in the trigeminal nucleus caudalis in mice, we targeted the NK1 receptor (NK1R) using substance P (SP). The catalytically active light chain of botulinum neurotoxin type A (LC/A) was conjugated with SP. Our results indicate that the conjugate BoNT/A-LC:SP is internalized in cultured NK1R-expressing neurons and also cleaves the target of botulinum toxin, a component-docking motif necessary for release of neurotransmitters called SNAP-25. The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain.

  9. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway.

    PubMed

    Sorigué, Damien; Légeret, Bertrand; Cuiné, Stéphan; Morales, Pablo; Mirabella, Boris; Guédeney, Geneviève; Li-Beisson, Yonghua; Jetter, Reinhard; Peltier, Gilles; Beisson, Fred

    2016-08-01

    Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway. PMID:27288359

  10. Pseudo-Peritoneal Carcinomatosis Presentation of a Crystal-Storing Histiocytosis With an Unmutated Monoclonal κ Light Chain

    PubMed Central

    Aline-Fardin, Aude; Bender, Sebastien; Fabiani, Bettina; Buob, David; Brahimi, Said; Verpont, Marie Christine; Mothy, Mohamad; Ronco, Pierre; Boffa, Jean Jacques; Aucouturier, Pierre; Garderet, Laurent

    2015-01-01

    Abstract Crystal-storing histiocytosis (CSH) is a rare complication of monoclonal gammopathies caused by accumulation of crystalline material inside macrophages, and it may result in a variety of clinical manifestations depending on the involved organs. Although immunoglobulin κ light chains (LCs) seem to be the most frequent pathogenic component, very few molecular data are currently available. A 69-year-old man presented with a very poor performance status. Remarkable features were mesenteric lymph node enlargement and proteinuria, including a monoclonal κ LC. Light and electron microscopy studies revealed the presence of crystals within macrophages in the lymph nodes, bone marrow, and kidney, leading to the diagnosis of CSH. The pathogenic κ LC variable domain sequence was identical to the germline Vk3-20∗01/Jk2∗01 gene segments, without any somatic mutation, suggesting an extra-follicular B cell proliferation. The patient was successfully treated with 4 cycles of bortezomib and dexamethasone. After a 12-month follow-up, he remains in hematological and renal remission. CSH may present as pseudo-peritoneal carcinomatosis and relate to a monoclonal κ LC encoded by an unmutated gene. Bortezomib-based therapy proved efficacious in this case. PMID:26266355

  11. Pseudo-Peritoneal Carcinomatosis Presentation of a Crystal-Storing Histiocytosis With an Unmutated Monoclonal κ Light Chain.

    PubMed

    Aline-Fardin, Aude; Bender, Sebastien; Fabiani, Bettina; Buob, David; Brahimi, Said; Verpont, Marie Christine; Mothy, Mohamad; Ronco, Pierre; Boffa, Jean Jacques; Aucouturier, Pierre; Garderet, Laurent

    2015-08-01

    Crystal-storing histiocytosis (CSH) is a rare complication of monoclonal gammopathies caused by accumulation of crystalline material inside macrophages, and it may result in a variety of clinical manifestations depending on the involved organs. Although immunoglobulin κ light chains (LCs) seem to be the most frequent pathogenic component, very few molecular data are currently available.A 69-year-old man presented with a very poor performance status. Remarkable features were mesenteric lymph node enlargement and proteinuria, including a monoclonal κ LC. Light and electron microscopy studies revealed the presence of crystals within macrophages in the lymph nodes, bone marrow, and kidney, leading to the diagnosis of CSH. The pathogenic κ LC variable domain sequence was identical to the germline Vk3-2001/Jk201 gene segments, without any somatic mutation, suggesting an extra-follicular B cell proliferation.The patient was successfully treated with 4 cycles of bortezomib and dexamethasone. After a 12-month follow-up, he remains in hematological and renal remission.CSH may present as pseudo-peritoneal carcinomatosis and relate to a monoclonal κ LC encoded by an unmutated gene. Bortezomib-based therapy proved efficacious in this case.

  12. Light Chain Deposition Disease in an Older Adult Patient Successfully Treated with Long-term Administration of Bortezomib, Melphalan and Prednisone.

    PubMed

    Hiyamuta, Hiroto; Yamada, Shunsuke; Matsukuma, Yuta; Tsuchimoto, Akihiro; Nakano, Toshiaki; Taniguchi, Masatomo; Masutani, Kosuke; Yoshimoto, Goichi; Muta, Tsuyoshi; Akashi, Koichi; Kitazono, Takanari; Tsuruya, Kazuhiko

    2016-01-01

    A 70-year-old woman was admitted to our hospital because of fatigue and renal dysfunction and was diagnosed with light chain deposition disease (LCDD) with multiple organ involvement (kidney, thyroid gland, heart and eyes). After chemotherapy with bortezomib, cyclophosphamide and dexamethasone, hepatobiliary enzyme levels increased abruptly. A liver biopsy showed light chain deposition in Disse spaces. After two years of treatment with bortezomib, melphalan and prednisone (VMP) administered at shorter intervals relative to regular cycles, the patient showed a hematological and organ response. This case indicates that a relatively low dose intensity VMP regimen is preferable for elderly patients with LCDD with multiple organ involvement. PMID:27181540

  13. Serum ferritin concentrations in Africans with low dietary iron.

    PubMed

    Moyo, Victor M; Mvundura, Elisha; Khumalo, Hlosukwazi; Gangaidzo, Innocent T; Saungweme, Thokozile; Nouraie, Mehdi; Rouault, Tracey A; Gomo, Zvenyika A R; Gordeuk, Victor R

    2009-11-01

    In the setting of high dietary, several studies have provided evidence for a strong effect of both high dietary iron and an unidentified genetic locus on iron stores in Africans. To investigate whether these effects are discernible in the setting of low dietary iron, serum ferritin concentrations were measured in 194 Zimbabwean men >30 years of age and 299 postmenopausal women who consumed a non-iron-fortified diet and who did not drink iron-rich traditional beer or other alcoholic beverages. Comparisons were made with non-alcohol drinking African-Americans studied in the third National Health and Nutritional Examination Survey (NHANES III) who consume an iron-fortified diet. As stratified by age and sex, serum ferritin concentrations were significantly lower in the 493 Zimbabweans studied than in 1,380 comparable African-Americans (P < 0.0005). Nevertheless, nine Zimbabwean subjects (1.8% of all cases) had modestly elevated serum ferritin concentrations not associated with evidence of inflammation or hepatic dysfunction. These data suggest that mild serum ferritin concentration elevations may occur among Zimbabweans not exposed to high dietary iron and that iron fortification of the diet may have substantial effects on serum ferritin concentration.

  14. Ferritin reporter used for gene expression imaging by magnetic resonance

    SciTech Connect

    Ono, Kenji; Fuma, Kazuya; Tabata, Kaori; Sawada, Makoto

    2009-10-23

    Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for in vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.

  15. A biochemical comparison of normal human liver and hepatocellular carcinoma ferritins.

    PubMed

    Bullock, S; Bomford, A; Williams, R

    1980-03-01

    1. The iron contents, gel migration rates and isoelectric-focusing patterns of normal liver and hepatocellular carcinoma ferritins from the same patients were compared. 2. Sucrose-density-gradient centrifugation showed that the number of iron atoms per ferritin molecule was decreased to approximately half in carcinoma tissue when compared with normal liver. 3. On electrophoresis, hepatocellular carcinoma ferritin migrates faster and is therefore more negatively charged than normal liver ferritin, thus refuting the general view that the more negatively charged a ferritin molecule the greater its iron content. 4. Comparison of tumour and normal liver ferritin subunit compositions on acid/urea/polyacrylamide gels showed hepatocellular carcinoma ferritin to contain an additional, more negatively charged, subunit to normal liver ferritin. 5. Isoelectric focusing showed that hepatocellular carcinoma tissue contains isoferritins with isoelectric points intermediate between the ranges of normal liver and normal heart isoferritins. PMID:6248028

  16. METAL-DEPENDENT EXPRESSION OF FERRITIN AND LACTOFERRIN BY RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Increased availability of catalytically active metal has been associated with an oxidative injury. The sequestration of transition metals within intracellular ferritin confers an antioxidant function to this protein. Such storage by ferritin requires that the metal be transported...

  17. Salt-Dependent Aggregation and Assembly of E coli-Expressed Ferritin

    PubMed Central

    Sun, Wei; Jiao, Chengfeng; Xiao, Yue; Wang, Luowei; Yu, Cheng; Liu, Jialin; Yu, Yongli

    2016-01-01

    Ferritin, with the primary function of iron storage, is a nearly ubiquitous protein found in most living organisms. Our recent investigations suggest that ferritin can assemble nanoparticles. So we use ferritin as a novel type of delivery vehicle for recombinant epitope vaccines. And, we found that ferritin form nonnative aggregates depended sensitively on NaCl concentrations. Here, we report that ferritin is an ion-sensitive protein and has the attribute of salt-dependent aggregation. Our results indicate that recombinant ferritin can be released as a soluble form from Escherichia coli at low NaCl concentrations (≤50 mmol/L). Moreover, this result affords us to confirm a proper self-assembling solution for soluble ferritin or other ferritin-based fusion proteins to assemble nanoparticles. PMID:26977139

  18. The LC7 Light Chains of Chlamydomonas Flagellar Dyneins Interact with Components Required for Both Motor Assembly and Regulation

    PubMed Central

    DiBella, Linda M.; Sakato, Miho; Patel-King, Ramila S.; Pazour, Gregory J.; King, Stephen M.

    2004-01-01

    Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced ∼20% in axonemes isolated from strains lacking inner arm I1 and are ∼80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles ∼30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm γ heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins. PMID:15304520

  19. Metachronous/concomitant B-cell neoplasms with discordant light-chain or heavy-chain isotype restrictions: evidence of distinct B-cell neoplasms rather than clonal evolutions.

    PubMed

    Wei, Qiang; Sebastian, Siby; Papavassiliou, Paulie; Rehder, Catherine; Wang, Endi

    2014-10-01

    Metachronous/concomitant B-cell neoplasms with distinct morphology are usually considered clonally related. We retrospectively analyzed 4 cases of metachronous/concomitant B-cell neoplasms with discordant light-chain/heavy-chain restrictions. The primary diagnoses included chronic lymphocytic leukemia (CLL; n = 2), lymphoplasmacytic lymphoma (n = 1), and pediatric follicular lymphoma (FL; n = 1). The respective secondary diagnoses included diffuse large B-cell lymphoma (DLBCL; n = 2), plasmablastic myeloma, and pediatric FL. The secondary B-cell neoplasm occurred after the primary diagnosis in 3 cases, with the median interval of 120 months (range, 21-216), whereas the remaining 1 case had the 2 neoplasms (CLL/DLBCL) diagnosed concurrently. Histology suggested aggressive transformation in 3 cases and recurrence in 1 case (FL). Nonetheless, 3 cases showed discordant light-chain restrictions between the 2 B-cell neoplasms, whereas in the remaining case (lymphoplasmacytic lymphoma/plasmablastic myeloma), the 2 neoplasms shared κ light-chain restriction but expressed different heavy-chain isotypes (IgM versus IgA). The 2 CLL/DLBCL cases had polymerase chain reaction-based IGH/K gene rearrangement study and amplicon sequence analysis performed, which demonstrated distinct clonal amplicons between the 2 B-cell neoplasms in each case. Concomitant/metachronous B-cell neoplasms may be clonally unrelated, which can be confirmed by immunoglobulin isotype analysis and/or genotypic studies. We advocate analysis of clonal identities in large cell transformation or recurrent disease compared with primary indolent B-cell neoplasm because of a potential difference in prognosis between clonally related and unrelated secondary B-cell neoplasms.

  20. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    PubMed

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P < 0.001). Mean CSF protein concentration and cell count were significantly higher in the bacterial meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  1. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation

    PubMed Central

    Di Sanzo, Maddalena; Aversa, Ilenia; Santamaria, Gianluca; Gagliardi, Monica; Panebianco, Mariafranca; Biamonte, Flavia; Zolea, Fabiana; Faniello, Maria Concetta

    2016-01-01

    Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process. PMID:26982978

  2. A Heterologous Reporter Defines the Role of the Tetanus Toxin Interchain Disulfide in Light-Chain Translocation

    PubMed Central

    Zuverink, Madison; Chen, Chen; Przedpelski, Amanda; Blum, Faith C.

    2015-01-01

    Botulinum neurotoxins (BoNTs) and tetanus toxin (TeNT) are the most potent toxins for humans and elicit unique pathologies due to their ability to traffic within motor neurons. BoNTs act locally within motor neurons to elicit flaccid paralysis, while retrograde TeNT traffics to inhibitory neurons within the central nervous system (CNS) to elicit spastic paralysis. BoNT and TeNT are dichain proteins linked by an interchain disulfide bond comprised of an N-terminal catalytic light chain (LC) and a C-terminal heavy chain (HC) that encodes an LC translocation domain (HCT) and a receptor-binding domain (HCR). LC translocation is the least understood property of toxin action, but it involves low pH, proteolysis, and an intact interchain disulfide bridge. Recently, Pirazzini et al. (FEBS Lett 587:150–155, 2013, http://dx.doi.org/10.1016/j.febslet.2012.11.007) observed that inhibitors of thioredoxin reductase (TrxR) blocked TeNT and BoNT action in cerebellar granular neurons. In the current study, an atoxic TeNT LC translocation reporter was engineered by fusing β-lactamase to the N terminus of TeNT [βlac-TeNT(RY)] to investigate LC translocation in primary cortical neurons and Neuro-2a cells. βlac-TeNT(RY) retained the interchain disulfide bond, showed ganglioside-dependent binding to neurons, required acidification to promote βlac translocation, and was sensitive to auranofin, an inhibitor of thioredoxin reductase. Mutation of βlac-TeNT(RY) at C439S and C467S eliminated the interchain disulfide bond and inhibited βlac translocation. These data support the requirement of an intact interchain disulfide for LC translocation and imply that disulfide reduction is a prerequisite for LC delivery into the host cytosol. The data also support a model that LC translocation proceeds from the C to the N terminus. βlac-TeNT(RY) is the first reporter system to measure translocation by an AB single-chain toxin in intact cells. PMID:25895970

  3. Guided Assemblies of Ferritin Nanocages: Highly Ordered Arrays of Monodisperse Nanoscopic Elements

    SciTech Connect

    Hu, Y.; Chen, D; Park, S; Emrick, T; Russell, T

    2010-01-01

    High-density arrays of highly ordered ferritin nanocages are fabricated through the guided assembly of thiol-modified ferritin on prepatterned gold nanodots, which are prepared by block copolymer micelle lithography. One and only one ferritin nanocage is anchored to each gold nanodot, as confirmed by scanning electron and scanning force microscopy.

  4. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    SciTech Connect

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L.

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  5. Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship

    NASA Astrophysics Data System (ADS)

    Bai, Lina; Xie, Ting; Hu, Qingqing; Deng, Changyan; Zheng, Rong; Chen, Wanping

    2015-10-01

    Ferritins are highly conserved proteins that are widely distributed in various species from archaea to humans. The ubiquitous characteristic of these proteins reflects the pivotal contribution of ferritins to the safe storage and timely delivery of iron to achieve iron homeostasis. This study investigated the ferritin genes in 248 genomes from various species, including viruses, archaea, bacteria, and eukarya. The distribution comparison suggests that mammals and eudicots possess abundant ferritin genes, whereas fungi contain very few ferritin genes. Archaea and bacteria show considerable numbers of ferritin genes. Generally, prokaryotes possess three types of ferritin (the typical ferritin, bacterioferritin, and DNA-binding protein from starved cell), whereas eukaryotes have various subunit types of ferritin, thereby indicating the individuation of the ferritin family during evolution. The characteristic motif analysis of ferritins suggested that all key residues specifying the unique structural motifs of ferritin are highly conserved across three domains of life. Meanwhile, the characteristic motifs were also distinguishable between ferritin groups, especially phytoferritins, which show a plant-specific motif. The phylogenetic analyses show that ferritins within the same subfamily or subunits are generally clustered together. The phylogenetic relationships among ferritin members suggest that both gene duplication and horizontal transfer contribute to the wide variety of ferritins, and their possible evolutionary scenario was also proposed. The results contribute to a better understanding of the distribution, characteristic motif, and evolutionary relationship of the ferritin family.

  6. Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship.

    PubMed

    Bai, Lina; Xie, Ting; Hu, Qingqing; Deng, Changyan; Zheng, Rong; Chen, Wanping

    2015-10-01

    Ferritins are highly conserved proteins that are widely distributed in various species from archaea to humans. The ubiquitous characteristic of these proteins reflects the pivotal contribution of ferritins to the safe storage and timely delivery of iron to achieve iron homeostasis. This study investigated the ferritin genes in 248 genomes from various species, including viruses, archaea, bacteria, and eukarya. The distribution comparison suggests that mammals and eudicots possess abundant ferritin genes, whereas fungi contain very few ferritin genes. Archaea and bacteria show considerable numbers of ferritin genes. Generally, prokaryotes possess three types of ferritin (the typical ferritin, bacterioferritin, and DNA-binding protein from starved cell), whereas eukaryotes have various subunit types of ferritin, thereby indicating the individuation of the ferritin family during evolution. The characteristic motif analysis of ferritins suggested that all key residues specifying the unique structural motifs of ferritin are highly conserved across three domains of life. Meanwhile, the characteristic motifs were also distinguishable between ferritin groups, especially phytoferritins, which show a plant-specific motif. The phylogenetic analyses show that ferritins within the same subfamily or subunits are generally clustered together. The phylogenetic relationships among ferritin members suggest that both gene duplication and horizontal transfer contribute to the wide variety of ferritins, and their possible evolutionary scenario was also proposed. The results contribute to a better understanding of the distribution, characteristic motif, and evolutionary relationship of the ferritin family.

  7. Systemic and cerebral iron homeostasis in ferritin knock-out mice.

    PubMed

    Li, Wei; Garringer, Holly J; Goodwin, Charles B; Richine, Briana; Acton, Anthony; VanDuyn, Natalia; Muhoberac, Barry B; Irimia-Dominguez, Jose; Chan, Rebecca J; Peacock, Munro; Nass, Richard; Ghetti, Bernardino; Vidal, Ruben

    2015-01-01

    Ferritin, a 24-mer heteropolymer of heavy (H) and light (L) subunits, is the main cellular iron storage protein and plays a pivotal role in iron homeostasis by modulating free iron levels thus reducing radical-mediated damage. The H subunit has ferroxidase activity (converting Fe(II) to Fe(III)), while the L subunit promotes iron nucleation and increases ferritin stability. Previous studies on the H gene (Fth) in mice have shown that complete inactivation of Fth is lethal during embryonic development, without ability to compensate by the L subunit. In humans, homozygous loss of the L gene (FTL) is associated with generalized seizure and atypical restless leg syndrome, while mutations in FTL cause a form of neurodegeneration with brain iron accumulation. Here we generated mice with genetic ablation of the Fth and Ftl genes. As previously reported, homozygous loss of the Fth allele on a wild-type Ftl background was embryonic lethal, whereas knock-out of the Ftl allele (Ftl-/-) led to a significant decrease in the percentage of Ftl-/- newborn mice. Analysis of Ftl-/- mice revealed systemic and brain iron dyshomeostasis, without any noticeable signs of neurodegeneration. Our findings indicate that expression of the H subunit can rescue the loss of the L subunit and that H ferritin homopolymers have the capacity to sequester iron in vivo. We also observed that a single allele expressing the H subunit is not sufficient for survival when both alleles encoding the L subunit are absent, suggesting the need of some degree of complementation between the subunits as well as a dosage effect.

  8. Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains.

    PubMed

    Zhu, Jiang; Ofek, Gilad; Yang, Yongping; Zhang, Baoshan; Louder, Mark K; Lu, Gabriel; McKee, Krisha; Pancera, Marie; Skinner, Jeff; Zhang, Zhenhai; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E; Blinn, Julie; Alam, S Munir; Haynes, Barton F; Simek, Melissa; Burton, Dennis R; Koff, Wayne C; Mullikin, James C; Mascola, John R; Shapiro, Lawrence; Kwong, Peter D

    2013-04-16

    Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.

  9. [The effect of phosphorylation of myosin light chains on the structural state of tropomyosin in thin filaments, decorated with heavy meromyosin].

    PubMed

    Vorovikov, Iu S; Szczesna, D; Kakol, I

    1989-06-01

    The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.

  10. Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity

    PubMed Central

    1995-01-01

    In all vertebrate species examined to date, rearrangement and somatic modification of gene segmental elements that encode portions of the antigen-combining sites of immunoglobulins are integral components of the generation of antibody diversity. In the phylogenetically primitive cartilaginous fishes, gene segments encoding immunoglobulin heavy and light chain loci are arranged in multiple clusters, in which segmental elements are separated by only 300-400 bp. In some cases, segmental elements are joined in the germline of nonlymphoid cells (joined genes). Both genomic library screening and direct amplification of genomic DNA have been used to characterize at least 89 different type I light chain gene clusters in the skate, Raja. Analyses of predicted nucleotide sequences and predicted peptide structures are consistent with the distribution of genes into different sequence groups. Predicted amino acid sequence differences are preferentially distributed in complementarity-determining versus framework regions, and replacement-type substitutions exceed neutral substitutions. When specific germline sequences are related to the sequences of individual cDNAs, it is apparent that the joined genes are expressed and are potentially somatically mutated. No evidence was found for the presence of any type I light chain gene in Raja that is not germline joined. The type I light chain gene clusters in Raja appear to represent a novel gene system in which combinatorial and junctional diversity are absent. PMID:7790811

  11. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.

    PubMed

    Poetter, K; Jiang, H; Hassanzadeh, S; Master, S R; Chang, A; Dalakas, M C; Rayment, I; Sellers, J R; Fananapazir, L; Epstein, N D

    1996-05-01

    The muscle myosins and hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle. We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three-dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

  12. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility.

    PubMed

    Bookwalter, Carol S; Kelsen, Anne; Leung, Jacqueline M; Ward, Gary E; Trybus, Kathleen M

    2014-10-31

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.

  13. A new method to specifically label thiophosphorylatable proteins with extrinsic probes. Labeling of serine-19 of the regulatory light chain of smooth muscle myosin.

    PubMed

    Facemyer, K C; Cremo, C R

    1992-01-01

    We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.

  14. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe.

    PubMed

    de León, Nagore; Sharifmoghadam, Mohammad Reza; Hoya, Marta; Curto, M-Ángeles; Doncel, Cristina; Valdivieso, M-Henar

    2013-01-01

    The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization. PMID:23977061

  15. A Differentiation-dependent Splice Variant of Myosin Light Chain Kinase, MLCK1, Regulates Epithelial Tight Junction Permeability*

    PubMed Central

    Clayburgh, Daniel R.; Rosen, Shari; Witkowski, Edwina D.; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G. N.; Alverdy, John C.; Turner, Jerrold R.

    2005-01-01

    Activation of Na+-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 ± 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na+-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na+-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes. PMID:15507455

  16. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability.

    PubMed

    Clayburgh, Daniel R; Rosen, Shari; Witkowski, Edwina D; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G N; Alverdy, John C; Turner, Jerrold R

    2004-12-31

    Activation of Na(+)-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 +/- 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na(+)-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na(+)-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes.

  17. Tarantula Myosin Free Head Regulatory Light Chain Phosphorylation Stiffens N-terminal Extension Releasing it and Blocking its Docking Back

    PubMed Central

    Alamo, Lorenzo; Li, Xiaochuan (Edward); Espinoza-Fonseca, L. Michel; Pinto, Antonio; Thomas, David D.; Lehman, William; Padrón, Raúl

    2015-01-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence lengths analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft in the relaxed state. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  18. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases. PMID:27292537

  19. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  20. Abnormal FISH in patients with immunoglobulin light chain amyloidosis is a risk factor for cardiac involvement and for death

    PubMed Central

    Warsame, R; Kumar, S K; Gertz, M A; Lacy, M Q; Buadi, F K; Hayman, S R; Leung, N; Dingli, D; Lust, J A; Ketterling, R P; Lin, Y; Russell, S; Hwa, L; Kapoor, P; Go, R S; Zeldenrust, S R; Kyle, R A; Rajkumar, S V; Dispenzieri, A

    2015-01-01

    Importance of interphase fluorescent in situ hybridization (FISH) with cytoplasmic staining of immunoglobulin FISH (cIg-FISH) on bone marrow is not well understood in light chain amyloidosis (AL). This is in contrast with multiple myeloma where prognostic and treatment related decisions are dependent on cytogenetic testing. This retrospective study reviewed 401 AL patients with cIg-FISH testing performed at our institution between 2004 and 2012. Eighty-one percent of patients had an abnormal cIg-FISH. Common abnormalities involved translocations of chromosome 14q32 (52%), specifically: t(11;14) (43%), t(14;16) (3%) and t(4;14) (2%). Other common abnormalities include monosomy 13/deletion 13q (30%), trisomies 9 (20%), 15 (14%), 11 (10%) and 3 (10%). Median overall survival for this cohort of patients is 3.5 years. When plasma cell burden was greater than 10% trisomies predicted for worse survival (44 vs 19 months), and when it was ⩽10% t(11;14) predicted for worse survival (53 months vs not reached). Abnormal cIg-FISH was significantly associated with advanced cardiac involvement, and remained a prognostic factor on multivariate analysis. This large AL cohort demonstrates that abnormal FISH at diagnosis is prognostic for survival and advanced cardiac disease. Particularly, trisomies and t(11;14) affect survival when degree of plasma cell burden is considered. PMID:25933374

  1. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: a pilot study.

    PubMed

    Kaplan, Batia; Golderman, Sizilia; Aizenbud, Boris; Esev, Konstantin; Kukuy, Olga; Leiba, Merav; Livneh, Avi; Ben-Zvi, Ilan

    2014-09-01

    Multiple myeloma (MM) and AL amyloidosis (AL) are two malignant forms of monoclonal gammopathies. For the purposes of prognosis and treatment, it is important to distinguish these diseases from the premalignant forms of monoclonal gammopathies, such as monoclonal gammopathy of unknown significance (MGUS) and smoldering myeloma (SMM). Routine serum/urine tests for monoclonal protein are insufficient for differential diagnosis. Thus, invasive procedures, such as tissue aspiration or biopsy, are applied. In this study, we aimed at characterization of serum-free light chain (FLC) monomer-dimer patterns to distinguish the malignant from the premalignant forms of monoclonal gammopathies. A quantitative Western blotting was applied to estimate the FLC monomer and dimer levels in AL, MM, MGUS, and SMM patients, and in control subjects (healthy individuals and patients with AA amyloidosis). AL and MM patients displayed an abnormally increased dimerization of monoclonal FLC, accompanied by higher clonality values of FLC dimers, as compared to that of monomers. These abnormalities of FLC patterns were not observed in patients with MGUS, SMM, AA amyloidosis, and healthy individuals. Analysis of FLC patterns helped to differentiate AL and MM from MGUS and SMM, a goal difficult to achieve using routine serum tests. Also, our technique might serve as a complimentary diagnostic tool in the cases with suspected AL amyloidosis, where the diagnosis of MM is excluded, while the results of amyloid typing by routine immunohistochemical techniques are inconclusive. PMID:24866208

  2. Utility of Serum Free Light Chain Measurements in Multiple Myeloma Patients Not Achieving Complete Response to Therapy

    PubMed Central

    Moustafa, Muhamad Alhaj; Rajkumar, S. Vincent; Dispenzieri, Angela; Gertz, Morie A.; Lacy, Martha Q.; Buadi, Francis K.; Hwa, Yi Lisa; Dingli, David; Kapoor, Prashant; Hayman, Suzanne R.; Lust, John A.; Kyle, Robert A.; Kumar, Shaji K.

    2015-01-01

    Normalization of the serum free light chain ratio (FLCr) with the absence of bone marrow monoclonal plasma cells following achievement of a complete response (CR) to therapy denotes a stringent CR in multiple myeloma (MM), and is associated with improved overall survival (OS). However, its value in patients achieving

  3. Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back.

    PubMed

    Alamo, Lorenzo; Li, Xiaochuan Edward; Espinoza-Fonseca, L Michel; Pinto, Antonio; Thomas, David D; Lehman, William; Padrón, Raúl

    2015-08-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  4. Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes

    PubMed Central

    Yun, Woo Jin; Kim, Eun-Young; Park, Ji-Eun; Jo, Soo Youn; Bang, Seung Hyun; Chang, Eun-Ju; Chang, Sung Eun

    2016-01-01

    Although autophagy plays a role in melanogenesis by regulating melanosome degradation and biogenesis in melanocytes, a detailed understanding of the regulatory functions of autophagy factors is lacking. Here, we report a mechanistic link between microtubule-associated protein light chain 3 (LC3) activation and melanogenesis. We observed high expression of LC3 in melanosome-associated pigment-rich melanocytic nevi of sun-exposed skin, as indicated by patterns of melanosomal protein MART1 expression. Rapamycin-induced autophagy significantly increased the melanin index, tyrosinase activity and expression of several proteins linked to melanosome biogenesis, including microphthalmia transcription factor (MITF), pre-melanosome protein and tyrosinase, in Melan-a melanocytes. siRNA-mediated knockdown of LC3, but not beclin-1 or ATG5, decreased melanin content and tyrosinase activity. LC3 knockdown also markedly inhibited MITF expression and subsequent rapamycin-induced melanosome formation. More importantly, LC3 knockdown suppressed α-MSH-mediated melanogenesis by attenuating cAMP response element-binding protein (CREB) phosphorylation and MITF expression in Melan-a cells via decreased extracellular signal-regulated kinase (ERK) activity. Overexpression of constitutively active ERK reversed the effect of LC3 knockdown on CREB phosphorylation and MITF expression. These findings demonstrate that LC3 contributes to melanogenesis by increasing ERK-dependent MITF expression, thereby providing a mechanistic insight into the signaling network that links autophagy to melanogenesis. PMID:26814135

  5. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.

  6. A Chlamydomonas Homologue of the Putative Murine t Complex Distorter Tctex-2 Is an Outer Arm Dynein Light Chain

    PubMed Central

    Patel-King, Ramila S.; Benashski, Sharon E.; Harrison, Alistair; King, Stephen M.

    1997-01-01

    Molecular analysis of a 19,000-Mr protein from the Chlamydomonas flagellum reveals that it is homologous to the t complex–encoded protein Tctex-2, which is a candidate for one of the distorter products that cause the extreme transmission ratio distortion (meiotic drive) of the murine t complex. The 19,000-Mr protein is extracted from the axoneme with 0.6 M NaCl and comigrates with the outer dynein arm in sucrose density gradients. This protein also is specifically missing in axonemes prepared from a mutant that does not assemble the outer arm. These data raise the possibility that Tctex-2 is a sperm flagellar dynein component. Combined with the recent identification of Tctex-1 (another distorter candidate) as a light chain of cytoplasmic dynein, these results lead to a biochemical model for how differential defects in spermiogenesis that result in the phenomenon of meiotic drive might be generated in wild-type vs t-bearing sperm. PMID:9166408

  7. Dynein light chain binding to a 3′-untranslated sequence mediates parathyroid hormone mRNA association with microtubules

    PubMed Central

    Epstein, Eyal; Sela-Brown, Alin; Ringel, Israel; Kilav, Rachel; King, Stephen M.; Benashski, Sharon E.; Yisraeli, Joel K.; Silver, Justin; Naveh-Many, Tally

    2000-01-01

    The 3′-untranslated region (UTR) of mRNAs binds proteins that determine mRNA stability and localization. The 3′-UTR of parathyroid hormone (PTH) mRNA specifically binds cytoplasmic proteins. We screened an expression library for proteins that bind the PTH mRNA 3′-UTR, and the sequence of 1 clone was identical to that of the dynein light chain LC8, a component of the dynein complexes that translocate cytoplasmic components along microtubules. Recombinant LC8 binds PTH mRNA 3′-UTR, as shown by RNA electrophoretic mobility shift assay. We showed that PTH mRNA colocalizes with microtubules in the parathyroid gland, as well as with a purified microtubule preparation from calf brain, and that this association was mediated by LC8. To our knowledge, this is the first report of a dynein complex protein binding an mRNA. The dynein complex may be the motor that is responsible for transporting mRNAs to specific locations in the cytoplasm and for the consequent is asymmetric distribution of translated proteins in the cell. PMID:10683380

  8. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    PubMed Central

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2011-01-01

    Summary To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of non-pathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin. PMID:19361417

  9. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint

    PubMed Central

    Mahale, Sagar P.; Sharma, Amit; Mylavarapu, Sivaram V. S.

    2016-01-01

    The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division. PMID:27441562

  10. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation

    PubMed Central

    Orr, Nathan; Arnaout, Rima; Gula, Lorne J.; Spears, Danna A.; Leong-Sit, Peter; Li, Qiuju; Tarhuni, Wadea; Reischauer, Sven; Chauhan, Vijay S.; Borkovich, Matthew; Uppal, Shaheen; Adler, Arnon; Coughlin, Shaun R.; Stainier, Didier Y. R.; Gollob, Michael H.

    2016-01-01

    Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect. PMID:27066836

  11. Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1).

    PubMed

    Mital, Jeffrey; Lutter, Erika I; Barger, Alexandra C; Dooley, Cheryl A; Hackstadt, Ted

    2015-06-26

    Chlamydia trachomatis actively subverts the minus-end directed microtubule motor, dynein, to traffic along microtubule tracks to the Microtubule Organizing Center (MTOC) where it remains within a membrane bound replicative vacuole for the duration of its intracellular development. Unlike most substrates of the dynein motor, disruption of the dynactin cargo-linking complex by over-expression of the p50 dynamitin subunit does not inhibit C. trachomatis transport. A requirement for chlamydial protein synthesis to initiate this process suggests that a chlamydial product supersedes a requirement for p50 dynamitin. A yeast 2-hybrid system was used to screen the chlamydia inclusion membrane protein CT850 against a HeLa cell cDNA library and identified an interaction with the dynein light chain DYNLT1 (Tctex1). This interaction was at least partially dependent upon an (R/K-R/K-X-X-R/K) motif that is characteristic of DYNLT1 binding domains. CT850 expressed ectopically in HeLa cells localized at the MTOC and this localization is similarly dependent upon the predicted DYNLT1 binding domain. Furthermore, DYNLT1 is enriched at focal concentrations of CT850 on the chlamydial inclusion membrane that are known to interact with dynein and microtubules. Depletion of DYNLT1 disrupts the characteristic association of the inclusion membrane with centrosomes. Collectively, the results suggest that CT850 interacts with DYNLT1 to promote appropriate positioning of the inclusion at the MTOC.

  12. Slow motility in hair cells of the frog amphibian papilla: Myosin light chain-mediated shape change

    PubMed Central

    Farahbakhsh, Nasser A.; Narins, Peter M.

    2008-01-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca2+/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca2+/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter the phase 1 response. However, they appear to counter effects of the inhibitors of Ca2+/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells. PMID:18534795

  13. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    PubMed

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  14. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    PubMed

    Mahale, Sagar P; Sharma, Amit; Mylavarapu, Sivaram V S

    2016-01-01

    The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division. PMID:27441562

  15. Dynein Light Chain 1 Regulates Dynamin-mediated F-Actin Assembly during Sperm Individualization in DrosophilaD⃞

    PubMed Central

    Ghosh-Roy, Anindya; Desai, Bela S.; Ray, Krishanu

    2005-01-01

    Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila. PMID:15829565

  16. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    SciTech Connect

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  17. High prevalence of immunoglobulin light chain gene aberrations as revealed by FISH in multiple myeloma and MGUS.

    PubMed

    Türkmen, Seval; Binder, Anastasia; Gerlach, Antje; Niehage, Sylke; Theodora Melissari, Maria; Inandiklioglu, Nihal; Dörken, Bernd; Burmeister, Thomas

    2014-08-01

    Multiple myeloma (MM) is a malignant B-cell neoplasm characterized by an uncontrolled proliferation of aberrant plasma cells in the bone marrow. Chromosome aberrations in MM are complex and represent a hallmark of the disease, involving many chromosomes that are altered both numerically and structurally. Nearly half of the cases are nonhyperdiploid and show IGH translocations with the following partner genes: CCND1, FGFR3 and MMSET, MAF, MAFB, and CCND3. The remaining 50% are grouped into a hyperdiploid group that is characterized by multiple trisomies involving chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. In this study, we analyzed the immunoglobulin light chain kappa (IGK, 2p12) and lambda (IGL, 22q11) loci in 150 cases, mostly with MM but in a few cases monoclonal gammopathy of undetermined significance (MGUS), without IGH translocations. We identified aberrations in 27% (= 40 patients) including rearrangements (12%), gains (12%), and deletions (4.6%). In 6 of 18 patients with IGK or/and IGL rearrangements, we detected a MYC rearrangement which suggests that MYC is the translocation partner in the majority of these cases. PMID:24729354

  18. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  19. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ferritin immunological test system. 866.5340 Section 866.5340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  20. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ferritin immunological test system. 866.5340 Section 866.5340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  1. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ferritin immunological test system. 866.5340 Section 866.5340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  2. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ferritin immunological test system. 866.5340 Section 866.5340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  3. Determination of Serum Ferritin Glycosylation in Hyperferritinemia Associated to Iron Overload and Inflammation.

    PubMed Central

    Gasser, Bethina Isasi

    2009-01-01

    Background Serum ferritin is a commonly used clinical biochemical parameter and hyperferritinemia is used as a surrogate marker for iron overload, acute or chronic inflammation, malignancy or cell death. The aim of the present study was to develop purification strategies of ferritin from sera to determine if micro-heterogeneity of serum ferritin can be used to differentiate the underlying cause of the hyperferritinemia. Patients, Materials and Methods Sera from patients with hemochromatosis, rheumatologic diseases, aceruloplasminemia, ferroportin disease or iron loading anemia have been collected and stored and ferritin purified by negative affinity followed by ion exchange and size exclusion chromatography. Purified serum ferritin was analyzed by western blotting and MALDI TOF mass spectrometry and the spectra compared with the results from ferritin isolated from human liver, spleen and placenta. Results By Western blotting a major band of 19kD has been found in most sera, suggesting that the L-ferritin is the predominant isoform present in serum regardless of the cause of hyperferritinemia. Multistep chromatography can be used for significant enrichment and purification of ferritin from serum, which can be further analyzed by MALDI TOF MS. Tryptic digestion and peptide mass finger-printing by MALDI TOF MS of ferritin purified from human tissues shows differential spectra. Discussion and conclusions Analysis of ferritin micro-heterogeneity by MALDI TOF allows determination of the tissue origin of ferritin, which could be applied in the differential diagnostic workup of hyperferritinemia.

  4. Compensatory Aspects of Allele Diversity at Immunoglobulin Loci: Gene Correlations in Rabbit Populations Devoid of Light Chain Diversity (Oryctolagus Cuniculus L.; Kerguelen Islands)

    PubMed Central

    van-der-Loo, W.; Bousses, P.; Arthur, C. P.; Chapuis, J. L.

    1996-01-01

    Is there a selective advantage of increased diversity at one immunoglobulin locus when diversity at another locus is low? A previous paper demonstrated excess heterozygosity at the rabbit light chain b locus when heterozygosity was low at the heavy chain constant region e locus. Here we consider the reverse situation by analyzing allele distributions at heavy chain loci in populations fixed for the light chain b locus. We analyzed the a locus that encodes the predominantly expressed heavy chain variable region, and the d and e loci that control different parts of the Ig gamma class constant region. While there was excess heterozygosity, genetic differentiation between localities was extensive and was most pronounced for females. This was in marked contrast with observations in areas where b-locus diversity was important and confirms a negative correlation between e- and b-locus heterozygosity. Trigenic disequilibria corresponded to a significant negative correlation between e- and a-locus heterozygosity due mainly to strong variation among localities within the context of pronounced (digenic) linkage disequilibria. Although substantial, the average increase in a/e-locus single heterozygosity implemented by higher order disequilibria within localities was not significant. PMID:8913759

  5. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells

    PubMed Central

    Trejo, Humberto E.; Lecuona, Emilia; Grillo, Doris; Szleifer, Igal; Nekrasova, Oksana E.; Gelfand, Vladimir I.; Sznajder, Jacob I.

    2010-01-01

    Recruitment of the Na,K-ATPase to the plasma membrane of alveolar epithelial cells results in increased active Na+ transport and fluid clearance in a process that requires an intact microtubule network. However, the microtubule motors involved in this process have not been identified. In the present report, we studied the role of kinesin-1, a plus-end microtubule molecular motor that has been implicated in the movement of organelles in the Na,K-ATPase traffic. We determined by confocal microscopy and biochemical assays that kinesin-1 and the Na,K-ATPase are present in the same membranous cellular compartment. Knockdown of kinesin-1 heavy chain (KHC) or the light chain-2 (KLC2), but not of the light chain-1 (KLC1), decreased the movement of Na,K-ATPase-containing vesicles when compared to sham siRNA-transfected cells (control group). Thus, a specific isoform of kinesin-1 is required for microtubule-dependent recruitment of Na,K-ATPase to the plasma membrane, which is of physiological significance—Trejo, H. E., Lecuona, E., Grillo, D., Szleifer, I., Nekrasova, O. E., Gelfand, V. I., Sznajder, J. I. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. PMID:19773350

  6. High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease

    PubMed Central

    Bester, Janette; Buys, Antoinette V.; Lipinski, Boguslaw; Kell, Douglas B.; Pretorius, Etheresia

    2013-01-01

    Introduction: Unliganded iron both contributes to the pathology of Alzheimer's disease (AD) and also changes the morphology of erythrocytes (RBCs). We tested the hypothesis that these two facts might be linked, i.e., that the RBCs of AD individuals have a variant morphology, that might have diagnostic or prognostic value. Methods: We included a literature survey of AD and its relationships to the vascular system, followed by a laboratory study. Four different microscopy techniques were used and results statistically compared to analyze trends between high and normal serum ferritin (SF) AD individuals. Results: Light and scanning electron microscopies showed little difference between the morphologies of RBCs taken from healthy individuals and from normal SF AD individuals. By contrast, there were substantial changes in the morphology of RBCs taken from high SF AD individuals. These differences were also observed using confocal microscopy and as a significantly greater membrane stiffness (measured using force-distance curves). Conclusion: We argue that high ferritin levels may contribute to an accelerated pathology in AD. Our findings reinforce the importance of (unliganded) iron in AD, and suggest the possibility both of an early diagnosis and some means of treating or slowing down the progress of this disease. PMID:24367334

  7. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins.

    PubMed

    Wall, Jonathan S; Gupta, Vibha; Wilkerson, Matthew; Schell, Maria; Loris, Remy; Adams, Paul; Solomon, Alan; Stevens, Fred; Dealwis, Chris

    2004-01-01

    Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (VL) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the VL domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable Vlambda6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic Vlambda6 protein (Wil) that had neutral amino acids at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of immunoglobulin light chains.

  8. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four vλ6 proteins

    SciTech Connect

    Wall, J.S.; Gupta, V.; Wilkerson, M.; Schell, M.; Loris, R.; Adams, P.; Solomon, A.; Stevens, F.; Dealwis, C.

    2004-04-01

    Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (V{sub L}) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the V{sub L} domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable V{sub {lambda}}6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic V{sub {lambda}}6 protein (Wil) that had neutral amino acids at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of

  9. New surface-modified zinc oxide nanoparticles with aminotriethylene oxide chains linked by 1,2,3-triazole ring: Preparation, and visible light-emitting and noncytotoxic properties

    NASA Astrophysics Data System (ADS)

    Sato, Moriyuki; Shimatani, Kanako; Iwasaki, Yuko; Morito, Shigekazu; Tanaka, Hidekazu; Fujita, Yasuhisa; Nakamura, Morihiko

    2011-11-01

    Novel surface-modified, visible light-emitting and noncytotoxic ZnO nanoparticles (NPs) (ZPAZ) having aminotriethylene oxide chains linked by 1,4- and/or 1,5-disubstituted 1,2,3-triazole rings were prepared from ZnO NPs (ZPA) with ethynyl groups on the surfaces and an azide derivative of triethylene oxide chain linking terminal amino group (ATA) via 1,3-dipolar azide/alkyne click reaction by heating without Cu(I) catalyst. FTIR spectroscopy, elemental analysis, XRD analysis and TEM observation suggested that the resulting ZPA and ZPAZ NPs have the particle sizes below 10 nm in diameters, triethylene oxide chains linking the terminal amino groups and wurtzite crystal structure. UV-vis absorption spectrum of the ZPAZ NPs in methanol showed maximum absorption band at 346.5 nm, supporting the TEM observation. PL spectra depicted that the ZPA and ZPAZ NPs display broad light green and lightly greenish yellow visible light emitting bands in methanol. Zeta potentials measured in distilled water suggested that the ZPAZ NPs have a low tendency to aggregate and possess better stability than the ZPA NPs. Cytotoxicity assay revealed that the ZPAZ NPs, having water-dispersion properties, are noncytotoxic at low concentrations and almost all RAW264.7 cells are alive after 24 h of treatment.

  10. Activation of smooth muscle myosin light chain kinase by calmodulin. Role of LYS(30) and GLY(40).

    PubMed

    Van Lierop, Jacquelyn E; Wilson, David P; Davis, Jonathan P; Tikunova, Svetlana; Sutherland, Cindy; Walsh, Michael P; Johnson, J David

    2002-02-22

    Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.

  11. Identification of dynein light chain road block-1 as a novel interaction partner with the human reduced folate carrier.

    PubMed

    Ashokkumar, Balasubramaniem; Nabokina, Svetlana M; Ma, Thomas Y; Said, Hamid M

    2009-09-01

    The reduced folate carrier (RFC) is a major folate transport system in mammalian cells. RFC is highly expressed in the intestine and believed to play a role in folate absorption. Studies from our laboratory and others have characterized different aspects of the intestinal folate absorption process, but little is known about possible existence of accessory protein(s) that interacts with RFC and influences its physiology and/or cell biology. We investigated this issue by employing a bacterial two-hybrid system to screen a BacterioMatch II human intestinal cDNA library using the large intracellular loop between transmembrane domains 6 and 7 of the human RFC (hRFC) as bait. Our screening has resulted in the identification of dynein light chain road block-1 (DYNLRB1) as an interacting partner with hRFC. Existence of a direct protein-protein interaction between hRFC and DYNLRB1 was confirmed by in vitro pull-down assay and in vivo mammalian two-hybrid luciferase assay and coimmunoprecipitation analysis. Furthermore, confocal imaging of live human intestinal epithelial HuTu-80 cells demonstrated colocalization of DYNLRB1 with hRFC. Coexpression of DYNLRB1 with hRFC led to a significant (P < 0.05) increase in folate uptake. On the other hand, inhibiting the endogenous DYNLRB1 with gene-specific small interfering RNA or pharmacologically with a specific inhibitor (vanadate) led to a significant (P < 0.05) decrease in folate uptake. This study demonstrates for the first time the identification of DYNLRB1 as an interacting protein partner with hRFC. Furthermore, DYNLRB1 appears to influence the function and cell biology of hRFC.

  12. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.

  13. The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle.

    PubMed

    Miller, Mark S; Palmer, Bradley M; Ruch, Stuart; Martin, Lisa A; Farman, Gerrie P; Wang, Yuan; Robbins, Jeffrey; Irving, Thomas C; Maughan, David W

    2005-10-14

    The functional significance of the actin-binding region at the N terminus of the cardiac myosin essential light chain (ELC) remains elusive. In a previous experiment, the endogenous ventricular ELC was replaced with a protein containing a 10-amino acid deletion at positions 5-14 (ELC1vDelta5-14, referred to as 1vDelta5-14), a region that interacts with actin. 1vDelta5-14 mice showed no discernable mutant phenotype in skinned ventricular strips. However, because the myofilament lattice swells upon skinning, the mutant phenotype may have been concealed by the inability of the ELC to reach the actin-binding site. Using the same mouse model, we repeated earlier measurements and performed additional experiments on skinned strips osmotically compressed to the intact lattice spacing as determined by x-ray diffraction. 1vDelta5-14 mice exhibited decreased maximum isometric tension without a change in calcium sensitivity. The decreased force was most evident in 5-6-month-old mice compared with 13-15-month-old mice and may account for the greater ventricular wall thickness in young 1vDelta5-14 mice compared with age-matched controls. No differences were observed in unloaded shortening velocity at maximum calcium activation. However, 1vDelta5-14 mice exhibited a significant difference in the frequency at which minimum complex modulus amplitude occurred, indicating a change in cross-bridge kinetics. We hypothesize that the ELC N-terminal extension interaction with actin inhibits the reversal of the power stroke, thereby increasing isometric force. Our results strongly suggest that an interaction between residues 5-14 of the ELC N terminus and the C-terminal residues of actin enhances cardiac performance.

  14. A shrimp pacifastin light chain-like inhibitor: molecular identification and role in the control of the prophenoloxidase system.

    PubMed

    Sangsuriya, Pakkakul; Charoensapsri, Walaiporn; Chomwong, Sudarat; Senapin, Saengchan; Tassanakajon, Anchalee; Amparyup, Piti

    2016-01-01

    Pacifastin is a recently classified family of serine proteinase inhibitors that play essential roles in various biological processes, including in the regulation of the melanization cascade. Here, a novel pacifastin-related gene, termed PmPacifastin-like, was identified from a reverse suppression subtractive hybridization (SSH) cDNA library created from hemocytes of the prophenoloxidase PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon. The full-length sequences of PmPacifastin-like and its homologue LvPacifastin-like from the Pacific white shrimp Litopenaeus vannamei were determined. Sequence analysis revealed that both sequences contained thirteen conserved pacifastin light chain domains (PLDs), followed by two putative kunitz domains. Expression analysis demonstrated that the PmPacifastin-like transcript was expressed in all tested shrimp tissues and larval developmental stages, and its expression responded to Vibrio harveyi challenge. To gain insight into the functional roles of PmPacifastin-like protein, the in vivo RNA interference experiment was employed; the results showed that PmPacifastin-like depletion strongly increased PO activity. Interestingly, suppression of PmPacifastin-like also down-regulated the expression of the proPO-activating enzyme PmPPAE2 transcript; the PmPacifastin-like transcript was down-regulated after the PmproPO1/2 transcripts were silenced. Taken together, these results suggest that PmPacifastin-like is important in the shrimp proPO system and may play an essential role in shrimp immune defense against bacterial infection. These results also expand the knowledge of how pacifastin-related protein participates in the negative regulation of the proPO system in shrimp.

  15. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle

    PubMed Central

    Hong, Feng; Brizendine, Richard K.; Carter, Michael S.; Alcala, Diego B.; Brown, Avery E.; Chattin, Amy M.; Haldeman, Brian D.; Walsh, Michael P.; Facemyer, Kevin C.; Baker, Josh E.

    2015-01-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. PMID:26415568

  16. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm

    PubMed Central

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    Background It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. Material/Methods To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. Results The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. Conclusions p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  17. Interleukin-18 facilitates neutrophil transmigration via myosin light chain kinase-dependent disruption of occludin, without altering epithelial permeability.

    PubMed

    Lapointe, Tamia K; Buret, Andre G

    2012-02-01

    Compromised epithelial barrier function and tight junction alterations are hallmarks of a number of gastrointestinal disorders, including inflammatory bowel disease (IBD). Increased levels of IL-18 have been observed in mucosal samples from Crohn's disease and ulcerative colitis patients. Remarkably, several reports have demonstrated that immunological or genetic blockage of IL-18 ameliorates the severity of colitis in multiple in vivo models of IBD. Nevertheless, the effects of IL-18 on intestinal epithelial barrier function remain unclear. We hypothesized that IL-18 could disrupt intestinal epithelial barrier structure and function, thus contributing to tissue damage in the context of IBD. The aims of the present study were to determine the effects of IL-18 on epithelial barrier structure and function and to characterize the mechanisms involved in these modulatory properties. Human colonic epithelial Caco-2 monolayers were coincubated with IL-18 for 24 h and processed for immunocytochemistry, immunoblotting, quantitative PCR, and permeability measurements (transepithelial resistance, FITC-dextran fluxes, and bacterial translocation). Our findings indicate that IL-18 selectively disrupts tight junctional occludin, without affecting the distribution pattern of claudin-4, claudin-5, zonula occludens-1, or E-cadherin. This effect coincided with a significant increase in myosin light chain kinase (MLCK) protein levels and activity. Pharmacological inhibition of MLCK and NF-κB prevented IL-18-induced loss of occludin. Although too subtle to alter paracellular permeability, these fine changes correlated with an MLCK-dependent increase in neutrophil transepithelial migration. In conclusion, our data suggest that IL-18 may potentiate inflammation in the context of IBD by facilitating neutrophil transepithelial migration via MLCK-dependent disruption of tight junctional occludin.

  18. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  19. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  20. Molecular cloning, characterisation and mRNA expression analysis of the sheep myosin light chain 1 gene.

    PubMed

    Zhang, Chunlan; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Liu, Guanqing; Wang, Jianmin

    2015-09-10

    The complete cDNA sequence of the sheep MYL1 (Myosin light chain 1) gene was cloned using RT-PCR, 5' RACE and 3' RACE. We obtained two alternatively spliced isoforms of the MYL1 gene, MYL1a and MYL1b, which are 849 and 1046bp in length and encode proteins composed of 150 and 192 amino acid residues, respectively. And the GenBank accession numbers of MYL1a and MYL1b full-length cDNA sequences that we cloned are KJ700419 and KJ710701, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation and phosphorylation sites. More than half of the secondary structure of these proteins was predicted to be α-helical. The human MYL2 protein (1m8q.1.C) is the most similar in tertiary structure. Sequence alignment showed that the sheep MYL1a protein shares more than 92% amino acid sequence similar with Mus musculus, Homo sapiens, Rattus norvegicus, Sus scrofa and Gallus gallus and that the MYL1b protein shares more than 93% amino acid sequence similar with M. musculus, H. sapiens, R. norvegicus, Bos taurus and Oryctolagus cuniculus. Transcription profile analyses of various tissues indicated that the sheep MYL1a and MYL1b mRNAs were highly but differentially expressed in the longissimus dorsi. Moreover, the expression levels of these genes in the longissimus dorsi differed between Dorper and Small-tailed Han sheep. These results serve as a foundation for further investigations of the function of the sheep MYL1 gene. PMID:25911560

  1. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm.

    PubMed

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    BACKGROUND It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. MATERIAL AND METHODS To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. RESULTS The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. CONCLUSIONS p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  2. Immunoglobulin Free Light Chains and GAGs Mediate Multiple Myeloma Extracellular Vesicles Uptake and Secondary NfκB Nuclear Translocation

    PubMed Central

    Di Noto, Giuseppe; Chiarini, Marco; Paolini, Lucia; Mazzoldi, Elena Laura; Giustini, Viviana; Radeghieri, Annalisa; Caimi, Luigi; Ricotta, Doris

    2014-01-01

    Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches. PMID:25386176

  3. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  4. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  5. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  6. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.

    PubMed

    Belvitch, Patrick; Adyshev, Djanybek; Elangovan, Venkateswaran R; Brown, Mary E; Naureckas, Caitlin; Rizzo, Alicia N; Siegler, Jessica H; Garcia, Joe G N; Dudek, Steven M

    2014-09-01

    Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function. PMID:25072537

  7. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    SciTech Connect

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  8. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology.

    PubMed

    Choi, S I; Song, H W; Moon, J W; Seong, B L

    2001-12-20

    Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins. PMID:11745150

  9. Kinetic and Motor Functions Mediated by Distinct Regions of the Regulatory Light Chain of Smooth Muscle Myosin1,2

    PubMed Central

    Ni, Shaowei; Hong, Feng; Brewer, Paul D.; Ikebe, Mitsuo; Onishi, Hirofumi; Baker, Jonathan E.; Facemyer, Kevin C.; Cremo, Christine R.

    2009-01-01

    To understand the importance of selected regions of the regulatory light chain (RLC) for phosphorylation-dependent regulation of smooth muscle myosin (SMM), we expressed three heavy meromyosins (HMMs) containing the following RLC mutants; K12E in a critical region of the phosphorylation domain, GTDP95-98/AAAA in the central hinge, and R160C a putative binding residue for phosphorylated S19. Single-turnover actin-activated Mg2+-ATPase (Vmax and Katpase) and in vitro actin sliding velocities were examined for both unphosphorylated (up-) and phosphorylated (p-) states. Turnover rates for the upstate (0.007-0.030 s-1) and velocities (no motion) for all constructs were not significantly different from the up-wild type (WT) indicating that they were completely turned off. The apparent binding constants for actin in the presence of ATP (Katpase) were too weak to measure as expected for fully regulated constructs. For p-HMM containing GTDP/AAAA, we found that both ATPase and motility were normal. The data suggest that the native sequence in the central hinge between the two lobes of the RLC is not required for turning the HMM off and on both kinetically and mechanically. For p-HMM containing R160C, all parameters were normal, suggesting that R160C is not involved in coordination of the phosphorylated S19. For p-HMM containing K12E, the Vmax was 64% and actin sliding velocity was ∼50% of WT, suggesting that K12 is an important residue for the ability to sense or to promote the conformational changes required for kinetic and mechanical activation. PMID:19635597

  10. Successful Treatment of Amyloid Light-chain Amyloidosis in a Charcot-Marie-Tooth Disease Patient with Lenalidomide, Cyclophosphamide, and Dexamethasone.

    PubMed

    Kikukawa, Yoshitaka; Hata, Hiroyuki; Ueda, Mitsuharu; Yamashita, Taro; Nasu, Singo; Ide, Kazuhiko; Ueno, Shikiko; Ando, Yukio; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-01

    A 70-year-old woman with Charcot-Marie-Tooth disease (CMT) suffered from nephrotic syndrome and a renal biopsy revealed non-AA amyloid depositions that contained immunoglobulin light chain λ. Her serum λ free LC was elevated to 80.8 mg/L and she was diagnosed with primary amyloid light-chain (AL) amyloidosis. She was subsequently treated with lenalidomide, cyclophosphamide, and dexamethasone (RCD). After 14 cycles of RCD, she achieved complete remission. Her serum albumin levels gradually normalized to 3.1 g/dL. No exacerbation of neurologic symptoms related to CMT was observed. Thus, RCD may be a well-tolerated and effective regimen for treating AL amyloidosis in patients with CMT disease. PMID:27629972

  11. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    PubMed

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  12. Ferritin: the protein nanocage and iron biomineral in health and in disease.

    PubMed

    Theil, Elizabeth C

    2013-11-01

    At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe(2+) ion channels and two catalytic Fe/O redox centers that initiate the formation of caged Fe2O3·H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress recovery, and, in diseases where iron accumulates excessively, iron chelation strategies. In eukaryotic ferritins, biomineral order/crystallinity is influenced by nucleation channels between active sites and the mineral growth cavity. Animal ferritin cages contain, uniquely, mixtures of catalytically active (H) and inactive (L) polypeptide subunits with varied rates of Fe(2+)/O2 catalysis and mineral crystallinity. The relatively low mineral order in liver ferritin, for example, coincides with a high percentage of L subunits and, thus, a low percentage of catalytic sites and nucleation channels. Low mineral order facilitates rapid iron turnover and the physiological role of liver ferritin as a general iron source for other tissues. Here, current concepts of ferritin structure/function/genetic regulation are discussed and related to possible therapeutic targets such as mini-ferritin/Dps protein active sites (selective pathogen inhibition in infection), nanocage pores (iron chelation in therapeutic hypertransfusion), mRNA noncoding, IRE riboregulator (normalizing the ferritin iron content after therapeutic hypertransfusion), and protein nanovessels to deliver medicinal or sensor cargo.

  13. Confocal Cornea Microscopy Detects Involvement of Corneal Nerve Fibers in a Patient with Light-Chain Amyloid Neuropathy Caused by Multiple Myeloma: A Case Report

    PubMed Central

    Sturm, Dietrich; Schmidt-Wilcke, Tobias; Greiner, Tineke; Maier, Christoph; Schargus, Marc; Tegenthoff, Martin; Vorgerd, Matthias

    2016-01-01

    Changes in the subbasal corneal plexus detected by confocal cornea microscopy (CCM) have been described for various types of neuropathy. An involvement of these nerves within light-chain (AL) amyloid neuropathy (a rare cause of polyneuropathy) has never been shown. Here, we report on a case of a patient suffering from neuropathy caused by AL amyloidosis and underlying multiple myeloma. Small-fiber damage was detected by CCM. PMID:27482195

  14. Dynamin-1-like protein (Dnm1L) interaction with kinesin light chain 1 (KLC1) through the tetratricopeptide repeat (TPR) domains.

    PubMed

    Jang, Won Hee; Jeong, Young Joo; Choi, Sun Hee; Kim, Sang-Jin; Urm, Sang-Hwa; Seog, Dae-Hyun

    2014-01-01

    Kinesin light chain 1 (KLC1) mediates binding of KIF5 motor to specific cargo. Using the yeast two-hybrid screening, we found that mitochondrial fission protein dynamin-1-like protein (Dnm1L) interacted with KLC1, but not KIF5. Dnm1L and KLC1 were co-localized in cultured cells. These results suggest that KLC1 may play a potential role in post-fission mitochondrial transport.

  15. Time- and cell-type specific changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    PubMed Central

    Yoo, Dae Young; Yoo, Ki-Yeon; Park, Joon Ha; Kwon, Hyun Jung; Jung, Hyo Young; Kim, Jong Whi; Choi, Goang-Min; Moon, Seung Myung; Kim, Dae Won; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2016-01-01

    In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death. PMID:27482220

  16. Enzyme-linked immunosorbent assay to measure serum ferritin and the relationship between serum ferritin and nonheme iron stores in cats.

    PubMed

    Andrews, G A; Chavey, P S; Smith, J E

    1994-11-01

    Serum ferritin concentration correlates with tissue iron stores in humans, horses, calves, dogs, and pigs but not in rats. Because serum iron and total iron-binding capacity can be affected by disorders unrelated to iron adequacy (such as hypoproteinemia, chronic infection, hemolytic anemia, hypothyroidism, and renal disease), serum ferritin is probably the most reliable indicator of total body iron stores in larger species. To test the hypothesis that serum ferritin might be correlated with tissue iron levels in cats, we developed a quantitative enzyme-linked immunosorbent assay that uses two monoclonal antibodies in a sandwich arrangement to measure feline serum ferritin. The recovery of purified ferritin added to feline sera ranged from 94% to 104%; the within-assay coefficient of variability was 8.4%, and the assay-to-assay variability was 13.2%. Mean serum ferritin from 40 apparently healthy cats was 76 ng/ml (SD = 24 ng/ml). Serum ferritin concentration was significantly correlated (P < 0.001, n = 101, r = 0.365) with the nonheme iron in the liver and spleen (expressed as milligrams of iron per kilogram of body weight), as determined by Pearson product-moment correlation analysis. Because serum iron can decrease in diseases other than iron deficiency, the combination of serum iron and serum ferritin should provide sufficient evidence to differentiate anemia of chronic inflammation from anemia of iron deficiency in the cat.

  17. Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients

    PubMed Central

    Ludwig, H; Milosavljevic, D; Zojer, N; Faint, J M; Bradwell, A R; Hübl, W; Harding, S J

    2013-01-01

    The novel heavy/light chain (HLC) assay was used for the detection and measurement of monoclonal immunoglobulins, response evaluation and prognostication. This test allows identification and quantification of the different light chain types of each immunoglobulin class (for example, IgGκ and IgGλ) and enables calculation of ratios of monoclonal/polyclonal immunoglobulin (HLC ratio). Sequential sera of 156 patients with IgG or IgA myeloma started on first-line therapy and followed for a median of 46.1 months were analyzed. Results were compared with those obtained with conventional techniques (serum protein electrophoresis (SPEP), immunofixation electrophoresis (IFE), nephelometry (NEPH), and the free light chain test (FLC)). Our data show that the HLC assay allowed quantification of monoclonal proteins not accurately measurable by SPEP or NEPH. When both HLC and FLC testing were applied for response assessment, clonal excess was noted in 14/31 patients with complete response (CR). HLC ratio indicated presence of disease in 8/31 patients who achieved CR and, in sequential studies indicated evolving relapse in three patients before IFE became positive. Highly abnormal HLC ratios at presentation were significantly associated with shorter overall survival (40.5 months vs median not reached, P=0.016). Multivariate analysis revealed HLC ratio (P=0.03) and β2-microglobulin (P<0.01) as independent risk factors for survival. PMID:22955329

  18. The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression.

    PubMed

    Zaytseva, Olga; Tenis, Nora; Mitchell, Naomi; Kanno, Shin-ichiro; Yasui, Akira; Heierhorst, Jörg; Quinn, Leonie M

    2014-02-01

    The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.

  19. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains

    PubMed Central

    1992-01-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid

  20. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells.

    PubMed

    Ren, Weicheng; Grimsholm, Ola; Bernardi, Angelina I; Höök, Nina; Stern, Anna; Cavallini, Nicola; Mårtensson, Inga-Lill

    2015-04-01

    Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.

  1. Iron in Parkinson disease, blood diseases, malaria and ferritin

    NASA Astrophysics Data System (ADS)

    Bauminger, E. R.; Nowik, I.

    1998-12-01

    The concentration of iron in Substantia nigra, the part of the brain which is involved in Parkinson disease, has been found by Mössbauer spectroscopy (MS) to be ~ 160 μg/g wet tissue and ~ 670 μg/g dry weight, both in control and Parkinson samples. All the iron observed by MS in these samples is ferritin-like iron. In several blood diseases, large amounts of ferritin-like iron have been observed in red blood cells. Desferral removed iron from serum, but not from red blood cells. The iron compound in the malarial pigment of human blood infected by P. falciparum was found to be hemin-like, whereas the pigment iron in rats infected by P. berghei was different from any known iron porphyrin.

  2. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Zipeng; Tang, Wei; Zhang, Weizhong; Xie, Jin

    2015-06-01

    We coupled folic acid as a tumour targeting ligand to the surface of ferritins and loaded them with ZnF16Pc. The resulting nanoconjugates can efficiently hone in on 4T1 tumours in vivo, and, with photoirradiation, leading to suppressed tumour growth and tumour metastasis.We coupled folic acid as a tumour targeting ligand to the surface of ferritins and loaded them with ZnF16Pc. The resulting nanoconjugates can efficiently hone in on 4T1 tumours in vivo, and, with photoirradiation, leading to suppressed tumour growth and tumour metastasis. Electronic supplementary information (ESI) available: Details of experiments and ex vivo imaging results. See DOI: 10.1039/c5nr01833a

  3. Ferritin. Binding of beryllium and other divalent metal ions.

    PubMed

    Price, D J; Joshi, J G

    1983-09-25

    Rat liver homogenates in 0.1 M Tris, pH 7.5, were heated to 80 degrees C, cooled immediately, and centrifuged at 24,000 X g, and 7Be2+ was added to the supernatant. Twenty-five per cent of the radioactivity was bound to a single protein. It was purified to homogeneity and identified to be ferritin as judged by different criteria. These were sucrose density gradient centrifugation, electrophoresis in polyacrylamide gel of the native or sodium dodecyl sulfate-treated protein, reactivity to antibodies, isoelectric focusing, and total amino acid composition. Comparative study of the ability of ferritin or apoferritin to bind Cd2+, Zn2+, Cu2+, and Be2+ was conducted by using a gel equilibrium technique, Centifree micropartition technique, and microcentrifuge desalting technique. Ferritin could be saturated with Cd2+ or Zn2+ or Cu2+ but not with Be2+ even after 800 g atoms of Be2+ were bound. None of the bound Be2+ was dialyzable at 4 degrees C in 0.05 Tris acetate buffer, pH 8.5, but at pH 6.5 over 80% of the bound metal ion was dialyzed after 72 h. By contrast, apoferritin bound similar amounts of all four metal ions, some of which were dialyzable. By spectrophotometric titrations at pH 6.5 of Be2+ with sulfosalicylic acid (SSA), BeKDSSA was calculated to be 5.0 X 10(-6) M and by competition of sulfosalicyclic acid and ferritin for Be2+ the BeKDferritin was calculated to be 6.8 X 10(-6) M. PMID:6411722