Kato, Tomohiko; Saita, Takahiro
2011-03-16
The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x < 0.02, that only the spin glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.
Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D
2015-01-13
Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.; Chaudhury, R.
2014-04-01
We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.
Changing Dielectrics into Multiferroics---Alchemy Enabled by Strain
NASA Astrophysics Data System (ADS)
Schlom, Darrell
2011-03-01
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials. The properties of what few compounds simultaneously exhibit these phenomena pale in comparison to useful ferroelectrics or ferromagnets: their spontaneous polarizations (Ps) or magnetizations (Ms) are smaller by a factor of 1000 or more. The same holds for (magnetic or electric) field-induced multiferroics. Recently, however, Fennie and Rabe proposed a new route to ferroelectric ferromagnets---transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using a single control parameter: strain. The system targeted, EuTi O3 , was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ ~ ~7~μB /Eu) and strong ferroelectricity (Ps ~ ~ ~10~ μ C/cm2) under large biaxial compressive strain. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression, we show 3 both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower misfits are required, thereby enabling higher quality crystalline films. The resulting genesis of a strong ferromagnetic ferroelectric points the way to high temperature manifestations of this spin-phonon coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics. C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
Ferromagnets without inversion symmetry - room for superconductivity?
NASA Astrophysics Data System (ADS)
Nevidomskyy, Andriy; Linder, Jacob; Sudbø, Asle
2009-03-01
Motivated by the recent discoveries of ferromagnetic and non-centrosymmetric superconductors, we present a mean-field theory [1] for a superconductor that both lacks inversion symmetry and displays ferromagnetism, a scenario which is believed to be realized in UIr under applied pressure [2]. We study the interplay between the order parameters to clarify how superconductivity is affected by the presence of ferromagnetism and spin-orbit coupling. We find that the spin-orbit coupling seems to enhance both ferromagnetism and superconductivity in both singlet and triplet channels. We discuss our results in the context of the heavy fermion superconductor UIr and analyze possible symmetries of the order parameter. [3pt] [1] J. Linder, A. H. Nevidomskyy, and A. Sudbø, Phys. Rev. B 78, 172502 (2008). [0pt] [2] T. Akazawa et al., J. Phys. Cond. Mat. 16, L29 (2004); J. Phys. Soc. Jpn. 73, 3129 (2004).
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.
Chu, Ying-Hao; Martin, Lane W; Holcomb, Mikel B; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X; Ramesh, R
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.; Gajek, Martin; Han, Shu-Jen; He, Qing; Balke, Nina; Yang, Chan-Ho; Lee, Donkoun; Hu, Wei; Zhan, Qian; Yang, Pei-Ling; Fraile-Rodríguez, Arantxa; Scholl, Andreas; Wang, Shan X.; Ramesh, R.
2008-06-01
Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO3. The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO3 film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co0.9Fe0.1) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.
Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO3 Thin Films.
Varga, Tamas; Droubay, Timothy C; Kovarik, Libor; Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Hu, Dehong; Kim, Bumsoo; Jeon, Seokwoo; Hong, Seungbum; Li, Yulan; Chambers, Scott A
2017-07-05
Polarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO 3 -type compounds, MTiO 3 (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO 3 , then in thin-film NiTiO 3 , the coupling of the two order parameters has not been confirmed. Here, we report the stabilization of polar, ferromagnetic NiTiO 3 by oxide epitaxy on a LiNbO 3 substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulations using the phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and WFM in MTiO 3 transition metal titanates crystallizing in the LiNbO 3 structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic. Multiferroic NiTiO 3 has potential applications in spintronics where ferroic switching is used, such as new four-stage memories and electromagnetic switches.
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6
NASA Astrophysics Data System (ADS)
Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.
2016-01-01
The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.
Intralayer magnetic ordering in Ge/Mn digital alloys
NASA Astrophysics Data System (ADS)
Otrokov, M. M.; Ernst, A.; Ostanin, S.; Fischer, G.; Buczek, P.; Sandratskii, L. M.; Hergert, W.; Mertig, I.; Kuznetsov, V. M.; Chulkov, E. V.
2011-04-01
We present a first-principles investigation of the electronic properties of Ge/Mn digital alloys obtained by the insertion of Mn monolayers in the Ge host. The main attention is devoted to the study of the magnetic properties of the Mn layers for various types of ordering of the Mn atoms. Depending on the type of Mn position three different structures are considered: substitutional, interstitial, and combined substitutional-interstitial. In all three cases numerical structural relaxation of the atomic positions has been performed. We find that the intralayer exchange parameters depend strongly on the crystal structure. For the substitutional and interstitial types of structure the stable magnetic order was found to be ferromagnetic. For the mixed substitutional-interstitial structure the ferromagnetic configuration appears unstable and a complex ferrimagnetic structure forms. The spin-wave excitations are calculated within the Heisenberg model. The critical temperatures of the magnetic phase transitions are determined using Monte Carlo simulations with interatomic exchange parameters obtained for two different magnetic reference states: a ferromagnetic and a disordered local moment state.
The Blume-Capel model on hierarchical lattices: Exact local properties
NASA Astrophysics Data System (ADS)
Rocha-Neto, Mário J. G.; Camelo-Neto, G.; Nogueira, E., Jr.; Coutinho, S.
2018-03-01
The local properties of the spin one ferromagnetic Blume-Capel model defined on hierarchical lattices with dimension two and three are obtained by a numerical recursion procedure and studied as functions of the temperature and the reduced crystal-field parameter. The magnetization and the density of sites in the configuration S = 0 state are carefully investigated at low temperature in the region of the phase diagram that presents the phenomenon of phase reentrance. Both order parameters undergo transitions from the ferromagnetic to the ordered paramagnetic phase with abrupt discontinuities that decrease along the phase boundary at low temperatures. The distribution of magnetization in a typical profile was determined on the transition line presenting a broad multifractal spectrum that narrows towards the fractal limit (single point) as the discontinuities of the order parameters grow towards a maximum. The amplitude of the order-parameter discontinuities and the narrowing of the multifractal spectra were used to delimit the low temperature interval for the possible locus of the tricritical point.
Ferromagnetic resonance in low interacting permalloy nanowire arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raposo, V.; Zazo, M.; Flores, A. G.
2016-04-14
Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which wasmore » achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.« less
A model study of tunneling conductance spectra of ferromagnetically ordered manganites
NASA Astrophysics Data System (ADS)
Panda, Saswati; Kar, J. K.; Rout, G. C.
2018-02-01
We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.
Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems
NASA Astrophysics Data System (ADS)
Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.
2017-12-01
We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.
NASA Astrophysics Data System (ADS)
Biswas, Sounak; Damle, Kedar
2018-02-01
A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : <σz(R ⃗) σz(0 ) > ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.
NASA Astrophysics Data System (ADS)
Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-11-01
γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.
NASA Astrophysics Data System (ADS)
Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat
2009-06-01
For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.
NASA Astrophysics Data System (ADS)
Aichner, Bernd; Jausner, Florian; Zechner, Georg; Mühlgassner, Rita; Lang, Wolfgang; Klimov, Andrii; Puźniak, Roman; Słysz, Wojciech; Guziewicz, Marek; Kruszka, Renata; Wegrzecki, Maciej; Sobolewski, Roman
2017-05-01
Thermodynamic fluctuations of the superconducting order parameter in NbN/NiCu and NbTiN/NiCu superconductor/ferromagnet (S/F) thin bilayers patterned to microbridges are investigated. Plain NbN and NbTiN films served as reference materials for the analyses. The samples were grown using dc-magnetron sputtering on chemically cleaned sapphire single-crystal substrates. After rapid thermal annealing at high temperatures, the superconducting films were coated with NiCu overlays, using co-sputtering. The positive magnetoresistance of the superconducting single layers is very small in the normal state but with a sharp upturn close to the superconducting transition, a familiar signature of superconducting fluctuations. The fluctuation-enhanced conductivity (paraconductivity) of the NbN and NbTiN single layer films is slightly larger than the prediction of the parameter-free Aslamazov-Larkin theory for order-parameter fluctuations in two-dimensional superconductors. The addition of a ferromagnetic top layer, however, changes the magnetotransport properties significantly. The S/F bilayers show a negative magnetoresistance up to almost room temperature, while the signature of fluctuations is similar to that in the plain films, demonstrating the relevance of both ferromagnetic and superconducting effects in the S/F bilayers. The paraconductivity is reduced below theoretical predictions, in particular in the NbTiN/NiCu bilayers. Such suppression of the fluctuation amplitude in S/F bilayers could be favorable to reduce dark counts in superconducting photon detectors and lead the way to enhance their performance.
Electric-field control of magnetic moment in Pd
Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi
2015-01-01
Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306
NASA Astrophysics Data System (ADS)
Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.
2015-05-01
To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.
Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian
2016-01-01
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.
2017-10-01
We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G; Howe, Brandon M; Brown, Gail J; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X
2016-09-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.
2016-01-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices. PMID:27581071
NASA Astrophysics Data System (ADS)
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.
2016-09-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.
Magnetism and phase transitions in LaCoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, David P; Durand, Alice M; Booth, C
2013-01-01
Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H 100 Oe, evidence for a ferromagnetic (FM) transition is observed at Tc 87 K. For 1 kOe H 60 kOe, no transition is apparent. For all H, Curie Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > Tc, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at the bulk surfaces and atmore » the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co O Co angle ( ), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, C. Consistent with recent thin film estimations, we find C D 162:8. For > C, we observe power-law behavior in the structural parameters. decreases with T until the critical temperature, To 37 K; below To the rate of change becomes very small. For T < To, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co O Co angle above C.« less
Rapid characterizing of ferromagnetic materials using spin rectification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Wei; Wang, Yutian
2014-12-29
Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constantsmore » of the Fe crystals but also the principle of spin rectification in this method.« less
He, Lianyi
2014-11-26
In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less
Ali, Bakhtyar; Shah, Lubna R; Ni, C; Xiao, J Q; Shah, S Ismat
2009-11-11
A comprehensive study of the defects and impurity (Co)-driven ferromagnetism is undertaken in the oxide semiconductors: TiO(2), ZnO and CeO(2). The effect of magnetic (Co(2+)) and non-magnetic (Cu(2+)) impurities in conjunction with defects, such as oxygen vacancies (V(o)), have been thoroughly investigated. Analyses of the x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) data reveal the incorporation of cobalt in the lattice, with no signature of cobalt segregation. It is shown that oxygen vacancies are necessary for the ferromagnetic coupling in the Co-doped oxides mentioned above. The possible exchange mechanisms responsible for the ferromagnetism are discussed in light of the energy levels of dopants in the host oxides. In addition, Co and Cu co-doped TiO(2) samples are studied in order to understand the role of point defects in establishing room temperature ferromagnetism. The parameters calculated from the bound magnetic polaron (BMP) and Jorgensen's optical electronegativity models offer a satisfactory explanation of the defect-driven ferromagnetism in the doped/co-doped samples.
Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12
NASA Astrophysics Data System (ADS)
Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao
2018-05-01
The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.
Magnetism in nanoparticle LaCoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, A. M.; Belanger, D. P.; Booth, C. H.
2014-06-24
Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H <= 100 Oe, evidence for a ferromagnetic (FM) transition is observed at T-c approximate to 87 K. For 1 kOe <= H <= 60 kOe, no transition is apparent. For all H, Curie-Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > T-c, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at themore » bulk surfaces and at the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co-O-Co angle (gamma), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, gamma C. Consistent with recent thin film estimations, we find gamma C = 162.8 degrees. For gamma > gamma C, we observe power-law behavior in the structural parameters. gamma decreases with T until the critical temperature, T-o approximate to 37 K; below T-o the rate of change becomes very small. For T < T-o, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co-O-Co angle above gamma C.« less
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Thalmeier, Peter
2014-05-01
The Heisenberg model on a triangular lattice is a prime example of a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. Motivated by recent experimental findings on Cs2CuCl4-xBrx, we discuss the full phase diagram of the anisotropic model with two exchange constants J1 and J2, including possible ferromagnetic exchange. Furthermore a comparison with the related square lattice model is carried out. We discuss the zero-temperature phase diagram, ordering vector, ground-state energy, and ordered moment on a classical level and investigate the effect of quantum fluctuations within the framework of spin-wave theory. The field dependence of the ordered moment is shown to be nonmonotonic with field and control parameter.
NASA Astrophysics Data System (ADS)
Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat
2009-03-01
For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuo; Hogg, Charles R.; Yamamuro, Saeki; Hirayama, Tsukasa; Majetich, Sara A.
2011-02-01
Dipolar ferromagnetism formed in Fe3O4 nanoparticle arrays is revealed by Fresnel Lorentz microscopy and electron holography. Dipolar domain walls do not lie preferentially along macrograin boundaries but depend on the overall shape of the assembly, meaning magnetostatic energy dominates. The domain structures are imaged at different temperatures for both monolayer and bilayer arrays. The domain wall contrast in the monolayer region is visible until 575 °C, and the magnetic order parameter steeply drops toward the temperature. In the bilayer region, finer and more complicated domains are formed.
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-01-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522
Z/sub n/ Baxter model: symmetries and the Belavin parametrization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richey, M.P.; Tracy, C.A.
1986-02-01
The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.
NASA Astrophysics Data System (ADS)
Singh, Geetanjali; Bhat, S. V.
2012-06-01
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter ˜ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at ˜230 K and an antiferromagnetic (AFM) transition at ˜130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at Tc ˜ 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO.
Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Klie, R. F.; Yuan, T.; Tanase, M.; Yang, G.; Ramasse, Q.
2010-02-01
LaCoO3 undergoes a transition from a nonmagnetic to a paramagnetic semiconductor at 80 K, associated with a spin-state transition of the Co3+ ions. It was proposed that the temperature of the spin-state transition depends strongly on the LaCoO3 lattice parameter, suggesting that strain can stabilize different spin states at different temperatures. By combining atomic-resolution Z-contrast imaging, electron diffraction, and angular-resolved electron energy-loss spectroscopy (EELS) with in situ cooling experiments, we show that epitaxially strained LaCoO3 (001) thin films grown on LaAlO3 (001) do not undergo a low temperature spin-state transition. Our EELS study explores the origins of the ferromagnetic ordering in strained LaCoO3 films.
Finite-size scaling analysis on the phase transition of a ferromagnetic polymer chain model
NASA Astrophysics Data System (ADS)
Luo, Meng-Bo
2006-01-01
The finite-size scaling analysis method is applied to study the phase transition of a self-avoiding walking polymer chain with spatial nearest-neighbor ferromagnetic Ising interaction on the simple cubic lattice. Assuming the scaling M2(T,n)=n-2β/ν[Φ0+Φ1n1/ν(T-Tc)+O(n2/ν(T-Tc)2)] with the square magnetization M2 as the order parameter and the chain length n as the size, we estimate the second-order phase-transition temperature Tc=1.784J/kB and critical exponents 2β/ν≈0.668 and ν ≈1.0. The self-diffusion constant and the chain dimensions ⟨R2⟩ and ⟨S2⟩ do not obey such a scaling law.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2017-02-01
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.
Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system
NASA Astrophysics Data System (ADS)
Pospíšil, Jiří; Haga, Yoshinori; Miyake, Atsushi; Kambe, Shinsaku; Tateiwa, Naoyuki; Tokunaga, Yo; Honda, Fuminori; Nakamura, Ai; Homma, Yoshiya; Tokunaga, Masashi; Aoki, Dai; Yamamoto, Etsuji
2018-05-01
We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature
Magnetism of the 35 K superconductor CsEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.
Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.
Intrinsic spin-orbit torque in a single-domain nanomagnet
NASA Astrophysics Data System (ADS)
Kalitsov, A.; Nikolaev, S. A.; Velev, J.; Chshiev, M.; Mryasov, O.
2017-12-01
We present theoretical studies of the intrinsic spin-orbit torque (SOT) in a single-domain ferromagnetic layer with Rashba spin-orbit coupling (SOC) using the nonequilibrium Green's function formalism for a tight-binding Hamiltonian. We find that, in the case of a small electric field, the intrinsic SOT to first order in SOC has only the field-like torque symmetry and can be interpreted as the longitudinal spin current induced by the charge current and Rashba field. We analyze the results in terms of the material-related parameters of the electronic structure, such as the band filling, bandwidth, exchange splitting, and the Rashba SOC strength. On the basis of these numerical and analytical results, we discuss the magnitude and sign of SOT. Our results suggest that the different sign of SOT in identical ferromagnets with different supporting layers, e.g., Co/Pt and Co/Ta, can be attributed to electrostatic doping of the ferromagnetic layer by the support.
A new method for distortion magnetic field compensation of a geomagnetic vector measurement system
NASA Astrophysics Data System (ADS)
Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang
2016-12-01
The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, S. J.; Marioni, M.; Allen, S. M.
2000-08-07
Field-induced strains of 6% are reported in ferromagnetic Ni-Mn-Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependencemore » of strain on magnetic field and external stress using as input parameters only measured quantities. (c) 2000 American Institute of Physics.« less
Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashimura, Takashi; Tsuchiya, Shunji; CREST
2010-09-15
We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less
Domain-wall superconductivity in superconductor-ferromagnet hybrids.
Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V
2004-11-01
Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.
Magnetism in Na-filled Fe-based skutterudites
Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...
2015-06-01
The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe 4Sb 12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for amore » material near an itinerant ferromagnetic quantum critical point. NaFe 4P 12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe 4Sb 12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe 4As 12 shows intermediate behavior. We also present results for skutterudite FeSb 3, which is a metastable phase that has been reported in thin film form.« less
Structural changes concurrent with ferromagnetic transition
NASA Astrophysics Data System (ADS)
Yang, Sen; Bao, Hui-Xin; Zhou, Chao; Wang, Yu; Ren, Xiao-Bing; Song, Xiao-Ping; Yoshitaka, Matsushita; Yoshio, Katsuya; Masahiko, Tanaka; Keisuke, Kobayashi
2013-04-01
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understanding the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
NASA Astrophysics Data System (ADS)
Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias
2018-04-01
Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less
Ferromagnetic order in epitaxially strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Fuchs, D.; Pinta, C.; Schwarz, T.; Schweiss, P.; Nagel, P.; Schuppler, S.; Schneider, R.; Merz, M.; Roth, G.; v. Löhneysen, H.
2007-04-01
LaCoO3 films grown epitaxially on ⟨001⟩ oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates by pulsed laser deposition exhibit ferromagnetic ordering below a critical temperature, Tc , of 85K . Polycrystalline films of LaCoO3 prepared in the same way did not show ferromagnetic order down to T≈5K , and their temperature dependent susceptibility was identical to that of bulk LaCoO3 . The ferromagnetism in epitaxial films is not simply a property of the surface region, rather it extends over the complete film thickness, as shown by the linear increase of the saturated magnetic moment with increasing film thickness. We discuss this surprising result in terms of epitaxial tensile strain via the properly chosen substrate inducing ferromagnetic order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majetich, Sara
In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less
Edwards, D M
2016-03-02
Damping of magnetization dynamics in a ferromagnetic metal, arising from spin-orbit coupling, is usually characterised by the Gilbert parameter α. Recent calculations of this quantity, using a formula due to Kambersky, find that it is infinite for a perfect crystal owing to an intraband scattering term which is of third order in the spin-orbit parameter ξ. This surprising result conflicts with recent work by Costa and Muniz who study damping numerically by direct calculation of the dynamical transverse susceptibility in the presence of spin-orbit coupling. We resolve this inconsistency by following the approach of Costa and Muniz for a slightly simplified model where it is possible to calculate α analytically. We show that to second order in ξ one retrieves the Kambersky result for α, but to higher order one does not obtain any divergent intraband terms. The present work goes beyond that of Costa and Muniz by pointing out the necessity of including the effect of long-range Coulomb interaction in calculating damping for large ξ. A direct derivation of the Kambersky formula is given which shows clearly the restriction of its validity to second order in ξ so that no intraband scattering terms appear. This restriction has an important effect on the damping over a substantial range of impurity content and temperature. The experimental situation is discussed.
Disorder Problem In Diluted Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark
2015-03-01
Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.
Synthetic magnetoelectric coupling in a nanocomposite multiferroic
Jain, P.; Wang, Q.; Roldan, M.; ...
2015-03-13
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
2016-10-11
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃
Gannon, W. J.; Halperin, W. P.; Rastovski, C.; ...
2015-02-01
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less
Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gannon, W. J.; Halperin, W. P.; Rastovski, C.
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less
Transverse fields to tune an Ising-nematic quantum phase transition
NASA Astrophysics Data System (ADS)
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.
2017-12-01
The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon
NASA Astrophysics Data System (ADS)
Du, Qian-Heng; Chen, Guo-Fu; Yang, Wen-Yun; Hua, Mu-Xin; Du, Hong-Lin; Wang, Chang-Sheng; Liu, Shun-Quan; Hang, Jing-Zhi; Zhou, Dong; Zhang, Yan; Yan, Jin-Bo
2015-06-01
The structure and magnetic properties of MnCoSi1- x Px (x = 0.05-0.50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower-magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high-temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1·K-1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11275013), the Fund from the National Physics Laboratory, China Academy of Engineering Physics (Grant No. 2013DB01), and the National Key Basic Research Program of China (Grant No. 2010CB833104).
Novel diluted magnetic semiconductor materials based on zinc oxide
NASA Astrophysics Data System (ADS)
Chakraborti, Deepayan
The primary aim of this work was to develop a ZnO based diluted magnetic semiconductor (DMS) materials system which displays ferromagnetism above room temperature and to understand the origin of long-range ferromagnetic ordering in these systems. Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. For these devices we require a high efficiency of spin current injection at room temperature. Diluted magnetic semiconductors (DMS) can serve this role, but they should not only display room temperature ferromagnetism (RTFM) but also be capable of generating spin polarized carriers. Transition metal doped ZnO has proved to be a potential candidate as a DMS showing RTFM. The origin of ferromagnetic ordering in ZnO is still under debate. However, the presence of magnetic secondary phases, composition fluctuations and nanoclusters could also explain the observation of ferromagnetism in the DMS samples. This encouraged us to investigate Cu-doped(+ spin in the 2+ valence state) ZnO system as a probable candidate exhibiting RTFM because neither metallic Cu nor its oxides (Cu2O or CuO) are ferromagnetic. The role of defects and free carriers on the ferromagnetic ordering of Cu-doped ZnO thin films was studied to ascertain the origin of ferromagnetism in this system. A novel non-equilibrium Pulsed Laser Deposition technique has been used to grow high quality epitaxial thin films of Cu:ZnO and (Co,Cu):ZnO on c-plane Sapphire by domain matching epitxay. Both the systems showed ferromagnetic ordering above 300K but Cu ions showed a much stronger ferromagnetic ordering than Co, especially at low concentrations (1-2%) of Cu where we realized near 100% polarization. But, the incorporation of Cu resulted in a 2-order of magnitude rise in the resistivity from 10-1 to 101 Ohm cm which can prove to be detrimental to the injection of polarized electrons. In order to decrease the resistivity and to understand the role of free carriers in mediating the ferromagnetic ordering, the Cu-doped ZnO films were co-doped with an n-type dopant like Al which increased the free carriers concentration by 3 orders of magnitude from 1017 to 1020 cm -3 without significantly altering the near 100% spin polarization in the Cu:ZnO system. This lack of correlation between free carrier concentration and the magnetic moment implied that a free carrier mediated exchange does not stabilize the long range ferromagnetic ordering. A reduction in the number of oxygen vacancies brought about by high temperature oxygen annealing had a large degrading effect on the ferromagnetism by reducing the total saturation magnetization by almost an order of magnitude. This strong dependence of magnetization on vacancy concentration and the corresponding weak relationship with free carriers pointed towards a defect mediated mechanism, such as a bound magnetic polaron mediated exchange as being responsible for stabilizing the ferromagnetic ordering in these systems. However, a BMP mechanism would not guarantee a strong coupling between the free carriers and the localized spins to produce spin-polarized current. To investigate this we have fabricated spin valve type device structures where a nonmagnetic ZnO layer was sandwiched between two ferromagnetic (Cu,Al):ZnO layers allowing us to study spin polarized carrier injection across the nonmagnetic semiconductor gap. Initial results have shown evidence of spin polarized carrier injection across the nonmagnetic semiconductor layer even at 300K. Hence, this work demonstrates that the (Cu,Al):ZnO system may become a viable solution for spin injection into spintronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Kogan, Vladimir G.
Here, we consider the phase diagram of a ferromagnetic system driven to a quantum phase transition with a tuning parameter $p$. Before being suppressed, the transition becomes of the first order at a tricritical point, from which wings emerge under application of the magnetic field H in the T $-$ p $-$ H phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical point.
Critical behavior study around the ferromagnetic phase transition in Pr2Pt2In
NASA Astrophysics Data System (ADS)
Tchokonté, M. B. Tchoula; Mboukam, J. J.; Sondezi, B. M.; Bashir, A. K. H.; Britz, D.; Strydom, A. M.; Kaczorowski, D.
2018-05-01
The magnetic ordering in Pr2Pt2In was investigated by means of magnetization and magnetic susceptibility measurements. The compound was found to order ferromagnetically at TC = 8.8(2) K with a second-order phase transition. The derived critical exponents β = 0.325(2), γ = 1.058(2) and δ = 4.26(4) are close to those expected for a 3D Ising ferromagnet.
Magnetization reversal in ferromagnetic spirals via domain wall motion
NASA Astrophysics Data System (ADS)
Schumm, Ryan D.; Kunz, Andrew
2016-11-01
Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-05-01
A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
NASA Astrophysics Data System (ADS)
Barsuk, Alexandr A.; Paladi, Florentin
2018-04-01
The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.
Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films
NASA Astrophysics Data System (ADS)
White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.
2013-07-01
Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.
Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films
Bawa, Ambika; Gupta, Anurag; Singh, Sandeep; Awana, V.P.S.; Sahoo, Sangeeta
2016-01-01
A model binary hybrid system composed of a randomly distributed rare-earth ferromagnetic (Gd) part embedded in an s-wave superconducting (Nb) matrix is being manufactured to study the interplay between competing superconducting and ferromagnetic order parameters. The normal metallic to superconducting phase transition appears to be very sensitive to the magnetic counterpart and the modulation of the superconducing properties follow closely to the Abrikosov-Gor’kov (AG) theory of magnetic impurity induced pair breaking mechanism. A critical concentration of Gd is obtained for the studied NbGd based composite films (CFs) above which superconductivity disappears. Besides, a magnetic ordering resembling the paramagnetic Meissner effect (PME) appears in DC magnetization measurements at temperatures close to the superconducting transition temperature. The positive magnetization related to the PME emerges upon doping Nb with Gd. The temperature dependent resistance measurements evolve in a similar fashion with the concentration of Gd as that with an external magnetic field and in both the cases, the transition curves accompany several intermediate features indicating the traces of magnetism originated either from Gd or from the external field. Finally, the signatures of magnetism appear evidently in the magnetization and transport measurements for the CFs with very low (<1 at.%) doping of Gd. PMID:26725684
Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W
2017-12-22
CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.
Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.
2017-12-01
CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .
On a simple molecular–statistical model of a liquid-crystal suspension of anisometric particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakhlevnykh, A. N., E-mail: anz@psu.ru; Lubnin, M. S.; Petrov, D. A.
2016-11-15
A molecular–statistical mean-field theory is constructed for suspensions of anisometric particles in nematic liquid crystals (NLCs). The spherical approximation, well known in the physics of ferromagnetic materials, is considered that allows one to obtain an analytic expression for the free energy and simple equations for the orientational state of a suspension that describe the temperature dependence of the order parameters of the suspension components. The transition temperature from ordered to isotropic state and the jumps in the order parameters at the phase-transition point are studied as a function of the anchoring energy of dispersed particles to the matrix, the concentrationmore » of the impurity phase, and the size of particles. The proposed approach allows one to generalize the model to the case of biaxial ordering.« less
Phase order in superfluid helium films
NASA Astrophysics Data System (ADS)
Bramwell, Steven T.; Faulkner, Michael F.; Holdsworth, Peter C. W.; Taroni, Andrea
2015-12-01
Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β = 3 π^2/128 , a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids. This paper is dedicated to the memory of our friend and colleague Maxime Clusel, with whom we enjoyed many stimulating discussions on related topics.
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers
NASA Astrophysics Data System (ADS)
Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei
2018-06-01
Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.
Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...
2017-12-05
Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Doped YbRh2Si2: not only ferromagnetic correlations but ferromagnetic order.
Lausberg, S; Hannaske, A; Steppke, A; Steinke, L; Gruner, T; Pedrero, L; Krellner, C; Klingner, C; Brando, M; Geibel, C; Steglich, F
2013-06-21
YbRh2Si2 is a prototypical system for studying unconventional antiferromagnetic quantum criticality. However, ferromagnetic correlations are present which can be enhanced via isoelectronic cobalt substitution for rhodium in Yb(Rh(1-x)Co(x))2Si2. So far, the magnetic order with increasing x was believed to remain antiferromagnetic. Here, we present the discovery of ferromagnetism for x = 0.27 below T(C) = 1.30 K in single crystalline samples. Unexpectedly, ordering occurs along the c axis, the hard crystalline electric field direction, where the g factor is an order of magnitude smaller than in the basal plane. Although the spontaneous magnetization is only 0.1 μB/Yb it corresponds to the full expected saturation moment along c taking into account partial Kondo screening.
Voltage controlled spintronic devices for logic applications
You, Chun-Yeol; Bader, Samuel D.
2001-01-01
A reprogrammable logic gate comprising first and second voltage-controlled rotation transistors. Each transistor comprises three ferromagnetic layers with a spacer and insulating layer between the first and second ferromagnetic layers and an additional insulating layer between the second and third ferromagnetic layers. The third ferromagnetic layer of each transistor is connected to each other, and a constant external voltage source is applied to the second ferromagnetic layer of the first transistor. As input voltages are applied to the first ferromagnetic layer of each transistor, the relative directions of magnetization of the ferromagnetic layers and the magnitude of the external voltage determines the output voltage of the gate. By altering these parameters, the logic gate is capable of behaving as AND, OR, NAND, or NOR gates.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
Defect and adsorbate induced ferromagnetic spin-order in magnesium oxide nanocrystallites
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Jitendra; Priya, Shashank
2012-05-01
We report the correlation between d0 ferromagnetism, photoluminescence (PL), and adsorbed hydrogen (H-) species in magnesium oxide (MgO) nanocrystallites. Our study suggests that the oxygen vacancies, namely singly ionized anionic vacancies (F+) and dimers (F22+) induce characteristic photoluminescence and the room-temperature ferromagnetic spin-order. Nanocrystallites with low population of oxygen vacancies have revealed diamagnetic behavior. Intriguingly, on adsorption of hydrogen (H-) species in the MgO nanocrystallites, ferromagnetic behavior was either enhanced (in the case of highly oxygen deficient nanocrystallites) or begun to percolate (in the case of nanocrystallite with low population density of oxygen vacancies).
NASA Astrophysics Data System (ADS)
Pradhan, Kalpataru; Yunoki, Seiji
2017-12-01
Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.
Long-time predictability in disordered spin systems following a deep quench
NASA Astrophysics Data System (ADS)
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Spintronics with multiferroics
NASA Astrophysics Data System (ADS)
Béa, H.; Gajek, M.; Bibes, M.; Barthélémy, A.
2008-10-01
In this paper, we review the recent research on the functionalization of multiferroics for spintronics applications. We focus more particularly on antiferromagnetic and ferroelectric BiFeO3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO3 allows the observation of a large tunnel magnetoresistance with Co and (La,Sr)MnO3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelectric properties have been exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to electrically control magnetization and possibly the logic state of spintronics devices. We also discuss recent results concerning the use of ferromagnetic and ferroelectric (La,Bi)MnO3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La,Sr)MnO3 electrodes. A four-resistance-state device has been obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelectric behavior of the (La,Bi)MnO3 ultrathin film. These results show that the additional degree of freedom provided by the ferroelectric polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.
Laves phase UTi2 stabilized by hydrogen and its magnetic properties
NASA Astrophysics Data System (ADS)
Buturlim, V.; Havela, L.; Sowa, S.; Kim-Ngan, N.-. T. H.; Paukov, M.; Drozdenko, D.; Dopita, M.; Minarik, P.; Mašková, S.
2018-05-01
We describe basic magnetic properties of uranium-based hydrides UTi2Hx, reported in literature as a cubic Laves phase, although the UTi2 binary phase does not exist. Using a high-temperature hydrogenation, we successfully synthesized two types of such hydrides, presumably with different H concentrations, one with a smaller lattice parameter a = 850.3 pm, which is a paramagnet close to the verge of magnetic ordering, the other with a = 858.8 pm, with a ferromagnetic ground state and ordering temperature TC = 54 K.
Crystal and magnetic structure of the La1-xCaxMnO3 compound (0.11⩽x⩽0.175)
NASA Astrophysics Data System (ADS)
Pissas, M.; Margiolaki, I.; Papavassiliou, G.; Stamopoulos, D.; Argyriou, D.
2005-08-01
We studied the crystal and magnetic structure of the La1-xCaxMnO3 compound for (0.11⩽x⩽0.175) using stoichiometric samples. For x<0.13 the system’s ground state is insulating canted antiferromagnetic. For 0.13⩽x⩽0.175 below the Jahn-Teller transition temperature (TJT) the crystal structure undergoes a monoclinic distortion. The crystal structure can be described with P21/c space group which permits two Mn sites. The unit-cell strain parameter s=2(a-c)/(a+c) increases for T
Understanding the magnetoelastic behavior of pure and Co substituted GdNi
NASA Astrophysics Data System (ADS)
Paudyal, Durga; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A., Jr.
Total-energy calculations employing local spin density approximation including Hubbard U (onsite electron correlation) parameter and temperature and magnetic field dependent x-ray diffraction experiments show large anisotropic shifts in lattice parameters and a giant linear magnetostriction without a structural transformation and a negligible volume magnetostriction in GdNi. In agreement with the magnetization and heat-capacity experiments, the total-energy and band splitting results confirm that the anisotropic shape changes in GdNi are associated with the second-order ferromagnetic to paramagnetic transformation. When the band splitting due to the ferromagnetic ordering of the 4 fmoments increases, the concomitant anisotropic changes in the lattice minimize the total free energy of the crystal indicating an unusual interplay between magnetism and crystal structure. The positive formation energy at 0K and the nature of the density of states at the Fermi level confirm an unstable equiatomic Gd compound when Ni is fully substituted by Co. However, the enhanced effective exchange interactions with small Co substitutions increase the Curie temperature without losing the chemical stability. The Ames Laboratory is operated for the US DOE by Iowa State. This work was supported by the DOE, Office of Basic Energy Sciences, Materials Sciences Division under Contract No. DE-AC02-07CH11358.
Voltage-Controlled On/Off Switching of Ferromagnetism in Manganite Supercapacitors.
Molinari, Alan; Hahn, Horst; Kruk, Robert
2018-01-01
The ever-growing technological demand for more advanced microelectronic and spintronic devices keeps catalyzing the idea of controlling magnetism with an electric field. Although voltage-driven on/off switching of magnetization is already established in some magnetoelectric (ME) systems, often the coupling between magnetic and electric order parameters lacks an adequate reversibility, energy efficiency, working temperature, or switching speed. Here, the ME performance of a manganite supercapacitor composed of a ferromagnetic, spin-polarized ultrathin film of La 0.74 Sr 0.26 MnO 3 (LSMO) electrically charged with an ionic liquid electrolyte is investigated. Fully reversible, rapid, on/off switching of ferromagnetism in LSMO is demonstrated in combination with a shift in Curie temperature of up to 26 K and a giant ME coupling coefficient of ≈226 Oe V -1 . The application of voltages of only ≈2 V results in ultralow energy consumptions of about 90 µJ cm -2 . This work provides a step forward toward low-power, high-endurance electrical switching of magnetism for the development of high-performance ME spintronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferromagnetism in tetragonally distorted LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Mehta, Virat Vasav; Liberati, Marco; Wong, Franklin J.; Chopdekar, Rajesh Vilas; Arenholz, Elke; Suzuki, Yuri
2009-04-01
Thin films of epitaxial LaCoO3 were synthesized on SrTiO3 and (La ,Sr)(Al,Ta)O3 substrates, varying the oxygen background pressure in order to evaluate the impact of epitaxial growth as well as oxygen vacancies on the long range magnetic order. The epitaxial constraints from the substrate impose a tetragonal distortion compared to the bulk form. X-ray absorption and x-ray magnetic circular dichroism measurements confirmed that the ferromagnetism arises from the Co ions and persists through the entire thickness of the film. It was found that for the thin films to show ferromagnetic order they have to be grown under the higher oxygen pressures. A correlation of the structure and magnetism suggests that the tetragonal distortions induce the ferromagnetism.
Intrinsic and spatially nonuniform ferromagnetism in Co-doped ZnO films
NASA Astrophysics Data System (ADS)
Tseng, L. T.; Suter, A.; Wang, Y. R.; Xiang, F. X.; Bian, P.; Ding, X.; Tseng, A.; Hu, H. L.; Fan, H. M.; Zheng, R. K.; Wang, X. L.; Salman, Z.; Prokscha, T.; Suzuki, K.; Liu, R.; Li, S.; Morenzoni, E.; Yi, J. B.
2017-09-01
Co doped ZnO films have been deposited by a laser-molecular beam epitaxy system. X-ray diffraction and UV spectra analysis show that Co effectively substitutes the Zn site. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy analysis indicate that there are no clusters. Co dopants are uniformly distributed in ZnO film. Ferromagnetic ordering is observed in all samples deposited under an oxygen partial pressure, PO2=10-3 , 10-5, and 10-7 torr, respectively. However, the magnetization of PO2=10-3 and 10-5 is very small at room temperature. At low temperature, the ferromagnetic ordering is enhanced. Muon spin relaxation (μ SR ) measurements confirm the ferromagnetism in all samples, and the results are consistent with magnetization measurements. From μ SR and TEM analysis, the film deposited under PO2=10-7 torr shows intrinsic ferromagnetism. However, the volume fraction of the ferromagnetism phase is approximately 70%, suggesting that the ferromagnetism is not carrier mediated. Resistivity versus temperature measurements indicate Efros variable range hopping dominates the conductivity. From the above results, we can confirm that a bound magnetic polaron is the origin of the ferromagnetism.
Simple Experiment for Studying the Properties of a Ferromagnetic Material.
ERIC Educational Resources Information Center
Sood, B. R.; And Others
1980-01-01
Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)
Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.
Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B
2012-04-04
Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd
A model for metastable magnetism in the hidden-order phase of URu2Si2
NASA Astrophysics Data System (ADS)
Boyer, Lance; Yakovenko, Victor M.
2018-01-01
We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.
The Jahn-Teller distortion influenced ferromagnetic order in Pr1-xLaxMnO3
NASA Astrophysics Data System (ADS)
He, Feifei; Mao, Zhongquan; Tang, Lingyun; Zhang, Jiang; Chen, Xi
2018-06-01
The structural and magnetic properties of Pr1-xLaxMnO3 (0 ≤ x ≤ 1) polycrystalline powders are investigated. A structural phase transition from a large Jahn-Teller (J-T) distorted orthorhombic structure to a small J-T distorted orthorhombic phase is found at x = 0.70, while the LaMnO3 is showed to have a rhombohedral structure. All the samples exhibit ferromagnetic ordering, and meanwhile, a reentrant spin glass behavior at low temperature. The relationship between J-T distortions and the ferromagnetic order is discussed.
Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry
NASA Astrophysics Data System (ADS)
Yang, Wang; Wu, Congjun
The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.
Three-dimensional skyrmions in spin-2 Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko
2018-05-01
We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.
Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V
2005-11-25
Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
Evolution of ferromagnetism in charge ordered manganite: An effect of external pressure
NASA Astrophysics Data System (ADS)
Dash, S.; Pradhan, M. K.; Rao, T. Lakshmana
2018-05-01
Detailed magnetic measurements of the Pr0.75Na0.25MnO3 polycrystalline sample have been carried out under external hydrostatic pressure upto 10kbar. Pressure strongly suppresses the first order magnetic transition, while thermal hysteresis narrows down progressively and then disappears with increase in pressure. The significant enhancement of the field cooled magnetization value at different pressures is due to the antiferromagnetic to ferromagnetic transformation, while ruling out any contribution from the domain alignment within the ferromagnetic phase.
Critical exponent analysis of lightly germanium-doped La0.7Ca0.3Mn1-xGexO3 (x = 0.05 and x = 0.07)
NASA Astrophysics Data System (ADS)
Nanto, Dwi; Kurniawan, Budhy; Soegijono, Bambang; Ghosh, Nilotpal; Hwang, Jong-Soon; Yu, Seong-Cho
2018-04-01
We have used a critical behavior study of La0.7Ca0.3MnO3 (LCMO) manganite perovskites whose Mn sites have been doped with Ge to explore magnetic interactions. Light Ge doping of 5 or 7 percent tended to produce LCMOs with second order magnetic transitions. The critical parameters of 5- and 7-percent Ge-doped LCMO were determined to be TC = 185 K, β = 0.331 ± 0.019, and γ = 1.15 ± 0.017; and TC = 153 K, β = 0.496 ± 0.011, and γ = 1.03 ± 0.046, respectively, via the modified Arrott plot method. Isothermal magnetization data collected near the Curie temperature (TC) was split into a universal function with two branches M(H,ɛ) = |ɛ|βf±(H/|ɛ|β+γ), where ɛ=(T-TC)/TC is the reduced temperature. f+ is used when T>TC, while f̲ is used when T
Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Kotnala, R.K., E-mail: rkkotnala@gmail.com
We reported long-range ferromagnetic interactions in La doped Zn{sub 0.95}Fe{sub 0.05}O nanoparticles that mediated through lattice defects or vacancies. Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La resultsmore » into ZnO nanoparticles than nanorods that found in pure ZnO and Zn{sub 0.95}Fe{sub 0.05}O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn{sub 0.95}Fe{sub 0.05}O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic interactions. - Highlights: • The La and Fe doping into ZnO nanoparticles induce defects in terms of oxygen vacancy. • The La ions in Fe substituted ZnO formed nanoparticles than nanorods. • Antiferromagnetic interactions are observed at room temperature magnetic measurement. • Rietveld analysis evaluated structural deformation in the Wurtzite ZnO lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuh, Huei-Ru; Chang, Ching-Ray; Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
2015-05-07
Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.
Exact extreme-value statistics at mixed-order transitions.
Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David
2016-05-01
We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.
Ultrafast probes of nonequilibrium hole spin relaxation in the ferromagnetic semiconductor GaMnAs
NASA Astrophysics Data System (ADS)
Patz, Aaron; Li, Tianqi; Liu, Xinyu; Furdyna, Jacek K.; Perakis, Ilias E.; Wang, Jigang
2015-04-01
We report direct measurements of hole spin lifetimes in ferromagnetic GaMnAs carried out by time- and polarization-resolved spectroscopy. Below the Curie temperature, ultrafast photoexcitation of GaMnAs with linearly polarized light is shown to create a nonequilibrium hole spin population via dynamical polarization of the holes through p -d exchange scattering with ferromagnetically ordered Mn spins. The system is then observed to relax in a distinct three-step recovery process: (i) a femtosecond hole spin relaxation, on the scale of 160-200 fs; (ii) a picosecond hole energy relaxation, on the scale of 1-2 ps; and (iii) a coherent, damped Mn spin precession with a period of 250 ps. The transient amplitude of the hole spin relaxation component diminishes with increasing temperature, directly following the ferromagnetic order of GaMnAs, while the hole energy amplitude shows negligible temperature change. Our results serve to establish the hole spin lifetimes in the ferromagnetic semiconductor GaMnAs, at the same time demonstrating a spectroscopic method for studying nonequilibrium hole spins in the presence of magnetic order and spin-exchange interaction.
NASA Astrophysics Data System (ADS)
Farkašovský, Pavol
2018-05-01
The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.
Liu, Xiangyu; Chen, Sanping; Grancha, Thais; Pardo, Emilio; Ke, Hongshan; Yin, Bing; Wei, Qing; Xie, Gang; Gao, Shengli
2014-11-07
A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (T(c) = 7.0 K). The strong ferromagnetic coupling between adjacent Cu(II) ions within each chain is due to the countercomplementarity of the super-exchange pathways, whereas the ferromagnetic interchain interactions--responsible for the long-range magnetic ordering--are most likely due to the presence of coordinated ethanol molecules establishing hydrogen bonds with neighboring chains. DFT calculations have been performed on compound 1 to offer a qualitative theoretical explanation of the magnetic behavior.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
NASA Astrophysics Data System (ADS)
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-01
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.
2016-09-01
We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer.
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-06
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013
2016-01-28
We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less
Multiferroics and magnetoelectrics: thin films and nanostructures
NASA Astrophysics Data System (ADS)
Martin, L. W.; Crane, S. P.; Chu, Y.-H.; Holcomb, M. B.; Gajek, M.; Huijben, M.; Yang, C.-H.; Balke, N.; Ramesh, R.
2008-10-01
Multiferroic materials, or materials that simultaneously possess two or more ferroic order parameters, have returned to the forefront of materials research. Driven by the desire to achieve new functionalities—such as electrical control of ferromagnetism at room temperature—researchers have undertaken a concerted effort to identify and understand the complexities of multiferroic materials. The ability to create high quality thin film multiferroics stands as one of the single most important landmarks in this flurry of research activity. In this review we discuss the basics of multiferroics including the important order parameters and magnetoelectric coupling in materials. We then discuss in detail the growth of single phase, horizontal multilayer, and vertical heterostructure multiferroics. The review ends with a look to the future and how multiferroics can be used to create new functionalities in materials.
NASA Astrophysics Data System (ADS)
Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin
2017-03-01
Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.
Matter rogue waves in an F=1 spinor Bose-Einstein condensate.
Qin, Zhenyun; Mu, Gui
2012-09-01
We report new types of matter rogue waves of a spinor (three-component) model of the Bose-Einstein condensate governed by a system of three nonlinearly coupled Gross-Pitaevskii equations. The exact first-order rational solutions containing one free parameter are obtained by means of a Darboux transformation for the integrable system where the mean-field interaction is attractive and the spin-exchange interaction is ferromagnetic. For different choices of the parameter, there exists a variety of different shaped solutions including two peaks in bright rogue waves and four dips in dark rogue waves. Furthermore, by utilizing the relation between the three-component and the one-component versions of the nonlinear Schrödinger equation, we can devise higher-order rational solutions, in which three components have different shapes. In addition, it is noteworthy that dark rogue wave features disappear in the third-order rational solution.
Taskin, A A; Lavrov, A N; Ando, Yoichi
2003-06-06
In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.
Damping effect on resonance bounds relationship of nanostructured ferromagnets and composites
NASA Astrophysics Data System (ADS)
Zhou, Peiheng; Liu, Tao; Xie, Jianliang; Deng, Longjiang
2012-06-01
In this paper, we introduce Gilbert damping parameter into the expression of resonance bounds relationship in nanomagnets to accomplish the depiction of damping effect, associated with an experimental study of ferromagnetic nanocrystalline flakes and their composites. Based on the intrinsic permeability retrieving and microwave spectrum fitting, a robust approach to the damping problem in the resonance study of high-frequency ferromagnets and composites is discussed.
Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films
NASA Astrophysics Data System (ADS)
Barry, M.; Lee, K.; Chu, Y. H.; Yang, P. L.; Martin, L. W.; Jenkins, C. A.; Ramesh, R.; Scholl, A.; Doran, A.
2007-03-01
BiFeO3 is the only single phase room temperature multiferroic that is currently known. Not only does it have applications as a lead-free replacement for ferroelectric memory cells and piezoelectric sensors, but its interactions with other materials are now attracting a great deal of attention. Its multiferroic nature has potential in the field of exchange bias, where it could allow electric-field control of the ferromagnetic (FM) magnetization. In order to understand this coupling, an understanding of the magnetization in BiFeO3 is necessary. X-ray linear and circular dichroism images were obtained using a high spatial resolution photoelectron emission microscope (PEEM), allowing elemental specificity and surface sensitivity. A piezoelectric force microscope (PFM) was used to map the ferroelectric state in micron-sized regions of the films, which were then probed using crystallographic measurements and temperature dependent PEEM measurements. Temperature dependent structural measurements allow decoupling of the two order parameters, ferroelectric and magnetic, contributing to the photoemission signal. Careful analysis of linear and circular dichroism images allows determination of magnetic directions in BiFeO3 and FM layers.
CeRuPO: A rare example of a ferromagnetic Kondo lattice
NASA Astrophysics Data System (ADS)
Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.
2007-09-01
We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.
Quantum Coherence and Random Fields at Mesoscopic Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Thomas F.
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less
Taufour, Valentin; Kaluarachchi, Udhara S.; Kogan, Vladimir G.
2016-08-19
Here, we consider the phase diagram of a ferromagnetic system driven to a quantum phase transition with a tuning parameter $p$. Before being suppressed, the transition becomes of the first order at a tricritical point, from which wings emerge under application of the magnetic field H in the T $-$ p $-$ H phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical point.
Ferroelectric control of magnetization in BiFeO3/CoFe heterostructures.
NASA Astrophysics Data System (ADS)
Gajek, Martin; Martin, Lane; Heron, John; Seidel, Jan; Ramesh, Ramamoorthy
2009-03-01
The cross coupling between ferroic order parameters in multiferroics opens an alternative for the control of magnetism in magnetoelectric devices by purely electrical means. We first report on the exchange coupling between BiFeO3, an antiferromagnetic ferroelectric , and CoFe. We then show that the domain structure of the ferromagnet can be changed by poling the ferroelectric layer. Finally, we will discuss the implementation of our findings into possible device schemes.
Mudryk, Yaroslav; Paudyal, Durga; Liu, Jing; ...
2017-04-11
Replacement of strongly magnetic gadolinium with weakly magnetic scandium unexpectedly enhances ferromagnetic interactions in (Gd 1–xSc x) 5Ge 4. Based upon this counterintuitive experimental finding we demonstrate the unique role 3d 1 electrons of scandium atoms play in mediating magnetic interactions between the gadolinium atoms from the neighboring layers in the Sm 5Ge 4-type crystal lattice. Scandium substitutions at and below 20% rapidly increase the Curie temperature, TC, of the Gd 5Ge 4 parent, eliminate both the kinetic arrest and hysteresis, and drastically improve reversibility of the first-order magnetostructural transformation at T C. In agreement with first-principles predictions, higher thanmore » 20% Sc leads to the formation of a closely related Pu 5Rh 4-type structure where the first-order magnetostructural transformation is replaced by a conventional second-order ferromagnetic ordering that remains accompanied by a continuous rearrangement of the crystal lattice. In conclusion, comparison of two materials with similar structures and compositions shows that significantly stronger magnetocaloric effect occurs in the first-order material, which also shows very small hysteresis. Furthermore, we demonstrate that a behavior of a specific interatomic distance can predict anomalous physical properties in a series of alloys where compositional dependence of lattice parameters suggests a rather trivial solid solubility and uninteresting magnetism.« less
NASA Astrophysics Data System (ADS)
Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan
A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.
Generalized spin-wave theory: Application to the bilinear-biquadratic model
NASA Astrophysics Data System (ADS)
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, D.G.; Fuertes, V.C.; Blanco, M.C.
2012-10-15
The synthesis, structural characterization, and magnetic properties of La{sub 3}Co{sub 2}SbO{sub 9} double perovskite are reported. The crystal structure has been refined by X-ray and neutron powder diffraction data in the monoclinic space group P2{sub 1}/n. Co{sup 2+} and Sb{sup 5+} have the maximum order allowed for the La{sub 3}Co{sub 2}SbO{sub 9} stoichiometry. Rietveld refinements of powder neutron diffraction data show that at room temperature the cell parameters are a=5.6274(2) A, b=5.6842(2) A, c=7.9748(2) A and {beta}=89.999(3) Degree-Sign . Magnetization measurements indicate the presence of ferromagnetic correlations with T{sub C}=55 K attributed to the exchange interactions for non-linear Co{sup 2+}-O-Sb{supmore » 5+}-O-Co{sup 2+} paths. The effective magnetic moment obtained experimentally is {mu}{sub exp}=4.38 {mu}{sub B} (per mol Co{sup 2+}), between the theoretical one for spin only (3.87 {mu}{sub B}) and spin-orbit value (6.63 {mu}{sub B}), indicating partially unquenched contribution. The low magnetization value at high magnetic field and low temperature (1 {mu}{sub B}/f.u., 5 T and 5 K) and the difference between ZFC and FC magnetization curves (at 5 kOe) indicate that the ferromagnetism do not reach a long range order and that the material has an important magnetic frustration. - Graphical abstract: Co-O-Co (Yellow octahedra only) rich zones (antiferromagnetic) are in contact with Co-O-Sb-O-Co (Red and yellow octahedra) rich zones (Ferromagnetic) to give the peculiar magnetic properties, as a consequence, a complex hysteresis loop can be observed composed by a main and irreversible curve in all the measured range, superimposed with a ferromagnetic component at low fields. Highlights: Black-Right-Pointing-Pointer La{sub 3}Co{sub 2}SbO{sub 9} has small Goldschmidt Tolerance Factor (t) due to the small size of La{sup 3+}. Black-Right-Pointing-Pointer Small t determines an angle for the path Co{sup 2+}-O-Sb{sup 5+}-O-Co{sup 2+} of 153 Degree-Sign . Black-Right-Pointing-Pointer Ferromagnetism is attributed to exchange interactions for Co{sup 2+}-O-Sb{sup 5+}-O-Co{sup 2+} paths. Black-Right-Pointing-Pointer Ferromagnetic nanoclusters are embedded in an antiferromagnetic matrix.« less
Josephson-like spin current in junctions composed of antiferromagnets and ferromagnets
NASA Astrophysics Data System (ADS)
Moor, A.; Volkov, A. F.; Efetov, K. B.
2012-01-01
We study Josephson-like junctions formed by materials with antiferromagnetic (AF) order parameters. As an antiferromagnet, we consider a two-band material in which a spin density wave (SDW) arises. This could be Fe-based pnictides in the temperature interval Tc≤T≤TN, where Tc and TN are the critical temperatures for the superconducting and antiferromagnetic transitions, respectively. The spin current jSp in AF/F/AF junctions with a ballistic ferromagnetic layer and in tunnel AF/I/AF junctions is calculated. It depends on the angle between the magnetization vectors in the AF leads in the same way as the Josephson current depends on the phase difference of the superconducting order parameters in S/I/S tunnel junctions. It turns out that in AF/F/AF junctions, two components of the SDW order parameter are induced in the F layer. One of them oscillates in space with a short period ξF,b˜ℏv/H, while the other decays monotonously from the interfaces over a long distance of the order ξN,b=ℏv/2πT (where v, H, and T are the Fermi velocity, the exchange energy, and the temperature, respectively; the subindex “b” denotes the ballistic case). This is a clear analogy with the case of Josephson S/F/S junctions with a nonhomogeneous magnetization where short- and long-range condensate components are induced in the F layer. However, in contrast to the charge Josephson current in S/F/S junctions, the spin current in AF/F/AF junctions is not constant in space, but oscillates in the ballistic F layer. We also calculate the dependence of jSp on the deviation from the ideal nesting in the AF/I/AF junctions. The spin current is maximal in the insulating phase of the AF and decreases in the metallic phase. It turns to zero at the Neel point when the amplitude of the SDW is zero and changes sign for certain values of the detuning parameter.
Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro
2018-03-01
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
Adaptive microwave impedance memory effect in a ferromagnetic insulator.
Lee, Hanju; Friedman, Barry; Lee, Kiejin
2016-12-14
Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.
Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations.
Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro
2018-03-30
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
Adaptive microwave impedance memory effect in a ferromagnetic insulator
Lee, Hanju; Friedman, Barry; Lee, Kiejin
2016-01-01
Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures. PMID:27966536
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Thermal or nonthermal? That is the question for ultrafast spin switching in GdFeCo.
Zhang, G P; George, Thomas F
2013-09-11
GdFeCo is among the most interesting magnets for producing laser-induced femtosecond magnetism, where light can switch its spin moment from one direction to another. This paper aims to set a criterion for the thermal/nonthermal mechanism: we propose to use the Fermi-Dirac distribution function as a reliable criterion. A precise value for the thermalization time is needed, and through a two-level model, we show that since there is no direct connection between the laser helicity and the definition of thermal/nonthermal processes, the helicity is a poor criterion for differentiating a thermal from a nonthermal process. In addition, we propose a four-site model system (Gd2Fe2) for investigating the transient ferromagnetic ordering between Gd and Fe ions. We find that states of two different kinds can allow such an ordering. One state is a pure ferromagnetic state with ferromagnetic ordering among all the ions, and the other is the short-ranged ferromagnetic ordering of a pair of Gd and Fe ions.
Ferromagnetic order in diamond-like carbon films by Co implantation
NASA Astrophysics Data System (ADS)
Gupta, Prasanth; Williams, Grant; Markwitz, Andreas
2016-02-01
We report the observation of ferromagnetic order in diamond-like carbon (DLC) films made by mass selective ion beam deposition and after low energy implantation with Co ions. Different Co fluences were studied with a peak concentration of up to 25% at an average Co implantation depth of 30 nm. The saturation moment per Co atom (0.2-0.3 μ B) was found to be strongly dependent on temperature and it was significantly lower than that reported in bulk cobalt or cobalt nanoparticles (1.67 μ B per Co atom). The observed magnetic moment cannot be attributed to ferromagnetic nanoparticles as no evidence for superparamagnetism was detected. The magnetic order observed may be due to Co bonding in DLC possibly leading to dilute ferromagnetic semiconductor behaviour with an inhomogeneous distribution of cobalt atoms. Raman spectroscopy measurements showed that Co implantation resulted in an increase in the sp2 clustering with increasing Co fluence. Thus, our results show that Co implantation into DLC films increases the graphitic properties of the film and leads to magnetic order at room temperature.
NASA Astrophysics Data System (ADS)
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
From nanoelectronics to nano-spintronics.
Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming
2011-01-01
Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.
NASA Astrophysics Data System (ADS)
Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.
2018-04-01
The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.
Local atomic and magnetic structure of dilute magnetic semiconductor ( Ba , K ) ( Zn , Mn ) 2 As 2
Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; ...
2016-09-06
We studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn) 2As 2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. Furthermore, we detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5Å, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment ofmore » Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. Finally, we discuss these results in the context of other experiments and theoretical studies on this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Bristowe, N. C.; Varignon, J.; Fontaine, D.; Bousquet, E.; Ghosez, Ph.
2015-01-01
In magnetic materials, the Pauli exclusion principle typically drives anti-alignment between electron spins on neighbouring species resulting in antiferromagnetic behaviour. Ferromagnetism exhibiting spontaneous spin alignment is a fairly rare behaviour, but once materialized is often associated with itinerant electrons in metals. Here we predict and rationalize robust ferromagnetism in an insulating oxide perovskite structure based on the popular titanate series. In half-doped layered titanates, the combination of Jahn–Teller and oxygen breathing motions opens a band gap and creates an unusual charge and orbital ordering of the Ti d electrons. It is argued that this intriguingly intricate electronic network favours the elusive inter-site ferromagnetic (FM) ordering, on the basis of intra-site Hund's rules. Finally, we find that the layered oxides are also ferroelectric with a spontaneous polarization approaching that of BaTiO3. The concepts are general and design principles of the technologically desirable FM ferroelectric multiferroics are presented. PMID:25807180
Ferromagnetism in LaCoO3 nanoparticles
NASA Astrophysics Data System (ADS)
Zhou, Shiming; Shi, Lei; Zhao, Jiyin; He, Laifa; Yang, Haipeng; Zhang, Shangming
2007-11-01
We have investigated the structural and magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method. A ferromagnetic order with TC˜85K has been observed in the nanoparticles. The infrared spectra give evidence for a stabilizing of higher spin state and a reduced Jahn-Teller distortion in the nanoparticles with respect to the bulk LaCoO3 , which is consistent with the recent reports in the strained films [Phys. Rev. B 75, 144402 (2007)] and proposed to be the possible origin of the observed ferromagnetic order in LaCoO3 .
Comparative study of ferromagnetic and non-ferromagnetic modifications of TDAE-C60
NASA Astrophysics Data System (ADS)
Arčon, D.; Blinc, R.; Cevc, P.; Omerzu, A.; Mihailovič, D.
1999-09-01
The magnetic properties of two different modifications of TDAE-C60 have been studied with the ESR and 1H NMR. Well-annealed single crystals display a transition to a ferromagnetically ordered state as confirmed by the observation of the ferromagnetic resonance. On the other hand the magnetic ground state of the non-ferromagnetic modification is consistent with the singlet ground state. The gap between the singlet and low laying triplet excited state opens below 11 K and reaches about 15 K at 5 K. A possible structural differences and their impact on the observed magnetic properties of the two modifications are discussed.
Theory of the magnetism in La2NiMnO6
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha
2017-12-01
The magnetism of ordered and disordered La2NiMnO6 is explained using a model involving double exchange and superexchange. An important feature of this model is the majority spin hybridization in the large coupling limit, which results in ferromagnetism rather than ferrimagnetism as in Sr2FeMoO6 . The ferromagnetic insulating ground state in the ordered phase is explained. The essential role played by the Ni-Mn superexchange between the Ni eg electron spins and the Mn t2 g core electron spins in realizing this ground state is outlined. In the presence of antisite disorder, the model system is found to exhibit a tendency of becoming a spin glass at low temperatures, while it continues to retain a ferromagnetic transition at higher temperatures, similar to recent experimental observations [D. Choudhury et al., Phys. Rev. Lett. 108, 127201 (2012), 10.1103/PhysRevLett.108.127201]. This reentrant spin glass or reentrant ferromagnetic behavior is explained in terms of the competition of the ferromagnetic double exchange between the Ni eg and the Mn eg electrons, and the ferromagnetic Ni-Mn superexchange, with the antiferromagnetic antisite Mn-Mn superexchange.
RbEu (Fe1-xNix) 4As4 : From a ferromagnetic superconductor to a superconducting ferromagnet
NASA Astrophysics Data System (ADS)
Liu, Yi; Liu, Ya-Bin; Yu, Ya-Long; Tao, Qian; Feng, Chun-Mu; Cao, Guang-Han
2017-12-01
The intrinsically hole-doped RbEuFe4As4 exhibits bulk superconductivity at Tsc=36.5 K and ferromagnetic ordering in the Eu sublattice at Tm=15 K. Here we present a hole-compensation study by introducing extra itinerant electrons via a Ni substitution in the ferromagnetic superconductor RbEuFe4As4 with Tsc>Tm . With the Ni doping, Tsc decreases rapidly, and the Eu-spin ferromagnetism and its Tm remain unchanged. Consequently, the system RbEu (Fe1-xNix) 4As4 transforms into a superconducting ferromagnet with Tm>Tsc for 0.07 ≤x ≤0.08 . The occurrence of superconducting ferromagnets is attributed to the decoupling between Eu2 + spins and superconducting Cooper pairs. The superconducting and magnetic phase diagram is established, which additionally includes a recovered yet suppressed spin-density-wave state.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
From Majorana fermions to topological order.
Terhal, Barbara M; Hassler, Fabian; DiVincenzo, David P
2012-06-29
We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically ordered in a region of parameter space: we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs, ferromagnetic or antiferromagnetic, are determined by additional gauge bits. Our mapping allows an understanding of the nonperturbative regime and the phase transition to a nontopological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.
Squid-based CW NMR system for measuring the magnetization of helium-3 films
NASA Astrophysics Data System (ADS)
White, Kevin Spencer
This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.
Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics
NASA Astrophysics Data System (ADS)
Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.
2004-02-01
A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.
Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures
Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas
2015-01-01
Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. PMID:25937693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.
The structural and magnetic properties of a glaserite-type Na 2BaFe(VO 4) 2 compound, featuring a triangular magnetic lattice of Fe 2+ (S = 2), are reported. Temperature dependent X-ray single crystal studies indicate that at room temperature the system adopts a trigonal Pmore » $$\\bar{3}$$ m1 structure and undergoes a structural phase transition to a C2/c monoclinic phase slightly below room temperature (T s = 288 K). This structural transition involves a tilting of Fe–O–V bond angles and strongly influences the magnetic correlation within the Fe triangular lattice. The magnetic susceptibility measurements reveal a ferromagnetic transition near 7 K. Single crystal neutron diffraction confirms the structural distortion and the ferromagnetic spin ordering in Na 2BaFe(VO 4) 2. The magnetic structure of the ordered state is modeled in the magnetic space group C2'/c' that implies a ferromagnetic order of the a and c moment components and antiferromagnetic arrangement for the b components. Altogether, the Fe magnetic moments form ferromagnetic layers that are stacked along the c-axis, where the spins point along one of the (111) facets of the FeO 6 octahedron.« less
Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; ...
2017-12-07
The structural and magnetic properties of a glaserite-type Na 2BaFe(VO 4) 2 compound, featuring a triangular magnetic lattice of Fe 2+ (S = 2), are reported. Temperature dependent X-ray single crystal studies indicate that at room temperature the system adopts a trigonal Pmore » $$\\bar{3}$$ m1 structure and undergoes a structural phase transition to a C2/c monoclinic phase slightly below room temperature (T s = 288 K). This structural transition involves a tilting of Fe–O–V bond angles and strongly influences the magnetic correlation within the Fe triangular lattice. The magnetic susceptibility measurements reveal a ferromagnetic transition near 7 K. Single crystal neutron diffraction confirms the structural distortion and the ferromagnetic spin ordering in Na 2BaFe(VO 4) 2. The magnetic structure of the ordered state is modeled in the magnetic space group C2'/c' that implies a ferromagnetic order of the a and c moment components and antiferromagnetic arrangement for the b components. Altogether, the Fe magnetic moments form ferromagnetic layers that are stacked along the c-axis, where the spins point along one of the (111) facets of the FeO 6 octahedron.« less
NASA Astrophysics Data System (ADS)
Cadeville, M. C.; Pierron-Bohnes, V.; Bouzidi, L.; Sanchez, J. M.
1993-01-01
Local and average electronic and magnetic properties of transition metal alloys are strongly correlated to the distribution of atoms on the lattice sites. The ability of some systems to form long range ordered structures at low temperature allows to discuss their properties in term of well identified occupation operators as those related to long range order (LRO) parameters. We show that using theoretical determinations of these LRO parameters through statistical models like the cluster variation method (CVM) developed to simulate the experimental phase diagrams, we are able to reproduce a lot of physical properties. In this paper we focus on two points: (i) a comparison between CVM results and an experimental determination of the LRO parameter by NMR at 59Co in a CoPt3 compound, and (ii) the modelling of the resistivity of ferromagnetic and paramagnetic intermetallic compounds belonging to Co-Pt, Ni-Pt and Fe-Al systems. All experiments were performed on samples in identified thermodynamic states, implying that kinetic effects are thoroughly taken into account.
First-order ferromagnetic to helimagnetic transition in MgMn6Ge6
NASA Astrophysics Data System (ADS)
Mazet, T.; Ihou-Mouko, H.; Malaman, B.
2008-02-01
The magnetic and magnetocaloric properties of the new HfFe6Ge6-type (P6/mmm) MgMn6Ge6 compound have been studied by magnetic measurements and powder neutron diffraction experiments. MgMn6Ge6 magnetically orders at TC˜345 K in a ferromagnetic easy-plane arrangement. At TAF˜235 K, it undergoes a first-order transition to a helical structure, characterized by a temperature dependent propagation vector k =⟨0,0,qz⟩ (qz˜0.116 reciprocal lattice units at 1.4 K), without structural modification. The Mn atoms carry a magnetic moment of about 2 μB. A metamagnetic transition with a low critical field (Hcr<1 T) is observed below TAF. At low temperature, both magnetic and magnetocaloric data strongly suggest that some kinds of intermediate noncollinear ferromagnetic arrangements are stabilized above the critical field while the pure ferromagnetic state is obtained for significantly higher magnetic fields (H >5 T). The magnitude of the magnetic entropy change at TC (-ΔSM˜20.5 mJ cm-3 K-1 for ΔH =5 T) is about 25% that of Gd metal. The magnetocaloric effect at the order-order transition is of opposite sign and of lower magnitude.
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
NASA Astrophysics Data System (ADS)
Wu, Rui; Ding, Shilei; Lai, Youfang; Tian, Guang; Yang, Jinbo
2018-01-01
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating the ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salafranca Laforga, Juan I; Salafranca, Juan; Biskup, Nevenko
2014-01-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies
NASA Astrophysics Data System (ADS)
Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria
2014-02-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets
NASA Astrophysics Data System (ADS)
Leonov, Andrey O.; Bogdanov, Alexei N.
2018-04-01
The coupling between angular (twisting) and longitudinal modulations arising near the ordering temperature of noncentrosymmetric ferromagnets strongly influences the structure of skyrmion states and their evolution in an applied magnetic field. In the precursor states of cubic helimagnets, a continuous transformation of skyrmion lattices into the saturated state is replaced by the first-order processes accompanied by the formation of multidomain states. Recently the effects imposed by dominant longitudinal modulations have been reported in bulk MnSi and FeGe. Similar phenomena can be observed in the precursor regions of cubic helimagnet epilayers and in easy-plane chiral ferromagnets (e.g. in the hexagonal helimagnet CrNb3S6).
NEUTRON DIFFRACTION INVESTIGATIONS OF FERROMAGNETIC PALLADIUM AND IRON GROUP ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cable, J.W.; Wollan, E.O.; Koehler, W.C.
1962-03-01
In order to account for the magnetic properties of alloys It becomes important to determine the individual magnetic moments of the constituent atoms. This determination can be accomplished by means of neutron diffraction and magnetic induction measurements. Such measurements are made on the ferromagnetic alloys Pd/sub 3/Fe, PdFe, Pd/sub 3/Co, PdCo, Ni/sub 3/Co, and NiCo. The average moment values are obtained from magnetic induction measurements while the differences in the atomic moments are determined from either the ferromagnetic diffuse scattering by the disordered alloys or the superlattice reflections by the ordered alloys. (auth)
Spin State Control using Oxide Interfaces in LaCoO3-based Heterostructures
NASA Astrophysics Data System (ADS)
Lee, Sangjae; Disa, Ankit; Walker, Frederick; Ahn, Charles
The flexibility of the spin degree of freedom of the Co 3d orbitals in LaCoO3 suggests that they can be changed through careful design of oxide heterostructures. Interfacial coupling and dimensional confinement can be used to control the magnetic exchange, crystal fields, and Hund's coupling, through orbital and charge reconstructions. These parameters control the balance between multiple spin configurations, thereby modifying the magnetic ordering of LaCoO3. We study (LaCoO3)m /(LaTiO3)2 heterostructures grown by molecular beam epitaxy, which allow interfacial charge transfer from Ti to Co, in addition to structural and dimensional constraints. The electronic polarization at the interface and consequent structural distortions suppress the ferromagnetism in the LaCoO3 layers. This effect extends well beyond the interface, with ferromagnetic order absent up to LaCoO3 layer thickness of m =10. We compare the properties of the LaCoO3/LaTiO3heterostructureswithLaCoO3/SrTiO3, to untangle how charge transfer and structural modifications control the spin and magnetic configuration in cobaltates.
Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron
NASA Astrophysics Data System (ADS)
Han, Qiang; Birol, Turan; Haule, Kristjan
2018-05-01
We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S.; Kaushal, N.; Wang, Y.
Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less
Li, S.; Kaushal, N.; Wang, Y.; ...
2016-12-12
Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less
Bond Dilution Effects on Bethe Lattice the Spin-1 Blume-Capel Model
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2017-09-01
The bond dilution effects are investigated for the spin-1 Blume-Capel model on the Bethe lattice by using the exact recursion relations. The bilinear interaction parameter is either turned on ferromagnetically with probability p or turned off with probability 1 - p between the nearest-neighbor spins. The thermal variations of the order-parameters are studied in detail to obtain the phase diagrams on the possible planes spanned by the temperature (T), probability (p) and crystal field (D) for the coordination numbers q = 3, 4, and 6. The lines of the second-order phase transitions, Tc-lines, combined with the first-order ones, Tt-lines, at the tricritical points (TCP) are always found for any p and q on the (T, D)-planes. It is also found that the model gives only Tc-lines, Tc-lines combined with the Tt-lines at the TCP’s and only Tt-lines with the consecutively decreasing values of D on the (T, p)-planes for all q.
Investigation of Room temperature Ferromagnetism in Mn doped Ge
NASA Astrophysics Data System (ADS)
Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration
2014-03-01
We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.
2018-03-01
We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.
Graphene based superconducting junctions as spin sources for spintronics
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2018-02-01
We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.
Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.
2013-02-01
Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.
The ferromagnetic monolayer Fe(110) on W(110)
NASA Astrophysics Data System (ADS)
Gradmann, U.; Liu, G.; Elmers, H. J.; Przybylski, M.
1990-07-01
Ferromagnetic order in the pseudomorphic monolayer Fe(110) on W(110) was analyzed experimentally using Conversion Electron Mössbauer Spectroscopy (CEMS) and Torsion Oscillation Magnetometry (TOM). The monolayer is thermodynamically stable, crystallizes to large monolayer patches at elevated temperatures and therefore forms an excellent approximation to the ideal monolayer structure. It is ferromagnetic below a Curie-temperature T c,mono, which is given by (282±3) K for the Ag-coated layer, (290±10) K for coating by Cu, Ag or Au and ≈210 K for the free monolayer. For the Ag-coated monolayer, ground state hyperfine field B hf (0)=(11.9±0.3) T and magnetic moment per atom μ=2.53 μB could be determined, in fair agreement with theoretical predictions. Unusual properties of the phase transition are detected by the combination of both experimental techniques. Strong magnetic anisotropies, which are essential for ferromagnetic order, are determined by CEMS.
Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy
NASA Astrophysics Data System (ADS)
Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.
2018-03-01
Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TC
Orbital ordering-driven ferromagnetism in LaCoO3 nanowires
NASA Astrophysics Data System (ADS)
Wang, Yang; Fan, Hong Jin
2010-09-01
The structure and magnetic properties of LaCoO3 nanowires are investigated as a function of the diameter in the temperature range of 5-300 K. Ferromagnetism below 85 K is observed in these nanowires, in agreement with the recent observations in LaCoO3 epitaxial thin films and nanoparticles. With the diameter of nanowires decreasing, the unit-cell volume increases, while both the global and local structural distortions lessen, accompanied by the gradual enhancement of ferromagnetism. The structure analysis reveals that LaCoO3 nanowires exhibit a monoclinic distorted structure with I2/a space group in the entire investigated temperature range. Different from bulks, there is no clear spin-state transition occurring with temperature in LaCoO3 nanowires. There exists a noticeable Jahn-Teller (JT) distortion in the nanowires even at the lowest temperature, namely, orbital-ordered JT active Co3+ ions with intermediate-spin (IS) state persist at low temperatures, which is not observed in bulk LaCoO3. These results indicate that the ferromagnetism in the nanowires is driven by the orbital ordering of IS Co3+.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
NASA Astrophysics Data System (ADS)
Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro
2018-03-01
We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.
Manipulating multiple order parameters via oxygen vacancies: The case of E u0.5B a0.5Ti O3 -δ
NASA Astrophysics Data System (ADS)
Li, Weiwei; He, Qian; Wang, Le; Zeng, Huizhong; Bowlan, John; Ling, Langsheng; Yarotski, Dmitry A.; Zhang, Wenrui; Zhao, Run; Dai, Jiahong; Gu, Junxing; Shen, Shipeng; Guo, Haizhong; Pi, Li; Wang, Haiyan; Wang, Yongqiang; Velasco-Davalos, Ivan A.; Wu, Yangjiang; Hu, Zhijun; Chen, Bin; Li, Run-Wei; Sun, Young; Jin, Kuijuan; Zhang, Yuheng; Chen, Hou-Tong; Ju, Sheng; Ruediger, Andreas; Shi, Daning; Borisevich, Albina Y.; Yang, Hao
2017-09-01
Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (VO) is a key issue for the future development of transition-metal oxides. Progress in this field is currently addressed through VO variations and their impact on mainly one order parameter. Here we reveal a mechanism for tuning both magnetism and ferroelectricity simultaneously by using VO. Combining experimental and density-functional theory studies of E u0.5B a0.5Ti O3 -δ , we demonstrate that oxygen vacancies create T i3 +3 d1 defect states, mediating the ferromagnetic coupling between the localized Eu 4 f7 spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. The dual function of Ti sites also promises a magnetoelectric coupling in the E u0.5B a0.5Ti O3 -δ .
Mehta, Virat; Biskup, Nevenko; Arenholz, E; ...
2015-04-23
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO 3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO 3 and (La,Sr)(Al,Ta)O 3 substrates and the lowest values are found in thin films in compression on LaAlO 3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co 2+ and Co 3+ as well as lowmore » spin Co 3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less
NASA Astrophysics Data System (ADS)
Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.
2015-04-01
We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.
Cadogan, J M; Stewart, G A; Muñoz Pérez, S; Cobas, R; Hansen, B R; Avdeev, M; Hutchison, W D
2014-03-19
We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and (169)Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The (169)Tm hyperfine magnetic field at 5 K is 631(1) T.
Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi
Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; ...
2016-05-09
Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less
Spin-1 Heisenberg ferromagnet using pair approximation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mert, Murat; Mert, Gülistan; Kılıç, Ahmet
2016-06-08
Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.
NASA Astrophysics Data System (ADS)
Adzhemyan, L. Ts.; Vorob'eva, S. E.; Ivanova, E. V.; Kompaniets, M. V.
2018-04-01
Using the representation for renormalization group functions in terms of nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the ɛ-expansion. We calculate the Feynman diagrams using the sector decomposition technique generalized to critical dynamics problems.
Magnetic state of a Zn1 - x Cr x Se bulk crystal
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.
2008-06-01
The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.
Phase Diagram of Spin-1/2 Alternating Ferromagnetic Chain with XY-Like Anisotropy
NASA Astrophysics Data System (ADS)
Yoshida, Satoru; Okamoto, Kiyomi
1989-12-01
By the use of the numerical method we investigate the ground state phase diagram of spin-1/2 alternating ferromagnetic chain. We numerically diagonalized the Hamiltonian of finite systems (up to 20 spins) and analyzed the numerical data for various physical quantities using the finite size scaling and the extrapolation methods. The ground state is either the effective singlet (ES) state or the spin fluid (SF) state depending on the value of the alternation parameter δ and the anisotropy parameter \\varDelta{\\equiv}Jz/J\\bot(\\varDelta{=}{-}1 for the isotropic ferromagnetic case and \\varDelta{=}0 for the XY case). The phase diagram obtained in this work strongly stupports the theoretical studies of Kohmoto-den Nijs-Kadanoff and Okamoto-Sugiyama. We also discuss the critical properties near the ES-SF transition line.
Planar-type ferromagnetic tunnel junctions fabricated by SPM local oxidation
NASA Astrophysics Data System (ADS)
Tomoda, Y.; Kayashima, S.; Ogino, T.; Motoyama, M.; Takemura, Y.; Shirakashi, J.
Nanometer-scale oxide wires were fabricated by local oxidation nanolithography using scanning probe microscope (SPM). This technique was applied to the fabrication of planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. In order to induce magnetic shape anisotropy, asymmetrical channel structure was patterned by conventional photolithography and wet etching processes. The magnetoresistance (MR) characteristics were clearly shown in the planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. MR ratio of above 100% was obtained at 17 K. This result suggests that the local oxidation nanolithography using SPM is useful for the application to planar-type ferromagnetic tunnel junctions.
Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3
NASA Astrophysics Data System (ADS)
Filippetti, Alessio; Fiorentini, Vincenzo
2007-05-01
Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.
Spin and topological order in a periodically driven spin chain
NASA Astrophysics Data System (ADS)
Russomanno, Angelo; Friedman, Bat-el; Dalla Torre, Emanuele G.
2017-07-01
The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well as sudden changes of a topological winding number and of the number of protected edge states. When one of these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding of topological phases in periodically driven clean integrable models.
Spin-Mechanical Inertia in Antiferromagnet
NASA Astrophysics Data System (ADS)
Cheng, Ran; Wu, Xiaochuan; Xiao, Di
Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.
NASA Astrophysics Data System (ADS)
Andresen, Juan Carlos; Katzgraber, Helmut G.; Schechter, Moshe
2017-12-01
Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength. Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might be first order.
A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms
NASA Astrophysics Data System (ADS)
Peruani, F.; Deutsch, A.; Bär, M.
2008-04-01
A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnetic (F) and liquid-crystal (LC) alignment. In both cases, MFA yields a second order phase transition for a critical noise strength and a scaling exponent of 1/2 for the respective order parameters. We find that the critical noise amplitude ηc at which orientational order emerges in the LC case is smaller than in the F-alignment case, i.e. ηLC C<ηF C. A comparison with simulations of individual-based models with F- resp. LC-alignment shows that the predictions about the critical behavior and the qualitative relation between the respective critical noise amplitudes are correct.
Bulk magnetic properties of La1-xCaxMnO3 (0⩽x⩽0.14) : Signatures of local ferromagnetic order
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, J. J.
2005-04-01
We report the bulk magnetic properties of hole-doped La1-xCaxMnO3 (0⩽x⩽0.14) in the paramagnetic and antiferromagnetic regions; the Mn4+ concentration was determined with chemical analysis. Significant enhancement of the effective paramagnetic moment illustrates the existence of ferromagnetic clusters (polarons). The data reveal a distinct crossover in the paramagnetic region, signifying competition between ferromagnetic clusters and antiferromagnetic correlations associated with the low-temperature magnetically ordered state. The results suggest similarity in the magnetic properties at low temperatures between hole-doped LaMnO3 and electron-doped CaMnO3 .
Quantum fluctuations and gapped Goldstone modes in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Beekman, Aron
2015-03-01
The classical Heisenberg ferromagnet is an exact eigenstate of the quantum Hamiltonian and therefore has no quantum fluctuations. Furthermore it has a reduced number of Goldstone modes, an order parameter that is itself a symmetry generator, is a highest-weight state for the spin algebra, and has no tower of states of vanishing energy. We derive the connection between all these properties and provide general criteria for their presence in other spontaneously-broken symmetry states. The phletora of groundstates in spinor Bose-Einstein condensates is an ideal testing ground for these predictions. In particular the phases with non-maximal polarization (e.g. the F-phase in spin-3 condensates) have an additional gapped mode that is a partner to the quadratically dispersing Goldstone mode, as compared to the maximally polarized, ferromagnetic phase. Furthermore there is a fundamental limit to the coherence time of superpositions in the non-maximally polarized state, which should manifest itself for small-size systems.
NASA Astrophysics Data System (ADS)
Bobák, A.; Abubrig, F. O.; Balcerzak, T.
2003-12-01
The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.
Exchange coupling in permalloy/BiFeO3 heterostructures
NASA Astrophysics Data System (ADS)
Heron, John; Wang, Chen; Carlton, David; Nowakowski, Mark; Gajek, Martin; Awschalom, David; Bokor, Jeff; Ralph, Dan; Ramesh, R.
2010-03-01
BiFeO3 is a ferroelectric and antiferromagnetic multiferroic with the ferroelectric and antiferromagnetic order parameters coupled at room temperature. This coupling results in the reorientation of the ferroelectric and magnetic domains as applied voltages switch the electric polarization. Previous studies using ferromagnet/BiFeO3 heterostructures have shown that the anisotropy of the ferromagnetic layer can be tuned by the ferroelectric domain structure of the BiFeO3 film [1, 2]. The physical mechanism driving this exchange bias with BiFeO3 is still under investigation. We use patterned permalloy structures, with varying aspect ratios, on BiFeO3 thin films to investigate the physics of this interaction. The results of our studies using MFM, PEEM, and MOKE to understand this mechanism as a means to electric field control of magnetic structures will be presented. [4pt] [1] H. Bea et al., Physical Review Letters 100, 017204 (2008).[0pt] [2] L.W. Martin et al., Nanoletters 8, 2050 (2008).
Ferromagnetism and ferroelectricity in Eu X ( X = O, S): pressure effects
NASA Astrophysics Data System (ADS)
Djermouni, Mostefa; Zaoui, Ali; Kacimi, Salima; Benayad, Nawel; Boukortt, Abdelkader
2018-02-01
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+ U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization ( P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2018-03-01
The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.
Self-sustained magnetoelectric oscillations in magnetic resonant tunneling structures.
Ertler, Christian; Fabian, Jaroslav
2008-08-15
The dynamic interplay of transport, electrostatic, and magnetic effects in the resonant tunneling through ferromagnetic quantum wells is theoretically investigated. It is shown that the carrier-mediated magnetic order in the ferromagnetic region not only induces, but also takes part in intrinsic, robust, and sustainable high-frequency current oscillations over a large window of nominally steady bias voltages. This phenomenon could spawn a new class of quantum electronic devices based on ferromagnetic semiconductors.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem
2016-07-13
Here, the temperature-pressure phase diagram of the ferromagnet LaCrGe 3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGemore » 3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.« less
Ferromagnetic resonance in non-stoichiometric Ni 1- x- yMn xGa y
NASA Astrophysics Data System (ADS)
Shanina, B. D.; Konchits, A. A.; Kolesnik, S. P.; Gavriljuk, V. G.; Glavatskij, I. N.; Glavatska, N. I.; Söderberg, O.; Lindroos, V. K.; Foct, J.
2001-12-01
Non-stoichiometric alloys Ni 1- x- yMn xGa y characterised by different values of MSME (from 0.2% to 7.3%) were studied using ferromagnetic resonance (FMR). The angular dependence of the FMR signals was measured in the martensitic and austenitic states of the samples just before and after martensite-austenite transition. Experimental data were used for the determination of the magnetisation 4 πMs and anisotropy parameters K1, K2 for the martensitic state and K1c for the austenitic state. All studied alloys were characterised by large values of the anisotropy parameters of the first and second orders. A special feature of the alloys possessing high MSME is a larger value of the coefficient K2. The temperature dependence of the FMR signals was investigated in the temperature range from below Ms to above TC, where FMR was replaced by conduction electron spin resonance (CESR). Magnetically induced strain in the martensitic phase was measured as a function of the applied magnetic field. The main difference between the alloys in the martensitic state revealing the large or small MSM strain is the behaviour of the electronic structure. In the alloys with the small MSM strain, all the electrons are involved in the ferromagnetic system. On the contrary, in the alloy with the large MSM strain, the narrow resonance line of one electron subsystem is present separately in the FMR spectra. An intensive signal of CESR is observed in the alloys with the large MSME, which is an evidence for a high concentration of free electrons. The suggestion made is that the high concentration of free electrons, i.e. enhanced metallic character of interatomic bonds, assists MSME.
Quantum Quenches in a Spinor Condensate
NASA Astrophysics Data System (ADS)
Lamacraft, Austen
2007-04-01
We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the “light-cone” correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al.
Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.
Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F
2016-10-06
Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.
Wang, Zhengjun; Seehra, Mohindar S
2016-04-06
Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T(C) ≈ 8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T(C) has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ' and χ″, near the quoted T(C). Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k(B) = 2.6 K and the single ion anisotropy energy parameter |D|/k(B) = 8.3 K. The absence of 3D long range order is consistent with the measured |D|/ > J.
Tuning Magnetic Order in Transition Metal Oxide Thin Films
NASA Astrophysics Data System (ADS)
Grutter, Alexander John
In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4+ in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru 4+. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO 3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.
Full magnetic dispersion relation in the frustrated quasi-1D ferromagnet Ca2Y2Cu5O10
NASA Astrophysics Data System (ADS)
Matsuda, M.; Ma, J.; Garlea, V. O.; Nishimoto, S.; Drechsler, S.-L.; Kuzian, R. O.; Ito, T.; Yamaguchi, H.; Oka, K.
2014-03-01
Ca2Y2Cu5O10 consists of edge-sharing CuO2 chains, in which Cu2+ ions carry spin 1/2. The nearest-neighbor (J1) and the next-nearest-neighbor interaction (J2) are ferromagnetic and antiferromagnetic, respectively. For the J1-J2 model the theory predicts that when the ratio α(= | J2 /J1 |) becomes larger than 0.25, the ground state becomes a spiral state. For the aforementioned compound, Kuzian et al. determined α to be 0.19, which is close to the critical value. However, the parameters were fitted using the observed data up to ~10 meV, above which the magnetic excitations were found to be broadened. In order to determine the overall dispersion relation, we performed inelastic neutron scattering experiments using the HYSPEC neutron spectrometer at the SNS. We succeeded in observing the full magnetic dispersion that extends up to ~55 meV. As previously observed, the magnetic excitations appeared to almost vanish at ~11.5 meV. We also found another noticeable gap-like behavior at ~28 meV. We re-evaluate the essential exchange coupling parameters and discuss the origin of gap-like regions in the spin-wave dispersion.
Gilbert Damping Parameter in MgO-Based Magnetic Tunnel Junctions from First Principles
NASA Astrophysics Data System (ADS)
Tang, Hui-Min; Xia, Ke
2017-03-01
We perform a first-principles study of the Gilbert damping parameter (α ) in normal-metal/MgO-cap/ferromagnet/MgO-barrier/ferromagnetic magnetic tunnel junctions. The damping is enhanced by interface spin pumping, which can be parametrized by the spin-mixing conductance (G↑↓ ). The calculated dependence of Gilbert damping on the thickness of the MgO capping layer is consistent with experiment and indicates that the decreases in α with increasing thickness of the MgO capping layer is caused by suppression of spin pumping. Smaller α can be achieved by using a clean interface and alloys. For a thick MgO capping layer, the imaginary part of the spin-mixing conductance nearly equals the real part, and the large imaginary mixing conductance implies that the change in the frequency of ferromagnetic resonance can be observed experimentally. The normal-metal cap significantly affects the Gilbert damping.
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Direct Depth- and Lateral- Imaging of Nanoscale Magnets Generated by Ion Impact
Röder, Falk; Hlawacek, Gregor; Wintz, Sebastian; Hübner, René; Bischoff, Lothar; Lichte, Hannes; Potzger, Kay; Lindner, Jürgen; Fassbender, Jürgen; Bali, Rantej
2015-01-01
Nanomagnets form the building blocks for a variety of spin-transport, spin-wave and data storage devices. In this work we generated nanoscale magnets by exploiting the phenomenon of disorder-induced ferromagnetism; disorder was induced locally on a chemically ordered, initially non-ferromagnetic, Fe60Al40 precursor film using nm diameter beam of Ne+ ions at 25 keV energy. The beam of energetic ions randomized the atomic arrangement locally, leading to the formation of ferromagnetism in the ion-affected regime. The interaction of a penetrating ion with host atoms is known to be spatially inhomogeneous, raising questions on the magnetic homogeneity of nanostructures caused by ion-induced collision cascades. Direct holographic observations of the flux-lines emergent from the disorder-induced magnetic nanostructures were made in order to measure the depth- and lateral- magnetization variation at ferromagnetic/non-ferromagnetic interfaces. Our results suggest that high-resolution nanomagnets of practically any desired 2-dimensional geometry can be directly written onto selected alloy thin films using a nano-focussed ion-beam stylus, thus enabling the rapid prototyping and testing of novel magnetization configurations for their magneto-coupling and spin-wave properties. PMID:26584789
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...
2016-03-14
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
B a2NiOs O6 : A Dirac-Mott insulator with ferromagnetism near 100 K
NASA Astrophysics Data System (ADS)
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; Yuan, Ya-Hua; Shirako, Yuichi; Tsujimoto, Yoshihiro; Matsushita, Yoshitaka; Hu, Zhiwei; Kuo, Chang-Yang; Tjeng, Liu Hao; Pi, Tun-Wen; Soo, Yun-Liang; He, Jianfeng; Tanaka, Masahiko; Katsuya, Yoshio; Richter, Manuel; Yamaura, Kazunari
2016-12-01
The ferromagnetic semiconductor B a2NiOs O6 (Tmag˜100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [F m -3 m ; a =8.0428 (1 )Å ], where the N i2 + and O s6 + ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of O s6 + plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K ), the spin-gapless semiconductor M n2CoAl (Tmag˜720 K ), and the ferromagnetic insulators EuO (Tmag˜70 K ) and B i3C r3O11 (Tmag˜220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of B a2NiOs O6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.
B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; ...
2016-12-28
In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less
B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad
In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less
Ion-beam-induced ferromagnetism in Ca-doped LaMnO3 thin films grown on Si (100)
NASA Astrophysics Data System (ADS)
Sultan, Khalid; Aarif ul Islam, Shah; Habib, Zubida; Ikram, M.; Asokan, K.
2018-04-01
The ion-bean-induced room temperature ferromagnetic ordering in pulsed laser deposited Ca-doped LaMnO3 thin films grown on Si (100) are presented in the present study. In addition to this, changes bought by the ion beam in structural, morphological and electrical properties are presented. Dense electronic excitation produced by high energy 120 MeV Ag9+ ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ion irradiation. The appearance of ferromagnetism at 300 K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. It is observed that the irradiated films show higher resistance than unirradiated films for all the compositions.
Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites
Araujo, C. Moyses; Nagar, Sandeep; Ramzan, Muhammad; Shukla, R.; Jayakumar, O. D.; Tyagi, A. K.; Liu, Yi-Sheng; Chen, Jeng-Lung; Glans, Per-Anders; Chang, Chinglin; Blomqvist, Andreas; Lizárraga, Raquel; Holmström, Erik; Belova, Lyubov; Guo, Jinghua; Ahuja, Rajeev; Rao, K. V.
2014-01-01
We report an unusual robust ferromagnetic order above room temperature upon amorphization of perovskite [YCrO3] in pulsed laser deposited thin films. This is contrary to the usual expected formation of a spin glass magnetic state in the resulting disordered structure. To understand the underlying physics of this phenomenon, we combine advanced spectroscopic techniques and first-principles calculations. We find that the observed order-disorder transformation is accompanied by an insulator-metal transition arising from a wide distribution of Cr-O-Cr bond angles and the consequent metallization through free carriers. Similar results also found in YbCrO3-films suggest that the observed phenomenon is more general and should, in principle, apply to a wider range of oxide systems. The ability to tailor ferromagnetic order above room temperature in oxide materials opens up many possibilities for novel technological applications of this counter intuitive effect. PMID:24732685
Nikitin, A M; Grinenko, V; Sarkar, R; Orain, J-C; Salis, M V; Henke, J; Huang, Y K; Klauss, H-H; Amato, A; Visser, A de
2017-12-12
The compound Sr 0.5 Ce 0.5 FBiS 2 belongs to the intensively studied family of layered BiS 2 superconductors. It attracts special attention because superconductivity at T sc = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T C = 7.5 K. Recently it was reported that upon replacing S by Se T C drops and ferromagnetism becomes of an itinerant nature. At the same time T sc increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study (μSR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr 0.5 Ce 0.5 FBiS 2-x Se x with x = 0.5 and 1.0. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For x = 0.5 and x = 1.0 we find a ferromagnetic volume fraction of ~8 % and ~30 % at T = 0.25 K, well below T C = 3.4 K and T C = 3.3 K, respectively. For x = 1.0 (T sc = 2.9 K) the superconducting phase occupies most (~64 %) of the remaining sample volume, as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.
Levitation properties of maglev systems using soft ferromagnets
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Zhou, You-He
2015-03-01
Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Bud’ko, Sergey L.; Canfield, Paul C.
Experimental and theoretical investigations on itinerant ferromagnetic systems under pressure have shown that ferromagnetic quantum criticality is avoided either by a change of the transition order, becoming of the first order at a tricritical point, or by the appearance of modulated magnetic phases. In the first case, the application of a magnetic field reveals a wing-structure phase diagram as seen in itinerant ferromagnets such as ZrZn 2 and UGe 2. Secondly, no tricritical wings have been observed so far. Here, we report on the discovery of wing-structure as well as the appearance of modulated magnetic phases in the temperature-pressure-magnetic fieldmore » phase diagram of LaCrGe 3. Our investigation of LaCrGe 3 reveals a double-wing structure indicating strong similarities with ZrZn 2 and UGe 2. Unlike these simpler systems, LaCrGe 3 also shows modulated magnetic phases similar to CeRuPO. Our finding provides an example of an additional possibility for the phase diagram of metallic quantum ferromagnets.« less
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.
Origin of negative resistivity slope in U-based ferromagnets
NASA Astrophysics Data System (ADS)
Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Mašková, S.; Dopita, M.
2018-05-01
Ultra-nanocrystalline UH3-based ferromagnets with TC ≈ 200 K exhibit a flat temperature dependence of electrical resistivity with a negative slope both in the ferromagnetic and paramagnetic range. The ordered state with randomness on atomic scale, equivalent to a non-collinear ferromagnetism, can be affected by magnetic field, supressing the static magnetic disorder, which reduces the resistivity and removes the negative slope. It is deduced that the dynamic magnetic disorder in the paramagnetic state can be conceived as continuation of the static disorder in the ordered state. The experiments, performed for (UH3)0.78Mo0.12Ti0.10, demonstrate that the negative resistivity slope, observed for numerous U-based intermetallics in the paramagnetic state, can be due to the strong disorder effect on resistivity. The resulting weak localization, as a quantum interference effect which increases resistivity, is gradually suppressed by enhanced temperature, contributing by electron-phonon scattering, inelastic in nature and removing the quantum coherence.
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo; ...
2016-11-30
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Pressure dependence of the magnetic ground states in MnP
Matsuda, Masaaki; Ye, Feng; Dissanayake, Sachith E.; ...
2016-03-17
MnP, a superconductor under pressure, exhibits a ferromagnetic order below TC~290 K followed by a helical order with the spins lying in the ab plane and the helical rotation propagating along the c axis below Ts~50 K at ambient pressure. We performed single-crystal neutron diffraction experiments to determine the magnetic ground states under pressure. Both TC and Ts are gradually suppressed with increasing pressure and the helical order disappears at ~1.2 GPa. At intermediate pressures of 1.8 and 2.0 GPa, the ferromagnetic order first develops and changes to a conical or two-phase (ferromagnetic and helical) structure with the propagation alongmore » the b axis below a characteristic temperature. At 3.8 GPa, a helical magnetic order appears below 208 K, which hosts the spins in the ac plane and the propagation along the b axis. The period of this b axis modulation is shorter than that at 1.8 GPa. Here, our results indicate that the magnetic phase in the vicinity of the superconducting phase may have a helical magnetic correlation along the b axis.« less
Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.
Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan
2016-03-01
The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process.
Optimization of a superconducting linear levitation system using a soft ferromagnet
NASA Astrophysics Data System (ADS)
Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro
2013-04-01
The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
NASA Astrophysics Data System (ADS)
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Tuning the onset of ferromagnetism in heterogeneous bimetallic nanoparticles by gas phase doping
NASA Astrophysics Data System (ADS)
Bohra, Murtaza; Grammatikopoulos, Panagiotis; Singh, Vidyadhar; Zhao, Junlei; Toulkeridou, Evropi; Steinhauer, Stephan; Kioseoglou, Joseph; Bobo, Jean-François; Nordlund, Kai; Djurabekova, Flyura; Sowwan, Mukhles
2017-11-01
In the nanoregime, chemical species can reorganize in ways not predicted by their equilibrium bulk behavior. Here, we engineer Ni-Cr nanoalloys at the magnetic end of their compositional range (i.e., 0-15 at. % Cr), and we investigate the effect of Cr incorporation on their structural stability and resultant magnetic ordering. To ensure their stoichiometric compositions, the nanoalloys are grown by cluster beam deposition, a method that allows one-step, chemical-free fabrication of bimetallic nanoparticles. While full Cr segregation toward nanoparticle surfaces is thermodynamically expected for low Cr concentrations, metastability occurs as the Cr dopant level increases in the form of residual Cr in the core region, yielding desirable magnetic properties in a compensatory manner. Using nudged elastic band calculations, residual Cr in the core is explained based on modifications in the local environment of individual Cr atoms. The resultant competition between ferromagnetic and antiferromagnetic ordering gives rise to a wide assortment of interesting phenomena, such as a cluster-glass ground state at very low temperatures and an increase in Curie temperature values. We emphasize the importance of obtaining the commonly elusive magnetic nanophase diagram for M -Cr (M =Fe , Co, and Ni) nanoalloys, and we propose an efficient single-parameter method of tuning the Curie temperature for various technological applications.
Self-induced polar order of active Brownian particles in a harmonic trap.
Hennes, Marc; Wolff, Katrin; Stark, Holger
2014-06-13
Hydrodynamically interacting active particles in an external harmonic potential form a self-assembled fluid pump at large enough Péclet numbers. Here, we give a quantitative criterion for the formation of the pump and show that particle orientations align in the self-induced flow field in surprising analogy to ferromagnetic order where the active Péclet number plays the role of inverse temperature. The particle orientations follow a Boltzmann distribution Φ(p) ∼ exp(Ap(z)) where the ordering mean field A scales with the active Péclet number and polar order parameter. The mean flow field in which the particles' swimming directions align corresponds to a regularized Stokeslet with strength proportional to swimming speed. Analytic mean-field results are compared with results from Brownian dynamics simulations with hydrodynamic interactions included and are found to capture the self-induced alignment very well.
Nonlinear Stage of Modulation Instability for a Fifth-Order Nonlinear Schrödinger Equation
NASA Astrophysics Data System (ADS)
Jia, Hui-Xian; Shan, Dong-Ming
2017-10-01
In this article, a fifth-order nonlinear Schrödinger equation, which can be used to characterise the solitons in the optical fibre and inhomogeneous Heisenberg ferromagnetic spin system, has been investigated. Akhmediev breather, Kuzentsov soliton, and generalised soliton have all been attained via the Darbox transformation. Propagation and interaction for three-type breathers have been studied: the types of breather are determined by the module and complex angle of parameter ξ; interaction between Akhmediev breather and generalised soliton displays a phase shift, whereas the others do not. Modulation instability of the generalised solitons have been analysed: a small perturbation can develop into a rogue wave, which is consistent with the results of rogue wave solutions.
Spin-flop quasi-first order phase transition and putative tricritical point in Gd3Co
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Barua, Soumendu; Suresh, K. G.
2017-12-01
Magnetic nature of Gd3Co is investigated using detailed measurements of temperature and field dependent magnetization. The antiferromagnetic phase is field-instable due to prevailing ferromagnetic exchange correlations above Néel temperature TN ∼ 130K . Below TN , with gradually increasing magnetic fields, the compound undergoes a quasi-first order phase transition from AFM to spin-flop over region and eventually acquires ferromagnetic phase in higher fields. Further the point at which the quasi-first order transition ends and second order transition sets in is the tricritical point, TTCP ∼ 125.6K , HTCP ∼ 4.4kOe .
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.
2015-11-01
In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.
Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers
Stamopoulos, D.; Aristomenopoulou, E.
2015-01-01
Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543
Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires.
Xu, H J; Zhu, H C; Shan, X D; Liu, Y X; Gao, J Y; Zhang, X Z; Zhang, J M; Wang, P W; Hou, Y M; Yu, D P
2010-01-13
Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn(1-x)Cu(x)O nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high T(c) ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
Ferromagnetic behavior and exchange bias effect in akaganeite nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadic, Marin, E-mail: marint@vinca.rs; Milosevic, Irena; Motte, Laurence
We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature T{sub N} = 259 K and ferromagnetic-like hysteresis behavior both below and above T{sub N}. An exchange bias effect is observed below T{sub N} and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.
Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals
NASA Astrophysics Data System (ADS)
Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi
2014-06-01
The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.
Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.
Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M
2009-07-01
We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations.
Critical behavior near the ferromagnetic phase transition in double perovskite Nd2NiMnO6
NASA Astrophysics Data System (ADS)
Ali, Anzar; Sharma, G.; Singh, Yogesh
2018-05-01
The knowledge of critical exponents plays a crucial role in trying to understand the interaction mechanism near a phase transition. In this report, we present a detailed study of the critical behaviour near the ferromagnetic (FM) transition (TC ˜ 193 K) in Nd2NiMnO6 using the temperature and magnetic field dependent isothermal magnetisation measurements. We used various analysis methods such as Arrott plot, modified Arrott plot, and Kouvel-Fisher plot to estimate the critical parameters. The magnetic critical parameters β = 0.49±0.02, γ = 1.05±0.04 and critical isothermal parameter δ = 3.05±0.02 are in excellent agreement with Widom scaling. The critical parameters analysis emphasizes that mean field interaction is the mechanism driving the FM transition in Nd2NiMnO6.
Phase diagram of the isotropic spin-(3)/(2) model on the z=3 Bethe lattice
NASA Astrophysics Data System (ADS)
Depenbrock, Stefan; Pollmann, Frank
2013-07-01
We study an SU(2) symmetric spin-3/2 model on the z=3 Bethe lattice using the infinite time evolving block decimation (iTEBD) method. This model is shown to exhibit a rich phase diagram. We compute several order parameters which allow us to identify a ferromagnetic, a ferrimagnetic, an antiferromagnetic, as well as a dimerized phase. We calculate the entanglement spectra from which we conclude the existence of a symmetry protected topological phase that is characterized by S=1/2 edge spins. Details of the iTEBD algorithm used for the simulations are included.
Size- and pressure-controlled ferromagnetism in LaCoO3 nanoparticles
NASA Astrophysics Data System (ADS)
Fita, I.; Markovich, V.; Mogilyansky, D.; Puzniak, R.; Wisniewski, A.; Titelman, L.; Vradman, L.; Herskowitz, M.; Varyukhin, V. N.; Gorodetsky, G.
2008-06-01
Magnetic properties of nanocrystalline LaCoO3 with particle size of 25, 30, 32, and 38 nm, prepared by the citrate method, were investigated in temperature range 2-320 K, magnetic field up to 50 kOe, and under hydrostatic pressure up to 11 kbar. All nanoparticles exhibit weak ferromagnetism below TC≈85K , in agreement with recent observation on LaCoO3 particles and tensile thin films. It was found that with decreasing particle size, i.e., with increasing the surface to volume ratio, the unit-cell volume increases monotonically due to the surface effect. The ferromagnetic moment increases as well, simultaneously with lattice expansion, whereas TC remains nearly unchanged. On the other hand, an applied hydrostatic pressure suppresses strongly the ferromagnetic phase leading to its full disappearance at 10 kbar, while the TC does not change visibly under pressure. It appears that the ferromagnetism in LaCoO3 nanoparticles is controlled by the unit-cell volume. This clear correlation suggests that the nature of ferromagnetic ground state of LaCoO3 is likely related to orbitally ordered Jahn-Teller active Co3+ ions with intermediate-spin (IS) state, which may persist in the expanded lattice at low temperatures. A robust orbital order presumed among the IS Co3+ species can explain the very stable TC observed for LaCoO3 samples prepared under different conditions: single crystal powders, nanoparticles, and thin films.
Electronic and magnetic transitions in perovskite SrRu{sub 1-x}Ir{sub x}O{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Abhijit; Lee, Yong Woo; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr
2015-09-07
We have investigated the electronic and magnetic properties of perovskite SrRu{sub 1−x}Ir{sub x}O{sub 3} (0.0≤ x ≤ 0.25) thin films grown by pulsed laser deposition on atomically flat (001) SrTiO{sub 3} substrates. SrRuO{sub 3} has the properties of a ferromagnetic metal (resistivity ρ ∼ 200 μΩ · cm at T = 300 K) with Curie temperature T{sub C} ∼ 150 K. Substituting Ir (5d{sup 5+}) for Ru (4d{sup 4+}) in SrRuO{sub 3}, films (0.0 ≤ x ≤ 0.20) showed fully metallic behavior and ferromagnetic ordering, although ρ increased and the ferromagnetic T{sub C} decreased. Films with x = 0.25 underwent the metal-to-insulator transition (T{sub MIT}∼75 K) in ρ, and spin-glass-like ordering (T{sub SG}∼45 K) with the elimination of ferromagnetic long-range ordering causedmore » by the electron localization at the substitution sites. In ferromagnetic films (0.0 ≤ x ≤ 0.20), ρ increased near-linearly with T at T > T{sub C}, but in paramagnetic film (x = 0.25) ρ increased as T{sup 3/2} at T > T{sub MIT}. Moreover, observed spin-glass-like (T{sub SG}) ordering with the negative magnetoresistance at T < T{sub MIT} in film with x = 0.25 validates the hypothesis that (Anderson) localization favors glassy ordering at amply disorder limit. These observations provide a promising approach for future applications and of fundamental interest in 4d and 5d mixed perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.
2016-06-27
We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less
Magnon modes and magnon-vortex scattering in two-dimensional easy-plane ferromagnets
NASA Astrophysics Data System (ADS)
Ivanov, B. A.; Schnitzer, H. J.; Mertens, F. G.; Wysin, G. M.
1998-10-01
We calculate the magnon modes in the presence of a vortex on a circular system, combining analytical calculations in the continuum limit with a numerical diagonalization of the discrete system. The magnon modes are expressed by the S matrix for magnon-vortex scattering, as a function of the parameters and the size of the system and for different boundary conditions. Certain quasilocal translational modes are identified with the frequencies which appear in the trajectory X-->(t) of the vortex center in recent molecular dynamics simulations of the full many-spin model. Using these quasilocal modes we calculate the two parameters of a third-order equation of motion for X-->(t). This equation was recently derived by a collective variable theory and describes very well the trajectories observed in the simulations. Both parameters, the vortex mass and the factor in front of X-->⃛, depend strongly on the boundary conditions.
Prethermalization and persistent order in the absence of a thermal phase transition
NASA Astrophysics Data System (ADS)
Halimeh, Jad C.; Zauner-Stauber, Valentin; McCulloch, Ian P.; de Vega, Inés; Schollwöck, Ulrich; Kastner, Michael
2017-01-01
We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions (∝1 /rα with distance r ), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of α for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on α as well as on the quench parameters.
Ba2NiOsO6: a Dirac-Mott insulator with ferromagnetism near 100 K
NASA Astrophysics Data System (ADS)
Feng, Hl; Calder, S.; Ghimire, M.; Yuan, Yh; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z.; Kuo, Cy; Tjeng, Lh; Pi, Tw; Soo, Yl; He, Jf; Tanaka, M.; Katsuya, Y.; Richte, M.; Yamaura, Kazunari
The ferromagnetic semiconductor Ba2NiOsO6(Tmag 100 K) was synthesized at 6 GPa and 1500 ° C. It crystallizes into a double perovskite structure [Fm-3 m; a = 8.0428(1)], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21-kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K), the spin-gapless semiconductor Mn2CoAl (Tmag 720 K), and the ferromagnetic insulators EuO (Tmag 70 K) and Bi3Cr3O11(Tmag 220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our report of cubic Ba2NiOsO6 heralds a new class of FM insulator oxides, which may be useful in developing a practical magnetic semiconductor that can be employed in spintronic and quantum magnetic devices.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Nandi, Prithwish K.; Kawazoe, Yoshiyuki; Ramaniah, Lavanya M.
2018-05-01
Through density functional theory simulations with the generalized gradient approximation, confirmed by the more sophisticated hybrid functional, we predict the triggering of d0 ferromagnetism in C doped Y2O3 at a hole density of 3.36 ×1021c m-3 (one order less than the critical hole density of ZnO) having magnetic moment of 2.0 μB per defect with ferromagnetic coupling large enough to promote room-temperature ferromagnetism. The persistence of ferromagnetism at room temperature is established through computation of the Curie temperature by the mean field approximation and ab initio molecular dynamics simulations. The induced magnetic moment is mainly contributed by the 2 p orbital of the impurity C and the 2 p orbital of O and we quantitatively and extensively demonstrate through the analysis of density of states and ferromagnetic coupling that the Stoner criterion is satisfied to activate room-temperature ferromagnetism. As the system is stable at room temperature, C doped Y2O3 has feasible defect formation energy and ferromagnetism survives for the choice of hybrid exchange functional, and at room temperature we strongly believe that C doped Y2O3 can be tailored as a room-temperature diluted magnetic semiconductor for spintronic applications.
Weak ferromagnetism along the third-order axis of the FeBO3 crystals caused by Fe2+ impurity ions
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. G.; Rudenko, V. V.; Vorotynov, A. M.
2018-05-01
Using the single-ion approximation, the weak ferromagnetic moment σZ(Fe2+) along the third-order axis of FeBO3 crystals, which is caused by the contribution of Fe2+ ions, has been investigated in the framework of the model Fe2+ impurity ion -BO3 vacancy. The extreme low-temperature behavior of the total magnetic moment due to the strong dependence of the Fe2+ion contribution is predicted.
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
Single ferromagnetic fluctuations in UCoGe revealed by 73Ge- and 59Co-NMR studies
NASA Astrophysics Data System (ADS)
Manago, Masahiro; Ishida, Kenji; Aoki, Dai
2018-02-01
73Ge and 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on a 73Ge-enriched single-crystalline sample of the ferromagnetic superconductor UCoGe in the paramagnetic state. The 73Ge NQR parameters deduced from NQR and NMR are close to those of another isostructural ferromagnetic superconductor URhGe. The Knight shifts of the Ge and Co sites are well scaled to each other when the magnetic field is parallel to the b or c axis. The hyperfine coupling constants of Ge are estimated to be close to those of Co. The large difference of spin susceptibilities between the a and b axes could lead to the different response of the superconductivity and ferromagnetism with the field parallel to these directions. The temperature dependence of the nuclear spin-lattice relaxation rates 1 /T1 at the two sites is similar to each other above 5 K. These results indicate that the itinerant U-5 f electrons are responsible for the ferromagnetism in this compound, consistent with previous studies. The similarities and differences in the three ferromagnetic superconductors are discussed.
New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise
NASA Astrophysics Data System (ADS)
Pal'a, Jozef; Ušák, Elemír
2016-03-01
A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.
Structural and magnetic phase transitions in EuTi 1-xNb xO 3
Li, Ling; Morris, James R.; Koehler, Michael R.; ...
2015-07-30
Here, we investigate the structural and magnetic phase transitions in EuTi 1-xNb xO 3 (0≤x≤0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pmmore » $$\\bar{3}$$m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x≥0.1. Moreover, the structural transition in pure and doped compounds is marked by a dramatic step-like softening of the elastic moduli near T S, which resembles that of SrTiO 3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko
2016-02-15
Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less
Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany Maria
A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.
Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein
NASA Astrophysics Data System (ADS)
Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou
2017-07-01
In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.
Tricritical wings and modulated magnetic phases in LaCrGe 3 under pressure
Kaluarachchi, Udhara S.; Bud’ko, Sergey L.; Canfield, Paul C.; ...
2017-09-15
Experimental and theoretical investigations on itinerant ferromagnetic systems under pressure have shown that ferromagnetic quantum criticality is avoided either by a change of the transition order, becoming of the first order at a tricritical point, or by the appearance of modulated magnetic phases. In the first case, the application of a magnetic field reveals a wing-structure phase diagram as seen in itinerant ferromagnets such as ZrZn 2 and UGe 2. Secondly, no tricritical wings have been observed so far. Here, we report on the discovery of wing-structure as well as the appearance of modulated magnetic phases in the temperature-pressure-magnetic fieldmore » phase diagram of LaCrGe 3. Our investigation of LaCrGe 3 reveals a double-wing structure indicating strong similarities with ZrZn 2 and UGe 2. Unlike these simpler systems, LaCrGe 3 also shows modulated magnetic phases similar to CeRuPO. Our finding provides an example of an additional possibility for the phase diagram of metallic quantum ferromagnets.« less
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811
NASA Astrophysics Data System (ADS)
Radu, Ilie
2012-02-01
Revealing the ultimate speed limit at which magnetic order can be controlled, is a fundamental challenge of modern magnetism having far reaching implications for the magnetic recording industry [1]. Exchange interaction is the strongest force in magnetism, being ultimately responsible for ferromagnetic or antiferromagnetic spin order. How do spins react after being optically excited on a timescale of or even faster than the exchange interaction? Here, we demonstrate that femtosecond (fs) measurements of ferrimagnetic and ferromagnetic alloys using X-ray magnetic circular dichroism provide revolutionary new insights into the problem of ultrafast magnetism on timescales pertinent to the exchange interaction. In particular, we show that upon fs optical excitation the ultrafast spin reversal of GdFeCo - a material with antiferromagnetic coupling of spins - occurs via a transient ferromagnetic state [2]. The latter emerges due to different dynamics of the Gd and Fe magnetic moments: Gd switches within 1.5 ps while it takes only 300 fs for Fe. Thus, by using a single fs laser pulse one can force the spin system to evolve via an energetically unfavorable way and temporarily switch from an antiferromagnetic to a ferromagnetic type of ordering. In order to understand whether the observation of this temporarily decoupled and element-specific dynamics is a general phenomenon or just something strictly related to the case of ferrimagnetic GdFeCo, we have investigated the demagnetization of the archetypal ferromagnetic NiFe alloys. Essentially, we observe the same distinct magnetization dynamics of the constituent magnetic moments: Ni demagnetizes within ˜300 fs being much faster than the demagnetization of Fe of ˜800 fs. This distinct demagnetization behavior leads to an apparent decoupling of the Fe and Ni magnetic moments on a few hundreds of fs time scale, despite the strong exchange interaction of 260meV (˜16 fs) that couples them. These observations supported by atomistic simulations, present a novel concept of manipulating magnetic order on different classes of magnetic materials on timescales of the exchange interaction [3]. [4pt] [1] A. Kirilyuk, A.V. Kimel and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010). [0pt] [2] I. Radu et al., Nature 472, 205 (2011). [0pt] [3] I. Radu et al., submitted (2011).
Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe 3GeTe 2
Yi, Jieyu; Zhuang, Houlong; Zou, Qiang; ...
2016-11-15
Fe 3GeTe 2 is known as an air-stable layered metal with itinerant ferromagnetism with a transition temperature of about 220 K. From extensive dc and ac magnetic measurements, we have determined that the ferromagnetic layers of Fe 3GeTe 2 order antiferromagnetically along the c-axis blow 152 K. The antiferromagnetic state was further substantiated by theoretical calculation to be the ground state. A magnetic structure model was proposed to describe the antiferromagnetic ground state as well as competition between antiferromagnetic and ferromagnetic states. Furthermore, Fe 3GeTe 2 shares many common features with pnictide superconductors and may be a promising system inmore » which to search for unconventional superconductivity.« less
Surface Spin Glass Ordering and Exchange Bias in Nanometric Sm0.09Ca0.91MnO3 Manganites
NASA Astrophysics Data System (ADS)
Giri, S. K.; Nath, T. K.
2011-07-01
We have thoroughly investigated the entire magnetic state of under doped ferromagnetic insulating manganite Sm0.09Ca0.91MnO3 through temperature dependent linear and non-linear ac magnetic susceptibility and magnetization measurements. This ferromagnetic insulating manganite is found to have frequency dependent ferromagnetic to paramagnetic transition temperature at around 108 K. Exchange- bias effect are observed in field -cooled magnetic hysteresis loops for this nanoparticle. We have attributed our observation to the formation of ferromagnetic cluster which are formed as a consequence of intrinsic phase separation below certain temperature in this under doped manganites. We have carried out electronic- and magneto-transport measurements to support these observed results.
NASA Astrophysics Data System (ADS)
Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo
2018-05-01
A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.
NASA Astrophysics Data System (ADS)
Melnikova, N. V.; Tebenkov, A. V.; Sukhanova, G. V.; Babushkin, A. N.; Saipulaeva, L. A.; Zakhvalinskii, V. S.; Gabibov, S. F.; Alibekov, A. G.; Mollaev, A. Yu.
2018-03-01
The pressure dependences of thermal emf (a parameter that ranks among the most sensitive to phase transformations) are studied for the purpose of identifying baric phase transitions in the 10-50 GPa interval in the Cd3As2 + MnAs (44.7% MnAs) structure formed by ferromagnetic MnAs granules in a semiconductor Cd3As2 matrix.
Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
NASA Astrophysics Data System (ADS)
Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.
2018-03-01
We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.
NASA Astrophysics Data System (ADS)
Mumtaz, M.; Khan, Nawazish A.
2009-11-01
The role of charge carriers in ZnO 2/CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d 10 ( S=0) substitution at Cu 3d 9(S={1}/{2}) sites in the inner CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron-phonon interaction has an essential role in the mechanism of high- Tc superconductivity in these compounds.
Structure and magnetic properties of flux grown single crystals of Co3-xFexSn2S2 shandites
NASA Astrophysics Data System (ADS)
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-01-01
We report a successful single crystal growth of the shandite-type half-metallic ferromagnet Co3Sn2S2, and its Fe-substituted compounds, Co3-xFexSn2S2, by employing the flux method. Although Fe3Sn2S2 is unstable phase, we found that using the self Sn flux enables us to obtain single phase crystals up to x=0.53. The chemical composition of the grown plate-shaped single crystals was examined using wavelength-dispersive X-ray spectroscopy. The shandite structure with R 3 ̅m symmetry was confirmed by powder X-ray diffraction and the crystal structure parameters were refined using the Rietveld method. Magnetization measurements show suppression of the ferromagnetic order upon Fe-substitution , as well as in other substituted systems such as In- and Ni-substituted Co3Sn2S2. The almost identical magnetic phase diagrams of the Fe- and In-substituted compounds indicate that the electron number is dominantly significant to the magnetism in the Co-based shandite.
Magnetoresistive detection of strongly pinned uncompensated magnetization in antiferromagnetic FeMn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapa, Pavel N.; Roshchin, Igor V.; Ding, Junjia
2017-01-17
Here we observed and studied pinned uncompensated magnetization in an antiferromagnet using magnetoresistance measurements. For this, we developed antiferromagnet-ferromagnet spin valves (AFSVs) that consist of an antiferromagnetic layer and a ferromagnetic one, separated by a nonmagnetic conducting spacer. In an AFSV, the uncompensated magnetization in the antiferromagnet affects scattering of spin-polarized electrons giving rise to giant magnetoresitance (GMR). By measuring angular dependence of AFSVs' resistance, we detected pinned uncompensated magnetization responsible for the exchange bias effect in an antiferromagnet- only exchange bias system Cu/FeMn/Cu. The fact that GMR measured in this system persists up to 110 kOe indicates that themore » scattering occurs on strongly pinned uncompensated magnetic moments in FeMn. This strong pinning can be explained if this pinned uncompensated magnetization is a thermodynamically stable state and coupled to the antiferromagnetic order parameter. Finally, using the AFSV technique, we confirmed that the two interfaces between FeMn and Cu are magnetically different: The uncompensated magnetization is pinned only at the interface with the bottom Cu layer.« less
Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
NASA Astrophysics Data System (ADS)
Turek, I.; Kudrnovský, J.; Drchal, V.
2015-12-01
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1998-04-28
Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1998-04-28
Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.
Superconductivity and ferromagnetism in Pd doped Y 9Co 7
Strychalska, Judyta; Thompson, Joe D.; Cava, Robert J.; ...
2016-01-15
The ferromagnetic superconductor Y 9Co 7 was chemically doped to yield the solid solution Y 9Co 7-xPd x for 0 < x < 0.4. The lattice parameter a does not depend on x, whereas c increases with increasing Pd content up to x = 0.2, the palladium solubility limit. The transition from ferromagnetism (T C = 4.25 K) to superconductivity (T sc = 2.4 K) was observed only for the parent Y 9Co 7 compound. For the lowest tested Pd doping level (x = 0.05), ferromagnetism is enhanced strongly (T C = 9.35 K) and superconductivity is not seen abovemore » 1.8 K. Finally, the Curie temperature rapidly increases from 4.25 K to about 10 K for a Pd concentration of x = 0.1 and remains almost unchanged for Y 9Co 6.8Pd 0.2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mruczkiewicz, M.; Krawczyk, M.
2014-03-21
We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allowmore » us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.« less
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3
NASA Astrophysics Data System (ADS)
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.
2018-05-01
Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.
Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars.
Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin
2016-10-07
Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.
Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S
2016-05-21
Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.
Ferromagnetic Swimmers - Devices and Applications
NASA Astrophysics Data System (ADS)
Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor
2017-11-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.
Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W
2016-07-01
CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet.
Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.
2016-07-01
CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.
NASA Astrophysics Data System (ADS)
Singh, S. C.; Kotnala, R. K.; Gopal, R.
2015-08-01
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.
2015-08-14
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less
Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan
2005-04-28
Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.
Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3
Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...
2016-04-06
In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less
Ferromagnetism and spin glass ordering in transition metal alloys (invited)
NASA Astrophysics Data System (ADS)
Crane, S.; Carnegie, D. W., Jr.; Claus, H.
1982-03-01
Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.
The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy
The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallelmore » to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.« less
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods
2014-01-01
Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558
Martinelli, Alberto; Giovannini, Mauro; Sereni, Julian G; Ritter, Clemens
2018-05-24
The ground state magnetic behaviour of Ce2(Pd0.8Ag0.2)2In and Ce2(Pd0.5Ag0.5)2In, found in the ferromagnetic branch of Ce2Pd2In, has been investigated by neutron powder diffraction at low temperature. Ce2(Pd0.8Ag0.2)2In is characterized by a ferromagnetic structure with the Ce moments aligned along the c-axis and values of 0.96(2) μB. The compound retains the P4/mbm throughout the magnetic transition, although the magnetic ordering is accompanied by a significant decrease of the lattice strain along [00l], suggesting a magnetostructural contribution. The magnetic behaviour of Ce2(Pd0.5Ag0.5)2In is very different; this compound exhibits an extremely reduced magnetic scattering contribution in the diffraction pattern, that can be ascribed to a different kind of ferromagnetic ordering, with extremely reduced magnetic moments (~ 0.1 μB) aligned along [0l0]. These results point to a competition between different types of magnetic correlations induced by Ag-substitution, giving rise to a magnetically frustrated scenario in Ce2(Pd0.5Ag0.5)2In. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire
NASA Astrophysics Data System (ADS)
Tretiakov, O. A.; Liu, Y.; Abanov, Ar.
2010-11-01
We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.
NASA Astrophysics Data System (ADS)
Majd, Nayereh; Ghasemi, Zahra
2016-10-01
We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.
Physical properties and spin excitations in the lacunar spinels AV4S8(A =Ga, Ge)
NASA Astrophysics Data System (ADS)
Pokharel, Ganesh; Christianson, Andrew; Mandrus, David; Liusuo Wu Team; Mark Lumsden Collaboration; Rupam Mukherjee Collaboration; Matthew Stone Collaboration; Georg Ehlers Collaboration
In the lacunar spinels AV4S8 (A = Ga, Ge), the interplay of spin, charge, and orbital degrees of freedom results in a complex phase diagram which includes: ferroelectric, orbitally ordered, and Néel type skyrmion phases. Below 12.7 K GaV4S8 exhibits cycloidal and ferromagnetic order and the application of a magnetic field results in a Néel type skyrmion spin structure. On the other hand, GeV4S8 orders antiferromagentically below 18 K. To illuminate the underlying physics driving the formation of these novel phases, we have measured the magnetization, resistivity, thermal conductivity, and inelastic neutron scattering spectrum of these spinels. The inelastic neutron scattering data shows broadened spin excitations which extend to 6 meV within the magnetically order phases for both GaV4S8 and GeV4S8. The similarity of the spectra for ferromagnetic GaV4S8 and antiferromagnetic GeV4S8 reflects the close balance of ferromagnetic and antiferromagnetic interactions in these materials. This research is funded by the Gordon and Betty Moore Foundation's EPIQS Initiative through Grant GBMF4416.
Cooper, Valentino R.; Lee, Jun Hee; Krogel, Jaron T.; ...
2015-08-06
Multiferroic BiFeO 3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and Dzyaloshinskii-Moria interactions drives the stabilization of weak ferromagnetism. Furthermore,more » energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism on and off under application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.« less
Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2
NASA Astrophysics Data System (ADS)
Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki
2017-12-01
Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.
Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; ...
2017-08-25
Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less
Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic
NASA Astrophysics Data System (ADS)
Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.
2018-01-01
A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.
Signature of Griffith phase in (Tb1-xCex)MnO3
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Dwivedi, G. D.; Singh, A.; Singh, R.; Shukla, K. K.; Yang, H. D.; Ghosh, A. K.; Chatterjee, Sandip
2016-05-01
Griffith phase phenomena is attributed to existence of FM (ferromagnetic) cluster in AFM (antiferromagnetic) ordering which usually occurs in ferromagnetic and antiferromagnetic bilayers or multilayers. In (Tb1-xCex)MnO3 evolution of Griffith phase have been observed. The observed Griffith phase might be due to the exchange interaction between Mn3+/Mn2+ states.
Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias
Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; ...
2015-11-05
We achieved a high-quality epitaxial growth of intermetallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.; ...
2016-05-09
The material USb 2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX 2) series. It is antiferromagnetic with a relatively high transition temperature T N = 204K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb 2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX 2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the T N in USb 2 ismore » enhanced, moving towards that of its smaller sibling UAs 2. But, long before reaching a T N as high as UAs 2, the antiferromagnetism of USb 2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. At last with pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.
The material USb 2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX 2) series. It is antiferromagnetic with a relatively high transition temperature T N = 204K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb 2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX 2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the T N in USb 2 ismore » enhanced, moving towards that of its smaller sibling UAs 2. But, long before reaching a T N as high as UAs 2, the antiferromagnetism of USb 2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. At last with pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com
Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic interactions with cluster and spin-glass type growth. - Highlights: • Lattice defects/vacancies attributed high T{sub c} –ferromagnetism. • Transition metal and rare earth ions deform the wurtzite ZnO lattice to induce defects. • Oxygen vacancies are more favorable than Zn with Ni, Cu, Ce into ZnO. • Defects assisted long-range ferromagnetism of doped ZnO include cluster and spin-glass growth.« less
NASA Astrophysics Data System (ADS)
Dhiman, Joginder Singh; Sharma, Rajni
2017-12-01
The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.
Electron spin resonance for the detection of long-range spin nematic order
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John
1993-01-01
Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.
Magnetocaloric effect and other low-temperature properties of Pr2Pt2 In
NASA Astrophysics Data System (ADS)
Mboukam, J. J.; Sondezi, B. M.; Tchokonté, M. B. Tchoula; Bashir, A. K. H.; Strydom, A. M.; Britz, D.; Kaczorowski, D.
2018-05-01
We report on X-ray diffraction, electrical transport, heat capacity and magnetocaloric effect measurements of a polycrystalline sample of Pr2Pt2 In . The compound forms in the tetragonal Mo2FeB2 type structure and orders ferromagnetically at TC=9 K. In the ordered state, its thermodynamic and electrical transport properties are dominated by magnon contributions with an energy gap of about 8 K in the spin-wave spectrum. The magnitude of magnetocaloric effect is similar to the values reported for most rare-earth based intermetallics. Characteristic behavior of the isothermal magnetic entropy change maximum points to a second-order character of the ferromagnetic phase transition in the compound studied.
Long-Range Anti-ferromagnetic Order in Sm2Ti2O7
NASA Astrophysics Data System (ADS)
Mauws, Cole; Sarte, Paul; Hallas, Alannah; Wildes, Andrew; Quilliam, Jeffrey; Luke, Graeme; Gaulin, Bruce; Wiebe, Christopher
The spin ice state has been a key topic in frustrated magnetism for decades. Largely due to the presence of monopole-like excitations, leading to interesting physics. There has been a consistent effort in the field at synthesising new spin ice phases that possess smaller moments in the hopes of increasing the density of magnetic monopoles. As well as investigating the phase when quantum fluctuations dominate over dipolar interactions. Initially Sm2Ti2O7 was thought to be a candidate for a quantum spin ice, possessing a low moment of 1.5 μB in the high-spin case and crystal fields may reduce it to a true spin-1/2 system. However anti-ferromagnetic interactions as well as a lambda-like heat capacity anomaly pointed towards long-range antiferromagnetic order. An isotopically enriched samarium-154 single crystal was taken to the D7 polarized diffuse scattering spectrometer at the ILL. Long-range antiferromagnetic order was observed and indexed onto the all-in all-out structure. This agrees with theoretical predictions of Ising pyrochlore systems with sufficiently large anti-ferromagnetic coupling. NSERC, CFI, CIFAR, CRC.
Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Ridha, N. A.; Mustamin, M. F.; Surungan, T.
2018-03-01
Randomness is an important subject in the study of phase transition as defect and impurity may present in any real material. The pre-existing ordered phase of a pure system can be affected or even ruined by the presence of randomness. Here we study ferromagnetic Ising model on a square lattice with a presence of randomness in the form of bond dilution. The pure system of this model is known to experience second order phase transition, separating between the high temperature paramagnetic and low-temperature ferromagnetic phase. We used Wang-Landau algorithm of Monte Carlo method to obtain the density of states from which we extract the ensemble average of energy and the specific heat. We observed the signature of phase transition indicated by the diverging peak of the specific heat as system sizes increase. These peaks shift to the lower temperature side as the dilution increases. The lower temperature ordered phase preserves up to certain concentration of dilution and is totally ruined when the bonds no longer percolates.
Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat
2001-03-01
We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P.
Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are foundmore » to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.« less
NASA Astrophysics Data System (ADS)
Sánchez-Marín, N.; Cuchillo, A.; Knobel, M.; Vargas, P.
2018-04-01
We study the effect of the uniaxial anisotropy in a system of ideal, noninteracting ferromagnetic nanoparticles by means of a thermodynamical model. We show that the effect of the anisotropy can be easily assimilated in a temperature shift Ta∗, in analogy to what was proposed by Allia et al. (2001) in the case of interacting nanomagnets. The phenomenological anisotropic Ta∗ parameter can be negative, indicating an antiferromagnetic-like behavior, or positive, indicating a ferromagnetic-like character as seen in the inverse susceptibility behavior as a function of temperature. The study is done considering an easy axis distribution to take into account the anisotropy axis dispersion in real samples (texture). In the case of a volumetric uniform distribution of anisotropy axes, the net effect makes Ta∗ to vanish, and the magnetic susceptibility behaves like a conventional superparamagnetic system, whereas in the others a finite value is obtained for Ta∗ . When magnetic moment distribution is considered, the effect is to enhance the Ta∗ parameter, when the dispersion of the magnetic moments becomes wider.
Tunable ferromagnetic resonance behavior in Co2FeSi film by post-annealing
NASA Astrophysics Data System (ADS)
Xu, Zhan; Zhang, Zhi; Hu, Fang; Li, Xia; Liu, Peng; Liu, Er; Xu, Feng
2018-05-01
Co2FeSi film is potential in the spintronics applications, due to its low damping factor, which is reflected in the ferromagnetic resonance behavior. In this work, we demonstrate that the ferromagnetic resonance behavior in Co2FeSi film can be well engineered by post-annealing. After 450 °C post-annealing for 1 hour, the Gilbert damping factor decreases drastically from 0.039 at as-deposited state to 0.006, and the inhomogeneity contribution of ferromagnetic resonance linewidth decreases to 60.5 Oe. These decreases are ascribed to the crystallization of film from amorphous state to an ordered B2 phase. Higher annealing temperature, however, leads to the formation of the A2 phase with higher atomic disorder, instead of B2 phase, and brings about the increase of Gilbert damping.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
NASA Astrophysics Data System (ADS)
Saikia, D.; Borah, J. P.
2018-03-01
Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5-8 nm. Fourier transform-infrared spectra reveal the characteristic Zn-S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by M- H curve exhibited up to the doping level 5%, achieving due to the indirect ` p- d' exchange interactions between the localized ` d' spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ` d' spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the p- d hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.
Ferro- and antiferro-magnetism in (Np, Pu)BC
NASA Astrophysics Data System (ADS)
Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.
2015-04-01
Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.
Vector network analyzer ferromagnetic resonance spectrometer with field differential detection
NASA Astrophysics Data System (ADS)
Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.
2018-05-01
This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.
Superconductivity and ferromagnetism in Pd doped Y9Co7
NASA Astrophysics Data System (ADS)
Klimczuk, Tomasz; Strychalska, Judyta; Thompson, Joe; Cava, Robert
The ferromagnetic superconductor Y9Co7 was chemically doped with Pd in an attempt to form Y9Co7-xPdx for 0
NASA Astrophysics Data System (ADS)
Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David
2018-02-01
We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.
NASA Astrophysics Data System (ADS)
Hugdal, Henning G.; Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle
2018-05-01
We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic coupling between magnons on different sublattices. Outside this region in parameter space, we again find that Amperean pairing is realized.
Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations
NASA Astrophysics Data System (ADS)
Baker, Alexander; Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri; Wang, Weiwei; Zhang, Shilei; Bisotti, Marc-Antonio; Franchin, Matteo; Hu, Chun Lian; Stamps, Robert; Hesjedal, Thorsten; Fangohr, Hans
2017-01-01
Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.
Local observation of reverse-domain superconductivity in a superconductor-ferromagnet hybrid.
Fritzsche, J; Moshchalkov, V V; Eitel, H; Koelle, D; Kleiner, R; Szymczak, R
2006-06-23
Nanoscale magnetic and superconducting properties of the superconductor-ferromagnet Nb/PbFe12O19 hybrid were studied as a function of applied magnetic fields. Low-temperature scanning laser microscopy (LTSLM) together with transport measurements were carried out in order to reveal local variations of superconductivity induced by the magnetic field template produced by the ferromagnetic substrate. Room temperature magnetic force microscopy (MFM) was performed and magnetization curves were taken at room and low temperature to investigate the magnetic properties of the hybrid. Comparative analysis of the LTSLM and the MFM images has convincingly demonstrated the presence of the reverse-domain superconductivity.
NASA Astrophysics Data System (ADS)
Gloos, Kurt; Tuuli, Elina
2012-12-01
We have investigated break junctions of normal non-magnetic metals as well as ferromagnets at low temperatures. The point contacts with radii 0.15—15 nm showed zero-bias anomalies which can be attributed to Kondo scattering at a single Kondo impurity at the contact or to the switching of a single conducting channel. The Kondo temperatures derived from the width of the anomalies varied between 10 and 1000 K. These results agree well with literature data on atomic-size contacts of the ferromagnets as well as with spear-anvil type contacts on a wide variety of metals.
Polarized neutron scattering study of the multiple order parameter system NdB4
NASA Astrophysics Data System (ADS)
Metoki, N.; Yamauchi, H.; Matsuda, M.; Fernandez-Baca, J. A.; Watanuki, R.; Hagihala, M.
2018-05-01
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f -electron system NdB4. We confirmed the noncollinear "all-in all-out" structure (Γ4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c -axis mc showed diagonally antiferromagnetic structure (Γ10), inconsistent with previously reported "vortex" structure (Γ2). The microscopic mixture of these two structures with q⃗0=(0 ,0 ,0 ) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. The unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ4 coupled with higher-order secondary order parameter Γ10. The magnetic moments were estimated to be 1.8 ±0.2 and 0.2 ±0.05 μB at T =7.5 K for Γ4 and Γ10, respectively. We also found a long-period incommensurate modulation of the q⃗1=(0 ,0 ,1 /2 ) antiferromagnetic structure of mc with the propagation q⃗s 1=(0.14 ,0.14 ,0.1 ) and q⃗s 2=(0.2 ,0 ,0.1 ) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about mc=1.0 ±0.2 μB at T =1.5 K. The local (0 ,0 ,1 /2 ) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of mc, opposite to the coexisting Γ10. The mc of Γ10 is significantly enhanced up to 0.6 μB at T =1.5 K, which is accompanied by the incommensurate modulations. The Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f -electron state play important roles.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires
NASA Astrophysics Data System (ADS)
Abanov, Artem; Tretiakov, Oleg; Liu, Yang
2011-03-01
We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).
NASA Astrophysics Data System (ADS)
Feng, Shuo; Liu, Dejun; Cheng, Xing; Fang, Huafeng; Li, Caifang
2017-04-01
Magnetic anomalies produced by underground ferromagnetic pipelines because of the polarization of earth's magnetic field are used to obtain the information on the location, buried depth and other parameters of pipelines. In order to achieve a fast inversion and interpretation of measured data, it is necessary to develop a fast and stable forward method. Magnetic dipole reconstruction (MDR), as a kind of integration numerical method, is well suited for simulating a thin pipeline anomaly. In MDR the pipeline model must be cut into small magnetic dipoles through different segmentation methods. The segmentation method has an impact on the stability and speed of forward calculation. Rapid and accurate simulation of deep-buried pipelines has been achieved by exciting segmentation method. However, in practical measurement, the depth of underground pipe is uncertain. When it comes to the shallow-buried pipeline, the present segmentation may generate significant errors. This paper aims at solving this problem in three stages. First, the cause of inaccuracy is analyzed by simulation experiment. Secondly, new variable interval section segmentation is proposed based on the existing segmentation. It can help MDR method to obtain simulation results in a fast way under the premise of ensuring the accuracy of different depth models. Finally, the measured data is inversed based on new segmentation method. The result proves that the inversion based on the new segmentation can achieve fast and accurate inversion of depth parameters of underground pipes without being limited by pipeline depth.
NASA Astrophysics Data System (ADS)
Burriel, Ramón; Casabó, Jaime; Pons, Josefina; Carnegie, David W.; Carlin, Richard L.
1985-07-01
The magnetic bahavior of the isomorphous compounds [Cr(NH 3) 6][Cr(CN) 6] and [Cr(H 2O)(NH 3) 5][Cr(CN) 6] has been studied by means of zero-field susceptibility measurements. The materials order ferromagnetically at 0.60 and 0.38K, respectively. The compounds behave as examples of the ferromagnetic ( S=3/2) Heisenberg body-center-cubic lattice. The susceptibilities have been analyzed and compared to the Padé approximants of the high-temperature series expansion for this model, a remarkably good fit being obtained with exchange constants 0.042 and 0.022 K, respectively. Another bimetallic substance, trans-[Cr(en) 2(H 2O) 2] trans-[Cr(en) 2(OH)F] 2(CIO 4) 5·2H 2O, with a dominant Heisenberg ferromagnetic interaction J/ kB=0.122 K in one dimension, orders antiferromagnetically at 0.14 K due to a weaker interchain interaction with exchange constant z‧ J‧/ kB=-0.019 K. The three sets of measurements have been carried out on powdered samples for which demagnetization effects are important. The exchange interactions are remarkably weak for such concentrated magnetic materials, yet they are stronger than those found in a number of other such Cr/Cr compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki; ...
2018-05-17
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2-xInxS2
NASA Astrophysics Data System (ADS)
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2015-09-01
Single crystals of the shandite-type half metallic ferromagnet Co3Sn2S2, and its In-substituted compounds, Co3Sn2-xInxS2 (0
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-11-01
We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.
Observation of ferromagnetic ordering in a stable α -Co (OH) 2 phase grown on a Mo S2 surface
NASA Astrophysics Data System (ADS)
Debnath, Anup; Bhattacharya, Shatabda; Saha, Shyamal K.
2017-12-01
Because of the potential application of Co (OH) 2 in a magnetic cooling system as a result of its superior magnetocaloric effect many people have investigated magnetic properties of Co (OH) 2 . Unfortunately, most of the works have been carried out on the β -Co (OH) 2 phase due to the fact that the α -Co (OH) 2 phase is very unstable and continuously transformed into the stable β -Co (OH) 2 phase. However, in the present work, using a Mo S2 sheet as a two-dimensional template, we have been able to synthesize a stable α -Co (OH) 2 phase in addition to a β -Co (OH) 2 phase by varying the layer thickness. It is seen that for thinner samples the β phase, while for thicker samples α phase, is grown on the Mo S2 surface. Magnetic measurements are carried out for the samples over the temperature range from 2 to 300 K and it is seen that for the β phase, ferromagnetic ordering with fairly large coercivity (1271 Oe) at 2 K is obtained instead of the usual antiferromagnetism. The most interesting result is the observation of ferromagnetic ordering with a transition temperature (Curie temperature) more than 100 K in the α -Co (OH) 2 phase. Complete saturation in the hysteresis curve under application of very low field having coercivity of ˜162 Oe at 2 K and 60 Oe at 50 K is obtained. A thin stable α -Co (OH) 2 phase grown on Mo S2 surface with very soft ferromagnetic ordering will be very useful as the core material in electromagnets.
Ferromagnetic ordering and halfmetallic state in a shandite: Co3Sn2S2
NASA Astrophysics Data System (ADS)
Schnelle, Walter; Leithe-Jasper, Andreas; Rosner, Helge; Weihrich, Richard
2013-03-01
The rapid advance in spintronics challenges an improved understanding of the underlying microscopic properties. Here, we present a joint experimental and theoretical study of Co3Sn2S2 (shandite) and related compounds. From magnetic susceptibility, specific heat and magneto-transport measurements on a shandite single crystal sample we find a phase transition to a ferromagnetic metallic state at 177 K with a saturation moment of 0.92 μB/f.u. Full potential electronic structure calculations within the local spin density approximation result in a halfmetallic ferromagnetic groundstate with a moment of 1 μB/f.u. and a tiny gap in the minority spin channel. The calculated structure optimization and structure variations show that the size of the gap is rather sensitive to the lattice geometry. Possiblities to stabilize the halfmetallic ferromagnetic behavior by various substitutions have been studied theoretically and will be discussed.
Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P(1-x)As(x))2.
Steppke, Alexander; Küchler, Robert; Lausberg, Stefan; Lengyel, Edit; Steinke, Lucia; Borth, Robert; Lühmann, Thomas; Krellner, Cornelius; Nicklas, Michael; Geibel, Christoph; Steglich, Frank; Brando, Manuel
2013-02-22
Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.
Nanomodified heat-accumulating materials controlled by a magnetic field
NASA Astrophysics Data System (ADS)
Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Bodin, Nikolay; Semenov, Alexander
2017-11-01
The paper presents studies of nanomodified heat-accumulating materials controlled by a magnetic field. In order to obtain controlled heat-accumulating materials, synthetic motor oil CASTROL 0W30, ferromagnetic particles, CNTs and paraffin were used. Mechanically activated carbon nanotubes with ferromagnetic particles were used for the nanomodification of paraffin. Mechanoactivation ensured the production of ferromagnetic particles with an average particle size of 5 µm. Using an extrusion plant, a mixture of CNTs and ferromagnetic particles was introduced into the paraffin. Further, the nanomodified paraffin in a granular form was introduced into synthetic oil. To conduct experimental studies, a contactless method for measuring temperature was used. The thermal contact control with the help of the obtained nanomodified material is possible with a magnetic induction of 1250 mT, and a heat flux of about 74 kW/m2 is provided at the same time.
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
De Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; ...
2014-11-24
The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. In this paper, we show that, even in the absence of direct Cu–O–Mn covalent bonding, the interfacial CuO 2 planes of superconducting La 1.85Sr 0.15CuO 4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La 0.66Sr 0.33MnO 3 ferromagnet.more » Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. Finally, the Dzyaloshinskii–Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO 2 planes into the superconductor, eventually depressing its critical temperature.« less
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
NASA Astrophysics Data System (ADS)
Kastrinakis, George
2018-05-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
NASA Astrophysics Data System (ADS)
Kumar, A.; Yusuf, S. M.; Ritter, C.
2017-07-01
A detailed neutron diffraction study on NdMn O3 infers that the low temperature transition at 15 K is due to the ordering of Nd sublattice moment with a (0 ,-Fy,0 ) type spin arrangement. Interestingly, the ordering of the Nd sublattice drives a reorientation (by 180∘) of the net ferromagnetic moment of the Mn sublattice along the b axis. Such a Mn spin reorientation from (Ax,Fy,0 ) (with an antiferromagnetic ordering temperature of 73 K) to (Ax,-Fy,0 ) at 15 K, explains the magnetization reversal phenomenon present in this perovskite compound at 15 K. Moreover at 15 K, significant crystallographic structural distortions in terms of temperature variations of lattice parameters and bond angles are found. A sign change in the temperature variation of magnetic entropy is also found at 15 K. The present study signifies the role of rare-earth (Nd) moment ordering in tuning various physical properties, such as magnetocaloric and magnetoelastic of the larger size (>0.912 Å ) R ion based R Mn O3 compounds.
Specific heat of (C 6H 11NH 3) CuCl 3 (CHAC), a system of ferromagnetic chains
NASA Astrophysics Data System (ADS)
Schouten, J. C.; van der Geest, G. J.; de Jonge, W. J. M.; Kopinga, K.
1980-08-01
The heat capacity of (C 6H 11NH 3) CuCl 3 (CHAC) has been measured for 0.45 < T < 60 K. Three-dimensional ordering is observed at T = 2.214 K. The data in the paramagnetic region can be described by a ferromagnetic S = {1}/{2} Heisenberg linear chain model system with J/ k = +45 ± 5K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boujnah, M.; Zaari, H.; El Kenz, A., E-mail: elkenz@fsr.ac.ma
The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}.more » However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.« less
Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
El Hog, Sahbi; Bailly-Reyre, Aurélien; Diep, H. T.
2018-06-01
We generate a crystal of skyrmions in two dimensions using a Heisenberg Hamiltonian including the ferromagnetic interaction J, the Dzyaloshinskii-Moriya interaction D, and an applied magnetic field H. The ground state (GS) is determined by minimizing the interaction energy. We show that the GS is a skyrmion crystal in a region of (D, H) . The stability of this skyrmion crystalline phase at finite temperatures is shown by a study of the time-dependence of the order parameter using Monte Carlo simulations. We observe that the relaxation is very slow and follows a stretched exponential law. The skyrmion crystal phase is shown to undergo a transition to the paramagnetic state at a finite temperature.
Odd-frequency triplet pairing in mixed-parity superconductors
NASA Astrophysics Data System (ADS)
Cuoco, Mario; Gentile, Paola; Noce, Canio; Romano, Alfonso; Annunziata, Gaetano; Linder, Jacob
2012-02-01
We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly dependent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We suggest that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids with non-centrosymmetric superconductor or when parity mixing is induced at the interface. Paola Gentile, Canio Noce, Alfonso Romano, Gaetano Annunziata, Jacob Linder, Mario Cuoco, arXiv:1109.4885
High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x
NASA Astrophysics Data System (ADS)
Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.
2017-02-01
The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x = 0.5 +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx ≈ 0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.
NASA Astrophysics Data System (ADS)
Oravova, Lucie; Zhang, Zhiying; Church, Nathan; Harrison, Richard J.; Howard, Christopher J.; Carpenter, Michael A.
2013-03-01
Hematite, Fe2O3, provides in principle a model system for multiferroic (ferromagnetic/ferroelastic) behavior at low levels of strain coupling. The elastic and anelastic behavior associated with magnetic phase transitions in a natural polycrystalline sample have therefore been studied by resonant ultrasound spectroscopy (RUS) in the temperature range from 11 to 1072 K. Small changes in softening and attenuation are interpreted in terms of weak but significant coupling of symmetry-breaking and non-symmetry-breaking strains with magnetic order parameters in the structural sequence R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c\\rightarrow R\\overline{3}c. The R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c transition at TN = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb3(PO4)2, W and W‧ ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ˜10-8 s. The first order C 2/c\\rightarrow R\\overline{3}c (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the relaxation time for interface motion is short in comparison with the time scale of the applied stress (at ˜0.1-1 MHz). Below the Morin transition a pattern of attenuation which resembles that seen below ferroelastic transitions has been found, even though the ideal low temperature structure cannot contain ferroelastic twins. This loss behavior is tentatively ascribed to the presence of local ferromagnetically ordered defect regions which are coupled locally to shear strains.
A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)
Liu, J. Y.; Hu, J.; Zhang, Qiang; ...
2017-07-24
Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less
A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J. Y.; Hu, J.; Zhang, Qiang
Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less
Spin transport and spin torque in antiferromagnetic devices
Zelezny, J.; Wadley, P.; Olejnik, K.; ...
2018-03-02
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelezny, J.; Wadley, P.; Olejnik, K.
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
NASA Astrophysics Data System (ADS)
Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.
2018-02-01
Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.
Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof
2016-10-04
We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spin transport and spin torque in antiferromagnetic devices
NASA Astrophysics Data System (ADS)
Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.
2018-03-01
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
NASA Astrophysics Data System (ADS)
Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing
2016-11-01
We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.
Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles
Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine
2015-01-01
Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297
Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals
NASA Astrophysics Data System (ADS)
Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao
2013-01-01
MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.
Itinerant ferromagnetism in ultracold Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiselberg, H.
2011-05-15
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature, a second-order transition is found at ak{sub F}{approx_equal}0.90 compatible with results of quantum-Monte-Carlo (QMC) calculations. Thermodynamic functions and observables, such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin, are calculated. For trapped gases, the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin-polarized systems are recommended for effective separation of large ferromagnetic domains. Collective modes are predicted and tricritical points are calculatedmore » for multicomponent systems.« less
Emergence of ferromagnetism in antiferromagnetic TbMnO3 by epitaxial strain
NASA Astrophysics Data System (ADS)
Marti, X.; Skumryev, V.; Ferrater, C.; García-Cuenca, M. V.; Varela, M.; Sánchez, F.; Fontcuberta, J.
2010-05-01
We show that in oxide thin films of spiral antiferromagnetic orthorhombic TbMnO3, ferromagnetism emerges resulting from epitaxially induced strain. The unit cell volume can be tuned (contracting up to a 2%) by varying thickness and deposition conditions; it is found that the ferromagnetic response correlates with the unit cell deformation. Such effect of strain on the magnetic properties turns out to be similar to that occurring in collinear orthorhombic antiferromagnets such as YMnO3. Owing to the intimate relationship between magnetic order and ferroelectricity in TbMnO3 these results may provide a new route to induce magnetoelectric coupling and tailor their ferroelectric response.
Structural Aspects LiNbO3 Nanoparticles and Their Ferromagnetic Properties
Diaz-Moreno, Carlos A.; Farias-Mancilla, Rurik; Elizalde-Galindo, Jose T.; González-Hernández, Jesus; Hurtado-Macias, Abel; Bahena, Daniel; José-Yacamán, Miguel; Ramos, Manuel
2014-01-01
We present a solid-state synthesis of ferromagnetic lithium niobate nanoparticles (LiNbO3) and their corresponding structural aspects. In order to investigate the effect of heat treatments, two batches of samples with a heat-treated (HT) and non-heat-treated (nHT) reduction at 650 °C in 5% of hydrogen/argon were considered to investigate the multiferroic properties and their corresponding structural aspects; using magnetometry and scanning transmission electron microscopy (STEM). Results indicate the existence of ferromagnetic domains with a magnetic moment per unit cell of 5.24 × 10−3 μB; caused mainly due to voids and defects on the nanoparticle surface, as confirmed by STEM measurements. PMID:28788242
Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Merida, D.; García, J. A.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.
2014-06-01
Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.
Search for ferromagnetic order in overdoped copper-oxide superconductors
Wu, J.; Lauter, V.; Ambaye, H.; ...
2017-04-05
In copper-oxides that show high-temperature superconductivity (HTS), the critical temperature (Tc) has a dome-shaped doping dependence. The cause of demise of both Tc and superfluid density ns on the overdoped side is a major puzzle. A recent study of transport and diamagnetism in a large number of overdoped La2-xSrxCuO4 (LSCO) films shows that this cannot be accounted for by disorder within the conventional Bardeen-Cooper-Schrieffer theory. This brings to focus an alternative explanation — competition of HTS with ferromagnetic order, fluctuating in superconducting samples and static beyond the superconductor-to-metal transition. Here, we examine this proposal by growing single-crystal LSCO thin filmsmore » with doping on both sides of the transition by molecular beam epitaxy, and using polarized neutron reflectometry to measure their magnetic moments. In a heavily overdoped, metallic but non-superconducting LSCO (x = 0.35) film, the spin asymmetry of reflectivity shows a very small static magnetic moment (~2 emu/cm3). Less-doped, superconducting LSCO films show no magnetic moment in neutron reflectivity, both above and below Tc. Therefore, the collapse of HTS with overdoping is not caused by competing ferromagnetic order.« less
Search for ferromagnetic order in overdoped copper-oxide superconductors
Wu, J.; Lauter, V.; Ambaye, H.; He, X.; Božović, I.
2017-01-01
In copper-oxides that show high-temperature superconductivity (HTS), the critical temperature (Tc) has a dome-shaped doping dependence. The cause of demise of both Tc and superfluid density ns on the overdoped side is a major puzzle. A recent study of transport and diamagnetism in a large number of overdoped La2−xSrxCuO4 (LSCO) films shows that this cannot be accounted for by disorder within the conventional Bardeen-Cooper-Schrieffer theory. This brings to focus an alternative explanation — competition of HTS with ferromagnetic order, fluctuating in superconducting samples and static beyond the superconductor-to-metal transition. Here, we examine this proposal by growing single-crystal LSCO thin films with doping on both sides of the transition by molecular beam epitaxy, and using polarized neutron reflectometry to measure their magnetic moments. In a heavily overdoped, metallic but non-superconducting LSCO (x = 0.35) film, the spin asymmetry of reflectivity shows a very small static magnetic moment (~2 emu/cm3). Less-doped, superconducting LSCO films show no magnetic moment in neutron reflectivity, both above and below Tc. Therefore, the collapse of HTS with overdoping is not caused by competing ferromagnetic order. PMID:28378795
Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain
NASA Astrophysics Data System (ADS)
Fuchs, D.; Arac, E.; Pinta, C.; Schuppler, S.; Schneider, R.; v. Löhneysen, H.
2008-01-01
Ferromagnetic order can be induced in LaCoO3 (LCO) thin films by epitaxial strain. Here, we show that the magnetic properties can be “tuned” by epitaxial strain imposed on LCO thin films by the epitaxial growth on various substrate materials, i.e., (001) oriented SrLaAlO4 , LaAlO3 , SrLaGaO4 , (LaAlO3)0.3(Sr2AlTaO6)0.7 , and SrTiO3 . The lattice mismatch at room temperature of the in-plane lattice parameters between the substrate, as , and bulk LCO, ab , ranges from -1.31% to +2.63% . Single-phase, ⟨001⟩ oriented LCO thin films were grown by pulsed laser deposition on all these substrates. Due to the difference of the thermal-expansion coefficients between LCO and the substrates, the films experience an additional tensile strain of about +0.3% during the cooling process after the deposition at Ts=650°C . The film lattice parameters display an elastic behavior, i.e., an increase of the in-plane film lattice parameter with increasing as . From the ratio between the out-of-plane and in-plane strain, we obtain a Poisson ratio of ν≈1/3 . All films show a ferromagnetic transition as determined from magnetization measurements. The magnetization increases strongly with increasing tensile strain, whereas the transition temperature TC after a rapid initial rise appears to saturate at TC≈85K above a=3.86Å . The effective magnetic moment μeff in the paramagnetic state increases almost linearly as a function of the mean lattice parameter ⟨a⟩ , indicating an enhanced population of higher spin states, i.e., intermediate- or high-spin states. The experimental results are discussed in terms of a decrease of the octahedral-site rotation with increasing tensile strain.
Gilbert damping of high anisotropy Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Devolder, Thibaut; Couet, S.; Swerts, J.; Kar, G. S.
2018-04-01
Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 Å)/Pt(3 Å)] {× 6} multilayers, whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing, despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained, despite a magneto-crystalline anisotropy as large as 106 J m-3. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.
Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...
2015-01-13
The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less
Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses
NASA Astrophysics Data System (ADS)
Jung, K.-Y.; Donderici, B.; Teixeira, F. L.
2006-10-01
We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.
NASA Astrophysics Data System (ADS)
He, Cunfu; Yang, Meng; Liu, Xiucheng; Wang, Xueqian; Wu, Bin
2017-11-01
The magnetic hysteresis behaviours of ferromagnetic materials vary with the heat treatment-induced micro-structural changes. In the study, the minor hysteresis loop measurement technique was used to quantitatively characterise the case depth in two types of medium carbon steels. Firstly, high-frequency induction quenching was applied in rod samples to increase the volume fraction of hard martensite to the soft ferrite/pearlite (or sorbite) in the sample surface. In order to determine the effective and total case depth, a complementary error function was employed to fit the measured hardness-depth profiles of induction-hardened samples. The cluster of minor hysteresis loops together with the tangential magnetic field (TMF) were recorded from all the samples and the comparative study was conducted among three kinds of magnetic parameters, which were sensitive to the variation of case depth. Compared to the parameters extracted from an individual minor loop and the distortion factor of the TMF, the magnitude of three-order harmonic of TMF was more suitable to indicate the variation in case depth. Two new minor-loop coefficients were introduced by combining two magnetic parameters with cumulative statistics of the cluster of minor-loops. The experimental results showed that the two coefficients monotonically linearly varied with the case depth within the carefully selected magnetisation region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru
2014-09-21
Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundarymore » conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.« less
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.
Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asoudeh, M.; Karimipour, V.
We determine thermal entanglement in mean-field clusters of N spin one-half particles interacting via the anisotropic Heisenberg interaction, with and without external magnetic field. For the xxx cluster in the absence of magnetic field we prove that only the N=2 ferromagnetic cluster shows entanglement. An external magnetic field B can only entangle xxx antiferromagnetic clusters in certain regions of the B-T plane. On the other hand, the xxz clusters of size N>2 are entangled only when the interaction is ferromagnetic. Detailed dependence of the entanglement on various parameters is investigated in each case.
Strain-sensitive spin-state ordering in thin films of perovskite LaCoO3
NASA Astrophysics Data System (ADS)
Fujioka, J.; Yamasaki, Y.; Doi, A.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Arima, T.; Tokura, Y.
2015-11-01
We have investigated the lattice distortion coupled to the Co 3 d -spin-state ordering in thin films of perovskite LaCoO3 with various epitaxial strains by measurements of the magnetization, x-ray diffraction, and optical spectra. In the system with tensile strain about 0.5%, a lattice distortion characterized by the modulation vector q =(1 /6 ,1 /6 ,1 /6 ) emerges at 40 K, followed by a ferromagnetic ordering at 24 K. Alternatively, in systems with tensile strain exceeding 1%, the lattice distortion characterized by q =(1 /4 ,1 /4 ,1 /4 ) emerges at 120 K or higher, and subsequently the ferromagnetic or ferrimagnetic ordering occurs around 90 K. The evolution of infrared phonon spectra and resonant x-ray scattering at the Co K edge suggests that the population change in the Co 3 d spin state causes the strain-induced switching of spin-state ordering as well as of magnetic ordering in this canonical spin-state crossover system.
Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L. C.; Ganguli, A. K.
2016-01-01
We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity. PMID:27892482
NASA Astrophysics Data System (ADS)
Voronina, E. V.; Ivanova, A. G.; Arzhnikov, A. K.; Chumakov, A. I.; Chistyakova, N. I.; Pyataev, A. V.; Korolev, A. V.
2018-04-01
Results of structural, magnetic, and Mössbauer studies of quasi ordered alloys Fe65Al35 - x M x ( M x = Ga, B; x = 0, 5 at %) are presented. The magnetic state of examined structurally-single-phase alloys at low temperatures is interpreted from the viewpoint of magnetic phase separation. An explanation is proposed for the observed behavior of magnetic characteristics of Fe65Al35 and Fe65Al30Ga5 in the framework of the model of two magnetic phases, a ferromagnetic-type one and a spin density wave. The boron-doped alloy Fe65Al30B5 is shown to demonstrate behavior that is typical of materials with the ferromagnetic type of ordering.
A Polar Corundum Oxide Displaying Weak Ferromagnetism at Room Temperature
2012-01-01
Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K—this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3. PMID:22280499
NASA Astrophysics Data System (ADS)
Antenucci, F.; Crisanti, A.; Leuzzi, L.
2014-07-01
The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.
Antiferromagnetic opto-spintronics
NASA Astrophysics Data System (ADS)
Němec, P.; Fiebig, M.; Kampfrath, T.; Kimel, A. V.
2018-03-01
Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.
Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L
2017-03-03
BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.
Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors
Tam, Yu -T.; Ku, W.; Yao, D. -X.
2015-09-10
We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less
Ferromagnetism and superconductivity in CeFeAs1-xPxO (0⩽x⩽40)
NASA Astrophysics Data System (ADS)
Jesche, A.; Förster, T.; Spehling, J.; Nicklas, M.; de Souza, M.; Gumeniuk, R.; Luetkens, H.; Goltz, T.; Krellner, C.; Lang, M.; Sichelschmidt, J.; Klauss, H.-H.; Geibel, C.
2012-07-01
We report on superconductivity in CeFeAs1-xPxO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of TSC≅TC≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.
NASA Astrophysics Data System (ADS)
Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.
2010-04-01
We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.
NASA Astrophysics Data System (ADS)
Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.
2017-09-01
The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturza, Mihai; Allred, Jared M.; Malliakas, Christos D.
Effecting and controlling ferromagnetic-like properties hi senticonductors has proven to be a complex problem, especially when approaching room temperature. Here, we demonstrate the important role of defects in the magnetic properties of semiconductors by reporting the structures and properties of the iron chalcogenides (BaF)(2)Fe2-x Q(3) (Q= S, Se), which exhibit anomalous Magnetic properties that are correlated' with detects in the Fe-sublattice, The compounds form in both long-range ordered and disordered polytypes of a new structure typified by the alternate stacking of fluorite (BaF)(2)(2+) and (Fe(2-x)Q(3))(2-) layers. The latter layers exhibit an ordered array of strong Pe-Pe dimers in edge-Sharing tetrahedra.more » Given the strong Fe-Fe interaction, it is expected that the Fe-Fe dimer is,antiferromagnetically coupled, yet crystals exhibit a Weak ferromagnetic moment that orders at relatively-high temperature: below 280-315 K and 240275 K for the sulfide and selenide analogues, respectively. This transition temperature positively correlates with the concentration of defect in the Fe-sublattice, as determined by single-crystal X-ray diffraction. Our results indicate that internal defects in Fe(2-x)Q(3) layers play an important role in dictating the magnetic properties of newly discovered (BaF)2Fe(2),Q-3, (Q= 5-, Se), which can yield switchable ferromagnetically ordered mother-its at or above room temperature.« less
Anomalous current in diffusive ferromagnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.
2017-05-01
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.
NASA Astrophysics Data System (ADS)
Troć, R.; Gajek, Z.; Pikul, A.
2012-12-01
Single-crystalline UGe2 was investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity, and specific-heat measurements, all carried out in wide temperature and magnetic-field ranges. An analysis of the obtained data points out the dual behavior of the 5f electrons in this compound, i.e., possessing simultaneously local and itinerant characters in two substates. The magnetic and thermal characteristics of the compound were modeled using the effective crystal field (CF) in the intermediate coupling scheme and initial parameters obtained in the angular overlap model. Various configurations of the localized 5fn (n = 1, 2, and 3) electrons on the uranium ion have been probed. The best results were obtained for the 5f2 (U4+) configuration. The CF parameters obtained in the paramagnetic region allowed us to reproduce satisfactorily the experimental findings in the whole temperature range including also the magnitude of the ordered magnetic moment of uranium at low temperature. The electrical resistivity data after subtraction of the phonon contribution reveal the presence of a Kondo-like interaction in UGe2 supporting the idea of partial localization of the 5f electrons in UGe2. On the other hand, magnetoresistivity and an excess of specific heat originated from the hybridized (itinerant) part of 5f states, apparent around the characteristic temperature T*, give a distinct signature for the presence of the coupled charge-density wave and spin-density wave fluctuations over all the ferromagnetic region with a maximum at T*, postulated earlier in the literature.
Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing
2015-04-01
Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.
Ferroelectricity with Ferromagnetic Moment in Orthoferrites
NASA Astrophysics Data System (ADS)
Tokunaga, Yusuke
2010-03-01
Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.
We measured the chemical and magnetic depth profiles of a single crystalline film grown on a NdGaO 3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures
Magnetic nonuniformity and thermal hysteresis of magnetism in a manganite thin film.
Singh, Surendra; Fitzsimmons, M R; Lookman, T; Thompson, J D; Jeen, H; Biswas, A; Roldan, M A; Varela, M
2012-02-17
We measured the chemical and magnetic depth profiles of a single crystalline (La(1-x)Pr(x))(1-y)Ca(y)MnO(3-δ) (x=0.52±0.05, y=0.23±0.04, δ=0.14±0.10) film grown on a NdGaO(3) substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy, and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first-order ferromagnetic transition at low temperatures.
FAST TRACK COMMUNICATION: Magnetic exchange hardening in polycrystalline GdN thin films
NASA Astrophysics Data System (ADS)
Senapati, K.; Fix, T.; Vickers, M. E.; Blamire, M. G.; Barber, Z. H.
2010-08-01
We report the observation of intrinsic exchange hardening in polycrystalline GdN thin films grown at room temperature by magnetron sputtering. We find, in addition to the ferromagnetic phase, that a fraction of GdN crystallizes in a structural polymorphic form which orders antiferromagnetically. The relative fraction of these two phases was controlled by varying the relative abundance of reactive species in the sputtering plasma by means of the sputtering power and N2 partial pressure. An exchange bias of ~ 30 Oe was observed at 10 K. The exchange coupling between the ferromagnetic and the antiferromagnetic phases resulted in an order of magnitude enhancement in the coercive field in these films.
NASA Astrophysics Data System (ADS)
Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo
2014-12-01
We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.
NASA Astrophysics Data System (ADS)
Verba, Roman; Lisenkov, Ivan; Krivorotov, Ilya; Tiberkevich, Vasil; Slavin, Andrei
2018-06-01
Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin ferromagnetic-heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic-heavy-metal interface results in the openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps is different for opposite SAW propagation directions. The band-gap widths and the frequency separation between them can be controlled by a proper selection of the magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more than 1 order of magnitude.
Robust ferromagnetism carried by antiferromagnetic domain walls
NASA Astrophysics Data System (ADS)
Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji
2017-02-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.
Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films
NASA Astrophysics Data System (ADS)
Holcomb, M. B.; Chu, Y. H.; Martin, L. W.; Gajek, M.; Seidel, J.; Ramesh, R.; Scholl, A.; Fraile-Rodriguez, A.
2008-03-01
Electric field control of magnetism is a hot technological topic at the moment due to its potential to revolutionize today's devices. Magnetoelectric materials, those having both electric and magnetic order and the potential for coupling between the two, are a promising avenue to approach electric control. BiFeO3, both a ferroelectric and an antiferromagnet, is the only single phase room temperature magnetoelectric that is currently known. In addition to other possibilities, its multiferroic nature has potential in the very active field of exchange bias, where an antiferromagnetic thin film pins the magnetic direction of an adjoining ferromagnetic layer. Since this antiferromagnet is electrically tunable, this coupling could allow electric-field control of the ferromagnetic magnetization. Direction determination of antiferromagnetic domains in BFO has recently been shown using linear and circular dichroism studies. Recently, this technique has been extended to look at the magnetic domains of a ferromagnetic grown on top of BFO. The clear magnetic changes induced by application of electric fields reveal the possibility of electric control.
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-02-23
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6 A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-01-01
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054
Exchange anisotropy pinning of a standing spin-wave mode
NASA Astrophysics Data System (ADS)
Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.
2011-02-01
Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.
Robust ferromagnetism carried by antiferromagnetic domain walls
Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji
2017-01-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565
Experimentally evaluating the origin of dilute magnetism in nanomaterials
NASA Astrophysics Data System (ADS)
Pereira, L. M. C.
2017-10-01
Reports of room-temperature ferromagnetism continue to emerge for an ever-growing range of nanomaterials with a small or even vanishing concentration of magnetic atoms. Dilute magnetic semiconductors (DMS) are the most representative class of such materials, but similar magnetic properties have been reported in many others. Challenging our understanding of magnetic order in solids, as well as our ability to experimentally assess it, these remarkable magnetic phenomena have become one of the most controversial topics in magnetism. Various non-intrinsic sources of ferromagnetism (e.g. instrumental artifacts and magnetic contamination) are becoming well documented, and rarely are all of them taken into account when room-temperature ferromagnetism is reported. This topical review is intended to serve as a guide when evaluating to what extent a given data set supports the claim of intrinsic ferromagnetism in dilute nanomaterials. It compiles the most relevant sources of non-intrinsic ferromagnetism which have been reported, as well as guidelines for how to minimize them. It also provides an overview of complementary structural and magnetic characterization techniques which can be combined to provide different levels of scrutiny of the intrinsic nature of experimentally observed ferromagnetism. In particular, it gives some notable examples of how comprehensive studies based on those techniques have led to a remarkably detailed understanding of model DMS materials, with strong evidence of absence of room-temperature ferromagnetism. Although mostly based on DMS research, this review provides a set of guidelines and cautionary notes of broader relevance, including some emerging new fields of dilute nanomagnetism such as magnetically doped 3D topological insulators, 3D Dirac semimetals, and 2D materials.
NASA Astrophysics Data System (ADS)
Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.
2017-10-01
Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.
Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias
NASA Astrophysics Data System (ADS)
Buendía, Gloria M.; Rikvold, Per Arne
2017-10-01
We present a numerical and theoretical study that supports and explains recent experimental results on anomalous magnetization fluctuations of a uniaxial ferromagnetic film in its low-temperature phase, which is forced by an oscillating field above the critical period of the associated dynamic phase transition (DPT) [P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118, 117202 (2017), 10.1103/PhysRevLett.118.117202]. For this purpose, we perform kinetic Monte Carlo simulations of a two-dimensional Ising model with nearest-neighbor ferromagnetic interactions in the presence of a sinusoidally oscillating field, to which is added a constant bias field. We study a large range of system sizes and supercritical periods and analyze the data using a droplet-theoretical description of magnetization switching. We find that the period-averaged magnetization, which plays the role of the order parameter for the DPT, presents large fluctuations that give rise to well-defined peaks in its scaled variance and its susceptibility with respect to the bias field. The peaks are symmetric with respect to zero bias and located at values of the bias field that increase toward the field amplitude as an inverse logarithm of the field oscillation period. Our results indicate that this effect is independent of the system size for large systems, ruling out critical behavior associated with a phase transition. Rather, it is a stochastic-resonance phenomenon that has no counterpart in the corresponding thermodynamic phase transition, providing a reminder that the equivalence of the DPT to an equilibrium phase transition is limited to the critical region near the critical period and zero bias.
Spin relaxation 1/f noise in graphene
NASA Astrophysics Data System (ADS)
Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.
2017-02-01
We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Suresh, K. G.
2017-01-01
The detailed magnetic study of complex 3d-electron based Fe3Ga4 is reported. It undergoes paramagnetic to antiferromagnetic (TN) and antiferromagnetic to ferromagnetic (TC) transitions respectively around 380 and 70 K. The thermal hysteresis of field-cooled cooling (FCC) and field-cooled warming (FCW) hints at first order phase transition below Curie temperature. A weak phase coexistence of ferro and antiferromagnetic phases is suggested by exploring the arrest-like first-order phenomenon. In the intermediate temperature range, field-driven metamagnetic transition from antiferro to ferromagnetic phase is confirmed. Further bringing the system very near to TN, field-induced transitions disappear and above TN predominant paramagnetic contribution is evident. The magnetic H-T phase diagram distinguishing different magnetic phases of Fe3Ga4 is obtained.
NASA Astrophysics Data System (ADS)
Conduit, G. J.; Altman, E.
2010-10-01
We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu; Petrovic, C.
The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...
2017-11-02
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
NASA Astrophysics Data System (ADS)
Okamoto, Yoshihiko; Mori, Masaki; Katayama, Naoyuki; Miyake, Atsushi; Tokunaga, Masashi; Matsuo, Akira; Kindo, Koichi; Takenaka, Koshi
2018-03-01
We report a comprehensive study on the magnetic and structural properties of the spinel sulfides LiInCr4S8, LiGaCr4S8, and CuInCr4S8, where Li+/Cu+ and Ga3+/In3+ ions form a zinc-blende-type order. On the basis of synchrotron X-ray diffraction and magnetization data obtained using polycrystalline samples, these three sulfides are suggested to be breathing pyrochlore magnets with alternating antiferromagnetic and ferromagnetic interactions on the small and large tetrahedra, respectively. The measured magnetization processes of the three sulfides up to 72 T are significantly different. The magnetization curves of LiInCr4S8 and CuInCr4S8 have large hysteresis loops with different shapes, while there is no hysteresis in that of LiGaCr4S8. Geometrical frustration of the small tetrahedron is likely to give rise to a wide variety of ground states, indicating the rich physics in these antiferromagnetic-ferromagnetic breathing pyrochlore magnets.
NASA Astrophysics Data System (ADS)
Hu, Feng-Xia; Qian, Xiao-Ling; Wang, Guang-Jun; Sun, Ji-Rong; Shen, Bao-Gen; Cheng, Zhao-Hua; Gao, Ju
2005-11-01
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fe1-xCox)11.9Si1.1 (x=0.04, 0.06 and 0.08) with Curie temperatures of 243 K, 274 K and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below TC, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above TC. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above TC, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.
Structure and magnetism of Fe-doped BaSnO 3 thin films
Alaan, Urusa S.; N’Diaye, Alpha T.; Shafer, Padraic; ...
2017-02-28
BaSnO 3 is an excellent candidate system for developing a new class of perovskite-based dilute magnetic semiconductors. Here in this study, we show that BaSn 0.95Fe 0.05O 3 can be grown from a background pressure of ~2×10-3 mTorr to oxygen pressures of 300 mTorr with high crystallinity and excellent structural quality. When grown in vacuum, the films may be weakly ferromagnetic with a nonzero x-ray magnetic circular dichroism signal on the Fe L 3 edge. Growth with oxygen flow appears to suppress magnetic ordering. Even for very thick films grown in 100 mTorr O 2, the films are paramagnetic. Finally,more » the existence of ferromagnetism in vacuum-grown BaSnO 3 may be attributed to the F-center exchange mechanism, which relies on the presence of oxygen vacancies to facilitate the ferromagnetism. However, other possible extrinsic contributions to the magnetic ordering, such as clusters of Fe 3O 4 and FeO or contamination can also explain the observed behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
Emergent ferromagnetism and T -linear scattering in USb 2 at high pressure
NASA Astrophysics Data System (ADS)
Jeffries, Jason R.; Stillwell, Ryan L.; Weir, Samuel T.; Vohra, Yogesh K.; Butch, Nicholas P.
2016-05-01
The material USb2 is a correlated, moderately heavy-electron compound within the uranium dipnictide (UX2) series. It is antiferromagnetic with a relatively high transition temperature TN=204 K and a large U-U separation. While the uranium atoms in the lighter dipnictides are considered to be localized, those of USb2 exhibit hybridization and itineracy, promoting uncertainty as to the continuity of the magnetic order within the UX2. We have explored the evolution of the magnetic order by employing magnetotransport measurements as a function of pressure and temperature. We find that the TN in USb2 is enhanced, moving towards that of its smaller sibling UAs2. But, long before reaching a TN as high as UAs2, the antiferromagnetism of USb2 is abruptly destroyed in favor of another magnetic ground state. We identify this pressure-induced ground state as being ferromagnetic based on the appearance of a strong anomalous Hall effect in the transverse resistance in magnetic field. With pressure, this emergent ferromagnetic state is suppressed and ultimately destroyed in favor of a non-Fermi-liquid ground state.
Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, G. A.; Costescu, R. M.; Husanu, M. A.
2011-10-03
Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less
Liu, Yu; Petrovic, C.
2017-10-09
The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less
Magnetic and dielectric study of Fe-doped CdSe nanoparticles
NASA Astrophysics Data System (ADS)
Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad
2018-01-01
Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.
Quantum Optimization of Fully Connected Spin Glasses
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim
2015-07-01
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
NASA Astrophysics Data System (ADS)
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
NASA Astrophysics Data System (ADS)
Khalsa, Guru; Benedek, Nicole A.
2018-03-01
Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.
Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumari, Shweta; Kuanr, Bijoy K.
2018-05-01
M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR) response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd) and samarium (Sm), with cobalt (Co) as base, doped hexaferrite nanoparticles (NPs). X-ray diffractometry, vibrating sample magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.
Dynamic generation of spin-wave currents in hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com
2016-11-15
Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less
Long-range interactions in magnetic bilayer above the critical temperature
NASA Astrophysics Data System (ADS)
de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.
2018-01-01
In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.
Pathak, Nimai; Gupta, Santosh Kumar; Prajapat, C L; Sharma, S K; Ghosh, P S; Kanrar, Buddhadev; Pujari, P K; Kadam, R M
2017-05-17
MgO particles of few micron size are synthesized through a sol-gel method at different annealing temperatures such as 600 °C (MgO-600), 800 °C (MgO-800) and 1000 °C (MgO-1000). EDX and ICP-AES studies confirmed a near total purity of the sample with respect to paramagnetic metal ion impurities. Magnetic measurements showed a low temperature weak ferromagnetic ordering with a T C (Curie temperature) around 65 K (±5 K). Unexpectedly, the saturation magnetization (M s ) was found to be increased with increasing annealing temperature during synthesis. It was observed that with J = 1 or 3/2 or S = 1 or 3/2, the experimental points are fitted well with the Brillouin function of weak ferromagnetic ordering. A positron annihilation lifetime measurement study indicated the presence of a divacancy (2V Mg + 2V O ) cluster in the case of the low temperature annealed compound, which underwent dissociations into isolated monovacancies of Mg and O at higher annealing temperatures. An EPR study showed that both singly charged Mg vacancies and oxygen vacancies are responsible for ferromagnetic ordering. It also showed that at lower annealing temperatures the contribution from was very low while at higher annealing temperatures, it increased significantly. A PL study showed that most of the F + centers were present in their dimer form, i.e. as centers. DFT calculation implied that this dimer form has a higher magnetic moment than the monomer. After a careful consideration of all these observations, which have been reported for the first time, this thermally tunable unusual magnetism phenomenon was attributed to a transformation mechanism of one kind of cluster vacancy to another.
Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E
2014-06-16
The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.
Carbon Nanotubes Filled with Ferromagnetic Materials
Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
2010-01-01
Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Mustafa, M. T.
2015-07-01
In the present article ferromagnetic field effects for copper nanoparticles for blood flow through composite permeable stenosed arteries is discussed. The copper nanoparticles for the blood flow with water as base fluid with different nanosize particles is not explored upto yet. The equations for the Cu-water nanofluid are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. Effect of various flow parameters on the flow and heat transfer characteristics are utilized.
Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming
2018-03-01
In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.
Doping of epitaxial III-V semiconductors for optoelectronic and magnetoelectronic applications
NASA Astrophysics Data System (ADS)
Overberg, Mark Eddy
Doped III-V semiconducting materials were studied in this dissertation for use in optoelectronic and magnetoelectronic applications. The specific areas of use are emitters for fiber optic communication and room temperature ferromagnetic layers for spintronic devices. The general requirement for both application areas is the ability to heavily dope (or alloy) the III-Vs with the intended active element, while still maintaining good crystallinity and semiconducting properties. Four dopant/semiconductor systems were investigated: erbium in gallium nitride (GaN:Er), europium in gallium nitride (GaN:Eu), manganese in gallium nitride (GaMnN), and manganese in gallium phosphide (GaMnP). These materials were fabricated using variants of the molecular beam epitaxy (MBE) technique, where beams of the constituent elements are produced in a high vacuum environment. The technique allows for a wide variety of parameters to be adjusted during the material preparation. The materials were deposited on sapphire, gallium nitride, and gallium phosphide surfaces; with particular emphasis on the correlation between growth conditions and the final chemical, structural, morphological, electronic, optical, and magnetic properties. The materials were characterized using a variety of techniques. Results with the GaN:Er material indicated that several percent of Er could be successfully incorporated into the material, and that the optical emission could be increased by incorporating C impurities into the film. These impurities were found to increase the overall emission and decrease the quenching of the emission with temperature. Optical emission results for GaN:Eu indicated that this material produced a visible red emission that was brighter under optical excitation than the AlGaAs used in commercial red emitting devices. The dilute magnetic semiconductors n-GaMnN and p-GaMnP were produced for the first time by the MBE technique. The SQUID magnetometry and magnetotransport results for n-GaMnN indicated the presence of ferromagnetic ordering with a Curie temperature between 20 K and 25 K. Magnetic measurements of the p-GaMnP indicated the presence of ferromagnetic ordering to 250 K, far above the theoretically predicted value of 100 K. Similar results were also produced by the direct implantation of Mn into GaP.
Prajapat, C L; Singh, Surendra; Bhattacharya, D; Ravikumar, G; Basu, S; Mattauch, S; Zheng, Jian-Guo; Aoki, T; Paul, Amitesh
2018-02-27
A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa 2 Cu 3 O 7 (YBCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) multilayers interleaved with and without an insulating SrTiO 3 (STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti (4+)-δ to Mn at the STO/LSMO interface and to Cu 2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
Robust ferromagnetism in the compressed permanent magnet Sm2Co17
NASA Astrophysics Data System (ADS)
Jeffries, J. R.; Veiga, L. S. I.; Fabbris, G.; Haskel, D.; Huang, P.; Butch, N. P.; McCall, S. K.; Holliday, K.; Jenei, Z.; Xiao, Y.; Chow, P.
2014-09-01
The compound Sm2Co17 displays magnetic properties amenable to permanent magnet applications owing to both the 3d electrons of Co and the 4f electrons of Sm. The long-standing description of the magnetic interactions between the Sm and Co ions implies a truly ferromagnetic configuration, but some recent calculations challenge this axiom, suggesting at least a propensity for ferrimagnetic behavior. We have used high-pressure synchrotron x-ray techniques to characterize the magnetic and structural properties of Sm2Co17 to reveal a robust ferromagnetic state. The local Sm moment is at most weakly affected by compression, and the ordered moments show a surprising resilience to volumetric compressions of nearly 20%. Density functional theory calculations echo the magnetic robustness of Sm2Co17.
Design and installation of a ferromagnetic wall in tokamak geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics andmore » overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.« less
Magnetic phase diagram and critical behavior of electron-doped LaxCa1-xMnO3(0⩽x⩽0.25) nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Yang; Fan, Hong Jin
2011-06-01
A comparative study of electron-doped perovskite manganites LaxCa1-xMnO3 (0 ⩽ x ⩽ 0.25) in nanoparticle and bulk form is reported. The bulks and nanoparticles exhibit different magnetic evolutions. Overall with increasing x, the bulks have a phase-separated ground state with ferromagnetic (FM) clusters and antiferromagnetic (AFM) matrix coexisting. The FM clusters gradually grow, and the magnetization M peaks at x= 0.1. Subsequently, charge-ordering (CO) or local CO occurs, which suppresses the increase in FM clusters but favors the development of antiferromagnetism so M starts to decrease. Finally the system becomes a homogeneous AFM state at x > 0.18. For the nanoparticles in the range of 0 ⩽ x ⩽ 0.1, the ground state is similar to that of the bulks, but M is slightly increased because of a surface ferromagnetism. Nevertheless because of the structure distortion induced by surface pressure and the size effect, CO does not occur in the nanoparticles. Consequently, the ferromagnetism still gradually develops at x > 0.1 and thus M monotonously rises. M reaches a maximum at x= 0.18, after which the competition between ferromagnetism and antiferromagnetism induces a cluster-glass (CG) state. On the basis of these observations the phase diagrams for both bulks and nanoparticles are established. For the nanoparticles that display enhanced ferromagnetism the critical behavior analysis indicates that they fall into a three-dimensional (3D) Heisenberg ferromagnet class.
Magnetically controlled ferromagnetic swimmers
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-01-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490
Magnetically controlled ferromagnetic swimmers
NASA Astrophysics Data System (ADS)
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-03-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.
3-D trajectory model for MDT using micro-spheres implanted within large blood vessels
NASA Astrophysics Data System (ADS)
Choomphon-anomakhun, Natthaphon; Natenapit, Mayuree
2016-09-01
Implant assisted magnetic drug targeting (IA-MDT) using ferromagnetic spherical targets implanted within large blood vessels and subjected to a uniform externally applied magnetic field (H0) has been investigated and reported for the first time. The capture areas (As) of magnetic drug carrier particles (MDCPs) were determined from the analysis of particle trajectories simulated from equations of motion. Then, the effects of various parameters, such as types of ferromagnetic materials in the targets and MDCPs, blood flow rates, mass fraction of the ferromagnetic material in the MDCPs, average radii of MDCPs (Rp) and the strength of H0 on the As were obtained. Furthermore, the effects of saturation magnetization of the ferromagnetic materials in the MDCPs and within the targets on the As were analyzed. After this, the suitable strengths of H0 and Rp for IA-MDT designs were reported. Dimensionless As, ranging from 2 to 7, was obtained with Rp ranging from 500 to 2500 nm, μ0H0 less than 0.8 T and a blood flow rate of 0.1 m s-1. The target-MDCP materials considered are iron-iron, iron-magnetite and SS409-magnetite, respectively.
Simple and advanced ferromagnet/molecule spinterfaces
NASA Astrophysics Data System (ADS)
Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.
2016-10-01
Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.
NASA Astrophysics Data System (ADS)
Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito
2017-12-01
We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.
The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films
Venkatesh, S.; Baras, A.; Lee, J. -S.; ...
2016-03-24
Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less
Varying Eu2+ magnetic order by chemical pressure in EuFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Zapf, S.; Wu, D.; Bogani, L.; Jeevan, H. S.; Gegenwart, P.; Dressel, M.
2011-10-01
Based on low-field magnetization measurements on a series of single crystals, we present a scheme of the Eu2+ spin alignment in EuFe2(As1-xPx)2. We explain observations of the Eu2+ ordering previously reported, reconciling different existing phase diagrams. The magnetic moments of the Eu2+ ions are slightly canted, yielding a ferromagnetic contribution along the c direction that becomes stronger with pressure, until superconductivity sets in. The spin-density wave as well as the superconducting phase coexist with an antiferromagnetic interlayer coupling of the canted spins. Reducing the interlayer distance finally leads to a ferromagnetic Eu2+ interlayer coupling and to the suppression of superconductivity.
Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merida, D., E-mail: david.merida@ehu.es; Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao; García, J. A.
2014-06-09
Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.
Jayakumar, O D; Achary, S N; Sudakar, C; Naik, R; Salunke, H G; Rao, Rekha; Peng, X; Ahuja, R; Tyagi, A K
2010-08-01
We present the structural and magnetic properties of Zn(0.95-x)Co(0.05)Al(x)O (x = 0.0 to 0.1) nanoparticles, synthesized by a novel sol-gel route followed by pyrolysis. Powder X-ray diffraction data confirms the formation of a single phase wurtzite type ZnO structure for all the compositions. The Zn(0.95)Co(0.05)O nanoparticles show diamagnetic behavior at room temperature. However, when Al is co-doped with Co with x = 0.0 to 0.10 in Zn(0.95-x)Co(0.05)Al(x)O, a systematic increase in ferromagnetic moment is observed up to x = 0.07 at 300 K. Above x = 0.07 (e.g. for x = 0.10) a drastic decrease in ferromagnetic nature is observed which is concomitant with the segregation of poorly crystalline Al rich ZnO phase as evidenced from TEM studies. Theoretical studies using density functional calculations on Zn(0.95-x)Co(0.05)Al(x)O suggest that the partial occupancy of S2 states leads to an increased double exchange interaction favoring the ferromagnetic ground states. Such ferromagnetic interactions are favorable beyond a threshold limit. At a high level doping of Al, the exchange splitting is reduced, which suppresses the ferromagnetic ordering.
Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate
Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.
2015-01-01
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-12-01
Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.
Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.
Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S
2017-07-01
The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets
NASA Astrophysics Data System (ADS)
Shindou, Ryuichi; Momoi, Tsutomu
2009-08-01
An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J2≃1:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].
Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.
Pal, Bappaditya; Giri, P K
2011-10-01
Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.
Transport and Magnetization in Bad Metals Itinerant Ferromagnets
NASA Astrophysics Data System (ADS)
Klein, Lior
1997-03-01
While much attention has been given to the study of itinerant ferromagnets that are good metals (k_Fl >> 1), very little is known about the transport properties of itinerant ferromagnets in the badly metallic limit (k_Fl= \\cal O ). Here we present our study of the pseudo-cubic perovskite SrRuO3 which is in the limit of k_Fl= \\cal O (1) in its purest form (e.g. single crystals) and is also an itinerant ferromagnet with Tc ~ 160 K. We findfootnote L. Klein, J. S. Dodge, C. H. Ahn, G. J. Snyder, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 77, 2774 (1996); L. Klein, J. S. Dodge, C. H. Ahn, J. W. Reiner, L. Mieville, T. H.Geballe, M. R. Beasley, and A. Kapitulnik, J. Phys. Condens. Matter 8, 10111 (1996). that while the magnetic properties of SrRuO3 in the paramagnetic phase, near the ferromagnetic phase transition and at low temperatures are normal and similar to those of iron or nickel, the transport properties sharply deviate from those of good metallic ferromagnets: a) As Tarrow T_c^+ the temperature derivative of the magnetic part of the resistivity, dρ _m/dT, diverges with an exponent on the order of 1, an order of magnitude larger than the expected specific heat exponent of ~ 0.1. b) While the critical behavior of dρ _m/dT around Tc is usually found to be symmetric, very weak divergence of dρ _m/dT is observed as Tarrow T_c^-. c) At low temperatures ρ rapidly increases in correlation with the magnetization instead of the usually observed T^2 dependence. d) At T < 4 K for low-residual-resistivity films, and at higher temperatures for high-residual-resistivity films, Kondo-like resistivity minima are observed. We conjecture that the distinct transport behavior of SrRuO3 is related to its being a 'bad metal' in the k_Fl= \\cal O (1) limit, and discuss the possible relevance of our results to the unusual transport properties of other 'bad metals' such as high-temperature superconductors, fullerenes and organic conductors.
Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure.
Biswas, Sarajit
2018-04-17
Electronic, magnetic, and structural properties of pure and V-doped CrO 2 were extensively investigated utilizing density functional theory. Usually, pure CrO 2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr 0.5 V 0.5 O 2 encounters metal-insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr 3+ -V 5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt 2g orbitals triggers metal-insulator transition in Cr 0.5 V 0.5 O 2 . The ferromagnetism of Cr 0.5 V 0.5 O 2 in the insulating phase arises predominantly due to strong Hund's coupling between the occupied electrons in the Cr-t 2g states. Besides this, the ferromagnetic Curie temperature (T c ) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO 6 or VO 6 octahedra across the metal-insulator transition of Cr 0.5 V 0.5 O 2 . Graphical abstract The V-doped compound Cr 0.5 V 0.5 O 2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of E g ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr 0.5 V 0.5 O 2 for U = 8 eV are illustrated. The system is insulating with a band gap of E g ~ 0.7 eV.
NASA Astrophysics Data System (ADS)
Raghuvanshi, Nimisha; Singh, Avinash
2010-10-01
Spin waves in the (0, π) and (0, π, π) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, a spin-wave energy scale of around 200 meV, reduced magnetic moment and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in LaO1 - xFxFeAs or Ni substitution of Fe atoms in BaFe2 - xNixAs2) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
Ferromagnetic ordering and halfmetallic state in a shandite: Co3Sn2S2
NASA Astrophysics Data System (ADS)
Rosner, Helge; Weihrich, Richard; Schnelle, Walter
2005-03-01
The recent rapid development in spintronics challenges the search for new magnetic half metals with high Curie temperatures as well as an improved understanding of the underlying microscopic properties. Here, we present a joint experimental and theoretical study of the recently reinvestigated shandite Co3Sn2S2 [1]. From magnetic susceptibility, specific heat and resistivity measurements on powder samples we find a phase transition to a ferromagnetic metallic state at 177 K with a saturation moment of 0.87 μB/f.u. Full potential electronic structure calculations within the local spin density approximation result in a halfmetallic ferromagnetic groundstate with a moment of 1 μB/f.u. and a tiny gap in the minority spin channel. The calculated structure optimization and structure variations show that the size of the gap is rather sensitive to the lattice geometry. Possibilities to stabilize the halfmetallic ferromagnetic behaviour by various substitutions have been studied theoretically and will be discussed in detail.[1]R. Weihrich et. al. Z. Anorg. Allg. Chem. 630, 1767, (2004)
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
Lu, T. M.; Tracy, L. A.; Laroche, D.; ...
2017-06-01
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
Ferromagnetism and spin-dependent transport at a complex oxide interface
NASA Astrophysics Data System (ADS)
Ayino, Yilikal; Xu, Peng; Tigre-Lazo, Juan; Yue, Jin; Jalan, Bharat; Pribiag, Vlad S.
2018-03-01
Complex oxide interfaces are a promising platform for studying a wide array of correlated electron phenomena in low dimensions, including magnetism and superconductivity. The microscopic origin of these phenomena in complex oxide interfaces remains an open question. Here we investigate the magnetic properties of semi-insulating NdTi O3/SrTi O3 (NTO/STO) interfaces and present the first millikelvin study of NTO/STO. The magnetoresistance (MR) reveals signatures of local ferromagnetic order and of spin-dependent thermally activated transport, which are described quantitatively by a simple phenomenological model. We discuss possible origins of the interfacial ferromagnetism. In addition, the MR also shows transient hysteretic features on a time scale of ˜10 -100 s . We demonstrate that these are consistent with an extrinsic magnetothermal origin, which may have been misinterpreted in previous reports of magnetism in STO-based oxide interfaces. The existence of these two MR regimes (steady-state and transient) highlights the importance of time-dependent measurements for distinguishing signatures of ferromagnetism from other effects that can produce hysteresis at low temperatures.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, T. M.; Tracy, L. A.; Laroche, D.
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
NASA Astrophysics Data System (ADS)
Groenendijk, H. A.; Blöte, H. W. J.; van Duyneveldt, A. J.; Gaura, R. M.; Landee, C. P.; Willett, R. D.
1981-06-01
The crystal structure of [C 6H 11NH 3] CuCl 3, cyclohexylammonium trichlorocuprate(II) (CHAC), is orthorhombic, space group P2 12 12 1 with a = 19.441(5), b = 8.549(2) and c = 6.190(1) Å. The salt contains chains of CuCl -3 ions along the c axis. From magnetization and susceptibility measurements it is found that the compound behaves as a one-dimensional S = {1}/{2} Heisenberg ferromagnet with J1/ k = 70(2) K. Antiferromagnetic ordering with a weak ferromagnetic moment along the a axis occurs below T c = 2.18(2) K. From the metamagnetic phase diagram the interchain interactions are derived using mean field theory: z2J2/ z1J1 = 1.1 × 10 -3 and z3J3/ z1J1 = -1.0 × 10 -4. Also a small anisotropy ( J|/ J⊥ ≈ 0.01) is found in the intrachain interaction. The measurements indicate that CHAC is one of the best approximations to the 1d Heisenberg ferromagnet known to date.
NASA Astrophysics Data System (ADS)
Nosov, G. V.; Kuleshova, E. O.; Lefebvre, S.; Plyusnin, A. A.; Tokmashev, D. M.
2017-02-01
The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.
2015-03-01
The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.
Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet
NASA Astrophysics Data System (ADS)
Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.
2018-05-01
The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.
Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module
NASA Astrophysics Data System (ADS)
Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.
1984-05-01
A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.
Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001) Alloys.
Lungu, George A; Apostol, Nicoleta G; Stoflea, Laura E; Costescu, Ruxandra M; Popescu, Dana G; Teodorescu, Cristian M
2013-02-21
Ferromagnetic Fe x Ge 1- x with x = 2%-9% are obtained by Fe deposition onto Ge(001) at high temperatures (500 °C). Low energy electron diffraction (LEED) investigation evidenced the preservation of the (1 × 1) surface structure of Ge(001) with Fe deposition. X-ray photoelectron spectroscopy (XPS) at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe₃ to approximately FeGe₂, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE) evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics.
Ultra-low magnetic damping in metallic and half-metallic systems
NASA Astrophysics Data System (ADS)
Shaw, Justin
The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.
NASA Astrophysics Data System (ADS)
Das, Kalipada
2017-10-01
In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).
Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem
The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µ{sub B}/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
Liu, Xiaojie; Wang, Cai-Zhuang
2017-08-07
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai-Zhuang
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Carneiro, C. E. I.
1996-02-01
We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.
Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers
NASA Astrophysics Data System (ADS)
Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.
2018-02-01
A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.
NASA Astrophysics Data System (ADS)
Lázpita, P.; Gutiérrez, J.; Barandiarán, J. M.; Chernenko, V. A.; Mondelli, C.; Chapon, L.
2014-11-01
Neutron polarized diffraction technique has been used to elucidate the magnetic moment distribution density in non stoichiometric Ni—Mn—Ga single crystals. These experiments allow us to determine a localized magnetic moment in the Mn position in the austenitic phase, and to validity qualitatively previous models of magnetic distributions where there are antiferromagnetic and ferromagnetic coupling for Mn atoms that are sited out of their properly positions. This measurements show the deep dependence of the magnetic moment with the composition and the atomic order.
NASA Astrophysics Data System (ADS)
Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.
2017-10-01
The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.
Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3
McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; ...
2014-12-23
Here, we examine the crystallographic and magnetic properties of single crystals of CrI 3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (Rmore » $$\\bar{3}$$, BiI 3-type) and the high-temperature structure is monoclinic (C2/m, AlCl 3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI 3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI 3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.« less
Chen, Binbin; Chen, Pingfan; Xu, Haoran; Jin, Feng; Guo, Zhuang; Lan, Da; Wan, Siyuan; Gao, Guanyin; Chen, Feng; Wu, Wenbin
2016-12-21
Controlling functionalities in oxide heterostructures remains challenging for the rather complex interfacial interactions. Here, by modifying the interface properties with chemical doping, we achieve a nontrivial control over the ferromagnetism in ultrathin La 0.67 Ca 0.33 MnO 3 (LCMO) layer sandwiched between CaRu 1-x Ti x O 3 [CRTO(x)] epilayers. The Ti doping suppresses the interfacial electron transfer from CRTO(x) to LCMO side; as a result, a steadily decreased Curie temperature with increasing x, from 262 K at x = 0 to 186 K at x = 0.8, is observed for the structures with LCMO fixed at 3.2 nm. Moreover, for more insulating CRTO(x ≥ 0.5), the electron confinement induces an interfacial Mn-e g (x 2 -y 2 ) orbital order in LCMO which further attenuates the ferromagnetism. Also, in order to characterize the heterointerfaces, for the first time the doping- and thickness-dependent metal-insulator transitions in CRTO(x) films are examined. Our results demonstrate that the LCMO/CRTO(x) heterostructure could be a model system for investigating the interfacial multiple interactions in correlated oxides.
Magnetic proximity effect at the interface between a cuprate superconductor and an oxide spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovsyannikov, G. A., E-mail: gena@hitech.cplire.ru; Demidov, V. V.; Khaydukov, Yu. N.
2016-04-15
A heterostructure that consists of the YBa{sub 2}Cu{sub 3}O{sub 7–δ} cuprate superconductor and the SrRuO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} ruthenate/manganite spin valve is investigated using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that a magnetic moment is induced due to the magnetic proximity effect in the superconducting part of the heterostructure, while the magnetic moment in the composite ferromagnetic interlayer is suppressed. The magnetization emerging in the superconductor coincides in order of magnitude with the results of calculations taking into account the induced magnetic moment of Cu atoms because of orbital reconstruction at the interface between themore » superconductor and the ferromagnet, as well as with the results of the model taking into account the variations in the density of states at a distance on the order of the coherence length in the superconductor. The experimentally obtained characteristic penetration depth of the magnetic moment in the superconductor considerably exceeds the coherence length of the cuprate superconductor, which indicates the predominance of the mechanism of induced magnetic moment of Cu atoms.« less
A new high pressure and temperature equation of state of fcc cobalt
Armentrout, Matthew M.; Kavner, Abby
2015-11-20
The high pressure and temperature equation of state of cobalt metal in the face-centered cubic phase was measured up to 57 GPa and 2400 K using the laser heated diamond anvil cell in conjunction with synchrotron X-ray diffraction. The measured region is bisected by a ferromagnetic to paramagnetic transition across the Curie temperature necessitating use of an equation of state that incorporates a 2nd order phase transition within its formalism. A third order Birch-Murnaghan equation of state with a Mie-Grüneisen-Debye thermal correction and a Hillert-Jarl magnetic correction is employed to describe the data above and below the Curie temperature. Furthermore,more » we find best fit parameters of V 0 = 6.753 (fixed) cm 3/mol, K 0 – 196 (3) GPa, K' – 4.7 (2), γ 0 – 2.00 (11), q – 1.3 (5), and θ 0 – 385 K (fixed).« less
Localization and Symmetry Breaking in the Quantum Quasiperiodic Ising Glass
NASA Astrophysics Data System (ADS)
Chandran, A.; Laumann, C. R.
2017-07-01
Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specifically, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a quasiperiodic Ising glass stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero-temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic, and quasiperiodically alternating ground-state phases with extended, localized, and critically delocalized low-energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-André duality that we develop. The quasiperiodic Ising glass may be realized in near-term quantum optical experiments.
Floating phase in the one-dimensional transverse axial next-nearest-neighbor Ising model.
Chandra, Anjan Kumar; Dasgupta, Subinay
2007-02-01
To study the ground state of an axial next-nearest-neighbor Ising chain under transverse field as a function of frustration parameter kappa and field strength Gamma, we present here two different perturbative analyses. In one, we consider the (known) ground state at kappa=0.5 and Gamma=0 as the unperturbed state and treat an increase of the field from 0 to Gamma coupled with an increase of kappa from 0.5 to 0.5+rGamma/J as perturbation. The first-order perturbation correction to eigenvalue can be calculated exactly and we could conclude that there are only two phase-transition lines emanating from the point kappa=0.5, Gamma=0. In the second perturbation scheme, we consider the number of domains of length 1 as the perturbation and obtain the zeroth-order eigenfunction for the perturbed ground state. From the longitudinal spin-spin correlation, we conclude that floating phase exists for small values of transverse field over the entire region intermediate between the ferromagnetic phase and antiphase.
NASA Astrophysics Data System (ADS)
O'Hara, Dante J.; Zhu, Tiancong; Trout, Amanda H.; Ahmed, Adam S.; Luo, Yunqiu Kelly; Lee, Choong Hee; Brenner, Mark R.; Rajan, Siddharth; Gupta, Jay A.; McComb, David W.; Kawakami, Roland K.
2018-05-01
Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $\\alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $\\alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $\\alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.
Ferromagnetic ordering in superatomic solids.
Lee, Chul-Ho; Liu, Lian; Bejger, Christopher; Turkiewicz, Ari; Goko, Tatsuo; Arguello, Carlos J; Frandsen, Benjamin A; Cheung, Sky C; Medina, Teresa; Munsie, Timothy J S; D'Ortenzio, Robert; Luke, Graeme M; Besara, Tiglet; Lalancette, Roger A; Siegrist, Theo; Stephens, Peter W; Crowther, Andrew C; Brus, Louis E; Matsuo, Yutaka; Nakamura, Eiichi; Uemura, Yasutomo J; Kim, Philip; Nuckolls, Colin; Steigerwald, Michael L; Roy, Xavier
2014-12-03
In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
On the multiferroic skyrmion-host GaV4S8
NASA Astrophysics Data System (ADS)
Widmann, S.; Ruff, E.; Günther, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Tsurkan, V.; Bordács, S.; Kézsmárki, I.; Loidl, A.
2017-12-01
The lacunar spinel GaV4S8 exhibits orbital ordering at 44 K and shows a complex magnetic phase diagram below 12.7 K, which includes ferromagnetic and cycloidal spin order. At low but finite external magnetic fields, Néel-type skyrmions are formed in this material. Skyrmions are whirl-like spin vortices that have received great theoretical interest because of their non-trivial spin topology and that are also considered as basic entities for new data-storage technologies. Interestingly, we found that the orbitally ordered phase shows sizable ferroelectric polarisation and that excess spin-driven polarisations appear in all magnetic phases, including the skyrmion-lattice phase. Hence, GaV4S8 shows simultaneous magnetic and polar order and belongs to the class of multiferroics materials that attracted enormous attention in recent years. Here, we summarise the existing experimental information on the magnetic, electronic and dielectric properties of GaV4S8. By performing detailed magnetic susceptibility, resistivity, specific heat and dielectric experiments, we complement the low-temperature phase diagram. Specifically, we show that the low-temperature and low-field ground state of GaV4S8 seems to have a more complex spin configuration than purely collinear ferromagnetic spin order. In addition, at the structural Jahn-Teller transition the magnetic exchange interaction changes from antiferromagnetic to ferromagnetic. We also provide experimental evidence that the vanadium V4 clusters in GaV4S8 can be regarded as molecular units with spin 1/2. However, at high temperatures deviations in the susceptibility show up, indicating that either the magnetic moments of the vanadium atoms fluctuate independently or excited states of the V4 molecule become relevant.
Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...
2012-04-27
The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less
Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.
Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E
2014-08-26
Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Liu, T.; Zhang, X. Y.; Pan, Y. F.; Wei, X. Y.; Ma, C. L.; Shi, D. N.; Fan, J. Y.
2017-04-01
In this paper, we elucidate the mechanism for Li co-dopant induced enhancement of the ferromagnetism in 2 × 2 × 2 and 3 × 3 × 3 cubic (Zn, Mn)Se using density functional calculations. The doping atoms tend to congregate together according to the ferromagnetic (FM) energy. All configurations are strongly FM ones due to double exchange (DE) and p-d exchange (PE). DE and PE are shown in the partial density of states. The hole is uniformly distributed in the cubic (Zn, Mn, Li)Se, and it is the one and only parameter to decide the exchange energy, when impurity atoms stay further away from each other. The average exchange energy of these configurations is considered to be a function of the square root of the hole concentration. The fitting data to a polynomial function shows that DE and PE have roles of similar importance in the exchange energy.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping
Bruno, F. Y.; Grisolia, M. N.; Visani, C.; ...
2015-02-17
At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO 3 (LFO) and ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show thatmore » the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less
Ferromagnetic Resonance of a Single Magnetochiral Metamolecule of Permalloy
NASA Astrophysics Data System (ADS)
Kodama, Toshiyuki; Tomita, Satoshi; Kato, Takeshi; Oshima, Daiki; Iwata, Satoshi; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Hosoito, Nobuyoshi; Yanagi, Hisao
2016-08-01
We investigate the ferromagnetic resonance (FMR) of a single chiral structure of a ferromagnetic metal—the magnetochiral (MCh) metamolecule. Using a strain-driven self-coiling technique, micrometer-sized MCh metamolecules of metallic permalloy (Py) are fabricated without any residual Py films. The magnetization curves of ten Py MCh metamolecules obtained by an alternating gradient magnetometer show soft magnetic behavior. In cavity FMR with a magnetic-field sweep and coplanar-waveguide (CPW) FMR with a frequency sweep, the Kittel-mode FMR of the single Py metamolecule is observed. The CPW-FMR results, which are consistent with the cavity-FMR results, bring about the effective g factor, effective magnetization, and Gilbert damping of the single metamolecule. Together with calculations using these parameters, the angle-resolved cavity FMR reveals that the magnetization in the Py MCh metamolecule is most likely to be the hollow-bar type of configuration when the external magnetic field is applied parallel to the chiral axis, although the expected magnetization state at remanence is the corkscrew type of configuration.
Huang, S. W.; Wray, L. Andrew; Jeng, Horng -Tay; ...
2015-11-17
Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa 2Cu 3O 7–x (YBCO) superconductor when it is grown on top of ferromagnetic La 0.7Ca 0.3MnO 3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO 2 but not withmore » La 0.7Ca 0.3O interfacial termination. Thus, such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO 2 plane at the La 0.7Ca 0.3O and MnO 2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.« less
Huang, S. W.; Wray, L. Andrew; Jeng, Horng-Tay; Tra, V. T.; Lee, J. M.; Langner, M. C.; Chen, J. M.; Roy, S.; Chu, Y. H.; Schoenlein, R. W.; Chuang, Y.-D.; Lin, J.-Y.
2015-01-01
Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2Cu3O7−x (YBCO) superconductor when it is grown on top of ferromagnetic La0.7Ca0.3MnO3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO2 but not with La0.7Ca0.3O interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2 plane at the La0.7Ca0.3O and MnO2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems. PMID:26573394
Magnetic small-angle neutron scattering of bulk ferromagnets.
Michels, Andreas
2014-09-24
We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.
NASA Astrophysics Data System (ADS)
Erkisi, A.; Surucu, G.; Deligoz, E.
2018-03-01
In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.
Characterization of perpendicular STT-MRAM by spin torque ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Sha, Chengcen; Yang, Liu; Lee, Han Kyu; Barsukov, Igor; Zhang, Jieyi; Krivorotov, Ilya
We describe a method for simple quantitative measurement of magnetic anisotropy and Gilbert damping of the MTJ free layer in individual perpendicular STT-MRAM devices by spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation. We first show the dependence of ST-FMR spectra of an STT-MRAM element on out-of-plane magnetic field. In these spectra, resonances arising from excitation of the quasi-uniform and higher order spin wave eigenmodes of the free layer as well as acoustic mode of the synthetic antiferromagnet (SAF) are clearly seen. The quasi-uniform mode frequency at zero field gives magnetic anisotropy field of the free layer. Then we show dependence of the quasi-uniform mode linewidth on frequency is linear over a range of frequencies but deviatesfrom linearity in the low and high frequency regimes. Comparison to ST-FMR spectrareveals that the high frequency line broadening is linked to the SAF mode softening near the SAF spin flop transition at 5 kG. In the low field regime, the SAF mode frequency approaches that of the quasi-uniform mode, and resonant coupling of the modes leads to the line broadening. A linear fit to the linewidth data outside of the high and low field regimes gives the Gilbert damping parameter of the free layer. This work was supported by the Samsung Global MRAM Innovation Program.
Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.
Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E
2010-03-01
Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.
Defect-induced magnetic order in pure ZnO films
NASA Astrophysics Data System (ADS)
Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.
2009-07-01
We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.
Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001) Alloys
Lungu, George A.; Apostol, Nicoleta G.; Stoflea, Laura E.; Costescu, Ruxandra M.; Popescu, Dana G.; Teodorescu, Cristian M.
2013-01-01
Ferromagnetic FexGe1−x with x = 2%–9% are obtained by Fe deposition onto Ge(001) at high temperatures (500 °C). Low energy electron diffraction (LEED) investigation evidenced the preservation of the (1 × 1) surface structure of Ge(001) with Fe deposition. X-ray photoelectron spectroscopy (XPS) at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe3 to approximately FeGe2, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE) evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane [110] easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics. PMID:28809330
Tunnel junctions with multiferroic barriers
NASA Astrophysics Data System (ADS)
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Tunnel junctions with multiferroic barriers.
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li
2018-04-01
Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.
NASA Astrophysics Data System (ADS)
Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.
2015-10-01
Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.
NASA Astrophysics Data System (ADS)
Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul
2018-04-01
A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .
NASA Astrophysics Data System (ADS)
Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.
2018-06-01
We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phatak, C.; Petford-Long, A. K.; Zheng, H.
Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less