DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.
Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.
Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.
Room temperature ferromagnetism in a phthalocyanine based carbon material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.
2014-02-07
We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.
Wireless sensor for detecting explosive material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K
Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
NASA Astrophysics Data System (ADS)
Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe
2014-09-01
In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.
A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.
Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah
2011-01-01
This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.
A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging
Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah
2011-01-01
This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653
Griffin, Sinead M.; Neaton, Jeffrey B.
2017-09-12
Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less
Carbon p Electron Ferromagnetism in Silicon Carbide
Wang, Yutian; Liu, Yu; Wang, Gang; Anwand, Wolfgang; Jenkins, Catherine A.; Arenholz, Elke; Munnik, Frans; Gordan, Ovidiu D.; Salvan, Georgeta; Zahn, Dietrich R. T.; Chen, Xiaolong; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang
2015-01-01
Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin. PMID:25758040
Carbon p electron ferromagnetism in silicon carbide
Wang, Yutian; Liu, Yu; Wang, Gang; ...
2015-03-11
Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the V SiV C divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuh, Huei-Ru; Chang, Ching-Ray; Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
2015-05-07
Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
Large resistance change on magnetic tunnel junction based molecular spintronics devices
NASA Astrophysics Data System (ADS)
Tyagi, Pawan; Friebe, Edward
2018-05-01
Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.
Optimization of a superconducting linear levitation system using a soft ferromagnet
NASA Astrophysics Data System (ADS)
Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro
2013-04-01
The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.
Experimentally evaluating the origin of dilute magnetism in nanomaterials
NASA Astrophysics Data System (ADS)
Pereira, L. M. C.
2017-10-01
Reports of room-temperature ferromagnetism continue to emerge for an ever-growing range of nanomaterials with a small or even vanishing concentration of magnetic atoms. Dilute magnetic semiconductors (DMS) are the most representative class of such materials, but similar magnetic properties have been reported in many others. Challenging our understanding of magnetic order in solids, as well as our ability to experimentally assess it, these remarkable magnetic phenomena have become one of the most controversial topics in magnetism. Various non-intrinsic sources of ferromagnetism (e.g. instrumental artifacts and magnetic contamination) are becoming well documented, and rarely are all of them taken into account when room-temperature ferromagnetism is reported. This topical review is intended to serve as a guide when evaluating to what extent a given data set supports the claim of intrinsic ferromagnetism in dilute nanomaterials. It compiles the most relevant sources of non-intrinsic ferromagnetism which have been reported, as well as guidelines for how to minimize them. It also provides an overview of complementary structural and magnetic characterization techniques which can be combined to provide different levels of scrutiny of the intrinsic nature of experimentally observed ferromagnetism. In particular, it gives some notable examples of how comprehensive studies based on those techniques have led to a remarkably detailed understanding of model DMS materials, with strong evidence of absence of room-temperature ferromagnetism. Although mostly based on DMS research, this review provides a set of guidelines and cautionary notes of broader relevance, including some emerging new fields of dilute nanomagnetism such as magnetically doped 3D topological insulators, 3D Dirac semimetals, and 2D materials.
Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany Maria
A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.
Large resistance change on magnetic tunnel junction based molecular spintronics devices
Tyagi, Pawan; Friebe, Edward
2018-01-12
Here, molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies providedmore » insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.« less
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Large resistance change on magnetic tunnel junction based molecular spintronics devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Pawan; Friebe, Edward
Here, molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies providedmore » insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.« less
Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review
Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes
2015-01-01
Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244
Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.
Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes
2015-11-11
Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.
Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.
2007-11-27
An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.
Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.
2005-03-29
An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.
Demonstrating the Curie Temperature in the Classroom
ERIC Educational Resources Information Center
Williams, David; Banks, Octavia; Eichmeyer, Livia; Wu, Cherrin
2018-01-01
Recent GCSE and IGCSE specifications include reference to both permanent and induced magnetism, giving the opportunity for novel classroom demonstrations based on ferromagnetism and paramagnetism, and the transition between these phases. Ferromagnetic materials lose their magnetism if raised above their Curie Temperature, a specific temperature…
Design and installation of a ferromagnetic wall in tokamak geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics andmore » overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.« less
An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials
NASA Astrophysics Data System (ADS)
Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.
2008-03-01
This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.
NASA Astrophysics Data System (ADS)
Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng
2018-06-01
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
NASA Astrophysics Data System (ADS)
Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias
2018-04-01
Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.
Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.
2013-02-01
Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.
NASA Astrophysics Data System (ADS)
Graziosi, Patrizio; Neophytou, Neophytos
2018-02-01
Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.
Development of a polymer based fiberoptic magnetostrictive metal detector system.
Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih
2010-10-01
This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.
Piezo Voltage Controlled Planar Hall Effect Devices
Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You
2016-01-01
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068
Piezo Voltage Controlled Planar Hall Effect Devices.
Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You
2016-06-22
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
Dynamics of heavy carriers in the ferromagnetic superconductor UGe2
NASA Astrophysics Data System (ADS)
Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.
2018-04-01
Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ +SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behaviour is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.
Emergent Interfacial Ferromagnetism in CaMnO3-based Superlattices
NASA Astrophysics Data System (ADS)
Grutter, Alexander
2014-03-01
Interfaces of complex oxide materials provide a rich playground not only for the exploration of properties not found in the bulk constituents but also for the development of functional interfaces to be incorporated in spintronic applications. Emergent interfacial magnetic phenomena have been of great interest but surprisingly there have been few examples of emergent interfacial ferromagnetism. In this talk, I will describe our recent work on the stabilization of ferromagnetism in CaMnO3-based superlattices. We have demonstrated ferromagnetism at the interface between the antiferromagnetic insulator CaMnO3 and a paramagnetic metallic layer, including CaRuO3 and LaNiO3. Theoretically the ferromagnetism has been attributed to an interfacial double exchange interaction among the interfacial Mn ions that is mediated by itinerant electrons from the paramagnetic metallic layer. Through polarized neutron reflectivity and observation of exchange bias, we have demonstrated that the ferromagnetism comes from Mn ions in a single unit cell at the interfaces just as theory has predicted. We have also demonstrated that the metallicity of the paramagnetic layer is critical in stabilizing ferromagnetism at the interface and that the interfacial ferromagnetism can be suppressed by suppressing the metallicity of the paramagnetic layer. Despite the agreement with theory, there remain open questions as to the magnetic interactions among the interfacial ferromagnetic layers. For example, the saturated magnetic moment modulates as a function of the thickness of both the CaMnO3 and paramagnetic metal layers. The origins of this oscillation are not well understood and may stem from either structural effects or long-range oscillatory magnetic coupling interactions reminiscent of RKKY interactions. Evidence of the doubling of the unit cell and long range antiferromagnetic correlations support these speculations. This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering, under Contract # DE-AC05-76RL01830 and DE-SC0008505.
Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses
NASA Astrophysics Data System (ADS)
Jung, K.-Y.; Donderici, B.; Teixeira, F. L.
2006-10-01
We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.
Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A
2016-10-25
This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.
Finding the Curie Temperature for Ferromagnetic Materials
ERIC Educational Resources Information Center
Kizowski, Czeslaw; Budzik, Sylwia; Cebulski, Jozef
2007-01-01
The laboratory exercise described in this paper is based on a well-known qualitative demonstration of Curie temperature. A long ferromagnetic wire, in the form of a spiral, is attracted to a strong permanent magnet placed near its midpoint (see Fig. 1). The temperature of the wire is increased by passing a current through it. When the temperature…
NASA Astrophysics Data System (ADS)
Hung, Nguyen The; Bac, Luong Huu; Trung, Nguyen Ngoc; Hoang, Nguyen The; Van Vinh, Pham; Dung, Dang Duc
2018-04-01
The integration of ferromagnetism in lead-free ferroelectric materials is important to fabricate smart materials for electronic devices. In this work, (1 - x)Bi0.5Na0.5TiO3 + xMgFeO3-δ materials (x = 0-9 mol%) were prepared through sol-gel method. X-ray diffraction characterization indicated that MgFeO3-δ materials existed as a well solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. The rhombohedral structure of Bi0.5Na0.5TiO3 materials was distorted due to the random distribution of Mg and Fe cations into the host lattice. The reduced optical band gap and the induced room-temperature ferromagnetism were due to the spin splitting of transition metal substitution at the B-site of perovskite Bi0.5Na0.5TiO3 and the modification by A-site co-substitution. This work elucidates the role of secondary phase as solid solution in Bi0.5Na0.5TiO3 material for development of lead-free multiferroelectric materials.
Metallic ferromagnetic films with magnetic damping under 1.4 × 10 -3
Lee, Aidan J.; Brangham, Jack T.; Cheng, Yang; ...
2017-08-10
Low-damping magnetic materials have been widely used in microwave and spintronic applications because of their low energy loss and high sensitivity. While the Gilbert damping constant can reach 10 -4 to 10 -5 in some insulating ferromagnets, metallic ferromagnets generally have larger damping due to magnon scattering by conduction electrons. Meanwhile, low-damping metallic ferromagnets are desired for charge-based spintronic devices. In this article, we report the growth of Co 25Fe 75 epitaxial films with excellent crystalline quality evident by the clear Laue oscillations and exceptionally narrow rocking curve in the X-ray diffraction scans as well as from scanning transmission electronmore » microscopy. Remarkably, the Co 25Fe 75 epitaxial films exhibit a damping constant <1.4 × 10 -3, which is comparable to the values for some high-quality Y 3Fe 5O 12 films. This record low damping for metallic ferromagnets offers new opportunities for charge-based applications such as spin-transfer-torque-induced switching and magnetic oscillations.« less
System and method for manipulating domain pinning and reversal in ferromagnetic materials
Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel
2013-10-15
A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.
Dhak, Debasis; Hong, Seungbum; Das, Soma; ...
2015-01-01
Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore » of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less
NASA Astrophysics Data System (ADS)
Safour, Salaheddine; Bernard, Yves
2017-10-01
This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.
Bristowe, N. C.; Varignon, J.; Fontaine, D.; Bousquet, E.; Ghosez, Ph.
2015-01-01
In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn–Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hund's rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented. PMID:25807180
Magnetic Imaging: a New Tool for UK National Nuclear Security
NASA Astrophysics Data System (ADS)
Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio
2015-01-01
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.
Magnetic Imaging: a New Tool for UK National Nuclear Security
Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio
2015-01-01
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957
Magnetic imaging: a new tool for UK national nuclear security.
Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio
2015-01-22
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.
Novel diluted magnetic semiconductor materials based on zinc oxide
NASA Astrophysics Data System (ADS)
Chakraborti, Deepayan
The primary aim of this work was to develop a ZnO based diluted magnetic semiconductor (DMS) materials system which displays ferromagnetism above room temperature and to understand the origin of long-range ferromagnetic ordering in these systems. Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. For these devices we require a high efficiency of spin current injection at room temperature. Diluted magnetic semiconductors (DMS) can serve this role, but they should not only display room temperature ferromagnetism (RTFM) but also be capable of generating spin polarized carriers. Transition metal doped ZnO has proved to be a potential candidate as a DMS showing RTFM. The origin of ferromagnetic ordering in ZnO is still under debate. However, the presence of magnetic secondary phases, composition fluctuations and nanoclusters could also explain the observation of ferromagnetism in the DMS samples. This encouraged us to investigate Cu-doped(+ spin in the 2+ valence state) ZnO system as a probable candidate exhibiting RTFM because neither metallic Cu nor its oxides (Cu2O or CuO) are ferromagnetic. The role of defects and free carriers on the ferromagnetic ordering of Cu-doped ZnO thin films was studied to ascertain the origin of ferromagnetism in this system. A novel non-equilibrium Pulsed Laser Deposition technique has been used to grow high quality epitaxial thin films of Cu:ZnO and (Co,Cu):ZnO on c-plane Sapphire by domain matching epitxay. Both the systems showed ferromagnetic ordering above 300K but Cu ions showed a much stronger ferromagnetic ordering than Co, especially at low concentrations (1-2%) of Cu where we realized near 100% polarization. But, the incorporation of Cu resulted in a 2-order of magnitude rise in the resistivity from 10-1 to 101 Ohm cm which can prove to be detrimental to the injection of polarized electrons. In order to decrease the resistivity and to understand the role of free carriers in mediating the ferromagnetic ordering, the Cu-doped ZnO films were co-doped with an n-type dopant like Al which increased the free carriers concentration by 3 orders of magnitude from 1017 to 1020 cm -3 without significantly altering the near 100% spin polarization in the Cu:ZnO system. This lack of correlation between free carrier concentration and the magnetic moment implied that a free carrier mediated exchange does not stabilize the long range ferromagnetic ordering. A reduction in the number of oxygen vacancies brought about by high temperature oxygen annealing had a large degrading effect on the ferromagnetism by reducing the total saturation magnetization by almost an order of magnitude. This strong dependence of magnetization on vacancy concentration and the corresponding weak relationship with free carriers pointed towards a defect mediated mechanism, such as a bound magnetic polaron mediated exchange as being responsible for stabilizing the ferromagnetic ordering in these systems. However, a BMP mechanism would not guarantee a strong coupling between the free carriers and the localized spins to produce spin-polarized current. To investigate this we have fabricated spin valve type device structures where a nonmagnetic ZnO layer was sandwiched between two ferromagnetic (Cu,Al):ZnO layers allowing us to study spin polarized carrier injection across the nonmagnetic semiconductor gap. Initial results have shown evidence of spin polarized carrier injection across the nonmagnetic semiconductor layer even at 300K. Hence, this work demonstrates that the (Cu,Al):ZnO system may become a viable solution for spin injection into spintronic devices.
Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil
2017-06-14
ARL-MR-0954 ● Jun 2017 US Army Research Laboratory Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a...to Extend and Shield the Magnetic Field of a Coil by W Casey Uhlig Weapons and Materials Research Directorate, ARL...Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...
2016-03-14
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications
Lee, Juwon; Subramaniam, Nagarajan Ganapathi; Agnieszka Kowalik, Iwona; Nisar, Jawad; Lee, Jaechul; Kwon, Younghae; Lee, Jaechoon; Kang, Taewon; Peng, Xiangyang; Arvanitis, Dimitri; Ahuja, Rajeev
2015-01-01
The article presents, using Bi doped ZnO, an example of a heavy ion doped oxide semiconductor, highlighting a novel p-symmetry interaction of the electronic states to stabilize ferromagnetism. The study includes both ab initio theory and experiments, which yield clear evidence for above room temperature ferromagnetism. ZnBixO1−x thin films are grown using the pulsed laser deposition technique. The room temperature ferromagnetism finds its origin in the holes introduced by the Bi doping and the p-p coupling between Bi and the host atoms. A sizeable magnetic moment is measured by means of x-ray magnetic circular dichroism at the O K-edge, probing directly the spin polarization of the O(2p) states. This result is in agreement with the theoretical predictions and inductive magnetometry measurements. Ab initio calculations of the electronic and magnetic structure of ZnBixO1−x at various doping levels allow to trace the origin of the ferromagnetic character of this material. It appears, that the spin-orbit energy of the heavy ion Bi stabilizes the ferromagnetic phase. Thus, ZnBixO1−x doped with a heavy non-ferromagnetic element, such as Bi, is a credible example of a candidate material for a new class of compounds for spintronics applications, based on the spin polarization of the p states. PMID:26592564
Levitation properties of maglev systems using soft ferromagnets
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Zhou, You-He
2015-03-01
Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.
Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze
2016-06-08
This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.
Homogenization in micro-magneto-mechanics
NASA Astrophysics Data System (ADS)
Sridhar, A.; Keip, M.-A.; Miehe, C.
2016-07-01
Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill-Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.
Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review
NASA Astrophysics Data System (ADS)
Coileáin, Cormac Ó.; Wu, Han Chun
From historical obscurity, antiferromagnets are recently enjoying revived interest, as antiferromagnetic (AFM) materials may allow the continued reduction in size of spintronic devices. They have the benefit of being insensitive to parasitic external magnetic fields, while displaying high read/write speeds, and thus poised to become an integral part of the next generation of logical devices and memory. They are currently employed to preserve the magnetoresistive qualities of some ferromagnetic based giant or tunnel magnetoresistance systems. However, the question remains how the magnetic states of an antiferromagnet can be efficiently manipulated and detected. Here, we reflect on AFM materials for their use in spintronics, in particular, newly recognized antiferromagnet Mn2Au with its in-plane anisotropy and tetragonal structure and high Néel temperature. These attributes make it one of the most promising candidates for AFM spintronics thus far with the possibility of architectures freed from the need for ferromagnetic (FM) elements. Here, we discuss its potential for use in ferromagnet-free spintronic devices.
Spin transport and spin torque in antiferromagnetic devices
Zelezny, J.; Wadley, P.; Olejnik, K.; ...
2018-03-02
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelezny, J.; Wadley, P.; Olejnik, K.
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
NASA Astrophysics Data System (ADS)
Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.
2018-03-01
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
Tu, Zhengyuan; Wu, Menghao; Zeng, Xiao Cheng
2017-05-04
Coexistence of ferromagnetism and ferroelectricity in a single 2D material is highly desirable for integration of multifunctional units in 2D material-based circuits. We report theoretical evidence of C 6 N 8 H organic network as being the first 2D organic multiferroic material with coexisting ferromagnetic and ferroelectric properties. The ferroelectricity stems from multimode proton-transfer within the 2D C 6 N 8 H network, in which a long-range proton-transfer mode is enabled by the facilitation of oxygen molecule when the network is exposed to the air. Such oxygen-assisted ferroelectricity also leads to a high Curie temperature and coupling between ferroelectricity and ferromagnetism. We also find that hydrogenation and carbon doping can transform the 2D g-C 3 N 4 network from an insulator to an n-type/p-type magnetic semiconductor with modest bandgap. Akin to the dopant induced n/p channels in silicon wafer, a variety of dopant created functional units can be integrated into the g-C 3 N 4 wafer by design for nanoelectronic applications.
Magnetotransport in magnetic nanostructures
NASA Astrophysics Data System (ADS)
Panchula, Alex F.
The unifying theme of this dissertation is the exploration of novel magnetic thin film materials to improve our understanding of spin-dependent transport in such materials, especially with regard to their use in the nascent field of spin based devices. Such devices, which rely on controlling the electron's spin rather than its charge as in conventional micro-electronics, may be important for applications in sensing, memory and computation. This dissertation covers research performed at the IBM Almaden Research Center between 2000 and 2003. One class of spin-based devices are magnetic tunnel junctions (MTJs), which display large changes in resistance in small magnetic fields. This tunneling magnetoresistance (TMR) is derived from changes in the relative alignment of the magnetic moments of thin ferromagnetic layers which are separated by thin insulating layers. The tunneling current spin polarization (TSP) determines the magnitude of the TMR. For typical transition-metal ferromagnets and their alloys the TSP is ˜50% although it is anticipated that half-metals should display nearly 100%. Confirming theoretical predictions, MTJs with electrodes of magnetite and a conventional ferromagnet such as a CoFe alloy, display an inverted TMR, consistent with negatively spin polarized magnetite electrodes. However, the magnitude of TSP of -48% at low temperatures, is not much larger than that exhibited by conventional 3d transition metal ferromagnets. At high temperatures, transport through the MTJ is dominated by tunneling across the alumina tunnel barrier, while at low temperatures the bulk properties of the magnetite dominates at low bias voltage. Another class of half-metals, the semi-heuslers exhibit low TSP, most likely due to surface disorder and, as revealed in this work, the possible formation of MnSb. The MnSb alloys studied in MTJs are found to behave as typical ferromagnets with a small positive TMR. Also considered are MTJs whose barriers are comprised of the wide band-gap semiconductors, ZnSe and Cr2O3. These low barrier height materials show typical tunneling behavior, although the TMR is lower than found for wide-gap insulators. Finally, the development of a high precision SQUID based voltmeter for application to low resistance devices with the current perpendicular to the plane of the materials is outlined.
Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L. C.; Ganguli, A. K.
2016-01-01
We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity. PMID:27892482
Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2
NASA Astrophysics Data System (ADS)
Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki
2017-12-01
Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung
2018-05-01
In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław
2016-07-01
Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.
Tunnel junctions with multiferroic barriers
NASA Astrophysics Data System (ADS)
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Tunnel junctions with multiferroic barriers.
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Magnetism in Na-filled Fe-based skutterudites
Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...
2015-06-01
The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe 4Sb 12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for amore » material near an itinerant ferromagnetic quantum critical point. NaFe 4P 12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe 4Sb 12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe 4As 12 shows intermediate behavior. We also present results for skutterudite FeSb 3, which is a metastable phase that has been reported in thin film form.« less
Mn-based ferromagnetic semiconductors
NASA Astrophysics Data System (ADS)
Dietl, Tomasz; Sawicki, Maciej
2003-07-01
The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.
Ferromagnetic viscoelastic liquid crystalline materials
NASA Astrophysics Data System (ADS)
Schlesier, Cristina; Shibaev, Petr; McDonald, Scott
2012-02-01
Novel ferromagnetic liquid crystalline materials were designed by mixing ferromagnetic nanoparticles with glass forming oligomers and low molar mass liquid crystals. The matrix in which nanoparticles are embedded is highly viscous that reduces aggregation of nanoparticles and stabilizes the whole composition. Mechanical and optical properties of the composite material are studied in the broad range of nanoparticle concentrations. The mechanical properties of the viscoelastic composite material resemble those of chemically crosslinked elastomers (elasticity and reversibility of deformations). The optical properties of ferromagnetic cholesteric materials are discussed in detail. It is shown that application of magnetic field leads to the shift of the selective reflection band of the cholesteric material and dramatically change its color. Theoretical model is suggested to account for the observed effects; physical properties of the novel materials and liquid crystalline elastomers are compared and discussed. [1] P.V. Shibaev, C. Schlesier, R. Uhrlass, S. Woodward, E. Hanelt, Liquid Crystals, 37, 1601 (2010) [2] P.V. Shibaev, R. Uhrlass, S. Woodward, C. Schlesier, Md R. Ali, E. Hanelt, Liquid Crystals, 37, 587 (2010)
Superconductive magnetic-field-trapping device
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1965-01-01
An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.
Simple Experiment for Studying the Properties of a Ferromagnetic Material.
ERIC Educational Resources Information Center
Sood, B. R.; And Others
1980-01-01
Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)
2013-06-01
project focuses on the theoretical study of suspensions of nano- particles of different nature (ferroelectric, ferromagnetic , multiferroic) with size ...SUBJECT TERMS EOARD, ferroelectric, ferromagnetic and multiferroic, new photorefractive effects in liquid crystal cell, new materials and systems...magnetic, mechanical, luminescence etc absent in a pure material . The idea of doping the liquid crystals with elongated ferromagnetic particles to
Model for multishot all-thermal all-optical switching in ferromagnets
NASA Astrophysics Data System (ADS)
Gorchon, J.; Yang, Y.; Bokor, J.
2016-07-01
All-optical magnetic switching (AOS) is a recently observed rich and puzzling phenomenon that offers promising technological applications. However, a fundamental understanding of the underlying mechanisms remains elusive. Here we present a model for multishot helicity-dependent AOS in ferromagnetic materials based on a purely heat-driven mechanism in the presence of magnetic circular dichroism (MCD). We predict that AOS should be possible with as little as 0.5% of MCD, after a minimum number of laser shots heat the sample close to the Curie temperature. Finally, we qualitatively reproduce the all-optically switched domain patterns observed experimentally by numerically simulating the result of multiple laser shots on an FePtC granular ferromagnetic film.
Ferromagnetic resonance study of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6
NASA Astrophysics Data System (ADS)
Medina, J. De La Torre; Piraux, L.; Soto, T. E.; Morales, R.; Navarro, O.
2018-02-01
In this work we report a ferromagnetic resonance study on the magnetic properties of double perovskite compounds fab-ricated by solid state reaction. Based on a mean field approach, along with morphological considerations, we accurately determined the saturation magnetization of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6. Our approach has revealed a direct in-fluence of composition on the overall magnetic behavior of these materials, providing complementary experimental evidence that corroborates previous theoretical findings. The understanding of the influence of composition is of paramount importance for the design of ferromagnetic oxides with tunable magnetic and magneto-transport behavior.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John
1993-01-01
Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Nanomodified heat-accumulating materials controlled by a magnetic field
NASA Astrophysics Data System (ADS)
Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Bodin, Nikolay; Semenov, Alexander
2017-11-01
The paper presents studies of nanomodified heat-accumulating materials controlled by a magnetic field. In order to obtain controlled heat-accumulating materials, synthetic motor oil CASTROL 0W30, ferromagnetic particles, CNTs and paraffin were used. Mechanically activated carbon nanotubes with ferromagnetic particles were used for the nanomodification of paraffin. Mechanoactivation ensured the production of ferromagnetic particles with an average particle size of 5 µm. Using an extrusion plant, a mixture of CNTs and ferromagnetic particles was introduced into the paraffin. Further, the nanomodified paraffin in a granular form was introduced into synthetic oil. To conduct experimental studies, a contactless method for measuring temperature was used. The thermal contact control with the help of the obtained nanomodified material is possible with a magnetic induction of 1250 mT, and a heat flux of about 74 kW/m2 is provided at the same time.
Weak ferromagnetism in a high-pressure phase of FeTiO3 with polar lattice distortion
NASA Astrophysics Data System (ADS)
Varga, Tamas; Mitchell, John; Fennie, Craig; Streiffer, Stephen; Hong, Seungbum; Park, Moonkyu; Gopalan, Venkatraman; Kumar, Amit; Vlahos, Eftihia; Sanehira, Takeshi; Wang, Yanbin
2009-03-01
Today's challenge in multiferroics is to identify materials in which polarization and magnetization -- normally considered contraindicated properties - are strongly coupled. Recent density functional theory calculations have predicted that the family of compounds MTiO3 (M = Mn, Fe, Ni) are promising candidates where a polar lattice distortion can induce weak ferromagnetism. The crucial insight is that while the equilibrium one-atmosphere structure of these is ilmenite, they must be transformed to a closely related LiNbO3-type structure. We have prepared the corresponding FeTiO3 phase at 18 GPa and 1200 ^oC. It shows a sharp antiferromagnetic (AF) transition at 111.5 K. FeTiO3 also displays ferroelectric domains, and weak ferromagnetism coincident with the AF transition. Possible coupling between its polarization and weak ferromagnetism is discussed based on results of piezoelectric force microscopy (PFM), second harmonic generation (SHG), dielectric, and polarization measurements.
Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material
Ma, Shuailing; Bao, Kuo; Tao, Qiang; Zhu, Pinwen; Ma, Teng; Liu, Bo; Liu, Yazhou; Cui, Tian
2017-01-01
We synthesized orthorhombic FeB-type MnB (space group: Pnma) with high pressure and high temperature method. MnB is a promising soft magnetic material, which is ferromagnetic with Curie temperature as high as 546.3 K, and high magnetization value up to 155.5 emu/g, and comparatively low coercive field. The strong room temperature ferromagnetic properties stem from the positive exchange-correlation between manganese atoms and the large number of unpaired Mn 3d electrons. The asymptotic Vickers hardness (AVH) is 15.7 GPa which is far higher than that of traditional ferromagnetic materials. The high hardness is ascribed to the zigzag boron chains running through manganese lattice, as unraveled by X-ray photoelectron spectroscopy result and first principle calculations. This exploration opens a new class of materials with the integration of superior mechanical properties, lower cost, electrical conductivity, and fantastic soft magnetic properties which will be significant for scientific research and industrial application as advanced structural and functional materials. PMID:28262805
Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage
You, Chun-Yeol; Bader, Samuel D.
2001-01-01
A system for controlling the direction of magnetization of materials comprising a ferromagnetic device with first and second ferromagnetic layers. The ferromagnetic layers are disposed such that they combine to form an interlayer with exchange coupling. An insulating layer and a spacer layer are located between the first and second ferromagnetic layers. A direct bias voltage is applied to the interlayer exchange coupling, causing the direction of magnetization of the second ferromagnetic layer to change. This change of magnetization direction occurs in the absence of any applied external magnetic field.
Spintronics Based on Topological Insulators
NASA Astrophysics Data System (ADS)
Fan, Yabin; Wang, Kang L.
2016-10-01
Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.
NASA Astrophysics Data System (ADS)
Wen, Yan-Ni; Gao, Peng-Fei; Xia, Ming-Gang; Zhang, Sheng-Li
2018-03-01
Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in 6 × 6 × 1 MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins
NASA Astrophysics Data System (ADS)
Nolting, F.; Scholl, A.; Stöhr, J.; Seo, J. W.; Fompeyrine, J.; Siegwart, H.; Locquet, J.-P.; Anders, S.; Lüning, J.; Fullerton, E. E.; Toney, M. F.; Scheinfein, M. R.; Padmore, H. A.
2000-06-01
The arrangement of spins at interfaces in a layered magnetic material often has an important effect on the properties of the material. One example of this is the directional coupling between the spins in an antiferromagnet and those in an adjacent ferromagnet, an effect first discovered in 1956 and referred to as exchange bias. Because of its technological importance for the development of advanced devices such as magnetic read heads and magnetic memory cells, this phenomenon has received much attention. Despite extensive studies, however, exchange bias is still poorly understood, largely due to the lack of techniques capable of providing detailed information about the arrangement of magnetic moments near interfaces. Here we present polarization-dependent X-ray magnetic dichroism spectro-microscopy that reveals the micromagnetic structure on both sides of a ferromagnetic-antiferromagnetic interface. Images of thin ferromagnetic Co films grown on antiferromagnetic LaFeO3 show a direct link between the arrangement of spins in each material. Remanent hysteresis loops, recorded for individual ferromagnetic domains, show a local exchange bias. Our results imply that the alignment of the ferromagnetic spins is determined, domain by domain, by the spin directions in the underlying antiferromagnetic layer.
Spin Seebeck effect in a weak ferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arboleda, Juan David, E-mail: juan.arboledaj@udea.edu.co; Arnache Olmos, Oscar; Aguirre, Myriam Haydee
2016-06-06
We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.
Electric-field control of magnetic moment in Pd
Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi
2015-01-01
Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306
De Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; ...
2014-11-24
The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. In this paper, we show that, even in the absence of direct Cu–O–Mn covalent bonding, the interfacial CuO 2 planes of superconducting La 1.85Sr 0.15CuO 4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La 0.66Sr 0.33MnO 3 ferromagnet.more » Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. Finally, the Dzyaloshinskii–Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO 2 planes into the superconductor, eventually depressing its critical temperature.« less
Ferromagnetism of vanadium doped Bi2Se3 thin films
NASA Astrophysics Data System (ADS)
Zhang, Liguo; Zhao, Dapeng; Zang, Yunyi; Yuan, Yonghao; Jiang, Gaoyuan; He, Ke; Ma, Xucun; Xue, Qikun
Bi2Se3 is a representative three-dimensional topological insulator with a bulk band gap of about 300 meV. The quantum anomalous Hall effect (QAHE) has never been realized in Bi2Se3-based magnetic topological insulators due to the difficulties in introducing ferromagnetism in them. With molecular beam epitaxy (MBE), we have grown vanadium-doped Bi2Se3 films with decent crystalline quality and homogeneous distribution of V impurities. The films are all electron-doped and show square-shaped hysteresis loops of Hall resistance with coercivity up to 0.2T at 2K, indicating ferromagnetism with perpendicular magnetic anisotropy in them. Both the ferromagnetism and anomalous Hall resistance are enhanced by decreasing electron density. We have systematically studied the magneto-transport properties of the films with varying V concentration, film thickness, and carrier density and discussed the mechanism of ferromagnetic coupling. The study demonstrates that V-doped Bi2Se3 films are candidate QAHE materials if their electron density can be further reduced. This work was supported by National Natural Science Foundation of China.
Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...
2014-09-05
In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.
2014-09-01
The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less
A challenging hysteresis operator for the simulation of Goss-textured magnetic materials
NASA Astrophysics Data System (ADS)
Cardelli, Ermanno; Faba, Antonio; Laudani, Antonino; Pompei, Michele; Quondam Antonio, Simone; Fulginei, Francesco Riganti; Salvini, Alessandro
2017-06-01
A new hysteresis operator for the simulation of Goss-textured ferromagnets is here defined. The operator is derived from the classic Stoner-Wohlfarth model, where the anisotropy energy is assumed to be cubic instead of uniaxial, in order to reproduce the magnetic behavior of Goss textured ferromagnetic materials, such as grain-oriented Fe-Si alloys, Ni-Fe alloys, and Ni-Co alloys. A vector hysteresis model based on a single hysteresis operator is then implemented and used for the prediction of the rotational magnetizations that have been measured in a sample of grain-oriented electrical steel. This is especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. Finally, the computed loops, as well as the magnetic losses, are compared to the measured data.
Ba 0.4 Rb 0.6 Mn 2 As 2 : A prototype half-metallic ferromagnet
Pandey, Abhishek; Johnston, D. C.
2015-11-02
Half-metallic ferromagnetism (FM) in single-crystal Ba 0.39(1)Rb 0.61(1)Mn 2As 2 below its Curie temperature T C = 103(2) K is reported. The magnetization M versus applied magnetic field H isotherm data at 1.8 K show complete polarization of the itinerant doped-hole magnetic moments that are introduced by substituting Rb for Ba. Here, the material exhibits extremely soft FM, with unobservably small remanent magnetization and coercive field. Surprisingly, and contrary to typical itinerant FMs, the M(H) data follow the Arrott-plot paradigm that is based on a mean-field theory of local-moment FMs. The in-plane electrical resistivity data are fitted well by anmore » activated-T 2 expression for T ≤ T C, whereas the data sharply deviate from this model for T > T C. Hence the activated-T 2 resistivity model is an excellent diagnostic for determining the onset of half-metallic FM in this compound, which in turn demonstrates the presence of a strong correlation between the electronic transport and magnetic properties of the material. Together with previous data on 40% hole-doped Ba 0.6K 0.4Mn 2As 2, these measurements establish 61%-doped Ba 0.39Rb 0.61Mn 2As 2 as a prototype for a class of half-metallic ferromagnets in which all the itinerant carriers in the material are ferromagnetic.« less
Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande
2015-11-28
A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.
NASA Astrophysics Data System (ADS)
Jacques, Kevin; Steentjes, Simon; Henrotte, François; Geuzaine, Christophe; Hameyer, Kay
2018-04-01
This paper demonstrates how the statistical distribution of pinning fields in a ferromagnetic material can be identified systematically from standard magnetic measurements, Epstein frame or Single Sheet Tester (SST). The correlation between the pinning field distribution and microstructural parameters of the material is then analyzed.
Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides
NASA Astrophysics Data System (ADS)
Liu, Bang-Gui
It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
NASA Astrophysics Data System (ADS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less
NASA Astrophysics Data System (ADS)
He, Tao
2002-09-01
Perovskite-based ruthenates have been receiving considerable attention both because of their interesting and variable magnetic properties, and because of the discovery of exotic superconductivity in the layered ruthenate Sr 2RuO4. Another perovskite, SrRuO3, is the only known oxide ferromagnet with a 4d transition metal, and magnetism is easily suppressed by Ca doping. The suppression of ferromagnetic interactions in SrxCa1-xRuO3 has frequently been attributed to the orthorhombic structural distortion, either through the crossover to classical antiferromagnetic interactions, or, alternatively, to a nearly ferromagnetic metal. This study reports the comparison of the magnetic properties of Srx(Na0.5La0.5)1-xRuO 3 to SrxCa1-xRuO3, showing that there is a much faster suppression of ferromagnetic interactions in the former case. Neither orthorhombic distortion nor cation size disorder can explain the observed difference. Instead, the difference may be attributed to charge disorder on the A-site, which greatly affects the local environment of Ru atoms and leads to the faster suppression of the long-range ferromagnetic state. The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. This study also shows that paramagnetic CaRuO 3 can be made ferromagnetic by very small amounts of partial substitution of Ru by various transition metals. The results are consistent with the recent proposal that CaRuO3 is not a classical antiferromagnet, but rather is poised at a critical point between ferromagnetic and paramagnetic ground states. Ti, Fe, Mn and Ni doping result in ferromagnetic behavior. The second part of this thesis is on the superconductivity of MgB 2 and MgCNi3. Since the discovery of superconductivity in MgB2 in January 2001, detailed information on its properties has been rapidly accumulated. The reported properties, the very simple structure, and the commercial availability of this material make MgB2 a favorite candidate for large scale and electronic applications. In thin film fabrication, the reactivity of MgB2 with substrate materials or insulating or metallic layers in multi-layer circuits is an important factor. In this work the reactivity of MgB2 with powdered forms of common substrate and electronic materials is studied. Some oxides and nitrides prove to be potentially good substrates for making thin films, while others, including some commonly used substrates like Al2O3, SrTiO 3, and SiO2, have serious chemical compatibility problems. In the latter case, caution should be taken when fabricating thin films. This thesis also describes the discovery of superconductivity at 8 K in the perovskite structure compound MgCNi3. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have Tcs up to 16K. The itinerant electrons in both LnNi2B2C and MgCNi3 are based on partial filling of Ni d-states, which generally leads to ferromagnetism, as is the case in metallic Ni. The very high relative proportion of Ni in MgCNi3 is especially suggestive of the possible importance of magnetic interactions in the superconductivity, and, further, the lower Tc of the three-dimensional compound is contrary to conventional ideas.
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
Ma, Ji; Liu, Chunting; Chen, Kezheng
2016-01-01
In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286
Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers
NASA Astrophysics Data System (ADS)
Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.
2018-02-01
A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.
High-Voltage Isolation Transformer
NASA Technical Reports Server (NTRS)
Clatterbuck, C. H.; Ruitberg, A. P.
1985-01-01
Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
NASA Astrophysics Data System (ADS)
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
Microwave properties of Ni-based ferromagnetic inverse opals
NASA Astrophysics Data System (ADS)
Kostylev, M.; Stashkevich, A. A.; Roussigné, Y.; Grigoryeva, N. A.; Mistonov, A. A.; Menzel, D.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Grigoriev, S. V.; Samarin, S. N.
2012-11-01
Investigations of microwave properties of Ni-based inverse ferromagnetic opal-like film with the [111] axis of the fcc structure along the normal direction to the film have been carried out in the 2-18 GHz frequency band. We observed multiple spin wave resonances for the magnetic field applied perpendicular to the film, i.e., along the [111] axis of this artificial crystal. For the field applied in the film plane, a broad band of microwave absorption is observed, which does not contain a fine structure. The field ranges of the responses observed are quite different for these two magnetization directions. This suggests a collective magnetic ground state or shape anisotropy and collective microwave dynamics for this foam-like material. This result is in agreement with SQUID measurements of hysteresis loops for the material. Two different models for this collective behavior are suggested that satisfactorily explain the major experimental results.
A magnetostatic-coupling based remote query sensor for environmental monitoring
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.
1999-01-01
A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.
Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials
NASA Astrophysics Data System (ADS)
Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang
2018-03-01
The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.
Wellhead with non-ferromagnetic materials
Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX
2009-05-19
Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.
Changing Dielectrics into Multiferroics---Alchemy Enabled by Strain
NASA Astrophysics Data System (ADS)
Schlom, Darrell
2011-03-01
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials. The properties of what few compounds simultaneously exhibit these phenomena pale in comparison to useful ferroelectrics or ferromagnets: their spontaneous polarizations (Ps) or magnetizations (Ms) are smaller by a factor of 1000 or more. The same holds for (magnetic or electric) field-induced multiferroics. Recently, however, Fennie and Rabe proposed a new route to ferroelectric ferromagnets---transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using a single control parameter: strain. The system targeted, EuTi O3 , was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ ~ ~7~μB /Eu) and strong ferroelectricity (Ps ~ ~ ~10~ μ C/cm2) under large biaxial compressive strain. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression, we show 3 both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower misfits are required, thereby enabling higher quality crystalline films. The resulting genesis of a strong ferromagnetic ferroelectric points the way to high temperature manifestations of this spin-phonon coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics. C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-12-01
Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.
Method for deriving information regarding stress from a stressed ferromagnetic material
Jiles, David C.
1991-04-30
A non-destructive evaluation technique for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.
Method for deriving information regarding stress from a stressed ferromagnetic material
Jiles, D.C.
1991-04-30
A nondestructive evaluation technique is disclosed for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.
NASA Astrophysics Data System (ADS)
Gilev, B.; Kraev, G.; Venkov, G. I.
2007-10-01
This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.
NASA Astrophysics Data System (ADS)
Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.
2017-11-01
We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu
2013-02-01
Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.
Robust ferromagnetism in monolayer chromium nitride
Zhang, Shunhong; Li, Yawei; Zhao, Tianshan; Wang, Qian
2014-01-01
Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers. PMID:24912562
Novel room temperature ferromagnetic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Amita
2004-06-01
Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will bemore » higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2 + state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2 + state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.« less
NASA Technical Reports Server (NTRS)
Morris, R. V.; Gibbons, R. V.; Hoerz, F.
1975-01-01
Using a recently developed furnace, ferromagnetic resonance (FMR) thermomagnetic studies up to 900 C were employed to measure the Curie points of the superparamagnetic (SP) and single domain (SD) particles in lunar soils and potential magnetic analogue materials. Based on measured Curie points of 775 C, the SP and SD particles in lunar soils 10084-853, 12070-29, 14161-46, and 67010-4 are essentially pure metallic Fe. Synthetic and terrestrial samples containing magnetite, titanomaghemites, and magnetite-like particles have measured Curie points below 600 C are thus not magnetic analogues of lunar soils.
Non-Reciprocal on Wafer Microwave Devices
2015-05-27
filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate
Homodyne detection of ferromagnetic resonance by a non-uniform radio-frequency excitation current
NASA Astrophysics Data System (ADS)
Ikebuchi, Tetsuya; Moriyama, Takahiro; Shiota, Yoichi; Ono, Teruo
2018-05-01
Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel’s mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.
Magnetism in Pristine Pi-conjugated Polymers
2014-09-07
highly regioregular poly(3-alkylthiophene)s and subsequently a ferromagnetic hysteretic behavior at low temperature (< 20K) in these polymers...and subsequently a ferromagnetic hysteretic behavior at low temperature (T < 20k) in these polymers. Concomitantly nanoscopic doughnut structures...the reproducibility, of this very new magneto-optic material . Ferromagnetism in polythiophenes A first and very important
Fabrication and Investigation of Indium Nitride Possessing Ferromagnetic Properties
NASA Astrophysics Data System (ADS)
Khludkov, S. S.; Prudaev, I. A.; Tolbanov, O. P.
2018-04-01
An overview of the scientific literature since 2000 on InN doping with impurities giving it ferromagnetic properties and on the magnetic properties of InN is presented. According to theoretical and experimental studies, InN doped with transition metals and rare earth elements possesses ferromagnetic properties at temperatures above room temperature and is a material promising for spintronics.
A model for ferromagnetic shape memory thin film actuators
NASA Astrophysics Data System (ADS)
Lee, Kwok-Lun; Seelecke, Stefan
2005-05-01
The last decade has witnessed the discovery of materials combining shape memory behavior with ferromagnetic properties (FSMAs), see James & Wuttig1, James et al.2, Ullakko et al.3. These materials feature the so-called giant magnetostrain effect, which, in contrast to conventional magnetostriction is due motion of martensite twins. This effect has motivated the development of a new class of active materials transducers, which combine intrinsic sensing capabilities with superior actuation speed and improved efficiency when compared to conventional shape memory alloys. Currently, thin film technology is being developed intensively in order to pave the way for applications in micro- and nanotechnology. As an example, Kohl et al., recently proposed a novel actuation mechanism based on NiMnGa thin film technology, which makes use of both the ferromagnetic transition and the martensitic transformation allowing the realization of an almost perfect antagonism in a single component part. The implementation of the mechanism led to the award-winning development of an optical microscanner. Possible applications in nanotechnology arise, e.g., by combination of smart NiMnGa actuators with scanning probe technologies. The key aspect of Kohl's device is the fact that it employs electric heating for actuation, which requires a thermo-magneto-mechanical model for analysis. The research presented in this paper aims at the development of a model that simulates this particular material behavior. It is based on ideas originally developed for conventional shape memory alloy behavior, (Mueller & Achenbach, Achenbach, Seelecke, Seelecke & Mueller) and couples it with a simple expression for the nonlinear temperature- and position-dependent effective magnetic force. This early and strongly simplified version does not account for a full coupling between SMA behavior and ferromagnetism yet, and does not incorporate the hysteretic character of the magnetization phenomena either. It can however be used to explain the basic actuation mechanism and highlight the role of coupled magnetic and martensitic transformation with respect to the actuator performance. In particular will we be able to develop guidelines for desirable alloy compositions, such that the resulting transition temperatures guarantee optimized actuator performance.
Development of a novel polymeric fiber-optic magnetostrictive metal detector.
Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih
2010-01-01
The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.
Controlling Emergent Ferromagnetism at Complex Oxide Interfaces
NASA Astrophysics Data System (ADS)
Grutter, Alexander
The emergence of complex magnetic ground states at ABO3 perovskite heterostructure interfaces is among the most promising routes towards highly tunable nanoscale materials for spintronic device applications. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains a highly challenging materials physics problems. In particular, generating and tuning ferromagnetism localized at the interface of two non-ferromagnetic materials is of fundamental and technological interest. An ideal model system in which to study such effects is the CaRuO3/CaMnO3 interface, where the constituent materials are paramagnetic and antiferromagnetic in the bulk, respectively. Due to small fractional charge transfer to the CaMnO3 (0.07 e-/Mn) from the CaRuO3, the interfacial Mn ions are in a canted antiferromagnetic state. The delicate balance between antiferromagnetic superexchange and ferromagnetic double exchange results in a magnetic ground state which is extremely sensitive to perturbations. We exploit this sensitivity to achieve control of the magnetic interface, tipping the balance between ferromagnetic and antiferromagnetic interactions through octahedral connectivity modification. Such connectivity effects are typically tightly confined to interfaces, but by targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state. These results demonstrate the extreme sensitivity of the magnetic state to the magnitude of the charge transfer, suggesting the potential for direct electric field control. We achieve such electric field control through direct back gating of a CaRuO3/CaMnO3 bilayer. Thus, the CaRuO3/CaMnO3 system provides new insight into how charge transfer, interfacial symmetry, and electric fields may be used to control ferromagnetism at the atomic scale.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-08
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2 V -1 s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-01-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
NASA Astrophysics Data System (ADS)
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
3-D trajectory model for MDT using micro-spheres implanted within large blood vessels
NASA Astrophysics Data System (ADS)
Choomphon-anomakhun, Natthaphon; Natenapit, Mayuree
2016-09-01
Implant assisted magnetic drug targeting (IA-MDT) using ferromagnetic spherical targets implanted within large blood vessels and subjected to a uniform externally applied magnetic field (H0) has been investigated and reported for the first time. The capture areas (As) of magnetic drug carrier particles (MDCPs) were determined from the analysis of particle trajectories simulated from equations of motion. Then, the effects of various parameters, such as types of ferromagnetic materials in the targets and MDCPs, blood flow rates, mass fraction of the ferromagnetic material in the MDCPs, average radii of MDCPs (Rp) and the strength of H0 on the As were obtained. Furthermore, the effects of saturation magnetization of the ferromagnetic materials in the MDCPs and within the targets on the As were analyzed. After this, the suitable strengths of H0 and Rp for IA-MDT designs were reported. Dimensionless As, ranging from 2 to 7, was obtained with Rp ranging from 500 to 2500 nm, μ0H0 less than 0.8 T and a blood flow rate of 0.1 m s-1. The target-MDCP materials considered are iron-iron, iron-magnetite and SS409-magnetite, respectively.
Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures
Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas
2015-01-01
Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. PMID:25937693
Temperature limited heaters using phase transformation of ferromagnetic material
Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN
2009-10-06
Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.
NASA Astrophysics Data System (ADS)
Khalsa, Guru; Benedek, Nicole A.
2018-03-01
Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.
Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumari, Shweta; Kuanr, Bijoy K.
2018-05-01
M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR) response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd) and samarium (Sm), with cobalt (Co) as base, doped hexaferrite nanoparticles (NPs). X-ray diffractometry, vibrating sample magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.
X-ray Characterization of Oxide-based Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Idzerda, Yves
2008-05-01
Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.
Promising half-metallicity in ductile NbF3: a first-principles prediction.
Yang, Bo; Wang, Junru; Liu, Xiaobiao; Zhao, Mingwen
2018-02-14
Materials with half-metallicity are long desired in spintronics. Using first-principles calculations, we predicted that the already-synthesized NbF 3 crystal is a promising half-metal with a large exchange splitting and stable ferromagnetism. The mechanical stability, ductility and softness of the NbF 3 crystal were confirmed by its elastic constants and moduli. The Curie temperature (T C = 120 K) estimated from the Monte Carlo simulations based on the 3D Ising model is above the liquid nitrogen temperature (78 K). The ferromagnetism and half-metallicity can be preserved on the surfaces of NbF 3 . The NbOF 2 formed by substituting F with O atoms, however, has an antiferromagnetic ground state and a normal metallic band structure. This work opens an avenue for half-metallic materials and may find applications in spintronic devices.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu2Ga2B
NASA Astrophysics Data System (ADS)
Wulferding, D.; Kim, H.; Yang, I.; Jeong, J.; Barros, K.; Kato, Y.; Martin, I.; Ayala-Valenzuela, O. E.; Lee, M.; Choi, H. C.; Ronning, F.; Civale, L.; Baumbach, R. E.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.; Kim, Jeehoon
2017-04-01
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu2Ga2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu 2Ga 2B
Wulferding, Dirk; Kim, Hoon; Yang, Ilkyu; ...
2017-04-10
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu 2Ga 2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field asmore » well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.« less
Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material
NASA Astrophysics Data System (ADS)
Xing, Wenyu; Chen, Yangyang; Odenthal, Patrick M.; Zhang, Xiao; Yuan, Wei; Su, Tang; Song, Qi; Wang, Tianyu; Zhong, Jiangnan; Jia, Shuang; Xie, X. C.; Li, Yan; Han, Wei
2017-06-01
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nano-electronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majetich, Sara
In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less
Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions
NASA Astrophysics Data System (ADS)
Chakraborty, Subrata; Vijay, Amrendra
2017-06-01
We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.
Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation
NASA Astrophysics Data System (ADS)
Zhou, Shengqiang
2014-05-01
Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO2. This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism.
High speed magneto-resistive random access memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)
1992-01-01
A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.
Quantum Hall ferromagnets and transport properties of buckled Dirac materials
NASA Astrophysics Data System (ADS)
Luo, Wenchen; Chakraborty, Tapash
2015-10-01
We study the ground states and low-energy excitations of a generic Dirac material with spin-orbit coupling and a buckling structure in the presence of a magnetic field. The ground states can be classified into three types under different conditions: SU(2), easy-plane, and Ising quantum Hall ferromagnets. For the SU(2) and the easy-plane quantum Hall ferromagnets there are goldstone modes in the collective excitations, while all the modes are gapped in an Ising-type ground state. We compare the Ising quantum Hall ferromagnet with that of bilayer graphene and present the domain-wall solution at finite temperatures. We then specify the phase transitions and transport gaps in silicene in Landau levels 0 and 1. The phase diagram depends strongly on the magnetic field and the dielectric constant. We note that there exist triple points in the phase diagrams in Landau level N =1 that could be observed in experiments.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Ferromagnetic laser-welded Fe78Si13B9 and Co71.5Fe2.5SigMn2Mo1B14ils amorphous foils
NASA Astrophysics Data System (ADS)
Pawlak, Ryszard
1997-10-01
In the paper the results of attempts at laser welding of amorphous ferromagnetic foils on the iron and cobalt base have been presented. The usefulness of this technology for making small magnetic circuits of metallic glass has been demonstrated. The action of laser radiation leading to rendering the structure amorphous and the infraction of a laser beam with an amorphous material have been discussed. Finally, the results of pulsed welding of a pack of amorphous foils and some properties of the welds formed have been discussed.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
Non-ferromagnetic overburden casing
Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy
2010-09-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.
Lee, Kyeong-Dong; Kim, Dong-Jun; Yeon Lee, Hae; Kim, Seung-Hyun; Lee, Jong-Hyun; Lee, Kyung-Min; Jeong, Jong-Ryul; Lee, Ki-Suk; Song, Hyon-Seok; Sohn, Jeong-Woo; Shin, Sung-Chul; Park, Byong-Guk
2015-01-01
The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices. PMID:26020492
Lee, Kyeong-Dong; Kim, Dong-Jun; Yeon Lee, Hae; Kim, Seung-Hyun; Lee, Jong-Hyun; Lee, Kyung-Min; Jeong, Jong-Ryul; Lee, Ki-Suk; Song, Hyon-Seok; Sohn, Jeong-Woo; Shin, Sung-Chul; Park, Byong-Guk
2015-05-28
The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices.
Nanodevices for spintronics and methods of using same
Zaliznyak, Igor; Tsvelik, Alexei; Kharzeev, Dmitri
2013-02-19
Graphene magnet multilayers (GMMs) are employed to facilitate development of spintronic devices. The GMMs can include a sheet of monolayer (ML) or few-layer (FL) graphene in contact with a magnetic material, such as a ferromagnetic (FM) or an antiferromagnetic material. Electrode terminals can be disposed on the GMMs to be in electrical contact with the graphene. A magnetic field effect is induced in the graphene sheet based on an exchange magnetic field resulting from a magnetization of the magnetic material which is in contact with graphene. Electrical characteristics of the graphene can be manipulated based on the magnetization of the magnetic material in the GMM.
Magnetic Properties of Nanoparticle Matrix Composites
2015-06-02
recording materials with large value of Ku are SmCo5 with Ku = 11-20 x 10 7 erg/cm 3 for the minimum stable particle size of 2.45 nm, FePt with Ku...nanoparticles and the matrix compared with the bulk behavior of the soft and hard phases and ferromagnetic coupling. 15. SUBJECT TERMS...Magnetic materials , Ab initio methods, nanoparticles, Nanocomposites, Ferromagnetics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
Granular giant magnetoresistive materials and their ferromagnetic resonances
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-11-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of (Cu(50 A)/Fe(10 A)) x 50. We interpret the linewidth of these materials in as simple a manner as possible, as a 'powder pattern' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 C for 15 min is 3.8 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe with the magnetic field in the plane of the film.
Ferromagnetic-resonance studies of granular giant-magnetoresistive materials
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-07-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.
Structural changes concurrent with ferromagnetic transition
NASA Astrophysics Data System (ADS)
Yang, Sen; Bao, Hui-Xin; Zhou, Chao; Wang, Yu; Ren, Xiao-Bing; Song, Xiao-Ping; Yoshitaka, Matsushita; Yoshio, Katsuya; Masahiko, Tanaka; Keisuke, Kobayashi
2013-04-01
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understanding the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
Ultrafast Magnetoelectronic Devices
2012-03-22
Ferromagnetic Resonance Study of Polycrystalline FeV Alloy Films: Ferromagnetic resonance was used to study the magnetic properties and magnetization...magnetic materials, such as pure iron (Fe) and permalloy ( NiFe ) thin films. A broadband FMR setup has been used to investigate the origin of the
Reluctance apparatus for flywheel energy storage
Hull, John R.
2000-01-01
A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.
Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11
NASA Astrophysics Data System (ADS)
Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.
2002-04-01
``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem
2016-07-13
Here, the temperature-pressure phase diagram of the ferromagnet LaCrGe 3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGemore » 3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.« less
Phonon properties of iron-based superconductors
NASA Astrophysics Data System (ADS)
Gupta, Yuhit; Goyal, Megha; Sinha, M. M.
2018-05-01
Earlier, it was thought there is antagonist relationship between superconductivity and ferromagnetic materials, But, a discovery of iron-based superconductors have removed this misconception. It gives an idea to make a review on the superconductivity properties of different materials. The new iron-based superconductors' present symmetry breaking competing phases in the form of tetragonal to orthorhombic transition. It consists of mainly four families [1111], [111], [122], and [11] type. Superconductivity of iron-based superconductors mainly related with the phonons and there is an excellent relation between phonons and superconductivity. Phonons properties are helpful in predicting the superconducting properties of materials. Phonon properties of iron-based superconductors in various phases are summarized in this study. We are presenting the review of phonon properties of iron-based superconductors.
Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO3 Thin Films.
Varga, Tamas; Droubay, Timothy C; Kovarik, Libor; Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Hu, Dehong; Kim, Bumsoo; Jeon, Seokwoo; Hong, Seungbum; Li, Yulan; Chambers, Scott A
2017-07-05
Polarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO 3 -type compounds, MTiO 3 (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO 3 , then in thin-film NiTiO 3 , the coupling of the two order parameters has not been confirmed. Here, we report the stabilization of polar, ferromagnetic NiTiO 3 by oxide epitaxy on a LiNbO 3 substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulations using the phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and WFM in MTiO 3 transition metal titanates crystallizing in the LiNbO 3 structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic. Multiferroic NiTiO 3 has potential applications in spintronics where ferroic switching is used, such as new four-stage memories and electromagnetic switches.
Theoretical study on magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules
NASA Astrophysics Data System (ADS)
Ju, Lin; Xu, Tongshuai; Zhang, Yongjia; Sun, Li
2017-10-01
The magnetism induced by H vacancy in isolated Alq3 and Gaq3 molecules has been studied based on density functional theory. The isolated stoichiometric Alq3 and Gaq3 molecules are non-magnetic. With an H vacancy, both Alq3 and Gaq3 molecules could show magnetism, which are mainly due to the polarization of the C 2p electrons and the magnetic moments are mainly distributed at most nearby C atoms of H vacancies. This is because the unpaired electron on the C atom appears, when the H atom nearby is removed. Six cases of the H vacancy introduced in the Alq3 and Gaq3 molecules are considered, respectively. By comparing the relative defect formation energy, the V H3 vacancy is most likely to appear in the two kinds of molecules. In addition, for the ground state configuration of isolated Alq3 and Gaq3 molecules with two H vacancies, the energy of the ferromagnetic state is lower than that of the antiferromagnetic state, which means that the ferromagnetic state is stable. The ferromagnetic mechanism can be explained by the Heisenberg direct exchange interaction between two the polarized C atoms. Our work opens a new way to synthesize organic magnetic materials and perfects the theory of organic ferromagnetism by introducing the d 0 ferromagnetism.
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.; ...
2016-05-09
The material USb 2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX 2) series. It is antiferromagnetic with a relatively high transition temperature T N = 204K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb 2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX 2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the T N in USb 2 ismore » enhanced, moving towards that of its smaller sibling UAs 2. But, long before reaching a T N as high as UAs 2, the antiferromagnetism of USb 2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. At last with pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.
The material USb 2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX 2) series. It is antiferromagnetic with a relatively high transition temperature T N = 204K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb 2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX 2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the T N in USb 2 ismore » enhanced, moving towards that of its smaller sibling UAs 2. But, long before reaching a T N as high as UAs 2, the antiferromagnetism of USb 2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. At last with pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.« less
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-01-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496
Spin Funneling for Enhanced Spin Injection into Ferromagnets
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birge, Norman
Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
Exchange coupling in the complex magnetic multilayers
NASA Astrophysics Data System (ADS)
Uzdin, V. M.; Adamowicz, L.; Kocinski, P.
1996-06-01
Exchange coupling in the complex magnetic sandwich structures containing nonmagnetic (NM) and ferromagnetic (FM) layers composed of two different ferromagnetic metals has been studied within the framework of the quantum wells model. The strength of the exchange coupling in the multilayer structure with thin layers of a second ferromagnetic material inserted at the interface of FM/NM/FM sandwich was calculated at various physical situations. In one case the exponential dependence of the exchange coupling on the thickness of the interface ferromagnetic layer has been obtained in striking resemblance to the Parkin experimental results for magnetoresistance (S. S. P. Parkin, Phys. Rev. Lett., 71 (1993) 1641).
Method for the detection of a magnetic field utilizing a magnetic vortex
Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL
2010-04-13
The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.
Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor
Scott, T.C.
1990-07-17
Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.
Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor
Scott, Timothy C.
1990-01-01
Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.
Magnetic properties of permalloy-coated organic tubules
NASA Astrophysics Data System (ADS)
Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S.
1991-11-01
An initial investigation is presented of the ferromagnetic properties of a novel type of magnetic composite, viz., permalloy-coated submicron diameter hollow cylinders or tubules. The tubules form spontaneously from an organic material, a diacetylenic phosopholipid, and were used as templates on which the ferromagnetic material was deposited by electroless deposition. The permalloy-coated tubules were dispersed in an epoxy matrix to measure the magnetization and ferromagnetic resonance (FMR) properties of individual tubules. The nature of the magnetic anisotropy and the FMR spectra observed confirmed that the tubules are well aligned by a magnetic field during the epoxy curing. The FMR spectra are interpreted in terms of a powder pattern distribution of thin-film spectra consistent with the large diameter-to-thickness ratio.
Robust ferromagnetism carried by antiferromagnetic domain walls
NASA Astrophysics Data System (ADS)
Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji
2017-02-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.
Wu, Wei
2014-07-23
The magnetic properties of a theoretically designed molecular chain structure CuCoPc2, in which copper-phthalocyanine (CuPc) and cobalt-phthalocyanine (CoPc) alternate, have been investigated across a range of chain structures. The computed exchange interaction for the α-phase CuCoPc2 is ∼ 5 K (ferromagnetic), in strong contrast to the anti-ferromagnetic interaction recently observed in CuPc and CoPc. The computed exchange interactions are strongly dependent on the stacking angle but weakly on the sliding angle, and peak at 20 K (ferromagnetic). These ferromagnetic interactions are expected to arise from direct exchange with the strong suppression of super-exchange interaction. These first-principles calculations show that π-conjugated molecules, such as phthalocyanine, could be used as building blocks for the design of magnetic materials. This therefore extends the concept of quantum metamaterials further into magnetism. The resulting new magnetic materials could find applications in the studies such as organic spintronics.
NASA Astrophysics Data System (ADS)
Maksymov, Ivan S.; Kostylev, Mikhail
2015-05-01
This paper presents a comprehensive critical overview of fundamental and practical aspects of the modern stripline broadband ferromagnetic resonance (BFMR) spectroscopy largely employed for the characterisation of magnetic low-dimensional systems, such as thin ferro- and ferromagnetic, multiferroic and half-metallic films, multi-layers and nanostructures. These planar materials form the platform of the nascent fields of magnonics and spintronics. Experimental and theoretical results of research on these materials are summarised, along with systematic description of various phenomena associated with the peculiarities of the stripline BFMR, such as the geometry of stripline transducers, the orientation of the static magnetic field, the presence of microwave eddy currents, and the impacts of non-magnetic layers, interfaces and surfaces in the samples. Results from 240 articles, textbooks and technical reports are presented and many practical examples are discussed in detail. This review will be of interest to both general physical audience and specialists conducting research on various aspects of magnetisation dynamics and nanomagnetism.
Robust ferromagnetism carried by antiferromagnetic domain walls
Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji
2017-01-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565
Dynamic Response of Exchange Bias in Graphene Nanoribbons
2012-01-01
in establishing the GNRs-based spintronic devices. Keywords: Dynamic magnetic properties , exchange bias, training effect, field sweep rate and...transport properties by means of various applied conditions 6, 7 . The discovery 8 of weak ferromagnetism in polymerized C60 has invoked a special...attention to investigate the magnetic properties of carbon- based materials. Graphene is an allotrope of carbon and irradiation of graphene with ions
Strong ferromagnetic exchange interaction under ambient pressure in BaFe 2 S 3
Wang, Meng; Jin, S. J.; Yi, Ming; ...
2017-02-03
Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe 2 S 3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015); T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (SJ R = - 71 ± 4 meV) along the rung direction, an antiferromagnetic SJ L = 49 ± 3more » meV along the leg direction, and a ferromagnetic SJ 2 = - 15 ± 2 meV along the diagonal direction. Finally, our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.« less
Spatially Resolved Large Magnetization in Ultrathin BiFeO 3
Guo, Er-Jia; Petrie, Jonathan R.; Roldan, Manuel A.; ...
2017-06-19
Complex interactions across the interface in heterostructures can generate novel functionalities not present in the constituent materials. Here, we create a unique ferromagnetic ground state out of normally antiferromagnetic BiFeO 3 (BFO) by interleaving it with layers of ferromagnetic La 0.7Sr 0.3MnO 3. Intriguingly, we found that the magnetization of BFO was aligned opposite to that of the manganite layers. Based on polarized neutron reflectometry (PNR) depth profiling of custom-designed layers, we obtained a net magnetization in the BFO layers of 275 kA/m (~1.83 B/Fe) at 10 K, which is two times larger than the previously reported values. Additionally, ferromagneticmore » order in the BFO persists up to 200 K, which is much higher than previously seen in BFO heterostructures. Our unprecedented understanding of the evolution of magnetism and functional coupling across the interface between antiferromagnetic and ferromagnetic layers provides a blueprint towards advanced spintronic devices.« less
Strain-induced high-temperature perovskite ferromagnetic insulator.
Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin
2018-03-20
Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.
Strain-induced high-temperature perovskite ferromagnetic insulator
Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J.; Knize, Randy; Lu, Yalin
2018-01-01
Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain–induced ferromagnetism which does not exist in bulk LaCoO3. The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. PMID:29507211
SQUIDs: microscopes and nondestructive evaluation
NASA Astrophysics Data System (ADS)
Mück, Michael
2005-03-01
SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.
High pressure die casting of Fe-based metallic glass.
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-11
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-01-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping
2017-11-08
Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface
NASA Astrophysics Data System (ADS)
Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng
Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.
Magnetic and thermodynamic properties of the Pr-based ferromagnet PrGe2-δ
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Morioka, Naoya; Hiraoka, Koichi
2018-03-01
We investigated the magnetization, M, and specific heat, C, of ThSi2-type PrGe2-δ. A polycrystalline sample of PrGe2-δ was prepared by arc-melting. Magnetization divided by magnetic field, M / B, increased sharply and C showed a clear jump at the Curie temperature, TC, of 14.6 K; these results indicate that PrGe2-δ ordered ferromagnetically. The magnetic entropy at TC reached R ln 3, indicating a quasi-triplet crystalline electric field (CEF) ground state. The maximum value of magnetic entropy change was 11.5 J/K kg with a field change of 7 T, which is comparable to those of other right rare-earth based magnetocaloric materials. This large magnetic entropy change was attributed to the quasi-triplet ground state of the CEF.
Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong
2016-09-14
Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.
NASA Technical Reports Server (NTRS)
Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)
2012-01-01
A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.
Carbon Nanotubes Filled with Ferromagnetic Materials
Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
2010-01-01
Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents
NASA Astrophysics Data System (ADS)
Jeon, Kun-Rok; Ciccarelli, Chiara; Ferguson, Andrew J.; Kurebayashi, Hidekazu; Cohen, Lesley F.; Montiel, Xavier; Eschrig, Matthias; Robinson, Jason W. A.; Blamire, Mark G.
2018-06-01
Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.
Linking magnetite in the abdomen of honey bees to a magnetoreceptive function
Lambinet, Veronika; Hayden, Michael E.; Reigl, Katharina; Gomis, Surath
2017-01-01
Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. PMID:28330921
Linking magnetite in the abdomen of honey bees to a magnetoreceptive function.
Lambinet, Veronika; Hayden, Michael E; Reigl, Katharina; Gomis, Surath; Gries, Gerhard
2017-03-29
Previous studies of magnetoreception in honey bees, Apis mellifera , focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. © 2017 The Authors.
Iron abundance in the moon from magnetometer measurements
NASA Technical Reports Server (NTRS)
Parkin, C. W.; Dyal, P.; Daily, W. D.
1973-01-01
Apollo 12 and 15 lunar surface magnetometer data with simultaneous lunar orbiting Explorer 35 data are used to plot hysteresis curves for the whole moon. From these curves a whole-moon permeability mu = 1.029 + 0.024 or - 0.019 is calculated. This result implies that the moon is not composed entirely of paramagnetic material, but that ferromagnetic material such as free iron exists in sufficient amounts to dominate the bulk lunar susceptibility. From the magnetic data the ferromagnetic free iron abundance is calculated. Then for assumed compositional models of the moon the additional paramagnetic iron is determined, yielding total lunar iron content. The calculated abundances are as follows: ferromagnetic free iron = 5 + or - 4 wt. percent, and total iron in the moon = 9 + or - 4 wt. percent.
Iron abundance in the moon from magnetometer measurements
NASA Technical Reports Server (NTRS)
Parkin, C. W.; Dyal, P.; Daily, W. D.
1973-01-01
Apollo 12 and 15 lunar surface magnetometer data with simultaneous lunar orbiting Explorer 35 data are used to plot hysteresis curves for the whole moon. From these curves a whole-moon permeability of 1.029 (+0.024 or -0.019) is calculated. This result implies that the moon is not composed entirely of paramagnetic material, but that ferromagnetic material such as free iron exists in sufficient amounts to dominate the bulk lunar susceptibility. From the magnetic data the ferromagnetic free iron abundance is calculated. Then for assumed compositional models of the moon the additional paramagnetic iron is determined, yielding total lunar iron content. The calculated abundances are as follows: ferromagnetic free iron, 5 plus or minus 4 wt %; total iron in the moon, 9 plus or minus 4 wt %.
Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Passive Superconducting Shielding: Experimental Results and Computer Models
NASA Technical Reports Server (NTRS)
Warner, B. A.; Kamiya, K.
2003-01-01
Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.
Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate
Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.
2015-01-01
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru
2014-09-21
Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundarymore » conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.« less
Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics
NASA Astrophysics Data System (ADS)
Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.
2004-02-01
A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.
Comprehensive process for the recovery of value and critical materials from electronic waste
Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; ...
2016-04-08
The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements (RE). Here, we present the development of a process that enables efficient recycling of metals from scrap mobile electronics. An electro recycling (ER) process, based on the regeneration of Fe 3+ as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separatemore » extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Furthermore, recovery and extraction efficiencies ca. 90 % were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (H 2SO 4, and HCl). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. We developed a comprehensive flow sheet to process electronic waste to value products.« less
Magnetic Stirling cycles - A new application for magnetic materials
NASA Technical Reports Server (NTRS)
Brown, G. V.
1977-01-01
There is the prospect of a fundamental new application for magnetic materials as the working substance in thermodynamic cycles. Recuperative cycles which use a rare-earth ferromagnetic material near its Curie point in the field of a superconducting magnet appear feasible for applications from below 20 K to above room temperature. The elements of the cycle, advanced in an earlier paper, are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. Results are presented for J = 7/2 and g = 2. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
Rapid characterizing of ferromagnetic materials using spin rectification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Wei; Wang, Yutian
2014-12-29
Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constantsmore » of the Fe crystals but also the principle of spin rectification in this method.« less
Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu
2018-05-02
High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.
Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays
NASA Astrophysics Data System (ADS)
Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.
2011-03-01
Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.
Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays
NASA Astrophysics Data System (ADS)
Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.
2011-02-01
The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.
Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers
NASA Astrophysics Data System (ADS)
Hwang, Tae-Jong; Kim, Dong-Ho
2017-09-01
We report on the proximity effect in superconductor/ferromagnet bilayers made of a new combination of NbN for the superconductor and FeN for the ferromagnet. The bilayers were prepared by reactive magnetron sputtering on a thermally oxidized Si substrate. For a constant NbN layer thickness, the superconducting transition temperatures of the bilayers exhibited a nonmonotonic dependence on the thickness of the FeN layer. The results were interpreted in terms of the proximity effect between the superconductor and ferromagnetic materials.
Ferromagnetic Josephson Junctions for Cryogenic Memory
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.
2015-03-01
Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.
2018-06-01
In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.
Magnons in a honeycomb ferromagnet
NASA Astrophysics Data System (ADS)
Banerjee, Saikat
The original discovery of the Dirac electron dispersion in graphene led naturally to the question of Dirac cone stability with respect to interactions, and the Coulomb interaction between electrons was shown to induce a logarithmic renormalization of the Dirac dispersion. With the rapid expansion of the list of Dirac fermion compounds, the concept of bosonic Dirac materials has emerged. At the single particle level, these materials closely resemble the fermionic counterparts. However, the changed particle statistics affects the stability of Dirac cones differently. Here we study the effect of interactions focusing on the honeycomb ferromagnet - where the quasi-particles are magnetic spin waves (magnons). We demonstrate that magnon-magnon interactions lead to a significant renormalization of the bare band structure. We also address the question of the edge and surface states for a finite system. We applied these results to ferromagnetic CrBr3, where the Cr3+ atoms are arranged in weakly coupled honeycomb layers. Our theory qualitatively accounts for the unexplained anomalies in neutron scattering data from 40 years ago for CrBr3 and hereby expand the theory of ferromagnets beyond the standard Dyson theory.
Geometrical dependence of spin current absorption into a ferromagnetic nanodot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp
We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot.more » This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.« less
Realizing Haldane model in Fe-based honeycomb ferromagnetic insulators
NASA Astrophysics Data System (ADS)
Kim, Heung-Sik; Kee, Hae-Young
2017-12-01
The topological Haldane model on a honeycomb lattice is a prototype of systems hosting topological phases of matter without external fields. It is the simplest model exhibiting the quantum Hall effect without Landau levels, which motivated theoretical and experimental explorations of topological insulators and superconductors. Despite its simplicity, its realization in condensed matter systems has been elusive due to a seemingly difficult condition of spinless fermions with sublattice-dependent magnetic flux terms. While there have been theoretical proposals including elaborate atomic-scale engineering, identifying candidate topological Haldane model materials has not been successful, and the first experimental realization was recently made in ultracold atoms. Here, we suggest that a series of Fe-based honeycomb ferromagnetic insulators, AFe2(PO4)2 (A=Ba, Cs, K, La) possess Chern bands described by the topological Haldane model. How to detect the quantum anomalous Hall effect is also discussed.
High-temperature ferromagnetism in new n-type Fe-doped ferromagnetic semiconductor (In,Fe)Sb
NASA Astrophysics Data System (ADS)
Thanh Tu, Nguyen; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki
2018-06-01
Over the past two decades, intensive studies on various ferromagnetic semiconductor (FMS) materials have failed to realize reliable FMSs that have a high Curie temperature (T C > 300 K), good compatibility with semiconductor electronics, and characteristics superior to those of their nonmagnetic host semiconductors. Here, we demonstrate a new n-type Fe-doped narrow-gap III–V FMS, (In1‑ x ,Fe x )Sb. Its T C is unexpectedly high, reaching ∼335 K at a modest Fe concentration (x) of 16%. The anomalous Hall effect and magnetic circular dichroism (MCD) spectroscopy indicate that the high-temperature ferromagnetism in (In,Fe)Sb thin films is intrinsic and originates from the zinc-blende (In,Fe)Sb alloy semiconductor.
NASA Astrophysics Data System (ADS)
Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan
A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com
Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic interactions with cluster and spin-glass type growth. - Highlights: • Lattice defects/vacancies attributed high T{sub c} –ferromagnetism. • Transition metal and rare earth ions deform the wurtzite ZnO lattice to induce defects. • Oxygen vacancies are more favorable than Zn with Ni, Cu, Ce into ZnO. • Defects assisted long-range ferromagnetism of doped ZnO include cluster and spin-glass growth.« less
NASA Astrophysics Data System (ADS)
Yamada, S.; Sagayama, H.; Sugimoto, K.; Arima, T.
2018-03-01
We have succeeded in growing large high-quality single crystals of double-perovskite NdBaMn2O6 with c-axis aligned. Curie-Weiss paramagnetism and metallic conduction are observed above 290 K (TMI ). The magnetic susceptibility suddenly drops at TMI accompanied by a metal-insulator transition. Pervious studies using polycrystalline samples proposed that this material undergoes a ferromagnetic phase transition near 300K, and that the magnetic anomaly at TMI should be ascribed to layered antiferromagnetic phase transition. However, single-crystalline samples do not show any anomaly that indicates the ferromagnetic phase transition above TMI . We assign the onset of magnetic anisotropy at 235 K as antiferromagnetic transition temperature TN . Though the magnetization just above TMI shows the ferromagnetic-like magnetic-field dependence, the magnetization does not saturate under 70kOe at 300K. The magnetization behavior implies ferromagnetic fluctuation in the paramagnetic phase. The ferromagnetic fluctuation are also observed just below TMI . Because a metamagnetic transition is observed at a higher magnetic field, the ferromagnetic fluctuation competes with antiferromagnetic fluctuation in this temperature range.
Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D
2015-01-13
Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.
Temperature-dependent liquid metal flowrate control device
Carlson, Roger D.
1978-01-01
A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.
Spin transport across antiferromagnets induced by the spin Seebeck effect
NASA Astrophysics Data System (ADS)
Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen; Jaiswal, Samridh; Qiu, Zhiyong; Saitoh, Eiji; Nowak, Ulrich; Kläui, Mathias
2018-04-01
For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 |Ir20Mn80|Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.
Emergent ferromagnetism and T -linear scattering in USb 2 at high pressure
NASA Astrophysics Data System (ADS)
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.; Vohra, Yogesh K.; Butch, Nicholas P.
2016-05-01
The material USb2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX2) series. It is antiferromagnetic with a relatively high transition temperature TN=204 K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the TN in USb2 is enhanced, moving towards that of its smaller sibling UAs2. But, long before reaching a TN as high as UAs2, the antiferromagnetism of USb2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. With pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.
Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandrakumar, K.
2016-04-01
The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol-gel, microwave assisted sol-gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6-12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M-H curve of all the samples. But the sol-gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol-gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.
SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band
NASA Astrophysics Data System (ADS)
Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Mike; Yan, Haixue
2018-04-01
Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75-170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies are found at the surface on annealing, which are reflected in the bulk sample by a small change in the unit cell volume. The significant decrease in the dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through the annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.
NASA Astrophysics Data System (ADS)
Singh, S. C.; Kotnala, R. K.; Gopal, R.
2015-08-01
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.
2015-08-14
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less
The Kondo effect in ferromagnetic atomic contacts.
Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos
2009-04-30
Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.
Ferroelectricity with Ferromagnetic Moment in Orthoferrites
NASA Astrophysics Data System (ADS)
Tokunaga, Yusuke
2010-03-01
Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).
From nanoelectronics to nano-spintronics.
Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming
2011-01-01
Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.
NASA Astrophysics Data System (ADS)
Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.
2018-05-01
Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.
NASA Astrophysics Data System (ADS)
Jones, S. K.; Winter, J. G.
2001-02-01
It is known that significant heating can be generated by magnetic hysteresis effects in small ferromagnetic particles exposed to a rapidly alternating magnetic field. If such particles can be made to infiltrate the vascular bed surrounding a tumour by intravascular infusion then it may be possible to generate sufficient heating to destroy the tumour by hyperthermia. One of the constraints on such a technique is the limited amount of magnetic material that can be delivered to a tumour via the intravascular route and the consequent heating that can be induced by this material. Here, we report on a series of experiments in which doses of microspheres containing different amounts of ferromagnetic material were infused into rabbit kidneys via the renal artery with the aim of testing whether adequate tissue heating could be achieved using realistic concentrations of the embolised material. Heating rates were measured for each infused quantity under similar conditions with the animal alive and dead to examine the role of blood flow in the heating process. The results show that tissue temperatures above the therapeutic threshold of 42 °C can be readily achieved using this method with clinically relevant concentrations of microspheres in living tissue.
NASA Astrophysics Data System (ADS)
Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing
2018-04-01
Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.
Ultrafast Light Switching of Ferromagnetism in EuSe
NASA Astrophysics Data System (ADS)
Henriques, A. B.; Gratens, X.; Usachev, P. A.; Chitta, V. A.; Springholz, G.
2018-05-01
We demonstrate that light resonant with the band gap forces the antiferromagnetic semiconductor EuSe to enter ferromagnetic alignment in the picosecond timescale. A photon generates an electron-hole pair, whose electron forms a supergiant spin polaron of magnetic moment of nearly 6000 Bohr magnetons. By increasing the light intensity, the whole of the illuminated region can be fully magnetized. The key to the novel large photoinduced magnetization mechanism is the huge enhancement of the magnetic susceptibility when both antiferromagnetic and ferromagnetic interactions are present in the material and are of nearly equal magnitude, as is the case in EuSe.
Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...
2017-06-26
In this paper, soft x-ray photoemission electron microscopy with an in situ magnetic field has been used to study the relationship between ferromagnetic and antiferromagnetic spin alignment and the switching/reversal field of epitaxial micromagnetic structures. We investigated a model system consisting of a bilayer of ferromagnetic La 0.7Sr 0.3MnO 3 and antiferromagnetic LaFeO 3 where the spin axes in each layer can be driven from mutually perpendicular (spin-flop) to parallel alignment by varying the temperature between 30 and 300 K. Results show that not only does this spin alignment noticeably influence the bilayer micromagnet coercivity compared to La 0.7Sr 0.3MnOmore » 3 single-layer micromagnets, but the coercivity within this materials system can be tuned over a wide range by careful balance of material properties.« less
NASA Astrophysics Data System (ADS)
Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; Chopdekar, Rajesh V.; Scholl, Andreas; Retterer, Scott T.; Grepstad, Jostein K.; Takamura, Yayoi
2017-06-01
Soft x-ray photoemission electron microscopy with an in situ magnetic field has been used to study the relationship between ferromagnetic and antiferromagnetic spin alignment and the switching/reversal field of epitaxial micromagnetic structures. We investigated a model system consisting of a bilayer of ferromagnetic L a0.7S r0.3Mn O3 and antiferromagnetic LaFe O3 where the spin axes in each layer can be driven from mutually perpendicular (spin-flop) to parallel alignment by varying the temperature between 30 and 300 K. Results show that not only does this spin alignment noticeably influence the bilayer micromagnet coercivity compared to L a0.7S r0.3Mn O3 single-layer micromagnets, but the coercivity within this materials system can be tuned over a wide range by careful balance of material properties.
NASA Astrophysics Data System (ADS)
Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold
2018-04-01
We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.
NASA Astrophysics Data System (ADS)
Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik
2016-12-01
Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the <100> directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.
Stability of the Nagaoka-type ferromagnetic state in a t2 g orbital system on a cubic lattice
NASA Astrophysics Data System (ADS)
Bobrow, Eric; Li, Yi
2018-04-01
We generalize the previous exact results of the Nagaoka-type itinerant ferromagnetic states in a three-dimensional t2 g orbital system to allow for multiple holes. The system is a simple cubic lattice with each site possessing dx y,dy z, and dx z orbitals, which allow two-dimensional hopping within each orbital plane. In the strong-coupling limit of U →∞ , the orbital-generalized Nagaoka ferromagnetic states are proved to be degenerate with the ground state in the thermodynamic limit when the hole number per orbital layer scales slower than L1/2. This result is valid for arbitrary values of the ferromagnetic Hund's coupling J >0 and interorbital repulsion V ≥0 . The stability of the Nagaoka-type state at finite electron densities with respect to a single spin flip is investigated. These results provide helpful guidance for studying the mechanism of itinerant ferromagnetism for the t2 g orbital materials.
Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers
Stamopoulos, D.; Aristomenopoulou, E.
2015-01-01
Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543
ERIC Educational Resources Information Center
Laumann, Daniel
2017-01-01
Magnetism and its various applications are essential for our daily life and for many technological developments. The term "magnetism" is almost always used as a synonym for ferromagnetism. However, the magnetic properties of the elements of the periodic table indicate that the vast majority of elements are not ferromagnetic, but rather,…
Method for making field-structured memory materials
Martin, James E.; Anderson, Robert A.; Tigges, Chris P.
2002-01-01
A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.
Exotic ferromagnetism in the two-dimensional quantum material C3N
NASA Astrophysics Data System (ADS)
Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong
2018-04-01
The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.
NASA Astrophysics Data System (ADS)
Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi
2016-02-01
Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.
Dirac Magnons in Honeycomb Ferromagnets
NASA Astrophysics Data System (ADS)
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.
First principles study on Fe based ferromagnetic quaternary Heusler alloys
NASA Astrophysics Data System (ADS)
Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.
2017-11-01
The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Pan, Jie; Lany, Stephan; Qi, Yue
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. Additionally, we discuss challenges and opportunities to boost the power of computation formore » the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.« less
Methods for the fabrication of thermally stable magnetic tunnel junctions
Chang, Y Austin [Middleton, WI; Yang, Jianhua J [Madison, WI; Ladwig, Peter F [Hutchinson, MN
2009-08-25
Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.
Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.
Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A
2003-03-01
Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2006-03-01
Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661 (2003). [2] S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nature Mater. 3, 862 (2004). [3] C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang and S.S.P. Parkin, Phys. Rev. Lett. 94, 247203 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less
Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salafranca Laforga, Juan I; Salafranca, Juan; Biskup, Nevenko
2014-01-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies
NASA Astrophysics Data System (ADS)
Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria
2014-02-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu
2014-01-01
We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.
Method For Detecting The Presence Of A Ferromagnetic Object
Roybal, Lyle G.
2000-11-21
A method for detecting a presence or an absence of a ferromagnetic object within a sensing area may comprise the steps of sensing, during a sample time, a magnetic field adjacent the sensing area; producing surveillance data representative of the sensed magnetic field; determining an absolute value difference between a maximum datum and a minimum datum comprising the surveillance data; and determining whether the absolute value difference has a positive or negative sign. The absolute value difference and the corresponding positive or negative sign thereof forms a representative surveillance datum that is indicative of the presence or absence in the sensing area of the ferromagnetic material.
NASA Technical Reports Server (NTRS)
Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)
1992-01-01
The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.
Materials Development and Spin Transport Study of Magnetic Insulator Based Heterostructures
NASA Astrophysics Data System (ADS)
Tang, Chi
The subfield of magnetic insulator (MI) based spintronics is playing a substantial role in modern solid state physics research. Spin current in the MI is propagated in spin wave with a much longer decay length than spin-polarized carriers in conducting ferromagnet. In the MI-based hetereostructures, the adjacent non-magnetic materials can be magnetized in proximity of MI. Therefore, it is a promising system to study exotic transport phenomena such as quantum Anomalous Hall effect in topological insulator and graphene. Rare-earth Iron garnet (ReIG), a class of magnetic insulators with large electronic bandgap and high Curie temperature, stands out among various magnetic insulator materials and have attracted a great deal of attention in recent magnetic insulator based spintronics research. The first chapter of this dissertation gives a brief introduction to the spintronics research by introducing some essential concepts in the spintronics field and the most recent spin transport phenomena. The second chapter of this dissertation summarizes my work in the materials development of ReIG ferrimagnetic insulators, including exquisite control of high quality ultra-flat yttrium iron garnet (YIG) thin films with extremely low magnetic damping and engineering of strain induced robust perpendicular magnetic anisotropy in thulium iron garnet (TIG) and Bi-doped YIG films. The last chapter of this dissertation shows a systematic study in various ReIG based heterostructures, mainly divided into groups: ReIG (YIG & TIG)/heavy metal bilayers (Pd & Pt) and ReIG (YIG & TIG)/Dirac systems (graphene & topological insulator). The magneto-transport study disentangles the contribution from a spin current origin and proximity induced magnetism. Furthermore, the demonstration in the proximity coupling induced high-temperature ferromagnetic phase in low-dimensional Dirac systems, i.e. graphene and topological insulator surface states, provides new possibilities in the future spintronics applications. The modulation on the spin dynamics of magnetic insulator layer by topological insulator surface states is investigated at last, further confirming the superb properties of such magnetic insulator based spintronics systems.
Topological Magnon Bands in a Kagome Lattice Ferromagnet.
Chisnell, R; Helton, J S; Freedman, D E; Singh, D K; Bewley, R I; Nocera, D G; Lee, Y S
2015-10-02
There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator--a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes.
Modeling the behaviour of shape memory materials under large deformations
NASA Astrophysics Data System (ADS)
Rogovoy, A. A.; Stolbova, O. S.
2017-06-01
In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Chunhui; Wang, Hailong; Hammel, P. Chris
2015-05-07
Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.
Wireless power transfer exploring spin rectification and inverse spin Hall effects
NASA Astrophysics Data System (ADS)
Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.
2018-04-01
Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.
NASA Astrophysics Data System (ADS)
Salmani, E.; Laghrissi, A.; Laamouri, R.; Benchafia, E.; Ez-Zahraouy, H.; Benyoussef, A.
2017-02-01
MgH2: TM (TM: V, Cr, Mn, Fe, Co, Ni) based dilute magnetic semiconductors (DMS) are investigated using first principle calculations. Our results show that the ferromagnetic state is stable when TM introduces magnetic moments as well as intrinsic carriers in TM: Co, V, Cr, Ti; Mg0.95TM0.05H2. Some of the DMS Ferro magnets under study exhibit a half-metallic behavior, which make them suitable for spintronic applications. The double exchange is shown to be the underlying mechanism responsible for the magnetism of such materials. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with Curie temperatures within the ambient conditions.
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially
NASA Astrophysics Data System (ADS)
Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar
2017-01-01
Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.
NASA Astrophysics Data System (ADS)
Kioseoglou, George; Hanbicki, Aubrey T.; Sullivan, James M.; van't Erve, Olaf M. J.; Li, Connie H.; Erwin, Steven C.; Mallory, Robert; Yasar, Mesut; Petrou, Athos; Jonker, Berend T.
2004-11-01
The use of carrier spin in semiconductors is a promising route towards new device functionality and performance. Ferromagnetic semiconductors (FMSs) are promising materials in this effort. An n-type FMS that can be epitaxially grown on a common device substrate is especially attractive. Here, we report electrical injection of spin-polarized electrons from an n-type FMS, CdCr2Se4, into an AlGaAs/GaAs-based light-emitting diode structure. An analysis of the electroluminescence polarization based on quantum selection rules provides a direct measure of the sign and magnitude of the injected electron spin polarization. The sign reflects minority rather than majority spin injection, consistent with our density-functional-theory calculations of the CdCr2Se4 conduction-band edge. This approach confirms the exchange-split band structure and spin-polarized carrier population of an FMS, and demonstrates a litmus test for these FMS hallmarks that discriminates against spurious contributions from magnetic precipitates.
Theory of Magnetic Bipolar Transistors
NASA Astrophysics Data System (ADS)
Zutic, Igor; Fabian, Jaroslav; Das Sarma, S.
2003-03-01
We introduce the concept of a magnetic bipolar transistor (MBT) (J. Fabian, I. Zutic, S. Das Sarma, cond-mat/0211639.), which can be realized using already available materials. The transistor has at least one magnetic region (emitter, base, or collector) characterized by spin-splitting of the carrier bands. In addition, nonequilibrium (source) spin in MBTs can be induced by external means (electrically or optically). The theory of ideal MBTs is developed and discussed in the forward active regime where the transistors can amplify signals. It is shown that source spin can be injected from the emitter to the collector. It is predicted that electrical current gain (amplification) can be controlled effectively by magnetic field and source spin. If a base is a ferromagnetic semiconductor we suggest several methods for using spin-polarized bipolar transport (I. Zutic, J. Fabian, S. Das Sarma, Phys. Rev. Lett. f 88, 066603 (2002); J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B f 66, 165301 (2002).) to manipulate semiconductor ferromagnetism.
Room-temperature spin-orbit torque in NiMnSb
NASA Astrophysics Data System (ADS)
Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.
2016-09-01
Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.
Li, Zi-An; Fontaíña-Troitiño, N.; Kovács, A.; Liébana-Viñas, S.; Spasova, M.; Dunin-Borkowski, R. E.; Müller, M.; Doennig, D.; Pentcheva, R.; Farle, M.; Salgueiriño, V.
2015-01-01
Polar oxide interfaces are an important focus of research due to their novel functionality which is not available in the bulk constituents. So far, research has focused mainly on heterointerfaces derived from the perovskite structure. It is important to extend our understanding of electronic reconstruction phenomena to a broader class of materials and structure types. Here we report from high-resolution transmission electron microscopy and quantitative magnetometry a robust – above room temperature (Curie temperature TC ≫ 300 K) – environmentally stable- ferromagnetically coupled interface layer between the antiferromagnetic rocksalt CoO core and a 2–4 nm thick antiferromagnetic spinel Co3O4 surface layer in octahedron-shaped nanocrystals. Density functional theory calculations with an on-site Coulomb repulsion parameter identify the origin of the experimentally observed ferromagnetic phase as a charge transfer process (partial reduction) of Co3+ to Co2+ at the CoO/Co3O4 interface, with Co2+ being in the low spin state, unlike the high spin state of its counterpart in CoO. This finding may serve as a guideline for designing new functional nanomagnets based on oxidation resistant antiferromagnetic transition metal oxides. PMID:25613569
Li, Zi-An; Fontaíña-Troitiño, N; Kovács, A; Liébana-Viñas, S; Spasova, M; Dunin-Borkowski, R E; Müller, M; Doennig, D; Pentcheva, R; Farle, M; Salgueiriño, V
2015-01-23
Polar oxide interfaces are an important focus of research due to their novel functionality which is not available in the bulk constituents. So far, research has focused mainly on heterointerfaces derived from the perovskite structure. It is important to extend our understanding of electronic reconstruction phenomena to a broader class of materials and structure types. Here we report from high-resolution transmission electron microscopy and quantitative magnetometry a robust – above room temperature (Curie temperature TC ≫ 300 K) – environmentally stable- ferromagnetically coupled interface layer between the antiferromagnetic rocksalt CoO core and a 2-4 nm thick antiferromagnetic spinel Co3O4 surface layer in octahedron-shaped nanocrystals. Density functional theory calculations with an on-site Coulomb repulsion parameter identify the origin of the experimentally observed ferromagnetic phase as a charge transfer process (partial reduction) of Co(3+) to Co(2+) at the CoO/Co3O4 interface, with Co(2+) being in the low spin state, unlike the high spin state of its counterpart in CoO. This finding may serve as a guideline for designing new functional nanomagnets based on oxidation resistant antiferromagnetic transition metal oxides.
Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P(1-x)As(x))2.
Steppke, Alexander; Küchler, Robert; Lausberg, Stefan; Lengyel, Edit; Steinke, Lucia; Borth, Robert; Lühmann, Thomas; Krellner, Cornelius; Nicklas, Michael; Geibel, Christoph; Steglich, Frank; Brando, Manuel
2013-02-22
Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.
P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Liu, Peitao; Sun, Changqi; Wang, Tongtong; Tao, Kun; Gao, Daqiang
2017-05-01
Outstanding magnetic properties are highly desired for two-dimensional (2D) semiconductor nanosheets due to their potential applications in spintronics. Metal-free ferromagnetic 2D materials whose magnetism originated from the pure s/p electron configuration could give a long spin relaxation time, which plays the vital role in spin information transfer. Here, we synthesize 2D g-C3N4 nanosheets with room temperature ferromagnetism induced by P doping. In our case, the Curie temperature of P doped g-C3N4 nanosheets reaches as high as 911 K and the precise control of the P concentration can further adjust the saturation magnetization of the samples. First principles calculation results indicate that the magnetic moment is primarily due to strong hybridization between p bonds of P, N, and C atoms, giving the theoretical evidence of the ferromagnetism. This work opens another door to engineer a future generation of spintronic devices.
Demonstration of Ru as the 4th ferromagnetic element at room temperature.
Quarterman, P; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E; Young, Ian A; Voyles, Paul M; Wang, Jian-Ping
2018-05-25
Development of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering. X-ray diffraction and electron microscopy confirm the epitaxial mechanism to obtain tetragonal phase Ru. We observed a saturation magnetization of 148 and 160 emu cm -3 at room temperature and 10 K, respectively. Control samples ensure the ferromagnetism we report on is from tetragonal Ru and not from magnetic contamination. The effect of thickness on the magnetic properties is also studied, and it is observed that increasing thickness results in strain relaxation, and thus diluting the magnetization. Anomalous Hall measurements are used to confirm its ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Zhang, Zhizhong; Zhang, Yue; Zheng, Zhenyi; Wang, Guanda; Su, Li; Zhang, Youguang; Zhao, Weisheng
2017-05-01
All spin logic device (ASLD) is a promising option to realize the ultra-low power computing systems. However, the low spin transport efficiency and the non-local switching of the detector have become two key challenges of the ASLD. In this paper, we analyze the energy consumption of a graphene based ASLD with the ferromagnetic layer switching assistance by voltage control magnetic anisotropy (VCMA) effect. This structure has significant potential towards ultra-low power consumption: the applied voltage can not only shorten switching time of the ferromagnetic layer, but also decreases the critical injection current; the graphene channel enhances greatly the spin transport efficiency. By applying the approximate circuit model, the impact of material configurations, interfaces and geometry can be synthetically studied. An accurate physic model was also developed, based on which, we carry out the micro-magnetic simulations to analyze the magnetization dynamics. Combining these electrical and magnetic investigations, the energy consumption of the proposed ASLD can be estimated. With the optimizing parameters, the energy consumption can be reduced to 2.5 pJ for a logic operation.
NASA Astrophysics Data System (ADS)
Lobo, Carlos M. S.; Tosin, Giancarlo; Baader, Johann E.; Colnago, Luiz A.
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.
Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 2
1991-01-31
field cooled (ZFC) state the structure of a relaxor appears cubic indicating that the scale of the polar behavior is smaller than the coherence length of...inhomogeneity. The glassy behavior is believed to arise due to competing interactions between magnetic moments resulting in a freezing of the magnetization...between ferromagnetic and antiferromagnetic exchanges (16,17). The FC state exhibits behavior resembling a normal ferromagnet below Tf, i.e
NASA Astrophysics Data System (ADS)
He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe
2013-11-01
Ferromagnetic materials will affect not only the electromagnetic response but also the mechanical behaviors of coated conductors. The influence of soft ferromagnetic substrate on magneto-elastic behavior in a superconductor/ferromagnetic (SC/FM) bilayer exposed to a transverse magnetic field is investigated theoretically. The ferromagnetic substrate is regarded as ideal soft magnets with high permeability and small magnetic hysteresis. Due to the composite structure of SC/FM hybrids, magneto-elastic behavior will be subjected to combined effect of equivalent force and flexural moment. Analytical expressions for internal stress and strain components are derived by virtue of a two-dimensional elasticity analysis. It is worth pointing out that the y component of strain has much larger positive value during field ascent, which may result in the delamitation at the interface. Irreversible magnetostrictive behaviors are observed both along x direction and along y direction. For the thickness dependence of magnetostriction, the flexural moment dominates when the SC thickness is small while the equivalent force plays a critical role at higher SC thickness.
NASA Astrophysics Data System (ADS)
Zhang, Huiyan; Feng, Yuping; Nieto, Daniel; García-Lecina, Eva; Mcdaniel, Clare; Díaz-Marcos, Jordi; Flores-Arias, María Teresa; Gerard M., O.'connor; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi
2016-05-01
Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe3C) and ferrimagnetic [(Fe,Mn)3O4 and Fe2CrO4] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard
2015-01-01
Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.
High-Frequency Response and Voltage Noise in Magnetic Nanocomposites
NASA Astrophysics Data System (ADS)
Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.
We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.
High-Frequency Response and Voltage Noise in Magnetic Nanocomposites
NASA Astrophysics Data System (ADS)
Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.
2010-12-01
We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.
A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)
Liu, J. Y.; Hu, J.; Zhang, Qiang; ...
2017-07-24
Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less
A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J. Y.; Hu, J.; Zhang, Qiang
Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less
Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan
2014-09-09
A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.
NASA Astrophysics Data System (ADS)
Laumann, Daniel
2017-03-01
Magnetism and its various applications are essential for our daily life and for many technological developments. The term magnetism is almost always used as a synonym for ferromagnetism. However, the magnetic properties of the elements of the periodic table indicate that the vast majority of elements are not ferromagnetic, but rather, diamagnetic or paramagnetic. Typically, only ferromagnetism is discussed in classrooms, which can create a distorted picture. This article supplies the further development of an experiment demonstrating the dia- and paramagnetic properties with an electronic balance and a neodymium magnet. It focuses on an investigation of ordinary materials that occur in pupils' everyday environment. The experiment is applicable both for a quantitative measurement of the magnetic (volume) susceptibility χV and can serve as a phenomenological approach to dia- and paramagnetism. Moreover, it encourages a discussion about typical beliefs regarding the nature of science, comparing the behavior of common objects in weak and in strong magnetic fields.
Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4
NASA Astrophysics Data System (ADS)
Honda, T.; White, J. S.; Harris, A. B.; Chapon, L. C.; Fennell, A.; Roessli, B.; Zaharko, O.; Murakami, Y.; Kenzelmann, M.; Kimura, T.
2017-06-01
Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180o commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.
Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping
NASA Astrophysics Data System (ADS)
Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li
2018-03-01
Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1998-04-28
Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1998-04-28
Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.
Paulus, J A; Richardson, J S; Tucker, R D; Park, J B
1996-04-01
Ferromagnetic alloys heated by magnetic induction have been investigated as interstitial hyperthermia delivery implants for over a decade, utilizing low Curie temperatures to provide thermal self-regulation. The minimally invasive method is attractive for fractionated thermal treatment of tumors which are not easily heated by focused microwave or ultrasound techniques. Past analyses of ferromagnetic seeds by other authors depict poor experimental correlation with theoretical heating predictions. Improvements in computer hardware and commercially available finite element analysis software have simplified the analysis of inductively heated thermal seeds considerably. This manuscript examines end effects of finite length implants and nonlinear magnetic material properties to account for previous inconsistencies. Two alloys, Ni-28 wt% Cu (NiCu) and Pd-6.15 wt% Co (PdCo), were used for comparison of theoretical and experimental calorimetric results. Length to diameter (L/d) ratios of over 20 for cylindrical seeds are necessary for minimization of end effects. Magnetic properties tested for alloys of NiCu and PdCo illustrate considerable nonlinearity of these materials in field strength ranges used for induction heating. Field strength dependent magnetic permeabilities and calorimetric data illustrate that more detailed material information must be included to accurately estimate induction power loss for these implants.
Design of diaphragm actuator based on ferromagnetic shape memory alloy composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2003-08-01
A new diaphragm actuator based on the ferromagnetic shape memory alloy (FSMA) composite is designed where the FSMA composite is composed of ferromagnetic soft iron and superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite plate of the actuator is the hybrid mechanism that we proposed previously. This diaphragm actuator is the first design toward designing a new synthetic jet actuator that will be used for active flow control technology on airplane wings. The design of the FSMA composite diaphragm actuator was established first by using both mechanical and ferromagnetic finite element analyses with an aim of optimization of the actuator components. Based on the FEM results, the first generation diaphragm actuator system was assembled and its static and dynamic performance was experimentally evaluated.
Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.
Owerre, S A
2016-11-30
In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.
Effect of native defects and Co doping on ferromagnetism in HfO2: first-principles calculations.
Han, Chong; Yan, Shi-Shen; Lin, Xue-Ling; Hu, Shu-Jun; Zhao, Ming-Wen; Yao, Xin-Xin; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo
2011-05-01
First-principles calculations of undoped HfO(2) and cobalt-doped HfO(2) have been carried out to study the magnetic properties of the dielectric material. In contrast to previous reports, it was found that the native defects in HfO(2) could not induce strong ferromagnetism. However, the cobalt substituting hafnium is the most stable defect under oxidation condition, and the ferromagnetic (FM) coupling between the cobalt substitutions is favorable in various configurations. We found that the FM coupling is mediated by the threefold-coordinated oxygen atoms in monoclinic HfO(2) and could be further enhanced in electron-rich condition. Copyright © 2010 Wiley Periodicals, Inc.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
NASA Astrophysics Data System (ADS)
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Yu, Ji-Sung; Kim, Joo-Sung; Kim, Duck-Ho; Min, Byoung-Chul; Choe, Sug-Bong
2018-02-01
In this study, we investigate the influence of the ferromagnetic layer thickness on the magnetization process. A series of ultrathin Pt/Co/TiO2/Pt films exhibits domain-wall (DW) speed variation of over 100,000 times even under the same magnetic field, depending on the ferromagnetic layer thickness. From the creep-scaling analysis, such significant variation is found to be mainly attributable to the thickness-dependence of the creep-scaling constant in accordance with the creep-scaling theory of the linear proportionality between the creep-scaling constant and the ferromagnetic layer thickness. Therefore, a thinner film shows a faster DW speed. The DW roughness also exhibits sensitive dependence on the ferromagnetic layer thickness: a thinner film shows smoother DW. The present observation provided a guide for an optimal design rule of the ferromagnetic layer thickness for better performance of DW-based devices.
High-Performance THz Emitters Based on Ferromagnetic/Nonmagnetic Heterostructures.
Wu, Yang; Elyasi, Mehrdad; Qiu, Xuepeng; Chen, Mengji; Liu, Yang; Ke, Lin; Yang, Hyunsoo
2017-01-01
A low-cost, intense, broadband, noise resistive, magnetic field controllable, flexible, and low power driven THz emitter based on thin nonmagnetic/ferromagnetic metallic heterostructures is demonstrated. The THz emission origins from the inverse spin Hall Effect. The proposed devices are not only promising for a wide range of THz equipment, but also offer an alternative approach to characterize the spin-orbit interaction in nonmagnetic/ferromagnetic bilayers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic stirling cycles: A new application for magnetic materials
NASA Technical Reports Server (NTRS)
Brown, G. V.
1977-01-01
The elements of the cycle are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS
NASA Astrophysics Data System (ADS)
Chambers, Scott A.; Gallagher, Bryan
2008-05-01
This focus issue of New Journal of Physics is devoted to the materials science of dilute magnetic semiconductors (DMS). A DMS is traditionally defined as a diamagnetic semiconductor doped with a few to several atomic per cent of some transition metal with unpaired d electrons. Several kinds of dopant-dopant interactions can in principle couple the dopant spins leading to a ferromagnetic ground state in a dilute magnetic system. These include superexchange, which occurs principally in oxides and only between dopants with one intervening oxygen, and double exchange, in which dopants of different formal charges exchange an electron. In both of these mechanisms, the ferromagnetic alignment is not critically dependent on free carriers in the host semiconductor because exchange occurs via bonds. A third mechanism, discovered in the last few years, involves electrons associated with lattice defects that can apparently couple dopant spins. This mechanism is not well understood. Finally, the most desirable mechanism is carrier-mediated exchange interaction in which the dopant spins are coupled by itinerant electrons or holes in the host semiconductor. This mechanism introduces a fundamental link between magnetic and electrical transport properties and offers the possibility of new spintronic functionalities. In particular electrical gate control of ferromagnetism and the use of spin polarized currents to carry signals for analog and digital applications. The spin light emitting diode is a prototypical device of this kind that has been extensively used to characterize the extent of spin polarization in the active light emitting semiconductor heterostructure. The prototypical carrier mediated ferromagnetic DMS is Mn-doped GaAs. This and closely related narrow gap III-V materials have been very extensively studied. Their properties are generally quite well understood and they have led to important insights into fundamental properties of ferromagnetic systems with strong spin-orbit coupling. They have also led to the demonstration of a wide range of novel phenomena including some, like tunneling anisotropic magnetoresistance, which have subsequently been achieved in metal ferromagnetic systems. However despite considerable effort over many years the maximum Curie point achieved in (Ga,Mn)As is still less than 200 K. So unless some major new breakthrough is achieved these materials are unlikely to be of use for practical spin electronics technologies. In 2000, Dietl et al [1] published a seminal paper in which mean field theory was used to predict which of the common diamagnetic semiconductors would exhibit a Curie point above ambient if doped with 5 at.% Mn and a hole concentration of 3.5 × 1020 cm-3. Of the many host semiconductors simulated, only ZnO and GaN were predicted to exhibit a critical temperature in excess of 300 K. Since 2000, high-Tc DMS research has proliferated in both experimental and theoretical arenas. Many papers have been published containing claims of new DMS materials based largely on limited film growth, powder diffraction, and magnetometry. In these papers, a film which exhibits a hysteretic SQUID or VSM loop at 300 K and phase purity with only the host semiconductor detected by XRD are often claimed to be true ferromagnetic DMSs. Many of these papers are flawed because the criteria for a well-defined DMS are much more extensive. These include: (i) a random dopant distribution, (ii) a well-known and preferably unique charge state and preferentially a unique local structural environment for the dopant, (iii) a demonstrated coupling of the dopant spin to the host band structure, leading to spin polarization of the majority carriers, and (iv) a rational dependence of the saturation magnetization and Curie point on the magnetic dopant and carrier concentrations. Implicit in this list is that trivial causes of ferromagnetism, such as magnetic contamination and magnetic secondary phase formation, are eliminated. Yet, in many papers, the authors have not carried out the necessary control experiments and materials characterization to convincingly eliminate these possibilities. The former includes the growth of films without the magnetic dopant and the associated demonstration of the absence of ferromagnetism. Magnetic secondary phase formation is particularly problematic because in order to inject enough magnetic dopant to generate appreciable magnetization and spin polarization, one must often exceed the solid solubility of the dopant in the host. If the dopant is itself ferromagnetic in its elemental state, or if unintended magnetic products nucleate, spurious ferromagnetism will occur. Moreover, it is often a major analysis challenge to detect secondary phases when they consist of only a few per cent of the dopant; element specific spectroscopies such as x-ray absorption have been invaluable in this task. Powder diffraction is not sufficiently sensitive for this level of analysis. Against this backdrop, this focus issue of New Journal of Physics now appears. The editors' principal goal in soliciting papers has been to encourage investigators to submit work in which the necessary experiments have been done to allow the material to be adequately characterized. This collection contains a mix of experimental and theoretical papers, and many different types of materials are covered. This focus issue thus constitutes a snapshot in time of a fast-moving and fascinating field of materials physics. Reference [1] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019 Focus on Dilute Magnetic Semiconductors Contents Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As E De Ranieri, A W Rushforth, K Výborný, U Rana, E Ahmad, R P Campion, C T Foxon, B L Gallagher, A C Irvine, J Wunderlich and T Jungwirth Structure and magnetism of cobalt-doped ZnO thin films M Ivill, S J Pearton, S Rawal, L Leu, P Sadik, R Das, A F Hebard, M Chisholm, J D Budai and D P Norton Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2 T Fukumura, H Toyosaki, K Ueno, M Nakano and M Kawasaki Ab-initio study of exchange constants and electronic structure in diluted magnetic group-IV semiconductors Silvia Picozzi and Marjana Ležaić Phase coherent transport in (Ga,Mn)As D Neumaier, K Wagner, U Wurstbauer, M Reinwald, W Wegscheider and D Weiss Hydrogen interstitials-mediated ferromagnetism in MnxGe1-x magnetic semiconductors Xin-Xin Yao, Shi-Shen Yan, Shu-Jun Hu, Xue-Ling Lin, Chong Han, Yan-Xue Chen, Guo-Lei Liu and Liang-Mo Mei Electronic structures of magnetic semiconductors FeCr2Se4 and Fe0.5Cu0.5Cr2Se4 B I Min, Seung Su Baik, H C Choi, S K Kwon and J-S Kang Investigation of pure and Co2+-doped ZnO quantum dot electronic structures using the density functional theory: choosing the right functional Ekaterina Badaeva, Yong Feng, Daniel R Gamelin and Xiaosong Li Magnetic properties of sol-gel-derived doped ZnO as a potential ferromagnetic semiconductor: a synchrotron-based study N R S Farley, K W Edmonds, A A Freeman, G van der Laan, C R Staddon, D H Gregory and B L Gallagher Local electronic structure of Cr in the II-VI diluted ferromagnetic semiconductor Zn1-xCrxTe M Kobayashi, Y Ishida, J I Hwang, G S Song, A Fujimori, C S Yang, L Lee, H-J Lin, D J Huang, C T Chen, Y Takeda, K Terai, S-I Fujimori, T Okane, Y Saitoh, H Yamagami, K Kobayashi, A Tanaka, H Saito and K Ando Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films T C Kaspar, T Droubay, S M Heald, P Nachimuthu, C M Wang, V Shutthanandan, C A Johnson, D R Gamelin and S A Chambers XMCD studies on Co and Li doped ZnO magnetic semiconductors Thomas Tietze, Milan Gacic, Gisela Schütz, Gerhard Jakob, Sebastian Brück and Eberhard Goering Ferromagnetic semiconductors and the role of disorder B W Wessels An extensive comparison of anisotropies in MBE grown (Ga,Mn)As material C Gould, S Mark, K Pappert, R G Dengel, J Wenisch, R P Campion, A W Rushforth, D Chiba, Z Li, X Liu, W Van Roy, H Ohno, J K Furdyna, B Gallagher, K Brunner, G Schmidt and L W Molenkamp Local structural, magnetic and magneto-optical properties of Mn-doped SiC films prepared on a 3C-SiC(001) wafer Wenhong Wang, Fumiyoshi Takano, Hironori Ofuchi and Hiro Akinaga Effects of proton irradiation on the magnetic properties of GaGdN and GaCrN J K Hite, K K Allums, G T Thaler, C R Abernathy, S J Pearton, R M Frazier, R Dwivedi, R Wilkins and J M Zavada
Deciphering the physics and chemistry of perovskites with transmission electron microscopy.
Polking, Mark J
2016-03-28
Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.
On the measurement of magnetic viscosity
NASA Astrophysics Data System (ADS)
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Ramp-edge structured tunneling devices using ferromagnet electrodes
Kwon, Chuhee [Long Beach, CA; Jia, Quanxi [Los Alamos, NM
2002-09-03
The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan; Wen, John T.
1997-06-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1996-05-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Javed, K; Li, W J; Ali, S S; Shi, D W; Khan, U; Riaz, S; Han, X F
2015-12-14
Hybrid core-shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties.
Javed, K.; Li, W. J.; Ali, S. S.; Shi, D. W.; Khan, U.; Riaz, S.; Han, X. F.
2015-01-01
Hybrid core–shell nanostructures consisting of permalloy (Ni80Fe20) and multiferroic(BiFeO3, BFO/BiFe0.95Co0.05O3, BFC) materials were synthesized by a two-step method, based on wet chemical impregnation and subsequent electrodeposition within porous alumina membranes. Structural and magnetic characterizations have been done to investigate doping effect on magnetic properties and exchange bias. The magnetometry analysis revealed significant enhancements of the exchange bias and coercivity in NiFe-BFC core-shell nanostructures as compared with NiFe-BFO core-shell nanostructures. The enhancements can be attributed to the effective reduction of ferromagnet domain sizes between adjacent layers of core-shell structure. It indicates that it is possible to improve properties of multiferroic composites by site-engineering method. Our approach opens a pathway to obtain optimized nanostructured multiferroic composites exhibiting tunable magnetic properties. PMID:26658956
First principles calculation for Gilbert damping constants in ferromagnetic/non-magnetic junctions
NASA Astrophysics Data System (ADS)
Hiramatsu, R.; Miura, D.; Sakuma, A.
2018-05-01
We evaluated an intrinsic α in ferromagnetic (FM)/non-magnetic (NM) junctions from first principles (FM = Co, Fe, and Ni and NM = Cu, Pd, and Pt) to investigate the effects of the inserted NM layer. α is calculated by liner muffin-tin orbital methods based on the torque-correlation model. We confirmed that Gilbert damping is enhanced and saturated as NM thickness increases, and that the enhancement is greater in NM materials having a stronger spin-orbital interaction. By contrast, the calculated FM thickness dependences of α show that Gilbert damping tends to decrease and be saturated as the FM thickness increases. Under the torque-correlation model, the dependences of α on FM and NM thickness can be explained by considering the electronic structure of the total system, including junction interfaces, which exhibit similar behaviors derived by spin pumping theory.
Electrical detection of magnetization dynamics via spin rectification effects
NASA Astrophysics Data System (ADS)
Harder, Michael; Gui, Yongsheng; Hu, Can-Ming
2016-11-01
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Pressure–Temperature Phase Diagram Reveals Spin–Lattice Interactions in Co[N(CN) 2 ] 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musfeldt, J. L.; O’Neal, K. R.; Brinzari, T. V.
2017-04-07
Diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and lattice dynamics calculations are combined with prior magnetic property work to reveal the pressure–temperature phase diagram of Co[N(CN)2]2. The second-order structural boundaries converge on key areas of activity involving the spin state exposing how the pressure-induced local lattice distortions trigger the ferromagnetic → antiferromagnetic transition in this quantum material.
Electron transport in ferromagnetic nanostructures
NASA Astrophysics Data System (ADS)
Lee, Sungbae
As the size of a physical system decreases toward the nanoscale, quantum mechanical effects such as the discretization of energy levels and the interactions of the electronic spins become readily observable. To understand what happens within submicrometer scale samples is one of the goals of modern condensed matter physics. Electron transport phenomena drew a lot of attention over the past two decades or so, not only because quantum corrections to the classical transport theory, but also they allow us to probe deeply into the microscopic nature of the system put to test. Although a significant amount of research was done in the past and thus extended our understanding in this field, most of these works were concentrated on simpler examples. Electron transport in strongly correlated systems is still a field that needs to be explored more thoroughly. In fact, experimental works that have been done so far to characterize coherence physics in correlated systems such as ferromagnetic metals are far from conclusive. One reason ferromagnetic samples draw such attention is that there exist correlations that lead to excitations (e.g. spin waves, domain wall motions) not present in normal metals, and these new environmental degrees of freedom can have profound effects on decoherence processes. In this thesis, three different types of magnetic samples were examined: a band ferromagnetism based metallic ferromagnet, permalloy, a III-V diluted ferromagnetic semiconductor with ferromagnetism from a hole-mediated exchange interaction, and magnetite nanocrystals and films. The first observation of time-dependent universal conductance fluctuations (TD-UCF) in permalloy is presented and our observations lead to three major conclusions. First, the cooperon contribution to the conductance is suppressed in this material. This is consistent with some theoretical expectations, and implies that weak localization will be suppressed as well. Second, we see evidence that domain wall motion leads to enhanced conductance fluctuations, demonstrating experimentally that domain walls can act as coherent scatterers of electrons. Third, the temperature dependence of the fluctuations is surprisingly strong, suggesting that the dominant decoherence mechanism in these wires is different than that in similar normal metal nanostructures. The first observation of TD-UCF in diluted magnetic semiconductors (DMS) is also presented. In contrast to analogous measurements on permalloy samples, we find a surprising suppression of TD-UCF noise in this material at low temperatures, independent of field orientation. We believe this implies that the suppression is not due to an orbital effect, and therefore some of the fluctuations originate with time-varying magnetic disorder. The temperature dependence of the TD-UCF implies either an unusual fluctuator spectrum or a nonstandard dephasing mechanism. Measurements of UCF as a function of magnetic field allow an order of magnitude estimate of the coherence length at 2 K of approximately 50 nm in this material. The last samples examined were magnetite nanocrystals and films. Magnetite has been used in technologies for millennia, from compasses to magnetoelectronic devices, although its electronic structure has remained controversial for seven decades, with a low temperature insulator and a high temperature "bad metal" separated by the Verwey transition at 120 K. A new electrically driven insulator-metal transition below the Verwey temperature in both magnetite films and nanocrystals was observed. The possibility that this was a thermal effect was tested through various methods, and we have shown that the transition is in fact truly electrically driven. This electrically driven transition also showed a great deal of rigidity against external magnetic field and high gate voltages.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
Lobo, Carlos M S; Tosin, Giancarlo; Baader, Johann E; Colnago, Luiz A
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji
2018-05-01
The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.
Coexistence of superconductivity and ferromagnetism in two dimensions.
Dikin, D A; Mehta, M; Bark, C W; Folkman, C M; Eom, C B; Chandrasekhar, V
2011-07-29
Ferromagnetism is usually considered to be incompatible with conventional superconductivity, as it destroys the singlet correlations responsible for the pairing interaction. Superconductivity and ferromagnetism are known to coexist in only a few bulk rare-earth materials. Here we report evidence for their coexistence in a two-dimensional system: the interface between two bulk insulators, LaAlO(3) (LAO) and SrTiO(3) (STO), a system that has been studied intensively recently. Magnetoresistance, Hall, and electric-field dependence measurements suggest that there are two distinct bands of charge carriers that contribute to the interface conductivity. The sensitivity of properties of the interface to an electric field makes this a fascinating system for the study of the interplay between superconductivity and magnetism. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng
2017-04-01
The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-02-01
The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
B a2NiOs O6 : A Dirac-Mott insulator with ferromagnetism near 100 K
NASA Astrophysics Data System (ADS)
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; Yuan, Ya-Hua; Shirako, Yuichi; Tsujimoto, Yoshihiro; Matsushita, Yoshitaka; Hu, Zhiwei; Kuo, Chang-Yang; Tjeng, Liu Hao; Pi, Tun-Wen; Soo, Yun-Liang; He, Jianfeng; Tanaka, Masahiko; Katsuya, Yoshio; Richter, Manuel; Yamaura, Kazunari
2016-12-01
The ferromagnetic semiconductor B a2NiOs O6 (Tmag˜100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [F m -3 m ; a =8.0428 (1 )Å ], where the N i2 + and O s6 + ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of O s6 + plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K ), the spin-gapless semiconductor M n2CoAl (Tmag˜720 K ), and the ferromagnetic insulators EuO (Tmag˜70 K ) and B i3C r3O11 (Tmag˜220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of B a2NiOs O6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.
B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; ...
2016-12-28
In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less
B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad
In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.
Chu, Ying-Hao; Martin, Lane W; Holcomb, Mikel B; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X; Ramesh, R
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X.; Ramesh, R.
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO3. The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO3 film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co0.9Fe0.1) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Surface Magnetism on pristine silicon thin film for spin and valley transport
NASA Astrophysics Data System (ADS)
Sun, Jia-Tao
The spin and valley degree of freedom for an electron have received tremendous attention in condensed matters physics because of the potential application for spintronics and valleytronics. It has been widely accepted that d0 light elemental materials of single component are not taken as ferromagnetic candidates because of the absence of odd paired electrons. The ferromagnetism has to be introduced by ferromagnetic impurity, edge functionalization, or proximity with ferromagnetic neighbors etc. These special surface or interface structures require atomically precise control which significantly increases experimental uncertainty and theoretical understanding. By means of density functional theory (DFT) computations, we found that the spin- and valley- polarized state can be introduced in pristine silicon thin films without any alien components. The key point to this aim is the formation of graphene-like hexagonal structures making a spin-polarized Dirac fermion with half-filling. The resulting fundamental physics such as quantum valley Hall effect (QVHE), quantum anomalous Hall effect (QAHE) and magnetoelectric effect will be discussed.
Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films
NASA Astrophysics Data System (ADS)
Holcomb, M. B.; Chu, Y. H.; Martin, L. W.; Gajek, M.; Seidel, J.; Ramesh, R.; Scholl, A.; Fraile-Rodriguez, A.
2008-03-01
Electric field control of magnetism is a hot technological topic at the moment due to its potential to revolutionize today's devices. Magnetoelectric materials, those having both electric and magnetic order and the potential for coupling between the two, are a promising avenue to approach electric control. BiFeO3, both a ferroelectric and an antiferromagnet, is the only single phase room temperature magnetoelectric that is currently known. In addition to other possibilities, its multiferroic nature has potential in the very active field of exchange bias, where an antiferromagnetic thin film pins the magnetic direction of an adjoining ferromagnetic layer. Since this antiferromagnet is electrically tunable, this coupling could allow electric-field control of the ferromagnetic magnetization. Direction determination of antiferromagnetic domains in BFO has recently been shown using linear and circular dichroism studies. Recently, this technique has been extended to look at the magnetic domains of a ferromagnetic grown on top of BFO. The clear magnetic changes induced by application of electric fields reveal the possibility of electric control.
Initial Ferritic Wall Mode studies on HBT-EP
NASA Astrophysics Data System (ADS)
Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.
2013-10-01
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Astrophysics Data System (ADS)
Murtaza, Adil; Yang, Sen; Chang, Tieyan; Ghani, Awais; Khan, Muhammad Tahir; Zhang, Rui; Zhou, Chao; Song, Xiaoping; Suchomel, Matthew; Ren, Yang
2018-03-01
The spin reorientation (SR) and magnetoelastic properties of pseudobinary ferromagnetic T b1 -xN dxC o2 (0 ≤x ≤1.0 ) systems involving a morphotropic phase boundary (MPB) were studied by high-resolution synchrotron x-ray diffraction (XRD), magnetization, and magnetostriction measurements. The easy magnetization direction of the Laves phase lies along the 〈111 〉 axis with x <0.65 , whereas it lies along the 〈100 〉 axis for x >0.65 below Curie temperature (TC). The temperature-dependent magnetization curves showed SR; this can be explained by a two-sublattice model. Based on the synchrotron (XRD) and magnetization measurements, the SR phase diagram for a MPB composition of T b0.35N d0.65C o2 was obtained. Contrary to previously reported ferromagnetic systems involving MPB, the MPB composition of T b0.35N d0.65C o2 exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The anisotropic magnetostriction (λS) first decreased until x =0.8 and then continuously increased in the negative direction with further increase of Nd concentration. The decrease in magnetostriction can be attributed to the decrease of spontaneous magnetostriction λ111 and increase of λ100 with opposite sign to λ111. This paper indicates an anomalous type of MPB in the ferromagnetic T b1 -xN dxC o2 system and provides an active way to design novel functional materials with exotic properties.
The road to superconducting spintronics
NASA Astrophysics Data System (ADS)
Eschrig, Matthias
Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).
Testing system for ferromagnetic shape memory microactuators.
Ganor, Y; Shilo, D; Messier, J; Shield, T W; James, R D
2007-07-01
Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of microscale ferromagnetic shape memory specimens. The system is comprised of an alternating magnetic field generator (AMFG) and a mechanical loading and sensing system. The AMFG generates a dynamic magnetic field that periodically alternates between two orthogonal directions to facilitate martensitic variant switching and to remotely achieve a full magnetic actuation cycle, without the need of mechanical resetting mechanisms. Moreover, the AMFG is designed to produce a magnetic field that inhibits 180 degrees magnetization domain switching, which causes energy loss without strain generation. The mechanical loading and sensing system maintains a constant mechanical load on the measured specimen by means of a cantilever beam, while the displacement is optically monitored with a resolution of approximately 0.1 microm. Preliminary measurements using Ni(2)MnGa single crystal specimens, with a cross section of 100x100 microm(2), verified their large actuation strains and established their potential to become a material of great importance in microactuation technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.
We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less
Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; ...
2017-10-06
We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less
Graphene based d-character Dirac Systems
NASA Astrophysics Data System (ADS)
Li, Yuanchang; Zhang, S. B.; Duan, Wenhui
From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.
NASA Astrophysics Data System (ADS)
Palai, Ratnakar
2016-10-01
Since last four decades the information and communication technologies are relying on the semiconductor materials. Currently a great deal of attention is being focused on adding spin degree-of-freedom into semiconductor to create a new area of solid-state electronics, called spintronics. In spintronics not only the current but also its spin state is controlled. Such materials need to be good semiconductors for easy integration in typical integrated circuits with high sensitivity to the spin orientation, especially room temperature ferromagnetism being an important desirable property. GaN is considered to be the most important semiconductor after silicon. It is widely used for the production of green, blue, UV, and white LEDs in full color displays, traffic lights, automotive lightings, and general room lighting using white LEDs. GaN-based systems also show promise for microwave and high power electronics intended for radar, satellite, wireless base stations and spintronic applications. Rare earth (Yb, Eu, Er, and Tm) doped GaN shows many interesting optoelectronic and magnetoptic properties e. g. sharp emission from UV through visible to IR, radiation hardness, and ferromagnetism. The talk will be focused on fabrication, optoelectronic (photoluminescence, cathodeluminescence, magnetic, and x-ray photoelectron spectroscopy) properties of some rare earth doped GaN and InGaN semiconductor nanostructures grown by plasma assisted molecular beam epitaxy (MBE) and future applications.
Topology optimization based design of unilateral NMR for generating a remote homogeneous field.
Wang, Qi; Gao, Renjing; Liu, Shutian
2017-06-01
This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.
Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao
2014-01-01
In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710
ERIC Educational Resources Information Center
Dalverny, Anne-Laure; Leyral, Géraldine; Rouessac, Florence; Bernaud, Laurent; Filhol, Jean-Sébastien
2018-01-01
Magnetic iron oxide nanoparticles were synthesized and stabilized using ammonium cations or poly(vinyl alcohol) to produce amazing materials such as safer aqueous ferrofluids, ferrogels, ferromagnetic inks, plastics, and nanopowders illustrating how versatile materials can be produced just by simple modifications. The synthesis is fast, reliable,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingxing; Li, Ling; Mukherjee, Rupam
The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. Here, this study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin–dependent electronic functionalities based on thin–film design.
Li, Mingxing; Li, Ling; Mukherjee, Rupam; ...
2016-12-05
The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. Here, this study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin–dependent electronic functionalities based on thin–film design.
Mudryk, Yaroslav; Paudyal, Durga; Liu, Jing; ...
2017-04-11
Replacement of strongly magnetic gadolinium with weakly magnetic scandium unexpectedly enhances ferromagnetic interactions in (Gd 1–xSc x) 5Ge 4. Based upon this counterintuitive experimental finding we demonstrate the unique role 3d 1 electrons of scandium atoms play in mediating magnetic interactions between the gadolinium atoms from the neighboring layers in the Sm 5Ge 4-type crystal lattice. Scandium substitutions at and below 20% rapidly increase the Curie temperature, TC, of the Gd 5Ge 4 parent, eliminate both the kinetic arrest and hysteresis, and drastically improve reversibility of the first-order magnetostructural transformation at T C. In agreement with first-principles predictions, higher thanmore » 20% Sc leads to the formation of a closely related Pu 5Rh 4-type structure where the first-order magnetostructural transformation is replaced by a conventional second-order ferromagnetic ordering that remains accompanied by a continuous rearrangement of the crystal lattice. In conclusion, comparison of two materials with similar structures and compositions shows that significantly stronger magnetocaloric effect occurs in the first-order material, which also shows very small hysteresis. Furthermore, we demonstrate that a behavior of a specific interatomic distance can predict anomalous physical properties in a series of alloys where compositional dependence of lattice parameters suggests a rather trivial solid solubility and uninteresting magnetism.« less
Varela, J.; Oak Ridge National Lab.; Brun, S.; ...
2017-05-01
We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Karman-Sodium dynamo experiment. The aim of the study is to analyze influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Karman-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbersmore » between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller than with a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varela, J.; Oak Ridge National Lab.; Brun, S.
We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Karman-Sodium dynamo experiment. The aim of the study is to analyze influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Karman-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbersmore » between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller than with a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.« less
NASA Astrophysics Data System (ADS)
Varela, J.; Brun, S.; Dubrulle, B.; Nore, C.
2017-05-01
We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Kármán-Sodium dynamo experiment. The aim of the study is to analyze the influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified Cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Kármán-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbers between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically, the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and the impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and the impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller compared to a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.
Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium
NASA Astrophysics Data System (ADS)
Baily, Scott Alan
The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.
NASA Astrophysics Data System (ADS)
Badea, Robert; Berezovsky, Jesse
2016-06-01
The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
NASA Astrophysics Data System (ADS)
Kastrinakis, George
2018-05-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
Material research in microgravity
NASA Technical Reports Server (NTRS)
Langbein, D.
1984-01-01
A popular discussion is given of microgravity effects in engineering and medicine gained from Skylab experience. Areas covered include crystal growing, liquid surface properties, diffusion, ferromagnetism, and emulsions.
Experiments on Magnetic Materials
ERIC Educational Resources Information Center
Schneider, C. S.; Ertel, John P.
1978-01-01
Describes the construction and use of a simple apparatus to measure the magnetization density and magnetic susceptibility of ferromagnetic, paramagnetic, and the diamagnetic solids and liquids. (Author/GA)
A review of high magnetic moment thin films for microscale and nanotechnology applications
Scheunert, Gunther; Heinonen, O.; Hardeman, R.; ...
2016-02-17
Here, the creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density M S in a solenoid. In addition to large M S, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard diskmore » drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on M S for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large M S, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.« less
Ferromagnetic resonance and magnetic properties of ALHA 81005
NASA Technical Reports Server (NTRS)
Morris, R. V.
1983-01-01
Seven chips of primarily matrix material from the Antarctic meteorite ALHA 81005 were analyzed by ferromagnetic resonance (FMR) and magnetic hysteresis techniques. The FMR spectra of two chips have a resonance at g of about 2.1 that resembles the g of about 2.1 resonance that is characteristic of lunar soils. Thus the FMR spectra are consistent with the lunar regolith being a progenitor for the matrix material. For the two chips, the FMR surface exposure (maturity) index was about 5 units, which is equivalent to a value for an immature lunar soil. The total concentration of metallic iron is on the order of 0.11 equivalent wt. pct, which is within the observed range for Apollo 16 rocks and soils.
Artificial multilayers and nanomagnetic materials.
Shinjo, Teruya
2013-01-01
The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.
MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid
NASA Astrophysics Data System (ADS)
Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej
2016-04-01
The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.
Damping effect on resonance bounds relationship of nanostructured ferromagnets and composites
NASA Astrophysics Data System (ADS)
Zhou, Peiheng; Liu, Tao; Xie, Jianliang; Deng, Longjiang
2012-06-01
In this paper, we introduce Gilbert damping parameter into the expression of resonance bounds relationship in nanomagnets to accomplish the depiction of damping effect, associated with an experimental study of ferromagnetic nanocrystalline flakes and their composites. Based on the intrinsic permeability retrieving and microwave spectrum fitting, a robust approach to the damping problem in the resonance study of high-frequency ferromagnets and composites is discussed.
NASA Astrophysics Data System (ADS)
Burriel, Ramón; Casabó, Jaime; Pons, Josefina; Carnegie, David W.; Carlin, Richard L.
1985-07-01
The magnetic bahavior of the isomorphous compounds [Cr(NH 3) 6][Cr(CN) 6] and [Cr(H 2O)(NH 3) 5][Cr(CN) 6] has been studied by means of zero-field susceptibility measurements. The materials order ferromagnetically at 0.60 and 0.38K, respectively. The compounds behave as examples of the ferromagnetic ( S=3/2) Heisenberg body-center-cubic lattice. The susceptibilities have been analyzed and compared to the Padé approximants of the high-temperature series expansion for this model, a remarkably good fit being obtained with exchange constants 0.042 and 0.022 K, respectively. Another bimetallic substance, trans-[Cr(en) 2(H 2O) 2] trans-[Cr(en) 2(OH)F] 2(CIO 4) 5·2H 2O, with a dominant Heisenberg ferromagnetic interaction J/ kB=0.122 K in one dimension, orders antiferromagnetically at 0.14 K due to a weaker interchain interaction with exchange constant z‧ J‧/ kB=-0.019 K. The three sets of measurements have been carried out on powdered samples for which demagnetization effects are important. The exchange interactions are remarkably weak for such concentrated magnetic materials, yet they are stronger than those found in a number of other such Cr/Cr compounds.
Origin of negative resistivity slope in U-based ferromagnets
NASA Astrophysics Data System (ADS)
Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Mašková, S.; Dopita, M.
2018-05-01
Ultra-nanocrystalline UH3-based ferromagnets with TC ≈ 200 K exhibit a flat temperature dependence of electrical resistivity with a negative slope both in the ferromagnetic and paramagnetic range. The ordered state with randomness on atomic scale, equivalent to a non-collinear ferromagnetism, can be affected by magnetic field, supressing the static magnetic disorder, which reduces the resistivity and removes the negative slope. It is deduced that the dynamic magnetic disorder in the paramagnetic state can be conceived as continuation of the static disorder in the ordered state. The experiments, performed for (UH3)0.78Mo0.12Ti0.10, demonstrate that the negative resistivity slope, observed for numerous U-based intermetallics in the paramagnetic state, can be due to the strong disorder effect on resistivity. The resulting weak localization, as a quantum interference effect which increases resistivity, is gradually suppressed by enhanced temperature, contributing by electron-phonon scattering, inelastic in nature and removing the quantum coherence.
Magnetocaloric effect in hexacyanochromate Prussian blue analogs
NASA Astrophysics Data System (ADS)
Manuel, Espérança; Evangelisti, Marco; Affronte, Marco; Okubo, Masashi; Train, Cyrille; Verdaguer, Michel
2006-05-01
We report on the magnetocaloric properties of two molecule-based hexacyanochromate Prussian blue analogs, nominally CsNiII[CrIII(CN)6]•(H2O) and Cr3II[CrIII(CN)6]2•12(H2O) . The former orders ferromagnetically below TC≃90K , whereas the latter is a ferrimagnet below TC≃230K . For both, we find significantly large magnetic entropy changes ΔSm associated with the magnetic phase transitions. Notably, our studies represent an attempt to look at molecule-based materials in terms of the magnetocaloric effect for temperatures well above the liquid helium range.
Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces.
Li, Bao-Wen; Osada, Minoru; Ebina, Yasuo; Ueda, Shigenori; Sasaki, Takayoshi
2016-06-22
Multiferroic materials, in which the electronic polarization can be switched by a magnetic field and vice versa, are of fundamental importance for new electronic technologies. However, there exist very few single-phase materials that exhibit such cross-coupling properties at room temperature, and heterostructures with a strong magnetoelectric coupling have only been made with complex techniques. Here, we present a rational design for multiferroic materials by use of a layer-by-layer engineering of 2D nanosheets. Our approach to new multiferroic materials is the artificial construction of high-quality superlattices by interleaving ferromagnetic Ti0.8Co0.2O2 nanosheets with dielectric perovskite-structured Ca2Nb3O10 nanosheets. Such an artificial structuring allows us to engineer the interlayer coupling, and the (Ti0.8Co0.2O2/Ca2Nb3O10/Ti0.8Co0.2O2) superlattices induce room-temperature ferroelectricity in the presence of the ferromagnetic order. Our technique provides a new route for tailoring artificial multiferroic materials in a highly controllable manner.
Development of Metallic Sensory Alloys
NASA Technical Reports Server (NTRS)
Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.
2010-01-01
Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.
Rational design of new materials for spintronics: Co2FeZ (Z=Al, Ga, Si, Ge)
Balke, Benjamin; Wurmehl, Sabine; Fecher, Gerhard H; Felser, Claudia; Kübler, Jürgen
2008-01-01
Spintronic is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of demands. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists. The development of magnetic Heusler compounds specifically designed as material for spintronic applications has made tremendous progress in the very recent past. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% in magnetic tunnel junctions. High Curie temperatures were found in Co2-based Heusler compounds with values up to 1120 K in Co2FeSi. The latest results at the time of writing are a tunnelling magnet resistance (TMR) device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a (TMR) effect higher than 200%. Good interfaces and a well-ordered compound are the precondition to realize the predicted half-metallic properties. The series Co2FeAl1- xSix is found to exhibit half-metallic ferromagnetism over a broad range, and it is shown that electron doping stabilizes the gap in the minority states for x=0.5. This might be a reason for the exceptional temperature behaviour of Co2FeAl0.5Si0.5 TMR devices. Using x-ray diffraction (XRD), it was shown conclusively that Co2FeAl crystallizes in the B2 structure whereas Co2FeSi crystallizes in the L21 structure. For the compounds Co2FeGa or Co2FeGe, with Curie temperatures expected higher than 1000 K, the standard XRD technique using laboratory sources cannot be used to easily distinguish between the two structures. For this reason, the EXAFS technique was used to elucidate the structure of these two compounds. Analysis of the data indicated that both compounds crystallize in the L21 structure which makes these two compounds suitable new candidates as materials in magnetic tunnel junctions. PMID:27877928
Biogenic Magnetite and EMF Effects
NASA Astrophysics Data System (ADS)
Kirschvink, Joseph L.
1996-03-01
Magnetite biomineralization is a genetically-controlled biochemical process through which organisms make perfect ferrimagnetic crystals, usually of single magnetic domain size. This process is an ancient one, having evolved about 2 billion years ago in the magnetotactic bacteria, and presumably was incorporated in the genome of higher organisms, including humans. During this time, DNA replication, protein synthesis, and many other biochemical processes have functioned in the presence of strong static fields of up to 400 mT adjacent to these magnetosomes without any obvious deleterious effects. Recent behavioral experiments using short but strong magnetic pulses in honeybees and birds demonstrates that ferromagnetic materials are involved in the sensory transduction of geomagnetic field information to the nervous system, and both behavioral and direct electrophysiological experiments indicate sensitivity thresholds to DC magnetic fields down to a few nT. However, far more biogenic magnetite is present in animal tissues than is needed for magnetoreception, and the biological function of this extra material is unknown. The presence of ferromagnetic materials in biological systems could provide physical transduction mechanisms for ELF magnetic fields, as well for microwave radiation in the .5 to 10 GHz band where magnetite has its peak ferromagnetic resonance. Elucidation of the cellular ultrastructure and biological function(s) of magnetite might help resolve the question of whether anthropogenic EMFs can cause deleterious biological effects. This work has been supported by grants from the NIH and EPRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flint, C. L.; Vailionis, A.; Zhou, H.
Perovskite oxide heterostructures offer an important path forward for stabilizing and controlling low-dimensional magnetism. One of the guiding design principles for these materials systems is octahedral connectivity. In superlattices composed of perovskites with different crystal symmetries, variation of the relative ratio of the constituent layers and the individual layer thicknesses gives rise to nonequilibrium crystal symmetries that, in turn, lead to unprecedented control of interfacial ferromagnetism. We have found that in superlattices of CaMnO 3 (CMO) and LaNiO 3 (LNO), interfacial ferromagnetism can be modulated by a factor of 3 depending on LNO and CMO layer thicknesses as well asmore » their relative ratio. Such an effect is only possible due to the nonequilibrium crystal symmetries at the interfaces and can be understood in terms of the anisotropy of the exchange interactions and modifications in the interfacial Ni-O-Mn and Mn-O-Mn bond angles and lengths with increasing LNO layer thickness. Here, these results demonstrate the potential of engineering nonequilibrium crystal symmetries in designing ferromagnetism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
2017-02-01
Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less
Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L
2017-03-03
BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.
Flint, C. L.; Vailionis, A.; Zhou, H.; ...
2017-10-31
Perovskite oxide heterostructures offer an important path forward for stabilizing and controlling low-dimensional magnetism. One of the guiding design principles for these materials systems is octahedral connectivity. In superlattices composed of perovskites with different crystal symmetries, variation of the relative ratio of the constituent layers and the individual layer thicknesses gives rise to nonequilibrium crystal symmetries that, in turn, lead to unprecedented control of interfacial ferromagnetism. We have found that in superlattices of CaMnO 3 (CMO) and LaNiO 3 (LNO), interfacial ferromagnetism can be modulated by a factor of 3 depending on LNO and CMO layer thicknesses as well asmore » their relative ratio. Such an effect is only possible due to the nonequilibrium crystal symmetries at the interfaces and can be understood in terms of the anisotropy of the exchange interactions and modifications in the interfacial Ni-O-Mn and Mn-O-Mn bond angles and lengths with increasing LNO layer thickness. Here, these results demonstrate the potential of engineering nonequilibrium crystal symmetries in designing ferromagnetism.« less
Self-sustained magnetoelectric oscillations in magnetic resonant tunneling structures.
Ertler, Christian; Fabian, Jaroslav
2008-08-15
The dynamic interplay of transport, electrostatic, and magnetic effects in the resonant tunneling through ferromagnetic quantum wells is theoretically investigated. It is shown that the carrier-mediated magnetic order in the ferromagnetic region not only induces, but also takes part in intrinsic, robust, and sustainable high-frequency current oscillations over a large window of nominally steady bias voltages. This phenomenon could spawn a new class of quantum electronic devices based on ferromagnetic semiconductors.
Magnetic phase transition in layered inorganic-organic hybrid (C12H25NH3)2CuCl4
NASA Astrophysics Data System (ADS)
Bochalya, Madhu; Kumar, Sunil; Kanaujia, Pawan K.; Prakash, G. Vijaya
2018-05-01
Inorganic-organic (IO) hybrids are material systems which have become an interesting theme of research for physicist and chemists recently due to the possibility of engineering specific magnetic, thermal or optoelectronic properties by playing around with the transition metal, halides and the organic components. Our experiments on (C12H25NH3)2CuCl4 show that the system exhibits a long range ferromagnetic order below ˜11 K. In such an inorganic-organic hybrid system, Jahn-Teller distortion of the copper ions results into a weak ferromagnetic order as compared to the antiferromagnetic spin-spin exchange in the pure inorganic CuCl2 compound. Moreover, this particular hybrid system also exhibits photoluminescence when excited below absorption maximum related to charge transfer peak though the effect is much weaker as compared to that in extensively studied other MX4-based (M = Sn, Pb; X = Cl, Br, I) counterparts.
NASA Astrophysics Data System (ADS)
Mazaleyrat, F.; Varga, L. K.
2000-06-01
A survey of magnetic nanocomposites applicable in high-frequency signal and power electronics is given. First, the preparation and properties of ribbon and powder cores from the nanocrystalline "bulk" alloys (Finemet and Nanoperm) is reviewed. A technology is presented to apply continuously a large stress during the annealing and winding of the rapidly quenched ribbons in order to induce uniaxial anisotropy in it. The obtained toroidal cores with flat hysteresis curve are applicable up to 1 MHz with considerable permeability (˜250). The powder cores prepared from ground Finemet with powder size of 30-400 μm are applicable up to 1 MHz and in some cases up to 10 MHz for smaller powder sizes with low permeability (˜10). Finally, the most common methods used for the preparation of metallic nano-particle s are presented. Presently, the compacts prepared from nano-size (40-80 nm) iron powders do not show the expected behavior. It is anticipated that the iron-based ferromagnetic nanocomposites should replace partly the ferrite-type materials in the forthcoming years.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
Room temperature organic magnets derived from sp3 functionalized graphene.
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-02-20
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.
Room temperature organic magnets derived from sp3 functionalized graphene
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-01-01
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636
Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module
NASA Astrophysics Data System (ADS)
Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.
1984-05-01
A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.
Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong
In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less
The Intrinsic Ferromagnetism in a MnO2 Monolayer.
Kan, M; Zhou, J; Sun, Q; Kawazoe, Y; Jena, P
2013-10-17
The Mn atom, because of its special electronic configuration of 3d(5)4s(2), has been widely used as a dopant in various two-dimensional (2D) monolayers such as graphene, BN, silicene and transition metal dichalcogenides (TMDs). The distributions of doped Mn atoms in these systems are highly sensitive to the synthesis process and conditions, thus suffering from problems of low solubility and surface clustering. Here we show for the first time that the MnO2 monolayer, synthetized 10 years ago, where Mn ions are individually held at specific sites, exhibits intrinsic ferromagnetism with a Curie temperature of 140 K, comparable to the highest TC value achieved experimentally for Mn-doped GaAs. The well-defined atomic configuration and the intrinsic ferromagnetism of the MnO2 monolayer suggest that it is superior to other magnetic monolayer materials.
Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system
Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; ...
2016-05-06
In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
The ferromagnetic shape-memory effect in Ni Mn Ga
NASA Astrophysics Data System (ADS)
Marioni, M. A.; O'Handley, R. C.; Allen, S. M.; Hall, S. R.; Paul, D. I.; Richard, M. L.; Feuchtwanger, J.; Peterson, B. W.; Chambers, J. M.; Techapiesancharoenkij, R.
2005-04-01
Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption.
Development of engineering components having dual functionality
NASA Astrophysics Data System (ADS)
Thompson, L. D.; Waldbusser, R.; Pratt, E.
2000-05-01
This paper describes the engineering research and development of a smart aircraft bolt designed for high-tension wing attachment applications on USAF C-130 cargo planes. The bolt is a load-carrying structural component as well as serving as a damage sensor. The bolt material choice is TRIP (Transformation Induced Plasticity) steel; high-strength, metastable austenitic steel that gradually and irreversibly transforms to martensite during deformation. The martensite is ferromagnetic whereas the parent austenite phase is paramagnetic, having no significant ferromagnetic response. The ferromagnetic signature of the bolt can be correlated to the peak deformation strain and further correlated with the peak damage state. Stress-assisted phase transformations occur within the elastic regime while strain-induced transformations occur in the post-yield regime. Both transformation variants produce easily detected signals that can be readily monitored. A review of the nature of TRIP steel materials, their properties and behavior, and the smart bolt design approach is presented with examples of the quantitative output obtained during simulated laboratory testing. A brief discussion of the detection electronics and interrogation system is provided to familiarize the audience with the technical issues encompassing this technology. Preliminary results from field testing and service experience are reviewed.
Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3
McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; ...
2014-12-23
Here, we examine the crystallographic and magnetic properties of single crystals of CrI 3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (Rmore » $$\\bar{3}$$, BiI 3-type) and the high-temperature structure is monoclinic (C2/m, AlCl 3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI 3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI 3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.« less
Ferroelectric-ferromagnetic coupling in hexagonal YMnO3 film
NASA Astrophysics Data System (ADS)
Cheng, Shaobo; Li, Menglei; Deng, Shiqing; Bao, Shanyong; Tang, Peizhe; Duan, Wenhui; Ma, Jing; Nan, Cewen; Zhu, Jing
Simultaneously achieving ferroelectricity and ferromagnetism in a single phase material is an important research topic in recent decades. Here, we demonstrate that with the modulation of oxygen vacancies, the ferroelectric-ferromagnetic coupling can be realized in the typical hexagonal manganite: YMnO3. The first-principal calculations are used to reveal the importance of oxygen vacancies on the alterations of magnetic behaviors for YMnO3. In order to obtain net magnetic moments, the on-top oxygen vacancies of MnO5 clusters should be created, thus the initial 2D spin frustration structure of Mn ions will be broken. By growing YMnO3 film on Al2O3 substrate, large in-plane compressive strain is induced, thus we can experimentally realize the on-top oxygen vacancies. With the help of SQUID and spherical aberration corrected TEM, the magnetic moments are experimentally measured and the correlations between the crystal structures and magnetic properties can be clearly understood. Our findings may pave a way for future applications of single phase multiferroic materials. National 973 Project of China (2015CB654902, 2011CB606405) and Chinese National Natural Science Foundation (11374174, 51390471).
Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.
Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun
2016-03-01
Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated.
Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; ...
2016-02-16
Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less
Ferromagnetism and Crystalline Electric Field Effects in Cubic UX2Zn20 (X=Co, Rh, Ir)
NASA Astrophysics Data System (ADS)
Bauer, E. D.; Ronning, F.; Silhanek, A.; Harrison, N.; Thompson, J. D.; Sarrao, J. L.; Movshovich, R.; Hundley, M. F.; Jaime, M.; Daniel, E.; Booth, C. H.
2006-03-01
The properties of a new class of cubic UX2Zn20 (X=Co, Rh, Ir) heavy fermion compounds have been investigated by means of magnetic susceptibility, specific heat, electrical resistivity, and x-ray absorption spectroscopy. Both UCo2Zn20 and URh2Zn20 show peaks in C(T) and χ(T) at ˜5-10 K suggesting the presence of crystalline electric field (CEF) effects in these materials, i.e., a localized 5f^2 configuration of uranium. In addition, measurements in high magnetic fields up to 40 T are consistent with a CEF model of a nonmagnetic ground state and a magnetic first excited state separated by ˜ 20 K. In contrast, UIr2Zn20 exhibits a first-order ferromagnetic transition at Tc=2.75 K with a saturation moment μsat=0.5 μB in the ferromagnetic state. All compounds in this series are heavy fermion materials with enhanced electronic specific heat coefficients γ˜ 150-300 mJ/molK^2. The physical properties of UX2Zn20 (X=Co, Rh, Ir) will be discussed.
Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu
2014-01-01
The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.
NASA Astrophysics Data System (ADS)
Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.
2018-02-01
We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.
Ferromagnetic ordering in superatomic solids.
Lee, Chul-Ho; Liu, Lian; Bejger, Christopher; Turkiewicz, Ari; Goko, Tatsuo; Arguello, Carlos J; Frandsen, Benjamin A; Cheung, Sky C; Medina, Teresa; Munsie, Timothy J S; D'Ortenzio, Robert; Luke, Graeme M; Besara, Tiglet; Lalancette, Roger A; Siegrist, Theo; Stephens, Peter W; Crowther, Andrew C; Brus, Louis E; Matsuo, Yutaka; Nakamura, Eiichi; Uemura, Yasutomo J; Kim, Philip; Nuckolls, Colin; Steigerwald, Michael L; Roy, Xavier
2014-12-03
In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Antiferromagnetic opto-spintronics
NASA Astrophysics Data System (ADS)
Němec, P.; Fiebig, M.; Kampfrath, T.; Kimel, A. V.
2018-03-01
Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.
Calculation of Half-Metal, Debye and Curie Temperatures of Co2VAl Compound: First Principles Study
NASA Astrophysics Data System (ADS)
Arash, Boochani; Heidar, Khosravi; Jabbar, Khodadadi; Shahram, Solaymani; Masoud Majidiyan, Sarmazdeh; Rohollah Taghavi, Mendi; Sayed, Mohammad Elahi
2015-05-01
By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than Anti-Ferromagnetic (AFM) and Non-magnetic (NM) ones. In addition, C11-C12 > 0, C44 > 0, and B > 0 so Co2VAl is an elastically stable material with high Debye temperature. Also, the B/G ratio exhibits a ductility behavior. The relatively high Curie temperature provides it as a favorable material for spintronic application. It's electronic and magnetic properties are studied by GGA+U approach leading to a 100% spin polarization at Fermi level. Supported by the simulation of Nano Physics Lab center of Kermanshah Branch, Islamic Azad University
NASA Astrophysics Data System (ADS)
Chandra, Hirak Kumar; Guo, Guang-Yu
2017-04-01
Extraordinary electronic phases can form in artificial oxide heterostructures, which will provide a fertile ground for new physics and also give rise to novel device functions. Based on a systematic first-principles density functional theory study of the magnetic and electronic properties of the (111) superlattices (ABO3) 2/(AB'O3)10 of 4 d and 5 d transition metal perovskite (B = Ru, Rh, Ag, Re, Os, Ir, Au; AB'O3=LaAlO3 , SrTiO3) , we demonstrate that due to quantum confinement, bilayers (LaBO3)2 (B = Ru, Re, Os) and (SrBO3)2 (B = Rh, Os, Ir) are ferromagnetic with ordering temperatures up to room temperature. In particular, bilayer (LaOsO3)2 is an exotic spin-polarized quantum anomalous Hall insulator, while the other ferromagnetic bilayers are metallic with large Hall conductances comparable to the conductance quantum. Furthermore, bilayers (LaRuO3)2 and (SrRhO3)2 are half metallic, while the bilayer (SrIrO3)2 exhibits a peculiar colossal magnetic anisotropy. Our findings thus show that 4 d and 5 d metal perovskite (111) bilayers are a class of quasi-two-dimensional materials for exploring exotic quantum phases and also for advanced applications such as low-power nanoelectronics and oxide spintronics.
Electronic materials testing in commercial aircraft engines
NASA Astrophysics Data System (ADS)
Brand, Dieter
A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.
Robust half-metallicity of hexagonal SrNiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da
In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values, respectively. - Highlights: • Hexagonal SrNiO{sub 3} is studied using first-principles method for the first time. • It is predicted that SrNiO{sub 3} is a ferromagnetic half metal. • The half-metallic ferromagnetism survives upon a pressure up to 20 GPa.« less
Pramanick, Abhijit; Shapiro, Steve M.; Glavic, Artur; ...
2015-10-14
In this study, ferromagnetic shape memory alloys (FSMAs) have shown great potential as active components in next generation smart devices due to their exceptionally large magnetic-field-induced strains and fast response times. During application of magnetic fields in FSMAs, as is common in several magnetoelastic smart materials, there occurs simultaneous rotation of magnetic moments and reorientation of twin variants, resolving which, although critical for design of new materials and devices, has been difficult to achieve quantitatively with current characterization methods. At the same time, theoretical modeling of these phenomena also faced limitations due to uncertainties in values of physical properties suchmore » as magnetocrystalline anisotropy energy (MCA), especially for off-stoichiometric FSMA compositions. Here, in situ polarized neutron diffraction is used to measure directly the extents of both magnetic moments rotation and crystallographic twin-reorientation in an FSMA single crystal during the application of magnetic fields. Additionally, high-resolution neutron scattering measurements and first-principles calculations based on fully relativistic density functional theory are used to determine accurately the MCA for the compositionally disordered alloy of Ni 2Mn 1.14Ga 0.86. The results from these state-of-the-art experiments and calculations are self-consistently described within a phenomenological framework, which provides quantitative insights into the energetics of magnetostructural coupling in FSMAs. Based on the current model, the energy for magnetoelastic twin boundaries propagation for the studied alloy is estimated to be ~150kJ/m 3.« less
NASA Astrophysics Data System (ADS)
Muto, Hachizo; Kusumori, Takeshi; Nakamura, Toshiyuki; Asano, Takashi; Hori, Takahiro
2006-04-01
We have developed a new pulsed laser ablation-deposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials, including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light; also involved are (c) a high-temperature heater with a maximum temperature of 1350 °C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pico-second YAG laser combined with (c) and/or (d). Using the high-T heater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and Mg targets by (d) during film growth. Junctions such as pGaN (Mg-doped)-film/n-SiC(0 0 0 1) substrate and pGaN/n-Si(1 1 1) show good diode characteristics. Epitaxial films with a diamond lattice can be grown on the sapphire-c plane by hybrid PLAD (e) with a high-T heater using a 6H-SiC target. High quality epitaxial films of ZnO are grown by PLAD by introducing a low-temperature self-buffer layer; magnetization of ferromagnetic materials is enforced by overlaying on a ferromagnetic lattice plane of an anti-ferromagnetic material, showing the value of the layer-overlaying method in improving quality. The short-wavelength lasers are useful in reducing surface particles on functional films, including superconductors.
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1995-01-01
Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.
Prediction of d^0 magnetism in self-interaction corrected density functional theory
NASA Astrophysics Data System (ADS)
Das Pemmaraju, Chaitanya
2010-03-01
Over the past couple of years, the phenomenon of ``d^0 magnetism'' has greatly intrigued the magnetism community [1]. Unlike conventional magnetic materials, ``d^0 magnets'' lack any magnetic ions with open d or f shells but surprisingly, exhibit signatures of ferromagnetism often with a Curie temperature exceeding 300 K. Current research in the field is geared towards trying to understand the mechanism underlying this observed ferromagnetism which is difficult to explain within the conventional m-J paradigm [1]. The most widely studied class of d^0 materials are un-doped and light element doped wide gap Oxides such as HfO2, MgO, ZnO, TiO2 all of which have been put forward as possible d0 ferromagnets. General experimental trends suggest that the magnetism is a feature of highly defective samples leading to the expectation that the phenomenon must be defect related. In particular, based on density functional theory (DFT) calculations acceptor defects formed from the O-2p states in these Oxides have been proposed as being responsible for the ferromagnetism [2,3]. However. predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. DFT calculations based on semi-local functionals such as the local spin-density approximation (LSDA) can lead to qualitative failures on several fronts. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all as the Hund's coupling might be under estimated. Furthermore, polaronic distortions which are often a feature of acceptor defects in Oxides are not predicted [4,5]. In this presentation, we argue that the self interaction error (SIE) inherent to semi-local functionals is responsible for the failures of LSDA and demonstrate through various examples that beyond-LSDA approaches that are either self-interaction free or effectively correct for it overcome such failures to produce a more accurate description of acceptor defects in Oxides. Typically, correcting for the SIE, leads to an enhanced localization of the holes responsible for the magnetism. Additionally, the ground state becomes insulating driven by polaronic distortions around the defect site and the magnetic coupling between the impurities becomes weak [4,5,6].[4pt] [1] J.M.D. Coey, Solid State Sci., 7, 660 (2005). [0pt] [2] I.S. Elfimov et al, PRL 89, 216403 (2002).[0pt] [3] C. D. Pemmaraju and S. Sanvito, PRL 94,217205 (2005)[0pt] [4] A. Droghetti et al, PRB 78, 140404(R) (2008)[0pt] [5] J.A. Chan et al, PRL 103, 016404, (2009).[0pt] [6] V. Pardo et al, PRB 78, 134427 (2008)
78 FR 37206 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... grapheme and measuring scanning tunneling spectroscopy of these magnetic impurities on grapheme, growing... by the ferromagnetic materials, as well measuring the scanning tunneling spectroscopy on topological...
XPS studies of MgO based magnetic tunnel junction structures
NASA Astrophysics Data System (ADS)
Read, John; Mather, Phil; Tan, Eileen; Buhrman, Robert
2006-03-01
The very high tunneling magnetoresistance (TMR) obtained in MgO magnetic tunnel junctions (MTJ)^(1,2) motivates the investigation of the electronic properties of the MgO barrier layer and the study of the ferromagnetic metal - MgO interface chemistry. Such large TMR values are predicted by theory due to the high degree of order apparent in the barrier and electrode materials. However, as grown ultra-thin MgO films generally contain defects that can influence electron transport properties through the creation of low energy states within the bulk MgO band-gap. We will report the results of x-ray photoelectron spectroscopy (XPS) studies of (001) textured ultra-thin MgO layers that are prepared by RF magnetron sputtering and electron beam evaporation on ordered ferromagnetic electrodes and in ordered MTJ structures with and without post growth vacuum annealing. XPS spectra for both MgO deposition techniques clearly indicate a surface oxygen species that is likely bound by defects in the oxide^(3) in half-formed junctions and improvements in MgO quality after counter electrode deposition. We will discuss our results regarding the chemical properties of the oxide and its interfaces directed towards possibly providing guidance to engineer improved MgO MTJ devices. [1] S.S.P. Parkin et. al., Nature Materials, 3, 862 (2004). [2] S. Yuasa et. al., Nature Materials, 3, 868 (2004). [3] E. Tan et. al. , Phys. Rev. B. , 71, 161401 (2005).
Spin injection into Pt-polymers with large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy
2014-03-01
Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
NASA Astrophysics Data System (ADS)
Shiokawa, Yohei; Jung, JinWon; Otsuka, Takahiko; Sahashi, Masashi
2015-08-01
Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlOx nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlOx oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β, we investigated the dependence of NCMR on the composition of the ferromagnetic material Co1-xFex. The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μm2 was maximized for Co0.5Fe0.5. To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co1-xFex/Cu/Co1-xFex layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co1-xFex was also maximized for Co0.5Fe0.5. Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co0.5Fe0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co0.5Fe0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong
2017-06-07
Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.
Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1-xGdxCo2
NASA Astrophysics Data System (ADS)
Zhou, Chao; Ren, Shuai; Bao, Huixin; Yang, Sen; Yao, Yonggang; Ji, Yuanchao; Ren, Xiaobing; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Kobayashi, Keisuke
2014-03-01
The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently has attracted interest in ferromagnets [S. Yang, H. Bao, C. Zhou, Y. Wang, X. Ren, Y. Matsushita, Y. Katsuya, M. Tanaka, K. Kobayashi, X. Song, and J. Gao, Phys. Rev. Lett. 104, 197201 (2010), 10.1103/PhysRevLett.104.197201; R. Bergstrom, M. Wuttig, J. Cullen, P. Zavalij, R. Briber, C. Dennis, V. O. Garlea, and M. Laver, Phys. Rev. Lett. 111, 017203 (2013), 10.1103/PhysRevLett.111.017203] for obtaining enhanced large field-induced strain. Here we report that the MPB can also lead to weakening (the inverse effect as compared to the known MPB materials) of field-induced strain, as exhibited in the Tb1-xGdxCo2 system. With synchrotron x-ray diffractometry, the structure symmetry of TbCo2-rich compositions is detected to be rhombohedral below TC and that of GdCo2-rich compositions is tetragonal. The MPB composition Tb0.1Gd0.9Co2, corresponding to the two phases (rhombohedral and tetragonal) of coexistence, shows the exotic minimum (near zero) magnetostriction as well as the largest magnetic susceptibility among all samples. Further analysis suggests that whether MPB can enhance or weaken magnetostriction is determined by the degree of magnetic ordering of two end members that form ferromagnetic MPBs, which was not considered previously. Our work not only reveals a new type of ferromagnetic MPB, but also provides a new recipe for designing functional high-susceptibility and low-strain magnetic materials.
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; ...
2017-06-07
Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén
Since the celebrated discovery of graphene, the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semi-metals with edge transport. Despite this progress, there is still no 2D crystal with intrinsic magnetism, which would be useful for many technologies such as sensing, information, and data storage. Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. However, magnetic anisotropy removes thismore » restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI 3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phases, showcasing the hallmark thickness dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering for novel interface phenomena.« less
Flexure-based nanomagnetic actuators
NASA Astrophysics Data System (ADS)
Vasquez, Daniel James
Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi
2014-02-21
Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.
Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals.
Tai, Jung-Shen B; Ackerman, Paul J; Smalyukh, Ivan I
2018-01-30
Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals. These topological soliton structures are characterized by Hopf indices, integers corresponding to the numbers of times that closed-loop-like spatial regions (dubbed "preimages") of two different single orientations of rod-like molecules or magnetization are linked with each other. We show that both dielectric and ferromagnetic response of the studied material systems allow for stabilizing a host of topological solitons with different Hopf indices. The field transformations during such switching are continuous when Hopf indices remain unchanged, even when involving transformations of preimages, but discontinuous otherwise.
Seal device for ferromagnetic containers
Meyer, R.E.; Jason, A.J.
1994-10-18
A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach there through until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. B.; Garlea, V. O.; Gillon, B.
2017-01-23
One rare example of a Kondo lattice compound with ferromagnetic dominated RKKY interactions is Ybmore » $$_{14}$$MnSb$$_{11}$$. As a ferromagnetic semiconductor with $$T_c \\approx 53$$~K, it is also a potential compound for exploration of spintronic devices. This material is furthermore one of the most efficient high temperature thermoelectrics. We describe measurements which answer remaining questions regarding the energy scales of the exchange interactions, the valence and the magnetization density distribution in this system. We also find that the system consists of RKKY exchange coupled Mn$$^{2+}$$ sites with nearest and next nearest exchange interactions dominating the magnetic spectrum with no significant magnetization density localized on other atomic sites. The extended spread of a negative magnetization around each of the Mn ions supports a Kondo screening cloud scenario for Yb$$_{14}$$MnSb$$_{11}$$.« less
Dynamical current-induced ferromagnetic and antiferromagnetic resonances
NASA Astrophysics Data System (ADS)
Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.
2015-12-01
We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.
Effect of quantum tunneling on spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
NASA Astrophysics Data System (ADS)
Yamamoto, Takafumi D.; Taniguchi, Hiroki; Yasui, Yukio; Iguchi, Satoshi; Sasaki, Takahiko; Terasaki, Ichiro
2017-10-01
We have measured the resistivity, the thermopower, and the specific heat of the weak ferromagnetic oxide CaRu0.8Sc0.2O3 in external magnetic fields up to 140 kOe below 80 K. We have observed that the thermopower Q is significantly suppressed by magnetic fields at around the ferromagnetic transition temperature of 30 K, and have further found that the magneto-thermopower Δ Q(H,T) = Q(H,T) - Q(0,T) is roughly proportional to the magneto-entropy Δ S(H,T) = S(H,T) - S(0,T). We discuss this relationship between the two quantities in terms of the Kelvin formula, and find that the observed ΔQ is quantitatively consistent with the values expected from the Kelvin formula, a possible physical meaning of which is discussed.
Intrinsic spin-orbit torque in a single-domain nanomagnet
NASA Astrophysics Data System (ADS)
Kalitsov, A.; Nikolaev, S. A.; Velev, J.; Chshiev, M.; Mryasov, O.
2017-12-01
We present theoretical studies of the intrinsic spin-orbit torque (SOT) in a single-domain ferromagnetic layer with Rashba spin-orbit coupling (SOC) using the nonequilibrium Green's function formalism for a tight-binding Hamiltonian. We find that, in the case of a small electric field, the intrinsic SOT to first order in SOC has only the field-like torque symmetry and can be interpreted as the longitudinal spin current induced by the charge current and Rashba field. We analyze the results in terms of the material-related parameters of the electronic structure, such as the band filling, bandwidth, exchange splitting, and the Rashba SOC strength. On the basis of these numerical and analytical results, we discuss the magnitude and sign of SOT. Our results suggest that the different sign of SOT in identical ferromagnets with different supporting layers, e.g., Co/Pt and Co/Ta, can be attributed to electrostatic doping of the ferromagnetic layer by the support.
Medranda, D.; Borowiec, J.; Zhang, Xiao; Wang, S.; Yan, K.; Zhang, J.; He, Y.; Ivaturi, S.
2018-01-01
A key challenge in the fabrication of ferromagnetically filled carbon nano-onions (CNOs) is the control of their thickness, dimensions and electric properties. Up to now literature works have mainly focused on the encapsulation of different types of ferromagnetic materials including α-Fe, Fe3C, Co, FeCo, FePd3 and others within CNOs. However, no report has yet shown a suitable method for controlling both the number of shells, diameter and electric properties of the produced CNOs. Here, we demonstrate an advanced chemical vapour deposition approach in which the use of small quantities of sulfur during the pyrolysis of ferrocene allows for the control of (i) the diameter of the CNOs, (ii) the number of shells and (iii) the electric properties. We demonstrate the morphological, structural, electric and magnetic properties of these new types of CNOs by using SEM, XRD, TEM, HRTEM, EIS and VSM techniques. PMID:29410810
Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li
2018-04-01
Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.
Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites
Araujo, C. Moyses; Nagar, Sandeep; Ramzan, Muhammad; Shukla, R.; Jayakumar, O. D.; Tyagi, A. K.; Liu, Yi-Sheng; Chen, Jeng-Lung; Glans, Per-Anders; Chang, Chinglin; Blomqvist, Andreas; Lizárraga, Raquel; Holmström, Erik; Belova, Lyubov; Guo, Jinghua; Ahuja, Rajeev; Rao, K. V.
2014-01-01
We report an unusual robust ferromagnetic order above room temperature upon amorphization of perovskite [YCrO3] in pulsed laser deposited thin films. This is contrary to the usual expected formation of a spin glass magnetic state in the resulting disordered structure. To understand the underlying physics of this phenomenon, we combine advanced spectroscopic techniques and first-principles calculations. We find that the observed order-disorder transformation is accompanied by an insulator-metal transition arising from a wide distribution of Cr-O-Cr bond angles and the consequent metallization through free carriers. Similar results also found in YbCrO3-films suggest that the observed phenomenon is more general and should, in principle, apply to a wider range of oxide systems. The ability to tailor ferromagnetic order above room temperature in oxide materials opens up many possibilities for novel technological applications of this counter intuitive effect. PMID:24732685
Seal device for ferromagnetic containers
Meyer, Ross E.; Jason, Andrew J.
1994-01-01
A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.
Hajiri, T; Yoshida, T; Filianina, M; Jaiswal, S; Borie, B; Asano, H; Zabel, H; Kläui, M
2017-12-05
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co 3 FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.
NASA Astrophysics Data System (ADS)
Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.
2018-01-01
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.
Defect-mediated magnetism of transition metal doped zinc oxide thin films
NASA Astrophysics Data System (ADS)
Roberts, Bradley Kirk
Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.
Artificial multilayers and nanomagnetic materials
SHINJO, Teruya
2013-01-01
The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605
Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa
Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...
2016-05-17
Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less
Electronic Structure at Oxide Interfaces
2014-06-01
of materials with desired correlated electron properties such as ferromagnetism with a high Curie temperature, high transition temperature...approximation and therefore the canonical Mott picture is unable to account for the insulating behavior of these materials . We resolve this apparent...the two materials . LaTiO3 shows insulating behavior with a small excitation gap set by Ti d-d transitions and a wide energy separation between Ti d
NASA Astrophysics Data System (ADS)
Chen, Xi; Lin, Zheng-Zhe
2018-05-01
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.
Visualization and manipulation of magnetic domains in the quasi-two-dimensional material F e3GeT e2
NASA Astrophysics Data System (ADS)
Nguyen, Giang D.; Lee, Jinhwan; Berlijn, Tom; Zou, Qiang; Hus, Saban M.; Park, Jewook; Gai, Zheng; Lee, Changgu; Li, An-Ping
2018-01-01
The magnetic domains in two-dimensional layered material F e3GeT e2 are studied by using a variable-temperature scanning tunneling microscope with a magnetic tip after in situ cleaving of single crystals. A stripy domain structure is revealed in a zero-field-cooled sample below the ferromagnetic transition temperature of 205 K, which is replaced by separate double-walled domains and bubble domains when cooling the sample under a magnetic field of a ferromagnetic Ni tip. The Ni tip can further convert the double-walled domain to a bubble domain pattern as well as move the Neel-type chiral bubble in submicrometer distance. The temperature-dependent evolutions of both zero-field-cooled and field-cooled domain structures correlate well with the bulk magnetization from magnetometry measurements. Atomic resolution scanning tunneling images and spectroscopy are acquired to understand the atomic and electronic structures of the material, which are further corroborated by first-principles calculations.
Design and Application of Hybrid Magnetic Field-Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John
2013-01-01
The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2018-03-01
The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.
Special Quasirandom Structures to Study the (K0.5Na0.5)NbO3 Random Alloy
2014-07-31
first-principles discovery of novel materials with properties such as ferroelectricity, piezoelectricity, ferromagnetism , and thermoelectricity. For...Tan,1 Valentino R. Cooper,4,* and Scott P. Beckman1,† 1Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA...2Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 36211, USA 3Department of Materials Science and Engineering
Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe 2 Se 3
Wang, Meng; Yi, Ming; Jin, Shangjian; ...
2016-07-20
In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe 2Se 3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.
Panchakarla, L S; Sundarayya, Y; Manjunatha, S; Sundaresan, A; Rao, C N R
2010-06-07
The occurrence of ferromagnetism in nanoparticles of otherwise non-magnetic oxides seems to be well established. It is, however, necessary to understand the origin of ferromagnetism in these materials. Herein, we present a combined study of the magnetic properties and photoluminescence (PL) behavior of nanoparticles of ZnO, ZrO(2), and MgO annealed at different temperatures (and therefore of different sizes). We find that the magnetization and the intensity of the bands due to defects vary parallel in all these materials. The adsorption of ethanol leads to a decrease in the magnetization and to a reduced intensity of the defect PL band of ZnO nanoparticles whereas UV irradiation has the opposite effect. We have also examined the effect of the morphology of the ZnO on the properties.
Low temperature magnetic characterization of EuO1-x
NASA Astrophysics Data System (ADS)
Rimal, Gaurab; Tang, Jinke
EuO is a widely studied magnetic semiconductor. It is an ideal case of a Heisenberg ferromagnet as well as a model magnetic polaron system. The interesting aspect of this material is the existance of magnetic polarons in the low temperature region. We study the properties of oxygen deficient EuO prepared by pulsed laser deposition. Besides normal ferromagnetic transitions near 70K and 140K, we observe a different transition at 16K. We also observe a shift in the coercivity for field cooling versus zero field cooling. Possible mechanisms driving these behaviors will be discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DEFG02-10ER46728) and by the School of Energy Resources of the University of Wyoming.
Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers
NASA Astrophysics Data System (ADS)
Esters, Marco; Hennig, Richard G.; Johnson, David C.
2017-12-01
With the emergence of graphene and other two-dimensional (2D) materials, transition-metal dichalcogenides have been investigated intensely as potential 2D materials using experimental and theoretical methods. VSe2 is an especially interesting material since its bulk modification exhibits a charge-density wave (CDW), the CDW is retained even for few-layer nanosheets, and monolayers of VSe2 are predicted to be ferromagnetic. In this work, we show that electron correlation has a profound effect on the magnetic properties and dynamic stability of VSe2 monolayers and bilayers. Including a Hubbard-U term in the density-functional-theory calculations strongly affects the magnetocrystalline anisotropy in the 1 T -VSe2 structure while leaving the 2 H -polytype virtually unchanged. This demonstrates the importance of electronic correlations for the electrical and magnetic properties of 1 T -VSe2 . The Hubbard-U term changes the dynamic stability and the presence of imaginary modes of ferromagnetic 1 T -VSe2 while affecting only the amplitudes in the nonmagnetic phase. The Fermi surface of nonmagnetic 1 T -VSe2 allows for nesting along the CDW vector, but it plays no role in ferromagnetic 1 T -VSe2 . Following the eigenvectors of the soft modes in nonmagnetic 1 T -VSe2 monolayers yields a CDW structure with a 4 ×4 supercell and Peierls-type distortion in the atomic positions and electronic structure. The magnetic order indicates the potential for spin-density-wave structures.
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M.; Kapteyn, Henry C.; Tao, Zhensheng; Murnane, Margaret M.
2018-01-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization. PMID:29511738
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M
2018-03-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.
Photoinduced Topological Phase Transitions in Topological Magnon Insulators.
Owerre, S A
2018-03-13
Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.
Room temperature luminescence and ferromagnetism of AlN:Fe
NASA Astrophysics Data System (ADS)
Li, H.; Cai, G. M.; Wang, W. J.
2016-06-01
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
Zhao, Peiwen; Bu, Yuxiang
2016-01-14
In this work, we computationally design radical nucleobases which possess improved electronic properties, especially diradical properties through introducing a cyclopentadiene radical. We predict that the detailed electromagnetic features of base assemblies are based on the orientation of the extra five-membered cyclopentadiene ring. Broken symmetry DFT calculations take into account the relevant structures and properties. Our results reveal that both the radicalized DNA bases and the base pairs formed when they combine with their counterparts remain stable and display larger spin delocalization. The mode of embedding the cyclopentadiene free radical in the structures has some influence on the degree of π-conjugation, which results in various diradical characteristics. Single-layered radical base pairs all have an open-shell singlet ground state, but the energy difference between singlet and triplet is not significant. For two-layered radical base pairs, the situation is more complex. All of them have an open-shell state as their ground state, including an open-shell singlet state and an open-shell triplet state. That is, the majority of radical base pairs possess anti-ferromagnetic or ferromagnetic characteristics. We present here a more in-depth discussion and analyses to study the magnetic characteristics of radical bases and base pairs. As an important factor, two-layered radical base pairs also have been carefully analyzed. We hope that all the measurements and results presented here will stimulate further detailed insights into the related mechanisms in modified DNA bases and the design of better ring-expanded DNA magnetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phatak, C.; Petford-Long, A. K.; Zheng, H.
Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Asar; Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.i
Cuprous oxide (Cu{sub 2}O) flower-like nanostructures doped with various metal ions i.e. Fe, Co, Ni and Mn have been synthesized by an organic phase solution method. The powder X-ray diffraction study clearly reveals them as single phase simple cubic cuprite lattice. Study of their magnetic properties have shown that these doped samples are ferromagnetic in nature; however, no such property was observed for the undoped Cu{sub 2}O sample. The magnitude of the ferromagnetic behavior was found to be dependent on the dopant metal ions amount, which increased consistently with its increase. As total magnetic moment contribution of the doped metalmore » ions calculated was insignificant, it is believed to have originated from the induced magnetic moments at cation deficiency sites in the material, created possibly due to the disturbance of the crystal lattice by the dopant ions. The existence of the defects has been supported by photoluminescence spectra of the doped samples. -- Graphical abstract: Room temperature ferromagnetic behavior was observed in the Cu{sub 2}O nanoflowers doped with Fe, Co, Ni and Mn ions. Cation deficiencies formed due to dopant ions were possibly responsible for ferromagnetism. Display Omitted« less
Phatak, C.; Petford-Long, A. K.; Zheng, H.; ...
2015-12-14
Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less
An analytical computation of magnetic field generated from a cylinder ferromagnet
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-04-01
An analytical formulation to compute a magnetic field generated from an uniformly magnetized cylinder ferromagnet is developed. Exact solutions of the magnetic field generated from the magnetization pointing in an arbitrary direction are derived, which are applicable both inside and outside the ferromagnet. The validities of the present formulas are confirmed by comparing them with demagnetization coefficients estimated in earlier works. The results will be useful for designing practical applications, such as high-density magnetic recording and microwave generators, where nanostructured ferromagnets are coupled to each other through the dipole interactions and show cooperative phenomena such as synchronization. As an example, the magnetic field generated from a spin torque oscillator for magnetic recording based on microwave assisted magnetization reversal is studied.
Spin-valleytronics of silicene based nanodevices (SBNs)
NASA Astrophysics Data System (ADS)
Ahmed, Ibrahim Sayed; Asham, Mina Danial; Phillips, Adel Helmy
2018-06-01
The quantum spin and valley characteristics in normal silicene/ferromagnetic silicene/normal silicene junction are investigated under the effects of both electric field and the exchange field of the ferromagnetic silicene. The spin resolved conductance and valley resolved conductance are deduced by solving the Dirac equation. Results show resonant oscillations of both spin and valley conductance. These oscillations might be due to confined states of ferromagnetic silicene. The spin and valley polarizations are also computed. Their trends of figures show that they might be tuned and modulated by the electric field and the exchange field of the ferromagnetic silicene. The present investigated silicene nanodevice might be good for spin-valleytronics applications which are needed for quantum information processing and quantum logic circuits.
Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films
NASA Astrophysics Data System (ADS)
Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.
2014-08-01
We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.
NASA Astrophysics Data System (ADS)
Radu, Ilie
2012-02-01
Revealing the ultimate speed limit at which magnetic order can be controlled, is a fundamental challenge of modern magnetism having far reaching implications for the magnetic recording industry [1]. Exchange interaction is the strongest force in magnetism, being ultimately responsible for ferromagnetic or antiferromagnetic spin order. How do spins react after being optically excited on a timescale of or even faster than the exchange interaction? Here, we demonstrate that femtosecond (fs) measurements of ferrimagnetic and ferromagnetic alloys using X-ray magnetic circular dichroism provide revolutionary new insights into the problem of ultrafast magnetism on timescales pertinent to the exchange interaction. In particular, we show that upon fs optical excitation the ultrafast spin reversal of GdFeCo - a material with antiferromagnetic coupling of spins - occurs via a transient ferromagnetic state [2]. The latter emerges due to different dynamics of the Gd and Fe magnetic moments: Gd switches within 1.5 ps while it takes only 300 fs for Fe. Thus, by using a single fs laser pulse one can force the spin system to evolve via an energetically unfavorable way and temporarily switch from an antiferromagnetic to a ferromagnetic type of ordering. In order to understand whether the observation of this temporarily decoupled and element-specific dynamics is a general phenomenon or just something strictly related to the case of ferrimagnetic GdFeCo, we have investigated the demagnetization of the archetypal ferromagnetic NiFe alloys. Essentially, we observe the same distinct magnetization dynamics of the constituent magnetic moments: Ni demagnetizes within ˜300 fs being much faster than the demagnetization of Fe of ˜800 fs. This distinct demagnetization behavior leads to an apparent decoupling of the Fe and Ni magnetic moments on a few hundreds of fs time scale, despite the strong exchange interaction of 260meV (˜16 fs) that couples them. These observations supported by atomistic simulations, present a novel concept of manipulating magnetic order on different classes of magnetic materials on timescales of the exchange interaction [3]. [4pt] [1] A. Kirilyuk, A.V. Kimel and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010). [0pt] [2] I. Radu et al., Nature 472, 205 (2011). [0pt] [3] I. Radu et al., submitted (2011).
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi
2017-01-01
Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.
NASA Astrophysics Data System (ADS)
Wellons, Matthew S.
The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.
Li, Jianwei; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi
2017-01-01
Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing. PMID:29145500
Testing of a First Order AC Magnetic Susceptometer
NASA Astrophysics Data System (ADS)
Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun
2011-11-01
A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)
Doping of epitaxial III-V semiconductors for optoelectronic and magnetoelectronic applications
NASA Astrophysics Data System (ADS)
Overberg, Mark Eddy
Doped III-V semiconducting materials were studied in this dissertation for use in optoelectronic and magnetoelectronic applications. The specific areas of use are emitters for fiber optic communication and room temperature ferromagnetic layers for spintronic devices. The general requirement for both application areas is the ability to heavily dope (or alloy) the III-Vs with the intended active element, while still maintaining good crystallinity and semiconducting properties. Four dopant/semiconductor systems were investigated: erbium in gallium nitride (GaN:Er), europium in gallium nitride (GaN:Eu), manganese in gallium nitride (GaMnN), and manganese in gallium phosphide (GaMnP). These materials were fabricated using variants of the molecular beam epitaxy (MBE) technique, where beams of the constituent elements are produced in a high vacuum environment. The technique allows for a wide variety of parameters to be adjusted during the material preparation. The materials were deposited on sapphire, gallium nitride, and gallium phosphide surfaces; with particular emphasis on the correlation between growth conditions and the final chemical, structural, morphological, electronic, optical, and magnetic properties. The materials were characterized using a variety of techniques. Results with the GaN:Er material indicated that several percent of Er could be successfully incorporated into the material, and that the optical emission could be increased by incorporating C impurities into the film. These impurities were found to increase the overall emission and decrease the quenching of the emission with temperature. Optical emission results for GaN:Eu indicated that this material produced a visible red emission that was brighter under optical excitation than the AlGaAs used in commercial red emitting devices. The dilute magnetic semiconductors n-GaMnN and p-GaMnP were produced for the first time by the MBE technique. The SQUID magnetometry and magnetotransport results for n-GaMnN indicated the presence of ferromagnetic ordering with a Curie temperature between 20 K and 25 K. Magnetic measurements of the p-GaMnP indicated the presence of ferromagnetic ordering to 250 K, far above the theoretically predicted value of 100 K. Similar results were also produced by the direct implantation of Mn into GaP.
DFT investigations of the hydrogenation effect on silicene/graphene hybrids.
Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O
2012-12-05
We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-11-01
Layered structures especially perovskites have titanic potential for novel device applications and thanks to the multifunctional properties displayed in these materials. We forecast and justify the robust spin-polarized ferromagnetism in half-metallic Sr2SnFeO6 and semiconducting Sr2SnMnO6 perovskite oxides. Different approximation methods have been argued to put forward their physical properties. The intriguingly intricate electronic band structures favor the application of these materials in spintronics. The transport parameters like Seebeck coefficient, electrical and thermal conductivity, have been put together to establish their thermoelectric response. Finally, the layered oxides are found to switch their application as thermoelectric materials and hence, these concepts design the principles of the technologically desired thermoelectric and spin based devices.
Nonlocal and local magnetization dynamics excited by an RF magnetic field in magnetic multilayers
NASA Astrophysics Data System (ADS)
Moriyama, Takahiro
A microwave study in spintronic devices has been actively pursued in the past several years due to the fertile physics and potential applications. On one hand, a passive use of microwave can be very helpful to analyze and understand the magnetization dynamics in spintronic devices. Examples include ferromagnetic resonance (FMR) measurements, and various microwave spectrum analyses in ferromagnetic materials. The most important chrematistic parameter for the phenomenological analysis on the magnetization dynamics is, so called, the Gilbert damping constant. In this work, a relatively new measurement technique, a flip-chip FMR measurement, to conduct the ferromagnetic resonance measurements has been developed. The measurement technique is equally comparable to a conventional FMR measurement. The Gilbert damping constants were extracted for single ferromagnetic layer, spin vale structures, and magnetic tunnel junctions (MTJs). On the other hand, an active use of microwave yields a great potential for interesting phenomena which give new functionalities into spintronic devices. For instance, a spin wave excitation by an rf field can be used to reduce the switching field of a ferromagnet, i.e. microwave assisted magnetization reversal, which could be a potential application in advanced recording media. More interestingly, a precessing magnetization driven by an rf field can generate a pure spin current into a neighboring layer, i.e. spin pumping effect, which is one of the candidates for generating a pure spin current. A ferromagnetic tunnel junction (MTJ) is one of the important devices in spintronics, which is also the key device to investigate the local and nonlocal magnetization dynamics in this work. Therefore, it is also important to develop high quality MTJs. My work starts from the development of MTJ with AlOx and MgO tunnel barriers where it was found it is crucial to find the proper condition for forming a few nanometers thick tunnel barrier. After obtaining quality MTJs, we proceeded to the study on magnetization dynamics using the MTJs. First interesting phenomenon found in this work is the microwave assisted magnetization reversal (MAMR). It is found that magnetization reversal can be achieved efficiently by an appropriate power and frequency microwave. Moreover, there is a mutual relationship between microwave power and frequency for achieving a maximum switching field reduction. This effect can be very useful in magnetic data storage device which essentially needs to reduce the "effective" coercivity field. In the study of nonlocal magnetization dynamics, we tried to detect the spin accumulation induced by spin pumping effect in FM/NM/I/FM, FM/I/NM and FM/I/FM structures with a microwave excitation (FM: ferromagnetic material, NM: nonmagnetic material, and I: tunnel barrier). Interestingly, in the FM/I/NM and FM/I/FM structures, we observed ˜muV dc voltage due to the precessing magnetizations. It is found that the dc voltage we observed is much larger than the current the spin pumping theory predicts. Therefore we speculated a new mechanism to explain the results. Although we discussed only a portion of the magnetization dynamics involving nonlinear and nonequilibrium phenomena, it reveals that there is still a fertile physics which has not yet been investigated or explained.
2011-09-26
determine g-factor of the atomic system, it is convenient experimentally to fix 0 and to find the resonance magnetic field Hres corresponding to the...given frequency ( Hres = res/). In ferromagnetic materials, there exist strong internal anisotropic magnetic fields, which are caused by the magnetic
NASA Astrophysics Data System (ADS)
Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; Mitchell, J. F.
2009-07-01
We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ˜120K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.; Chaudhury, R.
2014-04-01
We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.
NASA Astrophysics Data System (ADS)
Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2016-10-01
We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.
Varga, T; Kumar, A; Vlahos, E; Denev, S; Park, M; Hong, S; Sanehira, T; Wang, Y; Fennie, C J; Streiffer, S K; Ke, X; Schiffer, P; Gopalan, V; Mitchell, J F
2009-07-24
We report the magnetic and electrical characteristics of polycrystalline FeTiO_{3} synthesized at high pressure that is isostructural with acentric LiNbO_{3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below approximately 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
Ferromagnetism in doped or undoped spintronics nanomaterials
NASA Astrophysics Data System (ADS)
Qiang, You
2010-10-01
Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.
NASA Astrophysics Data System (ADS)
Bouafia, H.; Sahli, B.; Timaoui, M. A.; Djebour, B.; Hiadsi, S.; Abidri, B.
2018-02-01
The present work represents a theoretical investigation based on FP-(L)APW + lo method of structural properties, mechanical stability and electronic properties of Co1-xOsxSi as well as the macroscopic magnetic susceptibilities of CoSi and OsSi. The structural properties such as cell parameter, bulk modulus, internal parameters and total energy of non-magnetic NM, ferromagnetic FM and antiferromagnetic AFM phases were predicted by GGA-PBEsol semilocal functional. The obtained results for CoSi and OsSi are in good agreement with those found previously. The spin, orbital and total macroscopic magnetic susceptibilities of CoSi and OsSi have been estimated and confirmed that these compounds are diamagnetic. The total energy of the ferromagnetic phase of Co1-xOsxSi (with x = 0.25, 0.5 and 0.75) is the lowest indicating that they are ferromagnetic materials. The generalized stability criteria indicate that Co1-xOsxSi maintain their mechanical stabilities under a hydrostatic pressure less than 10 GPa. The electronic properties calculated by GW-approximation indicate that CoSi and Co1-xOsxSi (with x = 0.25, 0.50 and 0.75) are semimetals whereas OsSi is a semiconductor with a pseudo-direct band-gap. The topological analysis by QTAIM and the charge density plots indicate that the strong covalent character is predominant for Cosbnd Si, Ossbnd Si and Cosbnd Os bonds.
Exchange Stiffness in Thin-Film Cobalt Alloys
NASA Astrophysics Data System (ADS)
Eyrich, Charles
The exchange stiffness, Aex, is one of the key parameters controlling magnetization reversal in magnetic materials but is very difficult to measure, especially in thin films. We developed a new technique for measuring the exchange stiffness of a magnetic material based on the formation of a spin spiral within two antiferromagnetically coupled ferromagnetic films [1]. Using this method, I was able to measure the exchange stiffness of thin film Co alloyed with Cr, Fe, Ni, Pd, Pt and Ru. The results of this work showed that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. These measured trends have been understood by combining measurements of element specific magnetic moments obtained using X-ray magnetic circular dichroism (XMCD) and material specific modeling based on density functional theory (DFT) within the local density approximation (LDA). The experimental results also hint at significant reduction of the exchange stiffness at the interface that can account for the difference between our results and those obtained on bulk materials.
Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon
NASA Astrophysics Data System (ADS)
Rufinus, J.
2017-10-01
The field of spintronics has been continuously attracting researchers. Tremendous efforts have been made in the quest to find good candidates for future spintronic devices. One particular type of material called graphene is under extensive theoretical study as a feasible component for practical applications. However, pristine graphene is diamagnetic. Thus, a lot of research has been performed to modify the graphene-based structure to achieve meaningful magnetic properties. Recently, a new type of graphene-based one-dimensional material called Boron Nitrogen nanoribbon (BNNR) has been of interest, due to the theoretical predictions that this type of material shows half-metallic property. Here we present the results of the theoretical and computational study of M-doped (M = Cr, Mn) Zigzag BNNR (ZBNNR), the objective of which is to determine whether the presence of these dopants will give rise to ferromagnetism. We have found that the concentration and the atomic distance among the dopants affect the magnetic ordering of this type of material. These results provide a meaningful theoretical prediction of M-doped ZBNNR as a basic candidate of future spintronic devices.
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Bolginov, V. V.; Abramov, N. N.; Stolyarov, V. S.; Ben Hamida, A.; Chichkov, V. I.; Roditchev, D.; Ryazanov, V. V.
2016-10-01
Motivated by recent burst of applications of ferromagnetic layers in superconducting digital and quantum elements, we study the magnetism of thin films and patterned microstructures of Pd0.99Fe0.01. In this diluted ferromagnetic system, a high-sensitivity ferromagnetic resonance (FMR) experiment reveals spectroscopic signatures of re-magnetization and enables the estimation of the saturation magnetization, the anisotropy field, and the Gilbert damping constant. The detailed analysis of FMR spectra links the observed unexpectedly high reduced anisotropy field (0.06-0.14) with the internal anisotropy, points towards a cluster nature of the ferromagnetism, and allows estimating characteristic time scale for magnetization dynamics in Pd-Fe based cryogenic memory elements to ( 3 - 5 ) × 10 - 9 s.
Ferromagnetic resonance with long Josephson junction
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Emelyanova, O. V.; Golubov, A. A.; Ustinov, A. V.; Ryazanov, V. V.
2017-05-01
In this work we propose a hybrid device based on a long Josephson junction (JJ) coupled inductively to an external ferromagnetic (FM) layer. The long JJ in a zero-field operation mode induces a localized AC magnetic field in the FM layer and enables a synchronized magnetostatic standing wave. The magnetostatic wave induces additional dissipation for soliton propagation in the junction and also enables a phase locking (resonant soliton synchronization) at a frequency of natural ferromagnetic resonance. The later manifests itself as an additional constant voltage step on the current-voltage characteristics at the corresponding voltage. The proposed device allows to study magnetization dynamics of individual micro-scaled FM samples using just DC technique, and also it provides additional phase locking frequency in the junction, determined exclusively by characteristics of the ferromagnet.
Saba, Ain Us; Nawazish, Shamyla; Akhtar, Fahad; Rashid, Rehana; Mir, Sadullah; Nasir, Bushra; Afzal, Samina; Pervaiz, Fahad
2017-01-01
Over the past few years, considerable attention has been focused on carrageenan based bionanocomposites due to their multifaceted properties like biodegradability, biocompatibility, and nontoxicity. Moreover, these composites can be tailored according to the desired purpose by using different nanofillers. The role of ferromagnetic nanoparticles in drug delivery is also discussed here in detail. Moreover, this article also presents a short review of recent research on the different types of the carrageenan based bionanocomposites and applications. PMID:28303171
Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng
2016-10-01
Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2017-08-01
The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.
Synthetic magnetoelectric coupling in a nanocomposite multiferroic
Jain, P.; Wang, Q.; Roldan, M.; ...
2015-03-13
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less
Gamarra, Lionel F; daCosta-Filho, Antonio J; Mamani, Javier B; de Cassia Ruiz, Rita; Pavon, Lorena F; Sibov, Tatiana T; Vieira, Ernanni D; Silva, André C; Pontuschka, Walter M; Amaro, Edson
2010-01-01
The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro). PMID:20463936
Spin wave propagation spectra in Octonacci one-dimensional magnonic quasicrystals
NASA Astrophysics Data System (ADS)
Valeriano, Analine P.; Costa, Carlos H.; Bezerra, Claudionor G.
2018-06-01
In this paper, we study spin wave propagation in quasiperiodic magnonic superlattices that follow the so-called Octonacci quasiperiodic sequence, where the N-th stage can be obtained through the recurrence rule SN =SN-1SN-2SN-1 , for N ⩾ 3 , and starting with S1 = A and S2 = B . The multilayered magnonic nanostructure is composed of two simple cubic ferromagnetic materials, labeled A and B, which interact through bilinear and biquadratic exchange couplings at their interfaces. The ferromagnetic materials are described by the Heisenberg model, and a transfer matrix treatment is employed, with the calculations performed for the exchange-dominated regime, taking the random phase approximation (RPA) into account. The obtained numerical results show the effects of both (i) the Octonacci quasiperiodic sequence and (ii) the biquadratic exchange coupling on the band structure and transmission spectra of spin waves. Comparisons are also performed with the spectra found in other periodic and quasiperiodic structures.
Preisach modeling and compensation for smart material hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1995-02-01
Many of the Smart materials being investigated (e.g., Shape Memory Alloys (SMAs), piezoceramics, and magnetostrictives) exhibit significant hysteresis effects, especially when driven with large control signals. In this paper the similarity between the microscopic domain kinematics that generate static hysteresis effects, or ferromagnetics, piezoceramics and SMAs is noted. The Preisach independent domain hysteresis model, and its derivatives, have been shown to be a comprehensive class of hysteresis operator that captures the major features of ferromagnetic hysteresis, and hence it is proposed here as a suitable model for piezoceramic and SMA hysteresis also. This basic Preisach model is used to model piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of the beam. A numerical inverse Preisach hysteresis series compensator is also proposed and applied in a real time experiment thereby reducing the apparent nonlinear hysteresis effects for the piezoceramic actuator quasi-static case.
Wu, Qisheng; Zhang, Jun-Jie; Hao, Peipei; Ji, Zhongyang; Dong, Shuai; Ling, Chongyi; Chen, Qian; Wang, Jinlan
2016-10-06
On the basis of global structure search and density functional theory calculations, we predict a new class of two-dimensional (2D) materials, titanium silicide (Ti 2 Si, TiSi 2 , and TiSi 4 ) monolayers. They are proved to be energetically, dynamically, and thermally stable and own excellent mechanical properties. Among them, Ti 2 Si is a ferromagnetic metal with a magnetic moment of 1.37 μ B /cell, while TiSi 2 is an ideal catalyst for the hydrogen evolution reaction with a nearly zero free energy of hydrogen adsorption. More importantly, electron-phonon coupling calculations suggest that TiSi 4 is a robust 2D phonon-mediated superconductor with a transition temperature of 5.8 K, and the transition temperature can be enhanced up to 11.7 K under a suitable external strain. The versatility makes titanium silicide monolayers promising candidates for spintronic materials, hydrogen evolution catalysts, and 2D superconductors.
NASA Astrophysics Data System (ADS)
Ueno, Toshiyuki; Higuchi, Toshiro
2005-05-01
A high sensitive and heat-resistive magnetic sensor using a magnetostrictive/piezoelectric laminate composite is investigated. The sensing principle is based on the magnetostrictive- and piezoelectric effect, whereby a detected yoke displacement is transduced into a voltage on the piezoelectric materials. The sensor is intended to detect the displacement of a ferromagnetic object in a high temperature environment, where conventional magnetic sensors are not useful. Such applications include sensors in engine of automobile and machinery used in material processing. The sensor features combination of a laminate composite of magnetostrictive/piezoelectric materials with high Curie temperatures and an appropriate magnetic circuit to convert mechanical displacement to sensor voltages and suppress temperature fluctuation. This paper describes the sensing principle and shows experimental results using a composite of Terfenol-D and Lithium Niobate to assure high sensitivity of 50V/mm at bias gap of 0.1mm and a temperature operating range over 200 °C.
Pacheco, Clara J; Bruno, Antonio C
2013-08-29
A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori
2014-03-01
Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.
Pacheco, Clara J.; Bruno, Antonio C.
2013-01-01
A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dürrenfeld, P., E-mail: philipp.durrenfeld@physics.gu.se; Ranjbar, M.; Gerhard, F.
We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the presentmore » device geometry.« less
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.
Ulloa, Camilo; Duine, R A
2018-04-27
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Room temperature luminescence and ferromagnetism of AlN:Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn
2016-06-15
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet
NASA Astrophysics Data System (ADS)
Ulloa, Camilo; Duine, R. A.
2018-04-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Magnetism in nanoparticles: tuning properties with coatings.
Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio
2013-12-04
This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.
Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2
NASA Astrophysics Data System (ADS)
Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin
2017-10-01
Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.
Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem
The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µ{sub B}/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E; Pollard, Martin J; Elkin, Christopher J
2005-10-11
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.
2006-12-12
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
Squid-based CW NMR system for measuring the magnetization of helium-3 films
NASA Astrophysics Data System (ADS)
White, Kevin Spencer
This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.
NASA Astrophysics Data System (ADS)
Miao, Ping; Lin, Xiaohuan; Koda, Akihiro; Lee, Sanghyun; Ishikawa, Yoshihisa; Torii, Shuki; Yonemura, Masao; Mochiku, Takashi; Sagayama, Hajime; Itoh, Shinichi; Wang, Yinxia; Kadono, Ryosuke; Kamiyama, Takashi
Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization, known as the magnetovolume effect (MVE). Here we report a new class of MVE material; namely, a layered perovskite PrBaCo2O5.5+ x (0 <= x <= 0.41),in which strong NTE (β -3.3 × 10-5 K-1 at x = 0.24) is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competing interaction between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo2O5.5+ x but is also observed in the NdBaCo2O5.5+ x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials. The study was financed by the S-type project (No. 2014S05) of KEK.
Miao, Ping; Lin, Xiaohuan; Koda, Akihiro; Lee, Sanghyun; Ishikawa, Yoshihisa; Torii, Shuki; Yonemura, Masao; Mochiku, Takashi; Sagayama, Hajime; Itoh, Shinichi; Ikeda, Kazutaka; Otomo, Toshiya; Wang, Yinxia; Kadono, Ryosuke; Kamiyama, Takashi
2017-07-01
Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization due to the magnetovolume effect (MVE). Here the authors report a new class of MVE material; namely, a layered perovskite PrBaCo 2 O 5.5+ x (0 ≤ x ≤ 0.41), in which strong NTE [β ≈ -3.6 × 10 -5 K -1 (90-110 K) at x = 0.24] is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competition between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo 2 O 5.5+ x but is also observed in the NdBaCo 2 O 5.5+ x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization
Farrahi, Assal; Sanz-Andrés, Ángel
2013-01-01
A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579
Development of a linear induction motor based artificial muscle system.
Gruber, A; Arguello, E; Silva, R
2013-01-01
We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.
Different structural morphologies of the two surfaces in some Co-based amorphous ribbons
NASA Astrophysics Data System (ADS)
Bordin, G.; Buttino, G.
1992-12-01
In nearly zero magnetostriction Co-based Metglas amorphous ribbons, the anomalous Hall effect is used to investigate the behaviour of the surfaces (dull or shiny). The electronic transport properties of a double-layer film, where one of the two layers examined is ferromagnetic and amorphous, and the other is a non-magnetic film, are interpreted on the basis of the mean free path method of Bergmann and Fuchs-Sondheimer theory. The results obtained confirm the different structural morphology of the amorphous surfaces (dull or shiny) already observed by means of bending effects on the initial permeability that depends on the way of winding the ribbons in toroidal samples of the same amorphous materials.
Ferromagnet / superconductor oxide superlattices
NASA Astrophysics Data System (ADS)
Santamaria, Jacobo
2006-03-01
The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic Energy Sciences, contract No.W-31-109-ENG-38. ^1GFMC, Departamento de F'isica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain ^2Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). 28049 Cantoblanco. Madrid. ^3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ^4Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6031, USA
Stable room-temperature ferromagnetic phase at the FeRh(100) surface
Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; ...
2016-03-03
Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaoli; Zhang, Guoren; Jia, Ting; Zeng, Zhi; Lin, H. Q.
2016-05-01
We study the abnormal ferromagnetism in α-K2AgF4, which is very similar to high-TC parent material La2CuO4 in structure. We find out that the electron correlation is very important in determining the insulating property of α-K2AgF4. The Ag(II) 4d9 in the octahedron crystal field has the t2 g 6 eg 3 electron occupation with eg x2-y2 orbital fully occupied and 3z2-r2 orbital partially occupied. The two eg orbitals are very extended indicating both of them are active in superexchange. Using the Hubbard model combined with Nth-order muffin-tin orbital (NMTO) downfolding technique, it is concluded that the exchange interaction between eg 3z2-r2 and x2-y2 from the first nearest neighbor Ag ions leads to the anomalous ferromagnetism in α-K2AgF4.