NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
Self-current induced spin-orbit torque in FeMn/Pt multilayers
NASA Astrophysics Data System (ADS)
Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong
2016-05-01
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.
Self-current induced spin-orbit torque in FeMn/Pt multilayers
Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong
2016-01-01
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications. PMID:27185656
Artificial multilayers and nanomagnetic materials.
Shinjo, Teruya
2013-01-01
The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.
Exchange coupling in the complex magnetic multilayers
NASA Astrophysics Data System (ADS)
Uzdin, V. M.; Adamowicz, L.; Kocinski, P.
1996-06-01
Exchange coupling in the complex magnetic sandwich structures containing nonmagnetic (NM) and ferromagnetic (FM) layers composed of two different ferromagnetic metals has been studied within the framework of the quantum wells model. The strength of the exchange coupling in the multilayer structure with thin layers of a second ferromagnetic material inserted at the interface of FM/NM/FM sandwich was calculated at various physical situations. In one case the exponential dependence of the exchange coupling on the thickness of the interface ferromagnetic layer has been obtained in striking resemblance to the Parkin experimental results for magnetoresistance (S. S. P. Parkin, Phys. Rev. Lett., 71 (1993) 1641).
NASA Astrophysics Data System (ADS)
Ayareh, Zohreh; Moradi, Mehrdad; Mahmoodi, Saman
2018-06-01
In this paper, we report perpendicular magnetic anisotropy (PMA) in a (Ta/Cu/[Ni/Co]x/Ta) multilayers structure. These typical structures usually include a multilayer of ferromagnetic and transition metal thin films. Usually, magnetic anisotropy is characterized by magnetization loops determined by magnetometer or magneto-optical Kerr effect (MOKE). The interface between ferromagnetic and metallic layers plays an important role in magnetic anisotropy evolution from out-of-plane to in-plane in (Ta/Cu/[Ni/Co]/Ta) structure. Obtained results from MOKE and magnetometry of these samples show that they have different easy axes due to change in thickness of Cu as spacer layer and difference in number of repetition of [Ni/Co] stacks.
Artificial multilayers and nanomagnetic materials
SHINJO, Teruya
2013-01-01
The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qinli; Li, Yufan; Chien, Chia-ling
Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.
NASA Astrophysics Data System (ADS)
Bekele, Zelalem Abebe; Meng, Kangkang; Zhao, Bing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Jiang, Yong
2017-08-01
Symmetry breaking provides new insight into the physics of spin-orbit torque (SOT) and the switching without a magnetic field could lead to significant impact. In this work, we demonstrate the robust zero-field SOT switching of a perpendicular ferromagnet (FM) layer where the symmetry is broken by a bilayer of heavy metals (HMs) with the strong spin-orbit coupling (SOC). We observed the change of coercivity value by 31% after inserting Co2FeAl in the multilayer structure. These two HM layers (Ta and Pt) are used to strengthen the SOC by linear combination. With different angles between the magnetization and the current (i.e. parallel and anti-parallel), the structures show different switching behaviors such as clockwise or counterclockwise.
Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers
NASA Astrophysics Data System (ADS)
de Melo, C. A. R. Sa
2001-03-01
The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).
NASA Astrophysics Data System (ADS)
Shimizu, Hiromasa; Shimodaira, Takahiro
2018-04-01
We report on magnetoplasmonic Si waveguides with a ferromagnetic Fe/conductive metal Au multilayer for realizing a sizable magnetooptic effect with a low propagation loss for integrated optical isolators. By combining the ferromagnetic metal Fe with a highly conductive Au layer, the largest nonreciprocal differences in effective index were estimated for propagation lengths of 1-20 µm. Mode analysis with and without a Au layer clarified that the insertion of a Au layer on an Fe layer improves the optical confinement in the Fe layer with reduced propagation loss and is effective in enlarging the magnetooptic effect for the same propagation length. On the basis of the optimized Fe/Au multilayer structure, we designed waveguide optical isolators based on nonreciprocal coupling by the finite difference time domain (FDTD) method. We estimated an optical isolation of 10.8 dB with a forward insertion loss of 13.4 dB in a 34-µm-long nonreciprocal directional coupler.
Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface
NASA Astrophysics Data System (ADS)
Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou
2018-03-01
The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
NASA Astrophysics Data System (ADS)
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Dai; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433; Li, Yufan
2015-05-25
The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.
Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Dai; Li, Yufan; Qu, D.
2015-05-25
The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.
Gilbert damping of high anisotropy Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Devolder, Thibaut; Couet, S.; Swerts, J.; Kar, G. S.
2018-04-01
Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 Å)/Pt(3 Å)] {× 6} multilayers, whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing, despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained, despite a magneto-crystalline anisotropy as large as 106 J m-3. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.
NASA Astrophysics Data System (ADS)
Maksymov, Ivan S.; Kostylev, Mikhail
2015-05-01
This paper presents a comprehensive critical overview of fundamental and practical aspects of the modern stripline broadband ferromagnetic resonance (BFMR) spectroscopy largely employed for the characterisation of magnetic low-dimensional systems, such as thin ferro- and ferromagnetic, multiferroic and half-metallic films, multi-layers and nanostructures. These planar materials form the platform of the nascent fields of magnonics and spintronics. Experimental and theoretical results of research on these materials are summarised, along with systematic description of various phenomena associated with the peculiarities of the stripline BFMR, such as the geometry of stripline transducers, the orientation of the static magnetic field, the presence of microwave eddy currents, and the impacts of non-magnetic layers, interfaces and surfaces in the samples. Results from 240 articles, textbooks and technical reports are presented and many practical examples are discussed in detail. This review will be of interest to both general physical audience and specialists conducting research on various aspects of magnetisation dynamics and nanomagnetism.
Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2015-03-13
Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less
Higgs, T D C; Bonetti, S; Ohldag, H; Banerjee, N; Wang, X L; Rosenberg, A J; Cai, Z; Zhao, J H; Moler, K A; Robinson, J W A
2016-07-22
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.
Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; ...
2016-07-22
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using themore » element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.« less
NASA Astrophysics Data System (ADS)
Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.
2016-07-01
Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.
Effect of quantum tunneling on spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces.
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M D
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-01-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism. PMID:29333523
NASA Astrophysics Data System (ADS)
Zamani, Mehdi; Eftekhari, Sepideh; Ghanaatshoar, Majid
2018-04-01
We express a general formalism to describe light propagation in multilayers including both left-handed and normal magnetic materials. In this order, we employ propagation and boundary matrices which are applicable to any configuration of media, incident angle of light and orientation of magnetization in each ferromagnetic layer. We calculate the Kerr and Faraday rotation in some given magneto-optical multilayers and show that this universal approach can thoroughly illustrate spectral broadening by the left-handed layers, even in presence of dispersion effect.
NASA Astrophysics Data System (ADS)
Verba, Roman; Lisenkov, Ivan; Krivorotov, Ilya; Tiberkevich, Vasil; Slavin, Andrei
2018-06-01
Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin ferromagnetic-heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic-heavy-metal interface results in the openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps is different for opposite SAW propagation directions. The band-gap widths and the frequency separation between them can be controlled by a proper selection of the magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more than 1 order of magnitude.
Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Singh, Deobrat; Sonvane, Yogesh; Gajjar, P. N.
2018-03-01
In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are - 3.24, - 2.53 and - 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.
Oscillations in exchange coupling across a nonmagnetic metallic layer
NASA Astrophysics Data System (ADS)
Edwards, D. M.; Mathon, J.
1991-02-01
The exchange coupling between two strong itinerant ferromagnets separated by N atomic planes of a nonmagnetic metal is calculated using a Hubbard-type model. It is shown that for certain positions of the Fermi level the variation of the exchange coupling with N exhibits oscillations of long period. The amplitude of the oscillations falls of as 1/ N2 and agrees in order of magnitude with the exchange coupling observed by Parkin et al. in Co/Ru and Fe/Cr multilayers. Further agreement is the finding that antiparallel alignment of the ferromagnetic layers is favoured for small N. The relationship between the coupling found here and one of RKKY type is discussed.
Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao
2014-01-01
In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710
Interfacial exchange, magnetic coupling and magnetoresistance in ultra-thin GdN/NbN/GdN tri-layers
NASA Astrophysics Data System (ADS)
Takamura, Yota; Goncalves, Rafael S.; Cascales, Juan Pedro; Altinkok, Atilgan; de Araujo, Clodoaldo I. L.; Lauter, Valeria; Moodera, Jagadeesh S.; MIT Team
Superconducting spin-valve structures with a superconductive (SC) spacer sandwiched between ferromagnetic (FM) insulating layers [Li PRL 2013, Senapati APL 2013, Zhu Nat. Mat. 2016.] are attractive since the SC and FM characteristics can mutually be controlled by the proximity effect. We investigated reactively sputtered GdN/NbN/GdN tri-layer structures with various (SC) NbN spacer thicknesses (dNbN) from superconducting to normal layers. Magnetoresistive behavior similar to GMR in metallic magnetic multilayers was observed in the tri-layers with dNbN between 5-10 monolayers (ML), where thinner NbN layers did not show superconductivity down to 4.2 K. The occurrence of GMR signal indicates the presence of a ML of FM metallic layers at the GdN/NbN interfaces. Susceptibility and transport measurements in these samples revealed that the interface layers (ILs) are ferromagnetically coupled with adjacent GdN layers. The thickness of each of the IL is deduced to be about 1.25 ML, and as a result for dNbN <2.5-ML the two FM layers in the tri-layer were magnetically coupled and switched simultaneously. These findings and interfacial characterization by various techniques will be presented. Work supported by NSF and ONR Grants.
NASA Astrophysics Data System (ADS)
Sahu, Siddharth S.; Siva, Vantari; Pradhan, Paresh C.; Nayak, Maheswar; Senapati, Kartik; Sahoo, Pratap K.
2017-06-01
We report a study of the structural and magnetic behavior of the topmost magnetic layer in a ferromagnet-nonmagnet (Co-Au) multilayer system. Glancing angle X-ray diffraction measurements performed on a series of multilayers showed a gradual decrease in the grain size of the topmost magnetic layer with the increasing number of bilayers. Concurrently, the magnetic hardness and magneto-crystalline anisotropy of the top Co layer were found to decrease, as observed by magneto-optical Kerr effect measurements. This magnetic softening has been discussed in the light of Herzer's random anisotropy model. Micromagnetic simulations of the multilayer system also corroborated these observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru
2014-09-21
Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundarymore » conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.« less
Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles
NASA Astrophysics Data System (ADS)
Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.
2016-05-01
Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.
Addition and subtraction of spin pumping voltages in magnetic hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azevedo, A., E-mail: aac@df.ufpe.br; Alves Santos, O.; Cunha, R. O.
2014-04-14
We report an investigation of the spin pumping voltage generated in bilayers of ferromagnetic/normal metal in which the ferromagnetic layer is yttrium iron garnet or Permalloy and the normal-metal layer is Pt or Ta. We also investigated a special case in which the voltage is detected in single layer of Permalloy under ferromagnetic resonance condition. It is shown that the spin pumping voltage generated in metallic bilayers have contributions from both layers and the resulting voltage depends on the relative signs of charge currents generated by the inverse spin Hall effect. For instance, the spin pumping voltage generated in Tamore » has the same sign as the one generate in single layer of Permalloy, but contrary to the voltage generated in Pt. When the voltage is measured in shunted metallic bilayers, the resulting voltage can be a sum or a subtraction of the voltages generated in both layers.« less
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Miura, D.; Sakuma, A.
2018-05-01
We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.
Spin-injection into epitaxial graphene on silicon carbide
NASA Astrophysics Data System (ADS)
Konishi, Keita; Cui, Zhixin; Hiraki, Takahiro; Yoh, Kanji
2013-09-01
We have studied the spin-injection properties in epitaxial graphene on SiC. The ferromagnetic metal (FM) electrodes were composed of a tunnel barrier layer AlOx (14 Å) and a ferromagnetic Co (600 Å) layer. We have successfully observed the clear resistance peaks indicating spin-injection both in the "local" and "non-local" spin measurement set-ups at low temperatures. We estimate spin-injection rate of 1% based on "non-local" measurement and 1.6% based on local measurements. Spin-injection rate of multilayer graphene by mechanical exfoliation method was twice as high as single layer graphene on SiC based on "local" measurement.
NASA Astrophysics Data System (ADS)
Al-Rashid, Md Mamun; Maqableh, Mazin; Stadler, Bethanie; Atulasimha, Jayasimha
High density arrays of electrodeposited nanowires consisting of ferromagnetic/non-magnetic (Co/Cu) multilayers are promising as magnetic memory devices. For individual nanowires containing multiple (Co/Cu) bilayers, the stable magnetization orientations of the Co layers (with respect to each other and the nanowire axis) are dependent on the Cu layer thickness, even when the Co layer dimensions are fixed. This dependence is a result of the competition between shape anisotropy, magneto-crystalline anisotropy and intra-wire dipole coupling. However, when the nanowires are closely packed in arrays, inter-wire dipole coupling can result in complex and tunable domain structures comprising segments of multiple nanowires. This work explores the dependence of these domain structures and their switching on the non-magnetic layer thickness and intra-wire spacing both experimentally and via rigorous micromagnetic simulation. These domain structures play a crucial role in determining the current and time required for STT switching. NSF CAREER Grant CCF-1253370.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
NASA Astrophysics Data System (ADS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
NASA Astrophysics Data System (ADS)
Gloos, Kurt; Tuuli, Elina
2012-12-01
We have investigated break junctions of normal non-magnetic metals as well as ferromagnets at low temperatures. The point contacts with radii 0.15—15 nm showed zero-bias anomalies which can be attributed to Kondo scattering at a single Kondo impurity at the contact or to the switching of a single conducting channel. The Kondo temperatures derived from the width of the anomalies varied between 10 and 1000 K. These results agree well with literature data on atomic-size contacts of the ferromagnets as well as with spear-anvil type contacts on a wide variety of metals.
Rivas-Murias, Beatriz; Lucas, Irene; Jiménez-Cavero, Pilar; Magén, César; Morellón, Luis; Rivadulla, Francisco
2016-03-09
We report the effect of interface symmetry-mismatch on the magnetic properties of LaCoO3 (LCO) thin films. Growing epitaxial LCO under tensile strain on top of cubic SrTiO3 (STO) produces a contraction along the c axis and a characteristic ferromagnetic response. However, we report here that ferromagnetism in LCO is completely suppressed when grown on top of a buffer layer of rhombohedral La2/3Sr1/3MnO3 (LSMO), in spite of identical in-plane and out-of-plane lattice deformation. This confirms that it is the lattice symmetry mismatch and not just the total strain, which determines the magnetism of LCO. On the basis of this control over the magnetic properties of LCO, we designed a multilayered structure to achieve independent rotation of the magnetization in ferromagnetic insulating LCO and half-metallic ferromagnet LSMO. This is an important step forward for the design of spin-filtering tunnel barriers based on LCO.
Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses
NASA Astrophysics Data System (ADS)
Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan
2017-01-01
The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.
Mechanism of interlayer exchange in magnetic multilayers
NASA Astrophysics Data System (ADS)
Slonczewski, J. C.
1993-09-01
The spin-current method is used to calculate the oscillatory exchange energy that couples two semi-infinite ferromagnets with exchange-split parabolic bands which are joined by a nonmagnetic metallic spacer. A closed asymptotic formula extends the previous RKKY-type formula to the case in which the ferromagnets and spacer have different Fermi vectors. The predicted amplitude of oscillatory coupling increases steeply with Fermi vector or electron density in the spacer, as do the experimental trends reported by Parkin. Numerical computations relevant to iron support this closed formula and show that the amplitude of the biquadratic ( J2 cos 2θ) and higher-order corrections to the conventional - J1 cos θ form of energy is less than 2%.
Magnetic and electrical control of engineered materials
Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos
2016-08-16
Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.
Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...
2017-03-10
Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less
Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions
Kolenda, Stefan; Machon, Peter
2016-01-01
Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509
Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M
2011-04-25
We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.
Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers
NASA Astrophysics Data System (ADS)
MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.
2017-03-01
Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.
Ulloa, Camilo; Duine, R A
2018-04-27
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet
NASA Astrophysics Data System (ADS)
Ulloa, Camilo; Duine, R. A.
2018-04-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Gilbert Damping Parameter in MgO-Based Magnetic Tunnel Junctions from First Principles
NASA Astrophysics Data System (ADS)
Tang, Hui-Min; Xia, Ke
2017-03-01
We perform a first-principles study of the Gilbert damping parameter (α ) in normal-metal/MgO-cap/ferromagnet/MgO-barrier/ferromagnetic magnetic tunnel junctions. The damping is enhanced by interface spin pumping, which can be parametrized by the spin-mixing conductance (G↑↓ ). The calculated dependence of Gilbert damping on the thickness of the MgO capping layer is consistent with experiment and indicates that the decreases in α with increasing thickness of the MgO capping layer is caused by suppression of spin pumping. Smaller α can be achieved by using a clean interface and alloys. For a thick MgO capping layer, the imaginary part of the spin-mixing conductance nearly equals the real part, and the large imaginary mixing conductance implies that the change in the frequency of ferromagnetic resonance can be observed experimentally. The normal-metal cap significantly affects the Gilbert damping.
NASA Astrophysics Data System (ADS)
Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.
2018-06-01
Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.
Quantum Effects of Magnons Confined in Multilayered CoPd Ferromagnets
NASA Astrophysics Data System (ADS)
Nwokoye, Chidubem; Siddique, Abid; Bennett, Lawrence; Della Torre, Edward; IMR Team
Quantum entanglement is a unique quantum mechanical effect that arises from the correlation between two or more quantum systems. The fundamental aspects of magnon entanglement has been theoretical studied and the interest in developing technologies that exploits quantum entanglement is growing. We discuss the results of an experimental study of magnon entanglement in multilayered CoPd ferromagnets. Our findings are interesting and will aid in developing novel magnonic devices. Office of Naval Research.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.
2015-03-01
The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.
Conductive, magnetic and structural properties of multilayer films
NASA Astrophysics Data System (ADS)
Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.
2013-12-01
Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.
Engineering and characterizing nanoscale multilayered structures for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yang, J. Joshua
Magnetic tunnel junction (MTJ) has generated considerable attention due to its potential applications in improved magnetic sensors, read heads in HDDs and nonvolatile RAM. The materials issues play a crucial role in the performance of MTJs. In the work described in this thesis, we have engineered some interesting nanoscale multilayered structures mainly via thermodynamics considerations for MTJs. The insulator is usually an ultra-thin (<2nm) oxide, formed by oxidizing a pre-deposited metal, such as Al etc. We have developed novel fabrication approaches for obtaining clean and smooth interfaces between the insulator and the ferromagnets. These approaches include selectively oxidizing the pre-deposited tunnel barrier precursor metal, amorphizing the tunnel barrier precursor metal by alloying it with other elements, and in-situ annealing the bottom ferromagnetic layer. About 72% tunneling magnetoresistance (TMR) has been achieved at room temperature with AlOx and CoFe based MTJs. We have made a systemic study of the TMR vs. the Co1-xFe x electrode composition for AlOx based MTJs. A significant variation of TMR with Fe concentration has been observed. It is well known that the crystal structure of Co1-xFex changes from fcc to bcc with increasing Fe concentration. The concomitant composition change cast doubts on the role played by the crystal structure of the Co1-x Fex electrode on the TMR. By introducing different strains to an epitaxial Co1-xFex layer, we were able to fix its composition but alter its crystalline structure from fcc to bcc and found that the bcc structure resulted in much higher TMR values than found for the fcc structure. This is one of the few direct experimental confirmatory results showing the role of the FM electronic structure on the MTJ properties. Using Ag as a template, different 3d ferromagnets have been epitaxially grown on the Si substrate with hcp, fcc and bcc crystalline structures, respectively. By combining the selective oxidation method with the epitaxial growth technique, we have successfully created a single-crystal-like layer on top of an amorphous layer, which may have broad applications in thin film devices including MTJs.
NASA Astrophysics Data System (ADS)
Berger, Andrew J.; Edwards, Eric R. J.; Nembach, Hans T.; Karenowska, Alexy D.; Weiler, Mathias; Silva, Thomas J.
2018-03-01
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the dampinglike spin-to-charge conversion.
Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage
You, Chun-Yeol; Bader, Samuel D.
2001-01-01
A system for controlling the direction of magnetization of materials comprising a ferromagnetic device with first and second ferromagnetic layers. The ferromagnetic layers are disposed such that they combine to form an interlayer with exchange coupling. An insulating layer and a spacer layer are located between the first and second ferromagnetic layers. A direct bias voltage is applied to the interlayer exchange coupling, causing the direction of magnetization of the second ferromagnetic layer to change. This change of magnetization direction occurs in the absence of any applied external magnetic field.
Structural and magnetic properties of granular CoPd multilayers
NASA Astrophysics Data System (ADS)
Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.
2016-02-01
Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.
Magnetic and structural X-ray dichroïsms of metallic multilayers
NASA Astrophysics Data System (ADS)
Pizzini, Stefania; Fontaine, A.; Baudelet, F.; Minr, S.; Giorgetti, C.; Dartyge, E.; Bobo, J. F.; Piecuch, M.
1995-05-01
Fe/Cu and Co/Cu multilayers are intensively studied because of their exceptional magnetic properties, i.e., their giant magnetoresistance and the oscillations of the magnetic coupling between magnetic layers as a function of the thickness of the copper spacer [S.S. Parkin et al., Phys. Rev. Lett. 66 (1991) 2152; F. Petroff et al., Phys. Rev. B 44 (1991) 5355]. Spectroscopic approaches to the understanding of the coupling of ferromagnetic layers through a noble metal layer have been recently introduced, in particular spin-resolved photoemission [N.B. Brookes et al., Phys. Rev. Lett. 67 (1991) 354; C. Carbone et al., PRL 71 (1993) 2805] inverse photoemission [J.E. Ortega et al., Phys. Rev. Lett. 69 (1992) 844; Phys. Rev. B 47 (1993) 1540] and magnetic circular dichroism [S. Pizzini et al., MRS Symp. Proc., vol. 313 (1993); M.G. Samant et al. Phys. Rev. Lett. 72 (1994) 2152; S. Pizzini et al., Phys. Rev. Lett. 74 (1995) 1470]. X-ray absorption spectroscopy appears to be effective both for determination of the local structure, specific to the bidimensionality of the system but also for the electron symmetry-dependent evaluation of the spin polarisation of the noble metal as well as the magnetic element.
Promising half-metallicity in ductile NbF3: a first-principles prediction.
Yang, Bo; Wang, Junru; Liu, Xiaobiao; Zhao, Mingwen
2018-02-14
Materials with half-metallicity are long desired in spintronics. Using first-principles calculations, we predicted that the already-synthesized NbF 3 crystal is a promising half-metal with a large exchange splitting and stable ferromagnetism. The mechanical stability, ductility and softness of the NbF 3 crystal were confirmed by its elastic constants and moduli. The Curie temperature (T C = 120 K) estimated from the Monte Carlo simulations based on the 3D Ising model is above the liquid nitrogen temperature (78 K). The ferromagnetism and half-metallicity can be preserved on the surfaces of NbF 3 . The NbOF 2 formed by substituting F with O atoms, however, has an antiferromagnetic ground state and a normal metallic band structure. This work opens an avenue for half-metallic materials and may find applications in spintronic devices.
Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material
NASA Astrophysics Data System (ADS)
Xing, Wenyu; Chen, Yangyang; Odenthal, Patrick M.; Zhang, Xiao; Yuan, Wei; Su, Tang; Song, Qi; Wang, Tianyu; Zhong, Jiangnan; Jia, Shuang; Xie, X. C.; Li, Yan; Han, Wei
2017-06-01
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nano-electronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-04-28
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.
Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets
NASA Astrophysics Data System (ADS)
Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.
2016-10-01
The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.
Origin of fieldlike spin-orbit torques in heavy metal/ferromagnet/oxide thin film heterostructures
NASA Astrophysics Data System (ADS)
Ou, Yongxi; Pai, Chi-Feng; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.
2016-10-01
We report measurements of the thickness and temperature (T ) dependencies of current-induced spin-orbit torques, especially the fieldlike (FL) component, in various heavy metal (HM)/normal metal (NM) spacer/ferromagnet (FM)/oxide (MgO and Hf Ox/MgO ) heterostructures. The FL torque in these samples originates from spin current generated by the spin Hall effect in the HM. For a FM layer sufficiently thin that a substantial portion of this spin current can reach the FM/oxide interface, T-dependent spin scattering there can yield a strong FL torque that is, in some cases, opposite in sign to that exerted at the NM/FM interface.
2005-03-16
Chernyshova , V. V. Voloubev, L. Kowalczyk, A. Yu. Sipatov and T. Story Magnetic interactions in ferromagnetic EuS-PbS semiconductor multilayers . . 160 viii...Petersburg, Russia, June 17–21, 2002 © 2002 Ioffe Institute Magnetic interactions in ferromagnetic EuS-PbS semiconductor multilayers M. Chernyshova †, V. V...453, 457 Chaparo S., 57 Chaplik A. V., 270 Chemakin A. V., 34 Cherepanov V. A., 53 Cherkov A. G., 339 Chernykh A. V., 534 Chernyshova M., 160
Intrinsic superspin Hall current
NASA Astrophysics Data System (ADS)
Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle
2017-09-01
We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.
Granular giant magnetoresistive materials and their ferromagnetic resonances
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-11-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of (Cu(50 A)/Fe(10 A)) x 50. We interpret the linewidth of these materials in as simple a manner as possible, as a 'powder pattern' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 C for 15 min is 3.8 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe with the magnetic field in the plane of the film.
Ferromagnetic-resonance studies of granular giant-magnetoresistive materials
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-07-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.
Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques
NASA Astrophysics Data System (ADS)
Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.
2017-11-01
Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.
NASA Astrophysics Data System (ADS)
Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.
2018-07-01
Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.
NASA Astrophysics Data System (ADS)
Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold
2018-04-01
We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.
Spin dependent transport and spin transfer in nanoconstrictions and current confined nanomagnets
NASA Astrophysics Data System (ADS)
Ozatay, Ozhan
In this thesis, I have employed point contact spectroscopy to determine the nature of electron transport across constrained domain walls in a ferromagnetic nanocontact and to uncover the relationship between ballisticity of electron transport and domain wall magnetoresistance. In the range of hole sizes studied (from 10 to 3 nm) the resulting magnetoresistance was found to be less than 0.5% and one that increases with decreasing contact size. I have used point contacts as local probes, to study the spin dependent transport across Ferromagnet/Normal Metal/Ferromagnet(FM/NM/FM) trilayers as well as the consequences of localized spin polarized current injection into a nano magnet on spin angular momentum transfer and high frequency magnetization dynamics. I have demonstrated that absolute values for spin transfer switching critical currents are reduced in this new geometry as compared to uniform current injection. I have also performed micromagnetic simulations to determine the evolution of magnetization under the application of magnetic fields and currents to gain more insights into experimental results. I have used Scanning Transmission Electron Microscopy (STEM), X-Ray Photoemission Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) techniques to characterize the interfacial mixing and oxygen diffusion in the metallic multilayers of interest. I have shown that the Ta/CuOx bilayer structure provides a smooth substrate by improving interfacial roughness due to grain boundary diffusion of oxygen and reaction with Ta that fills in the grain boundary gaps in Cu. Analysis of the Py/AlOx interface proved a strong oxidation passivation on the Py surface by Al coating accompanied by Fe segregation into the alumina. I have utilized the characterization results to design a new nanomagnet whose sidewalls are protected from adventitious sidewall oxide layers and yields improved device performance. The oxide layers that naturally develop at the sidewalls of Py nanomagnets cause an enhancement in magnetic damping especially for temperatures below the blocking temperature of the AFM layer (≤40K). Studies with pillars protected by Al coating and ones with more NiO coating (˜2.5 nm) shed light onto the role of surface oxides in determining temperature dependent behaviour of both spin torque and field driven switching characteristics.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-01-01
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446
The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs
NASA Astrophysics Data System (ADS)
Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.
2018-06-01
Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.
Indirect Coupling of Magnetic Layers via Domain Wall Fringing fields
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2001-03-01
Ferromagnetic films separated by thin metallic spacer layers are usually coupled through an indirect exchange interaction which oscillates in sign between ferro and antiferromagnetic coupling as a function of the spacer layer thickness^1. For both such metallic systems, and for multilayered systems in which the ferromagnetic films are separated by thin insulating layers, correlated roughness of the magnetic layers gives rise to a weak ferromagnetic coupling via dipole fields. Another type of dipolar coupling mechanism, which has largely been ignored, is that arising from domain wall fringing fields. These fields can be locally very large^2 and can result in the demagnetization of ferromagnetic films which are nominally highly coercive ("hard") in sandwiches comprised of "hard" and "soft" ferromagnetic layers. When the moment of the soft layer is reversed back and forth in small magnetic fields, much too small to affect the moment of the hard layer, substantial local fringing fields from domain walls created in the soft film gradually result in the demagnetization of the hard film. In some cases the moment of the hard layer decays in an oscillatory manner as it is successively partially demagnetized and remagnetized. This process has been observed on both macroscopic and microscopic length scales using SQUID magnetometry and high resolution photoemission electron microscopy, respectively^3. Magnetic interactions from domain wall fringing fields may be very important for magnetic devices, especially, magnetoresistance sensors and memory elements. [1] S.S.P. Parkin, N. More and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990); S.S.P. Parkin, Phys. Rev. Lett., 67, 3598 (1991). [2] L. Thomas, M. Samant and S.S.P. Parkin, Phys. Rev. Lett. 84, 1816 (2000). [3] L. Thomas, J Lüning, A. Scholl, F. Nolting, S. Anders, J. Stöhr and S.S.P. Parkin, Phys. Rev. Lett. 84, 3462 (2000).
Room-temperature spin-orbit torque in NiMnSb
NASA Astrophysics Data System (ADS)
Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.
2016-09-01
Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.
Spin-orbit torques in magnetic bilayers
NASA Astrophysics Data System (ADS)
Haney, Paul
2015-03-01
Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.
Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron
NASA Astrophysics Data System (ADS)
Han, Qiang; Birol, Turan; Haule, Kristjan
2018-05-01
We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.
NASA Astrophysics Data System (ADS)
Beaujour, Jean-Marc
2010-03-01
Transition metal ferromagnetic films with perpendicular magnetic anisotropy (PMA) have ferromagnetic resonance (FMR) linewidths that are one order of magnitude larger than soft magnetic materials, such as pure iron (Fe) and permalloy (NiFe) thin films. We have conducted systematic studies of a variety of thin film materials with perpendicular magnetic anisotropy to investigate the origin of the enhanced FMR linewidths, including Ni/Co and CoFeB/Co/Ni multilayers. In Ni/Co multilayers the PMA was systematically reduced by irradiation with Helium ions, leading to a transition from out-of-plane to in-plane easy axis with increasing He ion fluence [1,2]. The FMR linewidth depends linearly on frequency for perpendicular applied fields and increases significantly when the magnetization is rotated into the film plane with an applied in-plane magnetic field. Irradiation of the film with Helium ions decreases the PMA and the distribution of PMA parameters, leading to a large reduction in the FMR linewidth for in-plane magnetization. These results suggest that fluctuations in the PMA lead to a large two magnon scattering contribution to the linewidth for in-plane magnetization and establish that the Gilbert damping is enhanced in such materials (α˜0.04, compared to α˜0.002 for pure Fe) [2]. We compare these results to those on CoFeB/Co/Ni and published results on other thin film materials with PMA [e.g., Ref. 3]. [1] D. Stanescu et al., J. Appl. Phys. 103, 07B529 (2008). [2] J-M. L. Beaujour, D. Ravelosona, I. Tudosa, E. Fullerton, and A. D. Kent, Phys. Rev. B RC 80, 180415 (2009). [3] N. Mo, J. Hohlfeld, M. ulIslam, C. S. Brown, E. Girt, P. Krivosik, W. Tong, A. Rebel, and C. E. Patton, Appl. Phys. Lett. 92, 022506 (2008). *Research done in collaboration with: A. D. Kent, New York University, D. Ravelosona, Institut d'Electronique Fondamentale, UMR CNRS 8622, Universit'e Paris Sud, E. E. Fullerton, Center for Magnetic Recording Research, UCSD, and supported by NSF-DMR-0706322.
NASA Astrophysics Data System (ADS)
Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih
2017-08-01
A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.
Homodyne detection of ferromagnetic resonance by a non-uniform radio-frequency excitation current
NASA Astrophysics Data System (ADS)
Ikebuchi, Tetsuya; Moriyama, Takahiro; Shiota, Yoichi; Ono, Teruo
2018-05-01
Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel’s mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.
Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V
2005-11-25
Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
He, Tao
2002-09-01
Perovskite-based ruthenates have been receiving considerable attention both because of their interesting and variable magnetic properties, and because of the discovery of exotic superconductivity in the layered ruthenate Sr 2RuO4. Another perovskite, SrRuO3, is the only known oxide ferromagnet with a 4d transition metal, and magnetism is easily suppressed by Ca doping. The suppression of ferromagnetic interactions in SrxCa1-xRuO3 has frequently been attributed to the orthorhombic structural distortion, either through the crossover to classical antiferromagnetic interactions, or, alternatively, to a nearly ferromagnetic metal. This study reports the comparison of the magnetic properties of Srx(Na0.5La0.5)1-xRuO 3 to SrxCa1-xRuO3, showing that there is a much faster suppression of ferromagnetic interactions in the former case. Neither orthorhombic distortion nor cation size disorder can explain the observed difference. Instead, the difference may be attributed to charge disorder on the A-site, which greatly affects the local environment of Ru atoms and leads to the faster suppression of the long-range ferromagnetic state. The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. This study also shows that paramagnetic CaRuO 3 can be made ferromagnetic by very small amounts of partial substitution of Ru by various transition metals. The results are consistent with the recent proposal that CaRuO3 is not a classical antiferromagnet, but rather is poised at a critical point between ferromagnetic and paramagnetic ground states. Ti, Fe, Mn and Ni doping result in ferromagnetic behavior. The second part of this thesis is on the superconductivity of MgB 2 and MgCNi3. Since the discovery of superconductivity in MgB2 in January 2001, detailed information on its properties has been rapidly accumulated. The reported properties, the very simple structure, and the commercial availability of this material make MgB2 a favorite candidate for large scale and electronic applications. In thin film fabrication, the reactivity of MgB2 with substrate materials or insulating or metallic layers in multi-layer circuits is an important factor. In this work the reactivity of MgB2 with powdered forms of common substrate and electronic materials is studied. Some oxides and nitrides prove to be potentially good substrates for making thin films, while others, including some commonly used substrates like Al2O3, SrTiO 3, and SiO2, have serious chemical compatibility problems. In the latter case, caution should be taken when fabricating thin films. This thesis also describes the discovery of superconductivity at 8 K in the perovskite structure compound MgCNi3. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have Tcs up to 16K. The itinerant electrons in both LnNi2B2C and MgCNi3 are based on partial filling of Ni d-states, which generally leads to ferromagnetism, as is the case in metallic Ni. The very high relative proportion of Ni in MgCNi3 is especially suggestive of the possible importance of magnetic interactions in the superconductivity, and, further, the lower Tc of the three-dimensional compound is contrary to conventional ideas.
Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.
2013-09-01
Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.
Dynamical current-induced ferromagnetic and antiferromagnetic resonances
NASA Astrophysics Data System (ADS)
Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.
2015-12-01
We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.
Ferromagnets as pure spin current generators and detectors
Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen
2015-09-08
Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.
Theory of in-plane current induced spin torque in metal/ferromagnet bilayers
NASA Astrophysics Data System (ADS)
Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei
2018-05-01
Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.
Transport and Magnetization in Bad Metals Itinerant Ferromagnets
NASA Astrophysics Data System (ADS)
Klein, Lior
1997-03-01
While much attention has been given to the study of itinerant ferromagnets that are good metals (k_Fl >> 1), very little is known about the transport properties of itinerant ferromagnets in the badly metallic limit (k_Fl= \\cal O ). Here we present our study of the pseudo-cubic perovskite SrRuO3 which is in the limit of k_Fl= \\cal O (1) in its purest form (e.g. single crystals) and is also an itinerant ferromagnet with Tc ~ 160 K. We findfootnote L. Klein, J. S. Dodge, C. H. Ahn, G. J. Snyder, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 77, 2774 (1996); L. Klein, J. S. Dodge, C. H. Ahn, J. W. Reiner, L. Mieville, T. H.Geballe, M. R. Beasley, and A. Kapitulnik, J. Phys. Condens. Matter 8, 10111 (1996). that while the magnetic properties of SrRuO3 in the paramagnetic phase, near the ferromagnetic phase transition and at low temperatures are normal and similar to those of iron or nickel, the transport properties sharply deviate from those of good metallic ferromagnets: a) As Tarrow T_c^+ the temperature derivative of the magnetic part of the resistivity, dρ _m/dT, diverges with an exponent on the order of 1, an order of magnitude larger than the expected specific heat exponent of ~ 0.1. b) While the critical behavior of dρ _m/dT around Tc is usually found to be symmetric, very weak divergence of dρ _m/dT is observed as Tarrow T_c^-. c) At low temperatures ρ rapidly increases in correlation with the magnetization instead of the usually observed T^2 dependence. d) At T < 4 K for low-residual-resistivity films, and at higher temperatures for high-residual-resistivity films, Kondo-like resistivity minima are observed. We conjecture that the distinct transport behavior of SrRuO3 is related to its being a 'bad metal' in the k_Fl= \\cal O (1) limit, and discuss the possible relevance of our results to the unusual transport properties of other 'bad metals' such as high-temperature superconductors, fullerenes and organic conductors.
Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents
NASA Astrophysics Data System (ADS)
Jeon, Kun-Rok; Ciccarelli, Chiara; Ferguson, Andrew J.; Kurebayashi, Hidekazu; Cohen, Lesley F.; Montiel, Xavier; Eschrig, Matthias; Robinson, Jason W. A.; Blamire, Mark G.
2018-06-01
Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.
Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.
NASA Astrophysics Data System (ADS)
Bolon, Bruce T.; Haugen, M. A.; Abin-Fuentes, A.; Deneen, J.; Carter, C. B.; Leighton, C.
2007-02-01
We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe 50Mn 50. X-ray diffraction and transmission electron microscopy show that the Fe 50Mn 50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn( tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Kenji, E-mail: kkondo@es.hokudai.ac.jp
In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thicknessmore » and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle θ, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.« less
Nonoscillatory behavior in the magnetoresistance of Cu/Ni superlattice (abstract)
NASA Astrophysics Data System (ADS)
Abdul-Razzaq, W.
1994-05-01
It was reported that in many magnetic/nonmagnetic metallic multilayered systems, the interlayer-coupling oscillates between antiferromagnetic and ferromagnetic upon increasing the thickness of the nonmagnetic layer. This was evident by the oscillation of the magnetoresistance (MR) in these materials. Recently however, Harp, Parkin et al.1 found that the MR and coupling strength change monotonically with increasing Cu thickness in Co/Cu multilayers deposited by MBE, contradicting results on similar samples made by sputtering in which the MR was oscillatory. In this study, we show that in the Cu/Ni superlattice made by sputtering, the MR varies monotonically with increasing Cu thickness. This nonoscillatory behavior was observed at room temperature and at 77 K and, regardless of the direction of the magnetic field in relation to the direction of the current. The resistivity at zero magnetic field as a function of temperature also changes systematically with reducing the Cu layer thickness. The nature of the magnetic state in Cu/Ni superlattice is discussed in light of the transport property measurements.
Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice
Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming
2014-01-01
Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Ji; Liu, Chunting; Chen, Kezheng
2016-01-01
In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286
Interfacial Ferromagnetism in LaNiO3/CaMnO3 Superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutter, Alexander J.; Yang, Hao; Kirby, B. J.
2013-08-01
We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coincident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.
Wireless sensor for detecting explosive material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K
Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Signature of Griffith phase in (Tb1-xCex)MnO3
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Dwivedi, G. D.; Singh, A.; Singh, R.; Shukla, K. K.; Yang, H. D.; Ghosh, A. K.; Chatterjee, Sandip
2016-05-01
Griffith phase phenomena is attributed to existence of FM (ferromagnetic) cluster in AFM (antiferromagnetic) ordering which usually occurs in ferromagnetic and antiferromagnetic bilayers or multilayers. In (Tb1-xCex)MnO3 evolution of Griffith phase have been observed. The observed Griffith phase might be due to the exchange interaction between Mn3+/Mn2+ states.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
Fiberoptic metal detector capable of profile detection.
Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih
2011-03-31
The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.
Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.
Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Kawasaki, M.; Tokura, Y.
2001-08-01
Oxide superlattices composed of antiferromagnetic insulator layers of CaMnO3 (10 unit cells) and paramagnetic metal layers of CaRuO3 (N unit cells) were fabricated on LaAlO3 substrates by pulsed-laser deposition. All the superlattices show ferromagnetic transitions at an almost identical temperature (TC˜95 K) and negative magnetoresistance below TC. Each magnetization and magnetoconductance of the whole superlattice at 5 K is constant and independent of CaRuO3 layer thickness when normalized by the number of the interfaces between CaMnO3 and CaRuO3. These results indicate that the ferromagnetism shows up only at the interface and is responsible for the magnetoresistance.
Lee, Kyeong-Dong; Kim, Dong-Jun; Yeon Lee, Hae; Kim, Seung-Hyun; Lee, Jong-Hyun; Lee, Kyung-Min; Jeong, Jong-Ryul; Lee, Ki-Suk; Song, Hyon-Seok; Sohn, Jeong-Woo; Shin, Sung-Chul; Park, Byong-Guk
2015-01-01
The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices. PMID:26020492
Application Prospects of Multilayer Film Shields for Space Research Instrumentation
NASA Astrophysics Data System (ADS)
Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.
We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.
Lee, Kyeong-Dong; Kim, Dong-Jun; Yeon Lee, Hae; Kim, Seung-Hyun; Lee, Jong-Hyun; Lee, Kyung-Min; Jeong, Jong-Ryul; Lee, Ki-Suk; Song, Hyon-Seok; Sohn, Jeong-Woo; Shin, Sung-Chul; Park, Byong-Guk
2015-05-28
The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices.
Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides
NASA Astrophysics Data System (ADS)
Liu, Bang-Gui
It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.
Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, G. W., E-mail: gary.paterson@glasgow.ac.uk; Gonçalves, F. J. T.; McFadzean, S.
2015-11-28
We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structuralmore » features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.« less
Treviso, Felipe; Silveira, Marilia A.; Flores Filho, Aly F.; Dorrell, David G.
2016-01-01
This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1) a double-layered secondary formed by aluminium and ferromagnetic slabs; (2) a single aluminium layer and (3) a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation. PMID:27007377
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions
NASA Astrophysics Data System (ADS)
Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke
2016-09-01
We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...
2016-11-22
Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less
Praeg, Walter F.
1997-01-01
An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.
Ferromagnetic behaviour of ZnO: the role of grain boundaries
Protasova, Svetlana G; Mazilkin, Andrei A; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte
2016-01-01
The possibility to attain ferromagnetic properties in transparent semiconductor oxides such as ZnO is very promising for future spintronic applications. We demonstrate in this review that ferromagnetism is not an intrinsic property of the ZnO crystalline lattice but is that of ZnO/ZnO grain boundaries. If a ZnO polycrystal contains enough grain boundaries, it can transform into the ferromagnetic state even without doping with “magnetic atoms” such as Mn, Co, Fe or Ni. However, such doping facilitates the appearance of ferromagnetism in ZnO. It increases the saturation magnetisation and decreases the critical amount of grain boundaries needed for FM. A drastic increase of the total solubility of dopants in ZnO with decreasing grain size has been also observed. It is explained by the multilayer grain boundary segregation. PMID:28144542
Electron transport in ferromagnetic nanostructures
NASA Astrophysics Data System (ADS)
Lee, Sungbae
As the size of a physical system decreases toward the nanoscale, quantum mechanical effects such as the discretization of energy levels and the interactions of the electronic spins become readily observable. To understand what happens within submicrometer scale samples is one of the goals of modern condensed matter physics. Electron transport phenomena drew a lot of attention over the past two decades or so, not only because quantum corrections to the classical transport theory, but also they allow us to probe deeply into the microscopic nature of the system put to test. Although a significant amount of research was done in the past and thus extended our understanding in this field, most of these works were concentrated on simpler examples. Electron transport in strongly correlated systems is still a field that needs to be explored more thoroughly. In fact, experimental works that have been done so far to characterize coherence physics in correlated systems such as ferromagnetic metals are far from conclusive. One reason ferromagnetic samples draw such attention is that there exist correlations that lead to excitations (e.g. spin waves, domain wall motions) not present in normal metals, and these new environmental degrees of freedom can have profound effects on decoherence processes. In this thesis, three different types of magnetic samples were examined: a band ferromagnetism based metallic ferromagnet, permalloy, a III-V diluted ferromagnetic semiconductor with ferromagnetism from a hole-mediated exchange interaction, and magnetite nanocrystals and films. The first observation of time-dependent universal conductance fluctuations (TD-UCF) in permalloy is presented and our observations lead to three major conclusions. First, the cooperon contribution to the conductance is suppressed in this material. This is consistent with some theoretical expectations, and implies that weak localization will be suppressed as well. Second, we see evidence that domain wall motion leads to enhanced conductance fluctuations, demonstrating experimentally that domain walls can act as coherent scatterers of electrons. Third, the temperature dependence of the fluctuations is surprisingly strong, suggesting that the dominant decoherence mechanism in these wires is different than that in similar normal metal nanostructures. The first observation of TD-UCF in diluted magnetic semiconductors (DMS) is also presented. In contrast to analogous measurements on permalloy samples, we find a surprising suppression of TD-UCF noise in this material at low temperatures, independent of field orientation. We believe this implies that the suppression is not due to an orbital effect, and therefore some of the fluctuations originate with time-varying magnetic disorder. The temperature dependence of the TD-UCF implies either an unusual fluctuator spectrum or a nonstandard dephasing mechanism. Measurements of UCF as a function of magnetic field allow an order of magnitude estimate of the coherence length at 2 K of approximately 50 nm in this material. The last samples examined were magnetite nanocrystals and films. Magnetite has been used in technologies for millennia, from compasses to magnetoelectronic devices, although its electronic structure has remained controversial for seven decades, with a low temperature insulator and a high temperature "bad metal" separated by the Verwey transition at 120 K. A new electrically driven insulator-metal transition below the Verwey temperature in both magnetite films and nanocrystals was observed. The possibility that this was a thermal effect was tested through various methods, and we have shown that the transition is in fact truly electrically driven. This electrically driven transition also showed a great deal of rigidity against external magnetic field and high gate voltages.
Praeg, W.F.
1997-02-11
An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.
Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers
NASA Astrophysics Data System (ADS)
Franklin, Michael Ray
Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.
Spin effects induced by thermal perturbation in a normal metal/magnetic insulator system
NASA Astrophysics Data System (ADS)
Lyapilin, I. I.; Okorokov, M. S.; Ustinov, V. V.
2015-05-01
Using one of the methods of quantum nonequilibrium statistical physics, we have investigated the spin transport transverse to the normal metal/ferromagnetic insulator interface in hybrid nanostructures. An approximation of the effective parameters, when each of the interacting subsystems (electron spin, magnon, and phonon) is characterized by its own effective temperature, has been considered. The generalized Bloch equations which describe the spin-wave current propagation in the dielectric have been derived. Finally, two sides of the spin transport "coin" have been revealed: the diffusive nature of the magnon motion and magnon relaxation processes, responsible for the spin pumping, and the spin-torque effect.
NASA Astrophysics Data System (ADS)
Adams, Daniel J.; Khanal, Shankar; Khan, Mohammad Asif; Maksymov, Artur; Spinu, Leonard
2018-05-01
The in-plane temperature dependence of exchange bias was studied through both dc magnetometry and ferromagnetic resonance spectroscopy in a series of [NiFe/IrMn]n multilayer films, where n is the number of layer repetitions. Major hysteresis loops were recorded in the temperature range of 300 K to 2 K to reveal the effect of temperature on the exchange bias in the static regime while temperature-dependent continuous-wave ferromagnetic resonance for frequencies from 3 to 16 GHz was used to determine the exchange bias dynamically. Strong divergence between the values of exchange bias determined using the two different types of measurements as well as a peak in temperature dependence of the resonance linewidth were observed. These results are explained in terms of the slow-relaxer mechanism.
Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers
NASA Astrophysics Data System (ADS)
Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil
2018-05-01
In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.
NASA Astrophysics Data System (ADS)
Thiyagarajan, R.; Arumugam, S.; Sivaprakash, P.; Kannan, M.; Saravanan, C.; Yang, Wenge
2017-06-01
The hydrostatic pressure effect on the resistivity and magnetization of the narrow band gap manganite Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) systems has been investigated. At ambient pressure measurements, the parent compound Sm0.7Sr0.3MnO3 showed a ferromagnetic-insulating nature, whereas the 10% La-doped compound Sm0.6La0.1Sr0.3MnO3 showed a ferromagnetic-metallic nature. Furthermore, both samples showed a spin-reorientation transition (TSR) below Curie temperature, which originated from the Mn sublattice and was supported by an antiferromagnetic Sm(4f)-Mn(3d) interaction. Both samples exhibited a normal and inverse magnetocaloric effect as a result of these two different magnetic transitions. Magnetization measurements on Sm0.7Sr0.3MnO3 under pressure did not show an appreciable change in the Curie temperature, but enhanced TSR, whereas an insulator-metallic transition was observed during resistivity measurements under pressure. On the other hand, for Sm0.6La0.1Sr0.3MnO3, TC increased and TSR reduced upon the application of pressure. The metallic nature which is observed at ambient pressure resistivity measurement was further enhanced with 97% of piezoresistance. The pressure did not change the normal magnetocaloric effect of Sm0.7Sr0.3MnO3, but increased it in Sm0.6La0.1Sr0.3MnO3. However, there was not much change in the inverse magnetocaloric effect of both compounds. These studies were analyzed based on the pressure effect on the activation energy and scattering interaction factors.
NASA Astrophysics Data System (ADS)
Zare, Moslem; Majidi, Leyla; Asgari, Reza
2017-03-01
We theoretically investigate the unusual features of the magnetotransport in a monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure. We find that the charge conductance can feature a minimum at parallel (P) configuration and a maximum near the antiparallel (AP) configuration of magnetization in the F/N/F structure with n -doped F and p -doped N regions and also a finite conductance in the AP configuration with the N region of n -type doping. In particular, the proposed structure exhibits giant magnetoresistance, which can be tuned to unity. This perfect switching is found to show strong robustness with respect to increasing the contact length and tuning the chemical potential of the N region with a gate voltage. We also explore the oscillatory behavior of the charge conductance or magnetoresistance in terms of the size of the N region. We further demonstrate the penetration of the spin-transfer torque into the right F region and show that, unlike graphene structure, the spin-transfer torque is very sensitive to the chemical potential of the N region as well as the exchange field of the F region.
Efficient spin-current injection in single-molecule magnet junctions
NASA Astrophysics Data System (ADS)
Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.
2018-01-01
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan
Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less
NASA Astrophysics Data System (ADS)
Ma, Xin; Yu, Guoqiang; Tang, Chi; Li, Xiang; He, Congli; Shi, Jing; Wang, Kang L.; Li, Xiaoqin
2018-04-01
The Dzyaloshinskii-Moriya interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5 d band filling (5 d3- 5 d10 ) of the HM element in HM/FM (FM =CoFeB ,Co )/MgO multilayer thin films. DMI is quantitatively evaluated by measuring asymmetric spin wave dispersion using Brillouin light scattering. Sign reversal and 20 times modification of the DMI coefficient D have been measured as the 5 d HM element is varied. The chemical trend can be qualitatively understood by considering the 5 d and 3 d bands alignment at the HM/FM interface and the subsequent orbital hybridization around the Fermi level. Furthermore, a correlation is observed between DMI and effective spin mixing conductance at the HM/FM interfaces. Our results provide new insights into the interfacial DMI for designing future spintronic devices.
Griffin, Sinead M.; Neaton, Jeffrey B.
2017-09-12
Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less
Low-Resistance Spin Injection into Silicon Using Graphene Tunnel Barriers
2012-11-01
compromise spin injection/transport/detection. Ferromagnetic metals readily form silicides even at room tempera- ture19, and diffusion of the ferromagnetic... metal /tunnel barrier/Si contacts using 2 nm SiO2 (triangles), 1.5 nm Al2O3 (diamond) and monolayer graphene (circles) tunnel barriers prepared from...and B. T. Jonker* Spin manipulation in a semiconductor offers a new paradigm for device operation beyond Moore’s law. Ferromagnetic metals are ideal
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
Prajapat, C L; Singh, Surendra; Bhattacharya, D; Ravikumar, G; Basu, S; Mattauch, S; Zheng, Jian-Guo; Aoki, T; Paul, Amitesh
2018-02-27
A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa 2 Cu 3 O 7 (YBCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) multilayers interleaved with and without an insulating SrTiO 3 (STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti (4+)-δ to Mn at the STO/LSMO interface and to Cu 2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
Molecule-assisted ferromagnetic atomic chain formation
NASA Astrophysics Data System (ADS)
Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.
2015-06-01
One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.
Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors
Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew; ...
2017-01-01
We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less
Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew
We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less
First principles study on Fe based ferromagnetic quaternary Heusler alloys
NASA Astrophysics Data System (ADS)
Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.
2017-11-01
The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.
Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.
2014-03-17
Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.
Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany Maria
A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.
Metallic ferromagnetic films with magnetic damping under 1.4 × 10 -3
Lee, Aidan J.; Brangham, Jack T.; Cheng, Yang; ...
2017-08-10
Low-damping magnetic materials have been widely used in microwave and spintronic applications because of their low energy loss and high sensitivity. While the Gilbert damping constant can reach 10 -4 to 10 -5 in some insulating ferromagnets, metallic ferromagnets generally have larger damping due to magnon scattering by conduction electrons. Meanwhile, low-damping metallic ferromagnets are desired for charge-based spintronic devices. In this article, we report the growth of Co 25Fe 75 epitaxial films with excellent crystalline quality evident by the clear Laue oscillations and exceptionally narrow rocking curve in the X-ray diffraction scans as well as from scanning transmission electronmore » microscopy. Remarkably, the Co 25Fe 75 epitaxial films exhibit a damping constant <1.4 × 10 -3, which is comparable to the values for some high-quality Y 3Fe 5O 12 films. This record low damping for metallic ferromagnets offers new opportunities for charge-based applications such as spin-transfer-torque-induced switching and magnetic oscillations.« less
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
NASA Astrophysics Data System (ADS)
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
Anomalous current in diffusive ferromagnetic Josephson junctions
NASA Astrophysics Data System (ADS)
Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.
2017-05-01
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.
NASA Astrophysics Data System (ADS)
Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj
2017-12-01
In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.
Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)
NASA Astrophysics Data System (ADS)
Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles
2015-09-01
The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.
NASA Astrophysics Data System (ADS)
Zhang, Baomin; Cao, Chonglong; Li, Guowei; Li, Feng; Ji, Weixiao; Zhang, Shufeng; Ren, Miaojuan; Zhang, Haikun; Zhang, Rui-Qin; Zhong, Zhicheng; Yuan, Zhe; Yuan, Shengjun; Blake, Graeme R.
2018-04-01
We use first-principles calculations to predict the occurrence of half-metallicity and anionogenic ferromagnetism at the heterointerface between two 2p insulators, taking the KO2/BaO2 (001) interface as an example. Whereas a sharp heterointerface is semiconducting, a heterointerface with a moderate concentration of swapped K and Ba atoms is half-metallic and ferromagnetic at ambient pressure due to the double exchange mechanism. The K-Ba swap renders the interfacial K-O and Ba-O atomic layers electron-doped and hole-doped, respectively. Our findings pave the way to realize metallicity and ferromagnetism at the interface between two 2 p insulators, and such systems can constitute a new family of heterostructures with novel properties, expanding studies on heterointerfaces from 3 d insulators to 2 p insulators.
Design of Co/Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition
NASA Astrophysics Data System (ADS)
Thiele, Jan-Ulrich
2009-03-01
Among the known magnetic material systems there are only very few examples of materials that undergo a temperature dependent antiferromagnetic-to-ferromagnetic phase transition, and of these only the chemically ordered alloy FeRh exhibits this transition near room temperature [1, 2]. Here we present a perpendicular anisotropy multilayer structure that mimics FeRh. The basic idea is to use two stacks of Co/Pd multilayers with large perpendicular magnetic anisotropy and high Curie temperature, TC, separated by a layer providing antiferromagnetic coupling, and a CoNi/Pd multilayer with perpendicular anisotropy with a lower TC, interlayer, in the range of the desired AF-FM transition temperature, TAF-FM. At room temperature this system behaves as two antiferromagnetically coupled layers with a low perpendicular remanent magnetic moment. As the temperature is raised to approach TC, interlayer the magnetization of the interlayer is gradually reduced to zero, and consequently its coupling strength is reduced. Eventually, the effective coupling between the two high-KU, high-TC layers becomes dominated by their dipolar fields, resulting in a parallel alignment of their moments and a net remanent magnetic moment equal to the sum of the moments of the two high-TC layers [2]. [4pt] [1] J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33 (1962) p1343 [0pt] [2] J.-U. Thiele, E. E. Fullerton, S. Maat, Appl. Phys. Lett. 82 (2003) p2859 [0pt] [3] J.-U. Thiele. T. Hauet. O. Hellwig, Appl. Phys. Lett. 92 (2008) 242502.
GMR sensors with linear and unhysteretic R(H) dependences
NASA Astrophysics Data System (ADS)
Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Schmidt, M.; Röll, K.
2004-05-01
Magnetoresistance effect of Ni-Fe/Au/Co/Au sputtered multilayers was investigated. These new GMR structures, consisting of ferromagnetic layers with alternating in-plane (Ni-Fe) and out-of-plane (Co) magnetization configurations at remanence show magnetoresistive behavior attractive for some applications.
Gianesin, Barbara; Zefiro, Daniele; Paparo, Francesco; Caminata, Alessio; Balocco, Manuela; Carrara, Paola; Quintino, Sabrina; Pinto, Valeria; Bacigalupo, Lorenzo; Rollandi, Gian Andrea; Marinelli, Mauro; Forni, Gian Luca
2015-05-01
A preliminary assessment of the MRI-compatibility of metallic object possibly embedded within the patient is required before conducting the MRI examination. The Magnetic Iron Detector (MID) is a highly sensitive susceptometer that uses a weak magnetic field to measure iron overload in the liver. MID might be used to perform a screening procedure for MRI by determining the ferromagnetic/conductive properties of embedded metallic objects. The study was composed by: (i) definition of MID sensitivity threshold; (ii) application of MID in a procedure to characterize the ferromagnetic/conductive properties of metallic foreign objects in 958 patients scheduled for MID examination. The detection threshold for ferromagnetic objects was found to be the equivalent of a piece of wire of length 2 mm and gauge 0.8 mm(2) and, representing purely conductive objects, an aluminum sheet of area 2 × 2 cm(2) . Of 958 patients, 165 had foreign bodies of unknown nature. MID was able to detect those with ferromagnetic and/or conducting properties based on fluctuations in the magnetic and eddy current signals versus control. The high sensitivity of MID makes it suitable for assessing the ferromagnetic/conductive properties of metallic foreign objects embedded within the body of patients scheduled for MRI. © 2015 Wiley Periodicals, Inc.
Emergent Interfacial Ferromagnetism in CaMnO3-based Superlattices
NASA Astrophysics Data System (ADS)
Grutter, Alexander
2014-03-01
Interfaces of complex oxide materials provide a rich playground not only for the exploration of properties not found in the bulk constituents but also for the development of functional interfaces to be incorporated in spintronic applications. Emergent interfacial magnetic phenomena have been of great interest but surprisingly there have been few examples of emergent interfacial ferromagnetism. In this talk, I will describe our recent work on the stabilization of ferromagnetism in CaMnO3-based superlattices. We have demonstrated ferromagnetism at the interface between the antiferromagnetic insulator CaMnO3 and a paramagnetic metallic layer, including CaRuO3 and LaNiO3. Theoretically the ferromagnetism has been attributed to an interfacial double exchange interaction among the interfacial Mn ions that is mediated by itinerant electrons from the paramagnetic metallic layer. Through polarized neutron reflectivity and observation of exchange bias, we have demonstrated that the ferromagnetism comes from Mn ions in a single unit cell at the interfaces just as theory has predicted. We have also demonstrated that the metallicity of the paramagnetic layer is critical in stabilizing ferromagnetism at the interface and that the interfacial ferromagnetism can be suppressed by suppressing the metallicity of the paramagnetic layer. Despite the agreement with theory, there remain open questions as to the magnetic interactions among the interfacial ferromagnetic layers. For example, the saturated magnetic moment modulates as a function of the thickness of both the CaMnO3 and paramagnetic metal layers. The origins of this oscillation are not well understood and may stem from either structural effects or long-range oscillatory magnetic coupling interactions reminiscent of RKKY interactions. Evidence of the doubling of the unit cell and long range antiferromagnetic correlations support these speculations. This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering, under Contract # DE-AC05-76RL01830 and DE-SC0008505.
Magnon detection using a ferroic collinear multilayer spin valve.
Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias
2018-03-14
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.
Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve
NASA Astrophysics Data System (ADS)
Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus
2018-03-01
Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.
Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P(1-x)As(x))2.
Steppke, Alexander; Küchler, Robert; Lausberg, Stefan; Lengyel, Edit; Steinke, Lucia; Borth, Robert; Lühmann, Thomas; Krellner, Cornelius; Nicklas, Michael; Geibel, Christoph; Steglich, Frank; Brando, Manuel
2013-02-22
Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mruczkiewicz, M.; Krawczyk, M.
2014-03-21
We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allowmore » us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.« less
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-01-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496
Spin Funneling for Enhanced Spin Injection into Ferromagnets
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Superconductivity induced by interfacial coupling to magnons
NASA Astrophysics Data System (ADS)
Rohling, Niklas; Fjærbu, Eirik Løhaugen; Brataas, Arne
2018-03-01
We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-magnon interaction induces electron-electron interactions, which in turn can result in p -wave superconductivity. We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO trilayers require a lower temperature, in the range from 0.01 to 1 K.
Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers
NASA Astrophysics Data System (ADS)
He, Min; Li, Gang; Zhu, Zhaozhao; Zhang, Ying; Peng, Licong; Li, Rui; Li, Jianqi; Wei, Hongxiang; Zhao, Tongyun; Zhang, X.-G.; Wang, Shouguo; Lin, Shi-Zeng; Gu, Lin; Yu, Guoqiang; Cai, J. W.; Shen, Bao-gen
2018-05-01
Magnetic skyrmions in multilayers are particularly appealing as next generation memory devices due to their topological compact size, the robustness against external perturbations, the capability of electrical driving and detection, and the compatibility with the existing spintronic technologies. To date, Néel-type skyrmions at room temperature (RT) have been studied mostly in multilayers with easy-axis magnetic anisotropy. Here, we systematically broadened the evolution of magnetic skyrmions with sub-50-nm size in a series of Pt/Co/Ta multilayers where the magnetic anisotropy is tuned continuously from easy axis to easy plane by increasing the ferromagnetic Co layer thickness. The existence of nontrivial skyrmions is identified via the combination of in situ Lorentz transmission electron microscopy (L-TEM) and Hall transport measurements. A high density of magnetic skyrmions over a wide temperature range is observed in the multilayers with easy-plane anisotropy, which will stimulate further exploration for new materials and accelerate the development of skyrmion-based spintronic devices.
NASA Astrophysics Data System (ADS)
Meng, Zhaoliang; He, Shikun; Huang, Lisen; Qiu, Jinjun; Zhou, Tiejun; Panagopoulos, Christos; Han, Guchang; Teo, Kie-Leong
2016-10-01
We investigate the current induced domain wall (DW) motion in the ultrathin CoFe/Pd multilayer based synthetically antiferromagnetic (SAF) structure nanowires by anomalous Hall effect measurement. The threshold current density (Jth) for the DW displacement decreases and the DW velocity (v) increases accordingly with the exchange coupling Jex between the top and bottom ferromagnetic CoFe/Pd multilayers. The lowest Jth = 9.3 × 1010 A/m2 and a maximum v = 150 m/s with J = 1.5 × 1012 A/m2 are achieved due to the exchange coupling torque (ECT) generated in the SAF structure. The strength of ECT is dependent on both of Jex and the strong spin-orbit torque mainly generated by Ta layer.
MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics
Palmstrom, Chris [University of California, Santa Barbara, California, United States
2017-12-09
Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.
Tunneling Evidence of Half-Metallic Ferromagnetism in La(0.7)Ca(0.3)MnO(3)
NASA Technical Reports Server (NTRS)
Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.
1997-01-01
Direct experimental evidence of half-metallic density of states (DOS) is observed by scanning tunneling spectroscopy on ferromagnetic La(0.7)Ca(0.3)MnO(3) which exhibits colossal magnetoresistance (SMR).
NASA Astrophysics Data System (ADS)
Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki
2018-05-01
In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.
Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface
NASA Astrophysics Data System (ADS)
Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.
2016-07-01
The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.
Anti-ferromagnetic/ferromagnetic transition in half-metallic Co9Se8 nanoparticles
NASA Astrophysics Data System (ADS)
Singh, Jai; Kumar, Pushpendra
2015-09-01
The size, shape and defects of the half-metallic Co9Se8 nanoparticles (NPs) play a crucial role in the magnetic transition at the local magnetic regime at low temperatures. A general, non-injection, one-pot reaction route without toxic reagents, such as TOPO/TOPSe, surfactant and/or chelating agent, were used to synthesize gram scale of well-dispersed, high-quality Co9Se8 NPs. The calculated mean crystallite size of the NPs was ∼10 nm, which is consistent with the transmission electron microscope data. This study reveals an unusual anti-ferromagnetic/ferromagnetic transition with some super-paramagnetic character in the low temperature region of Co9Se8 NPs. These investigations are expected not only to help the observed phenomenon, but also help in identifying new half-metallic magnetic NPs for spintronics devices. The outcome provides better understanding of the occurrence of superparamagnetism at low temperatures in the nano-regime, for half-metallic systems.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum.
Baik, Jeong Min; Shon, Yoon; Lee, Seung Joo; Jeong, Yoon Hee; Kang, Tae Won; Lee, Jong-Lam
2008-10-15
We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.
Hanasaki, N; Watanabe, K; Ohtsuka, T; Kézsmárki, I; Iguchi, S; Miyasaka, S; Tokura, Y
2007-08-24
The metal-insulator transition has been investigated for pyrochlore molybdates R(2)Mo(2)O(7) with nonmagnetic rare-earth ions R. The dynamical scaling analysis of ac susceptibility reveals that the geometrical frustration causes the atomic spin-glass state. The reentrant spin-glass phase exists below the ferromagnetic transition. The electronic specific heat is enhanced as compared to the band calculation result, perhaps due to the orbital fluctuation in the half-metallic ferromagnetic state. The large specific heat is rather reduced upon the transition, likely because the short-range antiferromagnetic fluctuation shrinks the Fermi surface.
Review of multi-layered magnetoelectric composite materials and devices applications
NASA Astrophysics Data System (ADS)
Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang
2018-06-01
Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.
Suresh, Vandrangi; Lin, Jheng-Cyuan; Liu, Heng-Jui; Zhang, Zaoli; Chiang, Ping-Chih; Hsun, Yu-Ching; Chen, Yi-Chun; Lin, Jiunn-Yuan; Chu, Ying-Hao
2016-11-03
The competition between superconductivity and ferromagnetism poses great challenges and has attracted renewed interest for applications in novel spintronic devices. In order to emphasize their interactions, we fabricated a heterostructure composed of superconducting YBa 2 Cu 3 O 7-δ (YBCO) film embedded with itinerant ferromagnetic SrRuO 3 (SRO) mesocrystals. Starting from a doping concentration of 10 vol% of SRO mesocrystal in a YBCO matrix, corresponding to the density of SRO nanocrystals ∼5 × 10 9 cm -2 , which exhibits the typical characteristic of a metal-superconductor transition, and then increasing the magnetic interactions as a function of SRO embedment, the electronic correlation and the interplay between superconductivity and magnetism throughout the temperature regime were investigated. A metal-insulator transition in the normal state of YBCO and a crossover between superconductivity and magnetism at low temperatures were found upon increasing the density of nano-size SRO crystallites in the YBCO matrix as a consequence of competing interactions between these two ordered phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qu; Wang, Lei; Zhou, Ziyao
To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co) 2/Ru/(Co/Pt) 2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKYmore » interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.« less
GMR in magnetic multilayers from a first principles band structure Kubo-Greenwood approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, F.; Freeman, A.J.
1998-07-01
The authors employ the Kubo-Greenwood formula to investigate from first-principles the giant magnetoresistance in Fe{sub m}M{sub n} (M = V, Cr, Mn and Cu) superlattices. The results indicate that MR can arise from band structure changes from ferromagnetic to anti-ferromagnetic alignments. Quantum confinement in the perpendicular direction is induced by the potential steps between the Fe and spacer layers and causes a much larger MR in the current-perpendicular-to-the-plane (CPP) geometry than in the current-in-plane (CIP) geometry. In the presence of the spin-orbit coupling interaction, MR is found to be reduced by spin-channel mixing.
NASA Astrophysics Data System (ADS)
Faúndez, J.; Jorge, T. N.; Craco, L.
2018-03-01
Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction in strongly correlated quantum ferromagnets.
Development of a polymer based fiberoptic magnetostrictive metal detector system.
Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih
2010-10-01
This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.
Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.
Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri
2015-03-25
This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.
Sensitive imaging of magnetization structure and dynamics using picosecond laser heating
NASA Astrophysics Data System (ADS)
Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Brangham, Jack; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory
We demonstrate the time-resolved longitudinal spin Seebeck effect (TRLSSE) as the basis for an ultrafast, high-resolution, and sensitive microscope for imaging ferromagnetic insulator/normal metal spintronic devices. By focusing a picosecond laser to 0.7 μm, we generate a sub-100 ps electrical signal from the combination of the TRLSSE and the inverse spin Hall effect in yittrium iron garnet (YIG)/platinum (Pt) bilayers. This signal is a spatiotemporal measurement of the local, in-plane magnetic orientation of YIG with outstanding sensitivity better than 0.3° /√{ Hz } in samples with 20 nm of YIG. Static imaging of YIG/Pt devices reveals variations in the local magnetic anisotropy on a few micron scale. Phase-sensitive ferromagnetic resonance imaging reveals corresponding variations in the resonance field, amplitude, phase, and linewidth. These results show the TRLSSE is a powerful tool for static and dynamic studies of spintronic devices made with ferromagnetic insulators. This research was supported by the AFOSR (FA9550-14-1-0243) and by NSF (DMR-1406333, DMR-1507274, and DMR-1120296).
Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure.
Biswas, Sarajit
2018-04-17
Electronic, magnetic, and structural properties of pure and V-doped CrO 2 were extensively investigated utilizing density functional theory. Usually, pure CrO 2 is a half-metallic ferromagnet with conductive spin majority species and insulating spin minority species. This system remains in its half-metallic ferromagnetic phase even at 50% V-substitution for Cr within the crystal. The V-substituted compound Cr 0.5 V 0.5 O 2 encounters metal-insulator transition upon the application of on-site Coulomb repulsion U = 7 eV preserving its ferromagnetism in the insulating phase. It is revealed in this study that Cr 3+ -V 5+ charge ordering accompanied by the transfer of the single V-3d electron to the Cr-3dt 2g orbitals triggers metal-insulator transition in Cr 0.5 V 0.5 O 2 . The ferromagnetism of Cr 0.5 V 0.5 O 2 in the insulating phase arises predominantly due to strong Hund's coupling between the occupied electrons in the Cr-t 2g states. Besides this, the ferromagnetic Curie temperature (T c ) decreases significantly due to V-substitution. Interestingly, a structural distortion is observed due to tilting of CrO 6 or VO 6 octahedra across the metal-insulator transition of Cr 0.5 V 0.5 O 2 . Graphical abstract The V-doped compound Cr 0.5 V 0.5 O 2 is found a half-metallic ferromagnet (HMF) in the absence of on-site Coulomb interaction (U). This HMF behavor maintains up to U = 6 eV. Eventually, this system encounters metal-insulator transition (MIT) upon the application of U = 7 eV with a band gap of E g ~ 0.31 eV. Nevertheless, applications of higher U widen the band gaps. In this figure, calculated total (black), Cr-3d (red), V-3d (violet), and O-2p (blue) DOS of Cr 0.5 V 0.5 O 2 for U = 8 eV are illustrated. The system is insulating with a band gap of E g ~ 0.7 eV.
Process for manufacturing multilayer capacitors
Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.
1996-01-01
The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.
Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic s-d(f) interaction.
Irkhin, V Yu
2015-04-22
Non-quasiparticle (incoherent) states which play an important role in the electronic structure of half-metallic ferromagnets (HMF) are investigated consistently in the case of antiferromagnetic s-d(f) exchange interaction. Their appropriate description in the limit of strong correlations requires a rearrangement of perturbation series in comparison with the usual Dyson equation. This consideration provides a solution of the Kondo problem in the HMF case and can be important for first-principle HMF calculations performed earlier for ferromagnetic s-d(f) interaction.
Spin-orbit torque based magnetization switching in Pt/Cu/[Co/Ni]5 multilayer structures
NASA Astrophysics Data System (ADS)
Ostwal, Vaibhav; Penumatcha, Ashish; Hung, Yu-Ming; Kent, Andrew D.; Appenzeller, Joerg
2017-12-01
Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall effect in the HM and (2) the Rashba-effect at the HM/FM interface. In this work, we study the SOT in a Pt/[Co,Ni] structure and compare its strength with the SOT in a Pt/Cu/[Co,Ni] structure where copper, a metal with a low spin-orbit interaction, is inserted between the Pt (HM) layer and the [Co,Ni] (FM) layer. We use an AC harmonic measurement technique to measure the strength of the SOT on the magnetic thin-film layer. Our measurements show that a significant SOT is exerted on the magnetization even after a 6 nm thick copper layer is inserted between the HM and the FM. Also, we find that this torque can be used to switch a patterned magnetic layer in the presence of an external magnetic field.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Residual stress within nanoscale metallic multilayer systems during thermal cycling
Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...
2015-09-21
Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less
NASA Astrophysics Data System (ADS)
Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg
2016-09-01
The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.
NASA Astrophysics Data System (ADS)
Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu
2018-02-01
The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
NASA Astrophysics Data System (ADS)
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-01
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer.
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-06
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Process for manufacturing multilayer capacitors
Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.
1996-01-02
The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Quantum critical scaling in the disordered itinerant ferromagnet UCo 1-xFe xGe
Huang, Kevin; Eley, Serena Merteen; Civale, Leonardo; ...
2016-11-30
The Belitz-Kirkpatrick-Vojta (BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions (QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the secondorder nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Lastly, our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo 1$-$xFe xGe as the first clear example that exhibits the associatedmore » critical exponents predicted by the BKV theory.« less
Robust half-metallicity of hexagonal SrNiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da
In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values, respectively. - Highlights: • Hexagonal SrNiO{sub 3} is studied using first-principles method for the first time. • It is predicted that SrNiO{sub 3} is a ferromagnetic half metal. • The half-metallic ferromagnetism survives upon a pressure up to 20 GPa.« less
First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys
NASA Astrophysics Data System (ADS)
Khatta, Swati; Tripathi, S. K.; Prakash, Satya
2017-09-01
The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.
Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...
2014-09-05
In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.
2014-09-01
The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
NASA Astrophysics Data System (ADS)
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr
2014-09-01
The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITOmore » multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.« less
NASA Astrophysics Data System (ADS)
Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep
2016-06-01
High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.
NASA Astrophysics Data System (ADS)
Yamada, S.; Sagayama, H.; Sugimoto, K.; Arima, T.
2018-03-01
We have succeeded in growing large high-quality single crystals of double-perovskite NdBaMn2O6 with c-axis aligned. Curie-Weiss paramagnetism and metallic conduction are observed above 290 K (TMI ). The magnetic susceptibility suddenly drops at TMI accompanied by a metal-insulator transition. Pervious studies using polycrystalline samples proposed that this material undergoes a ferromagnetic phase transition near 300K, and that the magnetic anomaly at TMI should be ascribed to layered antiferromagnetic phase transition. However, single-crystalline samples do not show any anomaly that indicates the ferromagnetic phase transition above TMI . We assign the onset of magnetic anisotropy at 235 K as antiferromagnetic transition temperature TN . Though the magnetization just above TMI shows the ferromagnetic-like magnetic-field dependence, the magnetization does not saturate under 70kOe at 300K. The magnetization behavior implies ferromagnetic fluctuation in the paramagnetic phase. The ferromagnetic fluctuation are also observed just below TMI . Because a metamagnetic transition is observed at a higher magnetic field, the ferromagnetic fluctuation competes with antiferromagnetic fluctuation in this temperature range.
Subsurface heaters with low sulfidation rates
John, Randy Carl; Vinegar, Harold J
2013-12-10
A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.
Amplification of the induced ferromagnetism in diluted magnetic semiconductor
NASA Astrophysics Data System (ADS)
Meilikhov, E. Z.; Farzetdinova, R. M.
2009-07-01
Magnetic properties of the planar structure consisting of a ferromagnetic metal and the diluted magnetic semiconductor are considered (by the example of the structure Fe/Ga(Mn)As, experimentally studied in [F. Maccherozzi, M. Sperl, G. Panaccione, J. Mina'r, S. Polesya, H. Ebert, U. Wurstbauer, M. Hochstrasser, G. Rossi, G. Woltersdorf, W. Wegscheider, C.H. Back, Phys. Rev. Lett. 101 (2008) 267201]). In the framework of the mean field theory, we demonstrate the presence of the significant amplification of the ferromagnetism, induced by the ferromagnetic metal in the near-interface semiconductor area, due to the indirect interaction of magnetic impurities. This results in the substantial expansion of the temperature range where the magnetization in the boundary semiconductor region exists, that might be important for possible practical applications.
NASA Astrophysics Data System (ADS)
Dolui, Kapildeb; Nikolić, Branislav K.
2017-12-01
Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Fontes, M.B.; Lopes, A.M.L.
2014-03-01
Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{submore » C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.« less
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
NASA Astrophysics Data System (ADS)
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
NASA Astrophysics Data System (ADS)
Wei, Huazhou; Fu, Shiwei
We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.
Cho, Jaehun; Kim, Nam-Hui; Lee, Sukmock; Kim, June-Seo; Lavrijsen, Reinoud; Solignac, Aurelie; Yin, Yuxiang; Han, Dong-Soo; van Hoof, Niels J. J.; Swagten, Henk J. M.; Koopmans, Bert; You, Chun-Yeol
2015-01-01
In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii–Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction. PMID:26154986
NASA Astrophysics Data System (ADS)
Yang, Liu; Wu, Menghao; Yao, Kailun
2018-05-01
We report the first-principles evidence of a series of two-dimensional triferroics (ferromagnetic + ferroelectric + ferroelastic), which can be obtained by doping transition-metal ions in group-IV monochalcogenide (SnS, SnSe, GeS, GeSe) monolayers, noting that a ferromagnetic Fe-doped SnS2 monolayer has recently been realized (Li B et al 2017 Nat. Commun. 8 1958). The ferroelectricity, ferroelasticity and ferromagnetism can be coupled and the magnetization direction may be switched upon ferroelectric/ferroelastic switching, rendering electrical writing + magnetic reading possible. They can be also two-dimensional half-metals or diluted magnetic semiconductors, where p/n channels or even multiferroic tunneling junctions can be designed by variation in doping and incorporated into a monolayer wafer.
Yang, Liu; Wu, Menghao; Yao, Kailun
2018-05-25
We report the first-principles evidence of a series of two-dimensional triferroics (ferromagnetic + ferroelectric + ferroelastic), which can be obtained by doping transition-metal ions in group-IV monochalcogenide (SnS, SnSe, GeS, GeSe) monolayers, noting that a ferromagnetic Fe-doped SnS 2 monolayer has recently been realized (Li B et al 2017 Nat. Commun. 8 1958). The ferroelectricity, ferroelasticity and ferromagnetism can be coupled and the magnetization direction may be switched upon ferroelectric/ferroelastic switching, rendering electrical writing + magnetic reading possible. They can be also two-dimensional half-metals or diluted magnetic semiconductors, where p/n channels or even multiferroic tunneling junctions can be designed by variation in doping and incorporated into a monolayer wafer.
PNR studies of spin-flop and spin-flip processes in magnetic multilayer, NiFeCo/Cu system
NASA Astrophysics Data System (ADS)
Ambaye, Hailemariam; Sato, Hideo; Mankey, Gary; Lauter, Valeria; Goyette, Richard
2010-03-01
Early GMR devices relied on antiferromagnetic interlayer coupling to work and it was shown that the interlayer coupling is in fact oscillatory, with both ferromagnetic and antiferromagnetic interlayer exchange depending on the thickness of the nonmagnetic layer [1,2]. Different competing interactions such as magnetic anisotropy and interlayer afm coupling occur in multilayer systems. Distinguishing the individual contributions is one of the major challenges in the study of multilayered systems. We used polarized neutron reflectivity with full polarization analysis to understand how the magnetization is distributed through the system and how deep the flipping process of the magnetization goes into the system. The easy axis field dependence of occurrence of spin-flop and spin-flip events in the system will be reported. [4pt] [1] S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993).[0pt] [2] D. Elefant, et al., Phys. Rev. B 77, 014426 (2008).
Magnon drag thermopower and thermomagnetic properties of single-crystal iron
NASA Astrophysics Data System (ADS)
Watzman, Sarah; Jin, Hyungyu; Heremans, Joseph
2015-03-01
Lucassen et al. demonstrate that magnon drag involves a spin-transfer mechanism closely related to the recently discovered spin-Seebeck effect. This talk will first present results of experiments mapping out the thermopower and magnetothermopower of single-crystal iron and prove that its thermopower is indeed dominated by magnon drag, as suggested by Blatt et al. in 1967. Measurements will then be presented on the magnetic field and temperature dependence of the full thermomagnetic tensor of iron's thermopower in the xxx, xyx, and xyz geometries (the first index gives the direction of the heat flux, the second the measured electric field, the third the applied magnetic field). Results of magneto-thermopower and Nernst coefficients will be reported for single-crystal samples oriented with x =[100]. The Nernst coefficients of elemental iron contain a contribution of a direct spin-transfer mechanism, which should be present in the absence of an interface between a ferromagnet and a normal metal. This mechanism could be put to use in high temperature ferromagnetic metallic thermoelectric alloys. This work is supported by the NSF GRFP under Grant No. DGE-0822215 and the ARO MURI under Grant No. W911NF-14-1-0016.
NASA Astrophysics Data System (ADS)
Cheng, Feng
The emerging Big Data era demands the rapidly increasing need for speed and capacity of storing and processing information. Standalone magnetic recording devices, such as hard disk drives (HDDs), have always been playing a central role in modern data storage and continuously advancing. Recognizing the growing capacity gap between the demand and production, industry has pushed the bit areal density in HDDs to 900 Giga-bit/square-inch, a remarkable 450-million-fold increase since the invention of the first hard disk drive in 1956. However, the further development of HDD capacity is facing a pressing challenge, the so-called superparamagnetic effect, that leads to the loss of information when a single bit becomes too small to preserve the magnetization. This requires new magnetic recording technologies that can write more stable magnetic bits into hard magnetic materials. Recent research has shown that it is possible to use ultrafast laser pulses to switch the magnetization in certain types of magnetic thin films. Surprisingly, such a process does not require an externally applied magnetic field that always exists in conventional HDDs. Furthermore, the optically induced magnetization switching is extremely fast, up to sub-picosecond (10 -12 s) level, while with traditional recording method the deterministic switching does not take place shorter than 20 ps. It's worth noting that the direction of magnetization is related to the helicity of the incident laser pulses. Namely, the right-handed polarized laser pulses will generate magnetization pointing in one direction while left-handed polarized laser pulses generate magnetization pointing in the other direction. This so-called helicity-dependent all-optical switching (HD-AOS) phenomenon can be potentially used in the next-generation of magnetic storage systems. In this thesis, I explore the HD-AOS phenomenon in hybrid metal-ferromagnet structures, which consist of gold and Co/Pt multilayers. The experiment results show that such CoPtAu hybrid structures have stable HD-AOS phenomenon over a wild range of repetition rates and peak powers. A macroscopic three-temperature model is developed to explain the experiment results. In order to reduce the magnetic bit size and power consumption to transform future magnetic data storage techniques, I further propose plasmonic-enhanced all-optical switching (PE-AOS) by utilizing the unique properties of the tight field confinement and strong local field enhancement that arise from the excitation of surface plasmons supported by judiciously designed metallic nanostructures. The preliminary results on PE-AOS are presented. Finally, I provide a discussion on the future work to explore the underline mechanism of the HD-AOS phenomenon in hybrid metal-ferromagnetic thin films. Different materials and plasmonic nanostructures are also proposed as further work.
The Kondo effect in ferromagnetic atomic contacts.
Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos
2009-04-30
Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.
Robust ferromagnetism in monolayer chromium nitride
Zhang, Shunhong; Li, Yawei; Zhao, Tianshan; Wang, Qian
2014-01-01
Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers. PMID:24912562
Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film.
Jiang, H H; Xiao, Y; Hu, C M; Guo, H; Xia, K
2018-06-22
Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.
NASA Astrophysics Data System (ADS)
Buettel, G.; Joppich, J.; Hartmann, U.
2017-12-01
Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.
Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film
NASA Astrophysics Data System (ADS)
Jiang, H. H.; Xiao, Y.; Hu, C. M.; Guo, H.; Xia, K.
2018-06-01
Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.
Corrosion protected, multi-layer fuel cell interface
Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.
1986-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.
Spin injection and detection via the anomalous spin Hall effect of a ferromagnetic metal
NASA Astrophysics Data System (ADS)
Das, K. S.; Schoemaker, W. Y.; van Wees, B. J.; Vera-Marun, I. J.
2017-12-01
We report a spin injection and detection mechanism via the anomalous Hall effect in a ferromagnetic metal. The anomalous spin Hall effect (ASHE) refers to the transverse spin current generated within the ferromagnet. We utilize the ASHE and its reciprocal effect to electrically inject and detect magnons in a magnetic insulator (yttrium iron garnet) in a nonlocal geometry. Our experiments reveal that permalloy has a comparable spin injection and detection efficiency to that of platinum, owing to the ASHE. We also demonstrate the tunability of the ASHE via the orientation of the permalloy magnetization, thus creating possibilities for spintronic applications.
Liu, M. F.; Du, Z. Z.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J. –M.
2015-01-01
The eg-orbital double-exchange mechanism as the core of physics of colossal magnetoresistance (CMR) manganites is well known, which usually covers up the role of super-exchange at the t2g-orbitals. The role of the double-exchange mechanism is maximized in La0.7Ca0.3MnO3, leading to the concurrent metal-insulator transition and ferromagnetic transition as well as CMR effect. In this work, by a set of synchronous Ru-substitution and Ca-substitution experiments on La0.7–yCa0.3+yMn1–yRuyO3, we demonstrate that the optimal ferromagnetism in La0.7Ca0.3MnO3 can be further enhanced. It is also found that the metal-insulator transition and magnetic transition can be separately modulated. By well-designed experimental schemes with which the Mn3+-Mn4+ double-exchange is damaged as weakly as possible, it is revealed that this ferromagnetism enhancement is attributed to the Mn-Ru t2g ferromagnetic super-exchange. The present work allows a platform on which the electro-transport and magnetism of rare-earth manganites can be controlled by means of the t2g-orbital physics of strongly correlated transition metal oxides. PMID:25909460
Spin Polarized Transport in Multilayer Structures with Complex Magnetic Configurations
NASA Astrophysics Data System (ADS)
Sahakyan, Avag; Poghosyan, Anahit; Movsesyan, Ruzan; Kocharian, Armen
The spin transport and spin polarization in a new class of multilayer structures are investigated for non-collinear and noncoplanar magnetic configurations containing repetitive magnetic layers. The magnetic configuration of the structure dictates the existence of certain degrees of freedom that determines magnetic transport and polarization properties. We consider magnetic structures in magnetic multilayers with canted spin configurations separated by non-magnetic quantum well so that the exchange interaction between the neighbor barriers can be ignored. Configurations of magnetizations in barriers include some structures consisting of two ''ferromagnetic'' or ''antiferromagnetic'' domains twisted relative to each other by a certain angle (angle noncollinearity). The similar system, formed from two noncollinear domains separated by canted ''magnetic defect'' is also considered. The above mentioned properties of these systems depend strongly on the type of magnetic configuration and variation of certain degrees of freedom. Simple theoretical approach with the transfer matrix method is carried out to understand and predict the magnetic properties of the multilayer systems. The work at California University Los Angeles was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.
Skin effect suppression for Cu/CoZrNb multilayered inductor
NASA Astrophysics Data System (ADS)
Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro
2012-04-01
The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-12-08
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2 V -1 s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na
2016-01-01
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059
Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...
2016-04-06
Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
Effects of confinement and electron transport on magnetic switching in single Co nanoparticles
Jiang, W.; Birk, F. T.; Davidović, D.
2013-01-01
This work reports the first study of current-driven magnetization noise in a single, nanometerscale, ferromagnetic (Co) particle, attached to normal metal leads by high-resistance tunneling junctions. As the tunnel current increases at low temperature, the magnetic switching field decreases, its probability distribution widens, while the temperature of the environment remains nearly constant. These observations demonstrate nonequilibrium magnetization noise. A classical model of the noise is provided, where the spin-orbit interaction plays a central role in driving magnetic tunneling transitions. PMID:23383370
NASA Astrophysics Data System (ADS)
Kim, Nam-Hui; Han, Dong-Soo; Jung, Jinyong; Park, Kwonjin; Swagten, Henk J. M.; Kim, June-Seo; You, Chun-Yeol
2017-10-01
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) and the interfacial perpendicular magnetic anisotropy (iPMA) between a heavy metal and ferromagnet are investigated by employing Brillouin light scattering. With increasing thickness of the heavy-metal (Pt) layer, the iDMI and iPMA energy densities are rapidly enhanced and they saturate for a Pt thickness of 2.4 nm. Since these two individual magnetic properties show the same Pt thickness dependence, this is evidence that the iDMI and iPMA at the interface between the heavy metal and ferromagnet, the physical origin of these phenomena, are effectively enhanced upon increasing the thickness of the heavy-metal layer.
NASA Astrophysics Data System (ADS)
Alhajdarwish, Mustafa Yousef
This thesis describes studies of two phenomena: Current-Induced Magnetization Switching (CIMS), and Current-Induced Generation of GHz Radiation. The CIMS part contains results of measurements of current-perpendicular-to-plane (CPP) magnetoresistance (MR) and CIMS behavior on Ferromagnetic/Nonmetal/Ferromagnetic (F1/N/F2) nanopillars. Judicious combinations of F1 and F2 metals with different bulk scattering asymmetries, and with F1/N and N/F2 interfaces having different interfacial scattering asymmetries, are shown to be able to controllably, and independently, 'invert' both the CPP-MR and the CIMS. In 'normal' CPP-MR, R(AP) > R(P), where R(AP) and R(P) are the nanopillar resistances for the anti-parallel (AP) and parallel (P) orientations of the Fi and F2 magnetic moments. In 'inverse' CPP-MR, R(P) > R(AP). In 'normal' CIMS, positive current switches the nanopillar from the P to the AP state. In 'inverse' CIMS, positive current switches the nanopillar from AP to P. All four possible combinations of CPP-MR and CIMS---(a) 'normal'-'normal', (b) 'normal'- 'inverse', 'inverse'-'normal', and (d) 'inverse'-'inverse' are shown and explained. These results rule out the self-Oersted field as the switching source, since the direction of that field is independent of the bulk or interfacial scattering asymmetries. Successful use of impurities to reverse the bulk scattering asymmetry shows the importance of scattering off of impurities within the bulk F1 and F2 metals---i.e. that the transport must be treated as 'diffusive' rather than 'ballistic'. The GHz studies consist of five parts: (1) designing a sample geometry that allows reliable measurements; (2) making nanopillar samples with this geometry; (3) constructing a system for measuring frequencies up to 12 GHz and measuring current-driven GHz radiation data with it; (4) showing 'scaling' behavior of GHz data with the critical fields and currents for nominally identical (but actually slightly different) samples, and justifying such scaling; and (5) designing and constructing a system for frequency domain studies up to 40 GHz and for time domain studies.
Jungfleisch, M. B.; Zhang, W.; Sklenar, J.; ...
2016-06-20
The Rashba-Edelstein effect stems from the interaction between the electron's spin and its momentum induced by spin-orbit interaction at an interface or a surface. It was shown that the inverse Rashba-Edelstein effect can be used to convert a spin current into a charge current. Here, we demonstrate the reverse process of a charge-to spin-current conversion at a Bi/Ag Rashba interface. We show that this interface-driven spin current can drive an adjacent ferromagnet to resonance. We employ a spin-torque ferromagnetic resonance excitation/detection scheme which was developed originally for a bulk spin-orbital effect, the spin Hall effect. In our experiment, the directmore » Rashba-Edelstein effect generates an oscillating spin current from an alternating charge current driving the magnetization precession in a neighboring permalloy (Py, Ni 80Fe 20) layer. As a result, electrical detection of the magnetization dynamics is achieved by a rectificationmechanism of the time dependent multilayer resistance arising from the anisotropic magnetoresistance.« less
NASA Astrophysics Data System (ADS)
Khort, Alexander; Podbolotov, Kirill; Serrano-García, Raquel; Gun'ko, Yurii K.
2017-09-01
In this paper, we report a new modified one-step combustion synthesis technique for production of Ni metal nanoparticles. The main unique feature of our approach is the use of microwave assisted foam preparation. Also, the effect of different types of fuels (urea, citric acid, glycine and hexamethylenetetramine) on the combustion process and characteristics of resultant solid products were investigated. It is observed that the combination of microwave assisted foam preparation and using of hexamethylenetetramine as a fuel allows producing pure ferromagnetic Ni metal nanoparticles with enhanced coercivity (78 Oe) and high value of saturation magnetization (52 emu/g) by one-step solution combustion synthesis under normal air atmosphere without any post-reduction processing.
Fabrication and Investigation of Indium Nitride Possessing Ferromagnetic Properties
NASA Astrophysics Data System (ADS)
Khludkov, S. S.; Prudaev, I. A.; Tolbanov, O. P.
2018-04-01
An overview of the scientific literature since 2000 on InN doping with impurities giving it ferromagnetic properties and on the magnetic properties of InN is presented. According to theoretical and experimental studies, InN doped with transition metals and rare earth elements possesses ferromagnetic properties at temperatures above room temperature and is a material promising for spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boujnah, M.; Zaari, H.; El Kenz, A., E-mail: elkenz@fsr.ac.ma
The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}.more » However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.« less
Spin Seebeck effect in a weak ferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arboleda, Juan David, E-mail: juan.arboledaj@udea.edu.co; Arnache Olmos, Oscar; Aguirre, Myriam Haydee
2016-06-06
We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.
Sun, Z.; Wang, Q.; Douglas, J. F.; ...
2013-11-07
In this paper, a half-metal is a material with conductive electrons of one spin orientation. This type of substance has been extensively searched for due to the fascinating physics as well as the potential applications for spintronics. Ferromagnetic manganites are considered to be good candidates, though there is no conclusive evidence for this notion. Here we show that the ferromagnet La 2–2xSr 1+2xMn 2O 7 (x = 0.38) possesses minority-spin states, challenging whether any of the manganites may be true half-metals. However, when electron transport properties are taken into account on the basis of the electronic band structure, we foundmore » that the La 2–2xSr 1+2xMn 2O 7 (x = 0.38) can essentially behave like a complete half metal.« less
Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte
NASA Astrophysics Data System (ADS)
Maizelis, Antonina; Bairachniy, Boris
2017-02-01
The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated. The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte. The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.
Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte.
Maizelis, Antonina; Bairachniy, Boris
2017-12-01
The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated.The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte.The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.
NASA Astrophysics Data System (ADS)
Guo, San-Dong
2016-08-01
Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.
Local oxidation using scanning probe microscope for fabricating magnetic nanostructures.
Takemura, Yasushi
2010-07-01
Local oxidation technique using atomic force microscope (AFM) was studied. The local oxidation of ferromagnetic metal thin films was successfully performed by AFM under both contact and dynamic force modes. Modification of magnetic and electrical properties of magnetic devices fabricated by the AFM oxidation was achieved. Capped oxide layers deposited on the ferromagnetic metal films are advantageous for stable oxidation due to hydrophilic surface of oxide. The oxide layer is also expected to prevent magnetic devices from degradation by oxidation of ferromagnetic metal. As for modification of magnetic property, the isolated region of CoFe layer formed by nanowires of CoFe-oxide exhibited peculiar characteristic attributed to the isolated magnetization property and pinning of domain wall during magnetization reversal. Temperature dependence of current-voltage characteristic of the planar-type tunnel junction consisting of NiFe/NiFe-oxide/NiFe indicated that the observed current was dominated by intrinsic tunneling current at the oxide barrier.
Excess current in ferromagnet-superconductor structures with fully polarized triplet component
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-05-01
We study the I -V characteristics of ST/n/N contacts, where ST is a BCS superconductor S with a built-in exchange field h , n represents a normal metal wire, and N a normal metal reservoir. The superconductor ST is separated from the n wire by a spin filter which allows the passage of electrons with a certain spin direction so that only fully polarized triplet Cooper pairs penetrate into the n wire. We show that both the subgap conductance σsg and the excess current Iexc, which occur in conventional S/n/N contacts due to Andreev reflection (AR), exist also in the considered system. In our case, they are caused by unconventional AR that is not accompanied by spin flip. The excess current Iexc exists only if h exceeds a certain magnitude hc. At h
NASA Astrophysics Data System (ADS)
Ji, Xiaochen; Shen, Chao; Wu, Yuanjun; Lu, Jun; Zhao, Jianhua; Zheng, Houzhi
2017-11-01
By biasing a ferromagnetic metal MnGa/10 nm-thick, n-type GaAs quantum well (QW) junction from negative to positive, it is found that its spin dynamics at zero magnetic field is composed of two components with opposite signs. One is excited by a circularly polarized pump beam. The other is induced by ferromagnetic proximity polarization (FPP), which is continuously enhanced as the bias increases towards the positive direction. The time-resolved Kerr rotations have also been measured at a magnetic field of 0.9 Tesla. A phase reversion of Larmor precession is observed as the bias passes through +0.5 V. Following simple quantum mechanics, we become aware of the fact that the transmission and reflection rates of electrons at the interface of MnGa/n-type GaAs QW are enhanced by a factor of ν , which is the attempting frequency of electron onto a ferromagnet/semiconductor interface. That gives a reasonable explanation why the FPP effect in our MnGa/n-type GaAs QW junction is greatly enhanced as biasing it into forward direction.
Metal-insulator transition, giant negative magnetoresistance, and ferromagnetism in LaCo1-yNiyO3
NASA Astrophysics Data System (ADS)
Hammer, D.; Wu, J.; Leighton, C.
2004-04-01
We have investigated the transport and magnetic properties of the perovskite LaCo1-yNiyO3, an alloy of LaCoO3 (a semiconductor that exhibits spin-state transitions) and LaNiO3 (a paramagnetic metal). The metal-insulator transition (MIT) was found to occur at y=0.40. On the insulating side of the transition the conductivity obeys Mott variable range hopping with a characteristic temperature (T0) that varies with y in a manner consistent with the predictions of the scaling theory of electron localization. On the metallic side the low temperature conductivity (down to 0.35 K) varies as T1/2 due to the effects of electron-electron interaction in the presence of disorder. The composition dependence of the low-temperature conductivity in the critical region fits the scaling theory of electron localization with a conductivity critical exponent close to unity, consistent with the scaling of T0 in the insulating phase. A large negative magnetoresistance is observed (up to 70% in 17 T) which increases monotonically with decreasing temperature and is smoothly decreased through the MIT. The magnetic properties show that doping LaCoO3 with Ni leads to a rapid destruction of the low spin-state for Co3+ ions, followed by the onset of distinct ferromagnetic interactions at higher Ni content. Similar to La1-xSrxCoO3, the system shows a smooth evolution from spin-glass to ferromagnetic ground states, which is interpreted in terms of the formation of ferromagnetic clusters. In contrast to La1-xSrxCoO3 further doping does not lead to a bulk ferromagnetlike state with a large TC, despite the clear existence of ferromagnetic interactions. We suggest that this is due to a limitation of the strength of the ferromagnetic interactions, which could be related to the fact that Ni rich clusters are not thermodynamically stable. The ferromagnetic clusters in LaCo1-yNiyO3 do not percolate with increasing y explaining the lack of a high-TC ferromagnetic state and the fact that the MIT is a simple Mott-Anderson transition rather than a percolation transition. Finally, in contrast to previous works (which focused on a single composition) we find no clear correlation between freezing temperature and the onset of magnetoresistance.
Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers
NASA Astrophysics Data System (ADS)
Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.
2018-03-01
Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.
Charge and spin transport in metal-graphene-metal vertical junctions
NASA Astrophysics Data System (ADS)
Cobas, Enrique; van't Erve, Olaf; Cheng, Shu-Fan; Culbertson, James; Jernigan, Glenn; Bussman, Konrad; Jonker, Berry
We observe negative magnetoresistance(MR) in metallic NiFe(111)|multi-layer graphene|Fe heterostructures consistent with minority spin filtering. The MR is -5 percent at room temperature and -12 percent at 10 K. The transport properties and temperature dependence are metallic. We further investigate the out-of-plane (c-axis) resistivity and magnetoresistance of multi-layer graphene between metal surfaces. We fabricate various metal-graphene-metal vertical heterostructures via chemical vapor deposition directly on lattice-matched crystalline metal films including NiFe(111) and Co(0002) and in-situ electron beam evaporation of NiFe, Co, Ni, Fe, Cu and Au.
Kim, Gwang-Sik; Kim, Seung-Hwan; Park, June; Han, Kyu Hyun; Kim, Jiyoung; Yu, Hyun-Yong
2018-06-06
The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS 2 ). For electrical contacts of multilayered MoS 2 , the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS 2 , which makes most MoS 2 -channel field-effect transistors (MoS 2 FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS 2 by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS). An ultrathin titanium dioxide (TiO 2 ) interlayer is inserted between the metal contact and the multilayered MoS 2 to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS 2 FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO 2 interlayers are introduced into the S/D contacts. Consequently, the pinning factor ( S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS 2 .
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1995-01-01
Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.
NASA Astrophysics Data System (ADS)
Luo, Wei; Xu, Ke; Xiang, Hongjun
2017-12-01
Recently, two-dimensional (2D) multiferroics have attracted a lot of attention due to their fascinating properties and promising applications. Although the ferroelectric (FE)-ferroelastic and ferromagnetic (FM)-ferroelastic multiferroics have been observed/predicted in 2D systems, 2D ferromagnetic-ferroelectric (FM-FE) multiferroics remain to be discovered since FM insulators are very rare. Here we proposed the concept of 2D hyperferroelectric metals, with which the insulating prerequisite for the FM-FE multiferroic is no longer required in 2D systems. We validate the concept of 2D hyperferroelectric metals and 2D metallic FM-FE multiferroics by performing first-principle calculations on 2D CrN and Cr B2 systems. The 2D buckled monolayer CrN is found to be a hyperferroelectic metal with the FM ground state, i.e., a 2D FM-FE multiferroic. With the global optimization approach, we find the 2D Cr B2 system has an antiferromagnetic (AFM)/planar ground state and a FM/FE metastable state, suggesting that it can be used to realize electric field control of magnetism. Our analysis demonstrates that the spin-phonon coupling and metal-metal interaction are two mechanisms for stabilizing the out-of-plane electric polarization in 2D systems. Our work not only extends the concept of FE to metallic systems, but also paves a way to search the long-sought high temperature FM-FE multiferroics.
Spin-valleytronics of silicene based nanodevices (SBNs)
NASA Astrophysics Data System (ADS)
Ahmed, Ibrahim Sayed; Asham, Mina Danial; Phillips, Adel Helmy
2018-06-01
The quantum spin and valley characteristics in normal silicene/ferromagnetic silicene/normal silicene junction are investigated under the effects of both electric field and the exchange field of the ferromagnetic silicene. The spin resolved conductance and valley resolved conductance are deduced by solving the Dirac equation. Results show resonant oscillations of both spin and valley conductance. These oscillations might be due to confined states of ferromagnetic silicene. The spin and valley polarizations are also computed. Their trends of figures show that they might be tuned and modulated by the electric field and the exchange field of the ferromagnetic silicene. The present investigated silicene nanodevice might be good for spin-valleytronics applications which are needed for quantum information processing and quantum logic circuits.
Ultrasonic Plate Waves for Fatigue Crack Detection in Multi-Layered Metallic Structures (Preprint)
2006-12-01
dispersion curves. Although the phase velocity of the guided waves in the glass plate were unaffected by the presence of a rough elastomer , the...attenuation of the transmitted A0 and S0 modes were found to be sensitive to the elastomer loading condition. The normal stiffness was found to more greatly...Dalton used FEM models to study the problem of coupling between the two layers and good agreement was found with experimental results for both adhesive
Stretchable electronics for wearable and high-current applications
NASA Astrophysics Data System (ADS)
Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.
2016-04-01
Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.
Possibility of a ferromagnetic and conducting metal-organic network
NASA Astrophysics Data System (ADS)
Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik
2018-05-01
In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.
NASA Astrophysics Data System (ADS)
Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng
2017-04-01
The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.
Spin filter and spin valve in ferromagnetic graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less
NASA Astrophysics Data System (ADS)
Eyni, Zahra; Mohammadpour, Hakimeh
2017-12-01
Current modulation and rectification is an important subject of electronics as well as spintronics. In this paper, an efficient rectifying mesoscopic device is introduced. The device is a two terminal device on the 2D plane of electron gas. The lateral contacts are half-metal ferromagnetic with antiparallel magnetizations and the central channel region is taken as ferromagnetic or normal in the presence of an applied magnetic field. The device functionality is based on the modification of spin-current by tuning the strength of the magnetic field or equivalently by the exchange coupling of the channel to the substrate. The result is that the (spin-) current depends on the polarity of the bias voltage. Converting an alternating bias voltage to direct current is the main achievement of this model device with an additional profit of rectified spin-current. We analyze the results in terms of the spin-dependent barrier in the channel. Detecting the strength of the magnetic field by spin polarization is also suggested.
NASA Astrophysics Data System (ADS)
Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.
2015-07-01
The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.
NASA Astrophysics Data System (ADS)
Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.
2018-05-01
In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.
Magnetic scattering effects in two-band superconductor: the ferromagnetic dopants in MgB₂.
Li, W X; Zeng, R; Poh, C K; Li, Y; Dou, S X
2010-04-07
This paper demonstrates the magnetic scattering effects on the electron-phonon interaction in two-band superconductors based on the transition-metal-doped MgB₂ to clarify the effects of magnetic dopants on multi-band superconductivity. The phonon properties of polycrystalline Mg(1-x)M(x)B₂ (M = Fe, Ni and Co), with x up to 0.05, were studied, with the investigation based on the normal state Raman spectra, especially the variation of the E(2g) mode. The magnetic scattering effect of Fe is much weaker than that of Mn in MgB₂, while it is stronger than that of Ni. The weak magnetic scattering effects are responsible for the superconducting behaviors of Mg(1 - x)Fe(x)B₂ and Mg(1 - x)Ni(x)B₂. Co shows almost no magnetic scattering effects on the superconductivity, while the depression of the critical temperature, T(c), in Mg(1 - x)Co(x)B₂ is attributed to the phonon behavior and is independent of the ferromagnetic nature of cobalt.
Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing
Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.
NASA Astrophysics Data System (ADS)
Hikino, S.; Yunoki, S.
2015-07-01
We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization
Guo, Yuqiao; Deng, Haitao; Sun, Xu; Li, Xiuling; Zhao, Jiyin; Wu, Junchi; Chu, Wangsheng; Zhang, Sijia; Pan, Haibin; Zheng, Xusheng; Wu, Xiaojun; Jin, Changqing; Wu, Changzheng; Xie, Yi
2017-08-01
2D transition-metal dichalcogenides (TMDCs) are currently the key to the development of nanoelectronics. However, TMDCs are predominantly nonmagnetic, greatly hindering the advancement of their spintronic applications. Here, an experimental realization of intrinsic magnetic ordering in a pristine TMDC lattice is reported, bringing a new class of ferromagnetic semiconductors among TMDCs. Through van der Waals (vdW) interaction engineering of 2D vanadium disulfide (VS 2 ), dual regulation of spin properties and bandgap brings about intrinsic ferromagnetism along with a small bandgap, unravelling the decisive role of vdW gaps in determining the electronic states in 2D VS 2 . An overall control of the electronic states of VS 2 is also demonstrated: bond-enlarging triggering a metal-to-semiconductor electronic transition and bond-compression inducing metallization in 2D VS 2 . The pristine VS 2 lattice thus provides a new platform for precise manipulation of both charge and spin degrees of freedom in 2D TMDCs availing spintronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films
Bawa, Ambika; Gupta, Anurag; Singh, Sandeep; Awana, V.P.S.; Sahoo, Sangeeta
2016-01-01
A model binary hybrid system composed of a randomly distributed rare-earth ferromagnetic (Gd) part embedded in an s-wave superconducting (Nb) matrix is being manufactured to study the interplay between competing superconducting and ferromagnetic order parameters. The normal metallic to superconducting phase transition appears to be very sensitive to the magnetic counterpart and the modulation of the superconducing properties follow closely to the Abrikosov-Gor’kov (AG) theory of magnetic impurity induced pair breaking mechanism. A critical concentration of Gd is obtained for the studied NbGd based composite films (CFs) above which superconductivity disappears. Besides, a magnetic ordering resembling the paramagnetic Meissner effect (PME) appears in DC magnetization measurements at temperatures close to the superconducting transition temperature. The positive magnetization related to the PME emerges upon doping Nb with Gd. The temperature dependent resistance measurements evolve in a similar fashion with the concentration of Gd as that with an external magnetic field and in both the cases, the transition curves accompany several intermediate features indicating the traces of magnetism originated either from Gd or from the external field. Finally, the signatures of magnetism appear evidently in the magnetization and transport measurements for the CFs with very low (<1 at.%) doping of Gd. PMID:26725684
Ultrafast giant magnetic cooling effect in ferromagnetic Co/Pt multilayers.
Shim, Je-Ho; Ali Syed, Akbar; Kim, Chul-Hoon; Lee, Kyung Min; Park, Seung-Young; Jeong, Jong-Ryul; Kim, Dong-Hyun; Eon Kim, Dong
2017-10-06
The magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nano-multilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.The forced alignment of magnetic moments leads to a large change in entropy, which can be used to reduce the temperature of a material. Here, the authors show that this magnetic cooling effect occurs on a femtosecond time scale in cobalt-platinum nano-multilayers.
Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures
NASA Astrophysics Data System (ADS)
Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru
2014-03-01
We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; ...
2015-03-05
The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less
Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke
2017-06-26
Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Anomalous Hall Effect and Non-Equilibrium Transport
NASA Astrophysics Data System (ADS)
Ye, Fei
1995-01-01
This thesis contains three relatively independent research areas. In the first part of this thesis, the anomalous Hall effect of amorphous, high-resistance, Fe films (2 -10 monolayers thick) is investigated as a function of temperature. We find a logarithmic temperature dependence of the anomalous Hall resistance similar to the Coulomb anomaly of the resistance but twice its magnitude. The measurements are in excellent agreement with a theoretical calculation and provide us with an independent confirmation of the influence of the enhanced Coulomb interaction in disordered electron systems on transport properties. In the second part of the thesis, the nonequilibrium transport properties of metallic microstructures are studied. An electron beam lithography technique is used in making small structures. The electron temperature and phonon temperature are calculated. It is confirmed that the electron temperatures obtained from both thermometers (weak localization and the Coulomb anomaly) are consistent. It is also found that the phonon temperature in the film is considerably higher than the substrate temperature in the experiments. In addition, the dimensionality of the phonon system in the film is discussed, as well as the phonon escape time. In the third part, the magnetic behavior of V on Au films is studied. Weak localization and the anomalous Hall effect are used to investigate the magnetic properties of sub-mono, mono-, and multilayers of Vanadium on the surface of an Au film. Dilute V atoms possess a strong magnetic moment. For a monolayer the magnetic scattering is reduced by a factor of about 40. This suggests a strongly reduced moment of V compared with the dilute V coverage. From the anomalous Hall effect, it is concluded that the magnetic structure is anti-ferromagnetic; the moment per V atom in multilayers progressively diminishes but is still finite for 16 atomic layers of V. In Appendix A, the nonequilibrium distribution of the phonon system in a metal film is evaluated. The phonon escape time and the effective phonon temperature are calculated.
Nonthermal Photocoercivity Effect in Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor
NASA Astrophysics Data System (ADS)
Kiessling, T.; Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.
2011-12-01
We report a photoinduced change of the coercive field of a low doped Ga1-xMnxAs ferromagnetic semiconductor under very low intensity illumination. This photocoercivity effect (PCE) is local and reversible, which enables the controlled formation of localized magnetization domains. The PCE arises from a light induced lowering of the domain wall pinning energy as confirmed by test experiments on high doped, fully metallic ferromagnetic Ga1-xMnxAs.
Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals
NASA Astrophysics Data System (ADS)
Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.
2018-04-01
We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.
NASA Astrophysics Data System (ADS)
Saikia, D.; Borah, J. P.
2018-03-01
Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5-8 nm. Fourier transform-infrared spectra reveal the characteristic Zn-S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by M- H curve exhibited up to the doping level 5%, achieving due to the indirect ` p- d' exchange interactions between the localized ` d' spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ` d' spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the p- d hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.
Kondo physics in non-local metallic spin transport devices.
O'Brien, L; Erickson, M J; Spivak, D; Ambaye, H; Goyette, R J; Lauter, V; Crowell, P A; Leighton, C
2014-05-29
The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.
Induced Ferromagnetism at BiFeO 3/YBa 2Cu 3O 7 Interfaces
Zhu, Jian-Xin; Wen, Xiao-Dong; Haraldsen, J. T.; ...
2014-06-20
We report that transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO 3/YBa 2Cu 3O 7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO 3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interactionmore » strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. Lastly, the emergence of interfacial ferromagnetism should have implications to electronic and transport properties.« less
Theory of Collective Spin-Wave Modes of Interacting Ferromagnetic Spheres
2004-09-29
Office (Durham) through Contract No. CS0001028. R. A. thanks also Proyecto Fondecyt Grant No. 7030063. *Present address: Universidad de Chile...Departamento de Fisica FCFM, Santiago, Chile. 1 For examples of experimental studies of the collective spin wave modes of superlattices and multilayers, see M...character to those shown above. In this case, there is no simple symmetry de - composition one canmake for the collective modes, so all branches appear
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
Spin transport across antiferromagnets induced by the spin Seebeck effect
NASA Astrophysics Data System (ADS)
Cramer, Joel; Ritzmann, Ulrike; Dong, Bo-Wen; Jaiswal, Samridh; Qiu, Zhiyong; Saitoh, Eiji; Nowak, Ulrich; Kläui, Mathias
2018-04-01
For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 |Ir20Mn80|Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.
Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2
NASA Astrophysics Data System (ADS)
Holder, M.; Dedkov, Yu. S.; Kade, A.; Rosner, H.; Schnelle, W.; Leithe-Jasper, A.; Weihrich, R.; Molodtsov, S. L.
2009-05-01
Surface electronic structure of polycrystalline and single-crystalline samples of the half-metallic ferromagnet Co3Sn2S2 was studied by means of angle-resolved and core-level photoemissions. The experiments were performed in temperature regimes both above and below a Curie temperature of 176.9 K. The spectroscopic results are compared to local-spin density approximation band-structure calculations for the bulk samples. It is found that the surface sensitive experimental data are generally reproduced by the bulk computation suggesting that the theoretically predicted half-metallic properties of Co3Sn2S2 are retained at the surface.
Yeo, S; Nakatsuji, S; Bianchi, A D; Schlottmann, P; Fisk, Z; Balicas, L; Stampe, P A; Kennedy, R J
2003-07-25
The phase diagram of FeSi(1-x)Ge(x), obtained from magnetic, thermal, and transport measurements on single crystals, shows a discontinuous transition from Kondo insulator to ferromagnetic metal with x at a critical concentration, x(c) approximately 0.25. The gap of the insulating phase strongly decreases with x. The specific heat gamma coefficient appears to track the density of states of a Kondo insulator. The phase diagram is consistent with an insulator-metal transition induced by a reduction of the hybridization with x in conjunction with disorder on the Si/Ge ligand site.
Stationary states of extended nonlinear Schrödinger equation with a source
NASA Astrophysics Data System (ADS)
Borich, M. A.; Smagin, V. V.; Tankeev, A. P.
2007-02-01
Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.
Temperature-dependent liquid metal flowrate control device
Carlson, Roger D.
1978-01-01
A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.
Magnetoresistance of layered structures with alternating in-plane and perpendicular anisotropies
NASA Astrophysics Data System (ADS)
Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Röll, K.
2004-11-01
The magnetic properties of (Ni83Fe17/Au/Co/Au) multilayers with different thickness of Au (0.5⩽tAu⩽3 nm) and Co (0.2⩽tCo⩽1.5 nm) layers were characterized. For tAu⩾1.5 nm independent magnetization reversal of Ni-Fe and Co was found. Increase of tCo for (Ni83Fe17-2 nm/Au-3 nm/Co-tCo/Au-3 nm)15 multilayers results in a sequence of transformations in the magnetic properties due to changes in Co microstructure: from superparamagnetic to ferromagnetic clusters at tCo≈0.3 nm, from discontinuous to continuous layers at tCo≈0.6 nm and from perpendicular to in-plane anisotropy at tCo≈1.2 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com
Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic interactions with cluster and spin-glass type growth. - Highlights: • Lattice defects/vacancies attributed high T{sub c} –ferromagnetism. • Transition metal and rare earth ions deform the wurtzite ZnO lattice to induce defects. • Oxygen vacancies are more favorable than Zn with Ni, Cu, Ce into ZnO. • Defects assisted long-range ferromagnetism of doped ZnO include cluster and spin-glass growth.« less
Ni substitution effect on magnetic and transport properties in metallic ferromagnet Co3Sn2S2
NASA Astrophysics Data System (ADS)
Kubodera, Takashi; Okabe, Hirotaka; Kamihara, Yoichi; Matoba, Masanori
2006-05-01
We investigated the magnetic and transport properties of polycrystalline (Co1-xNix)3Sn2S2(0⩽x⩽1) to ascertain the magnetism of the new metallic ferromagnet Co3Sn2S2. In Co3Sn2S2 magnetization does not saturate up to 5.5 T at 10 K, and the estimated saturation moment ( ps) is small ( ≅0.2μB per Co atom). In ( Co1-xNix)3Sn2S2, the electrical resistivity shows metallic behavior without a hump but has a kink at TC. The TC and magnetic susceptibility gradually decrease with increasing x, and there is no antiferromagnetic phase throughout the full range of composition. These results indicate that Co3Sn2S2 is a weak itinerant ferromagnet; while, the same order of the Rhodes-Wohlfarth pc/ps value as CoS2 suggests the existence of a localized moment.
Magnetic Imaging: a New Tool for UK National Nuclear Security
NASA Astrophysics Data System (ADS)
Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio
2015-01-01
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.
Magnetic Imaging: a New Tool for UK National Nuclear Security
Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio
2015-01-01
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
NASA Astrophysics Data System (ADS)
Kastrinakis, George
2018-05-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
Magnetic imaging: a new tool for UK national nuclear security.
Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio
2015-01-22
Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.
High-Performance THz Emitters Based on Ferromagnetic/Nonmagnetic Heterostructures.
Wu, Yang; Elyasi, Mehrdad; Qiu, Xuepeng; Chen, Mengji; Liu, Yang; Ke, Lin; Yang, Hyunsoo
2017-01-01
A low-cost, intense, broadband, noise resistive, magnetic field controllable, flexible, and low power driven THz emitter based on thin nonmagnetic/ferromagnetic metallic heterostructures is demonstrated. The THz emission origins from the inverse spin Hall Effect. The proposed devices are not only promising for a wide range of THz equipment, but also offer an alternative approach to characterize the spin-orbit interaction in nonmagnetic/ferromagnetic bilayers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ba 0.4 Rb 0.6 Mn 2 As 2 : A prototype half-metallic ferromagnet
Pandey, Abhishek; Johnston, D. C.
2015-11-02
Half-metallic ferromagnetism (FM) in single-crystal Ba 0.39(1)Rb 0.61(1)Mn 2As 2 below its Curie temperature T C = 103(2) K is reported. The magnetization M versus applied magnetic field H isotherm data at 1.8 K show complete polarization of the itinerant doped-hole magnetic moments that are introduced by substituting Rb for Ba. Here, the material exhibits extremely soft FM, with unobservably small remanent magnetization and coercive field. Surprisingly, and contrary to typical itinerant FMs, the M(H) data follow the Arrott-plot paradigm that is based on a mean-field theory of local-moment FMs. The in-plane electrical resistivity data are fitted well by anmore » activated-T 2 expression for T ≤ T C, whereas the data sharply deviate from this model for T > T C. Hence the activated-T 2 resistivity model is an excellent diagnostic for determining the onset of half-metallic FM in this compound, which in turn demonstrates the presence of a strong correlation between the electronic transport and magnetic properties of the material. Together with previous data on 40% hole-doped Ba 0.6K 0.4Mn 2As 2, these measurements establish 61%-doped Ba 0.39Rb 0.61Mn 2As 2 as a prototype for a class of half-metallic ferromagnets in which all the itinerant carriers in the material are ferromagnetic.« less
Structural morphology study of Cd2+ induced Langmuir Blodgett multilayer films of arachidic acid
NASA Astrophysics Data System (ADS)
Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.
2013-04-01
The organization and headgroup co-ordination of Cadmium Arachidate (CdAA) molecule in Langmuir-Blodgett (LB) multilayer films deposited on hydrophilic Glass (SiO2) and Silicon (100) substrate at normal subphase pH (6.8) are studied. X-ray diffraction (XRD) and X-ray reflectivity (XRR) study reveals ordered layer by layer organization with uniform packing of CdAA molecules, and with a small tilt angle of alkyl chain of CdAA molecule equal to 6.8° ± 1.75°. Electron density profiles (EDPs) shows that the coverage of films remains almost constant with increase in bilayer thickness which indicate very little presence of pinhole defects. AFM study for 25 ML shows that coverage of the film remain intact upto 22nd ML and then decreases sharply due to presence of pinhole defects. Fourier transform infrared spectroscopy (FTIR) study is also consistent with XRD and XRR study of ordered deposition of CdAA molecule. FTIR and X-ray photoelectron spectroscopy (XPS) study indicates the formation of unidentate bridging metal-carboxylate coordination type headgroups consistent with one cadmium metal ion between two carboxylate (COO) groups in each headgroup structure.
Stavenga, Doekele G.; Wilts, Bodo D.; Leertouwer, Hein L.; Hariyama, Takahiko
2011-01-01
The elytra of the Japanese jewel beetle Chrysochroa fulgidissima are metallic green with purple stripes. Scanning electron microscopy and atomic force microscopy demonstrated that the elytral surface is approximately flat. The accordingly specular green and purple areas have, with normal illumination, 100–150 nm broad reflectance bands, peaking at about 530 and 700 nm. The bands shift progressively towards shorter wavelengths with increasing oblique illumination, and the reflection then becomes highly polarized. Transmission electron microscopy revealed that the epicuticle of the green and purple areas consists of stacks of 16 and 12 layers, respectively. Assuming gradient refractive index values of the layers between 1.6 and 1.7 and applying the classical multilayer theory allowed modelling of the measured polarization- and angle-dependent reflectance spectra. The extreme polarized iridescence exhibited by the elytra of the jewel beetle may have a function in intraspecific recognition. PMID:21282175
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
FEM-based strain analysis study for multilayer sheet forming process
NASA Astrophysics Data System (ADS)
Zhang, Rongjing; Lang, Lihui; Zafar, Rizwan
2015-12-01
Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.
NASA Astrophysics Data System (ADS)
Chandra, Hirak Kumar; Guo, Guang-Yu
2017-04-01
Extraordinary electronic phases can form in artificial oxide heterostructures, which will provide a fertile ground for new physics and also give rise to novel device functions. Based on a systematic first-principles density functional theory study of the magnetic and electronic properties of the (111) superlattices (ABO3) 2/(AB'O3)10 of 4 d and 5 d transition metal perovskite (B = Ru, Rh, Ag, Re, Os, Ir, Au; AB'O3=LaAlO3 , SrTiO3) , we demonstrate that due to quantum confinement, bilayers (LaBO3)2 (B = Ru, Re, Os) and (SrBO3)2 (B = Rh, Os, Ir) are ferromagnetic with ordering temperatures up to room temperature. In particular, bilayer (LaOsO3)2 is an exotic spin-polarized quantum anomalous Hall insulator, while the other ferromagnetic bilayers are metallic with large Hall conductances comparable to the conductance quantum. Furthermore, bilayers (LaRuO3)2 and (SrRhO3)2 are half metallic, while the bilayer (SrIrO3)2 exhibits a peculiar colossal magnetic anisotropy. Our findings thus show that 4 d and 5 d metal perovskite (111) bilayers are a class of quasi-two-dimensional materials for exploring exotic quantum phases and also for advanced applications such as low-power nanoelectronics and oxide spintronics.
Design of a normal incidence multilayer imaging x-ray microscope.
Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W
1989-01-01
Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.
Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N
2012-06-01
The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
Liu, Xiaojie; Wang, Cai-Zhuang
2017-08-07
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai-Zhuang
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... an antidumping duty new shipper review of multilayered wood flooring (``MLWF'') from the People's... of subject merchandise at less than normal value. \\1\\ See Multilayered Wood Flooring From the People...
NASA Astrophysics Data System (ADS)
Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.
In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.
2014-01-01
ferromagnetic films with perpendicular anisotropy were examined, and finally, the magnetoresistance and Hall effect in Manganese- doped Germanium was...interest in ferromagnetic semiconductors. Germanium doped with Mn is particularly interesting Distribution A: Approved for public release...unavoidable, and doped films are strongly inhomogeneous with GexMny, metallic precipitates coexisting with Mn-rich regions and Mn dilute matrix
Ferromagnetic ordering and halfmetallic state in a shandite: Co3Sn2S2
NASA Astrophysics Data System (ADS)
Rosner, Helge; Weihrich, Richard; Schnelle, Walter
2005-03-01
The recent rapid development in spintronics challenges the search for new magnetic half metals with high Curie temperatures as well as an improved understanding of the underlying microscopic properties. Here, we present a joint experimental and theoretical study of the recently reinvestigated shandite Co3Sn2S2 [1]. From magnetic susceptibility, specific heat and resistivity measurements on powder samples we find a phase transition to a ferromagnetic metallic state at 177 K with a saturation moment of 0.87 μB/f.u. Full potential electronic structure calculations within the local spin density approximation result in a halfmetallic ferromagnetic groundstate with a moment of 1 μB/f.u. and a tiny gap in the minority spin channel. The calculated structure optimization and structure variations show that the size of the gap is rather sensitive to the lattice geometry. Possibilities to stabilize the halfmetallic ferromagnetic behaviour by various substitutions have been studied theoretically and will be discussed in detail.[1]R. Weihrich et. al. Z. Anorg. Allg. Chem. 630, 1767, (2004)
Tuning Magnetic Properties of Soft Ferromagnetic Thin Films for High Frequency Applications
NASA Astrophysics Data System (ADS)
Rementer, Colin Richard
This work focuses on the design, synthesis, characterization and integration of soft ferromagnetic multilayer structures for their applications in high frequency applications. Presently, the form factor of current telecommunication devices, i.e., antenna, is fundamentally limited by the wavelength it is designed to transmit or receive. In order to adapt to new technologies, a method for subverting this paradigm has been developed by use of magnetoelectric, strain-coupled multiferroic systems, which requires optimized ferroic materials, especially ferromagnetic thin films. Two approaches were considered to achieve this goal, doping (boron) and multilayer (NiFe) heterostructures, where FeGa was selected as the reference phase for both approaches. Doping magnetic materials with boron has been shown to enhance the magnetic softness while maintaining magnetostriction. Multilayer heterostructures offer the possibility of tuning magnetic responses by taking advantage of materials with complementary magnetic properties. Iron-gallium-boron (FeGaB) was synthesized via co-sputtering of Fe 75Ga25 and boron. The addition of boron to Fe75Ga 25 reduced the magnetocrystalline anisotropy energy, enhancing the high frequency properties. Magnetometry studies showed that the coercivity was reduced by 70% with 15% boron (at. %) while maintaining 90% of the magnetization of FeGa. Fixed frequency FMR studies showed that the addition of boron reduced the linewidth by up to 70% to a value of 210 Oe. Electrically poled hysteresis measurements showed that the film has a saturation magnetostriction of 50 microepsilon. FeGaB's properties were shown to be tunable and can be optimized by controlling the boron concentration within 11-15% but this approach did not yield the desired FMR linewidth. Multilayers of sputtered Fe85Ga15/Ni81Fe 19, or FeGa/NiFe, were examined to tailor their magnetic softness, loss at microwave frequencies, permeability, and magnetoelasticity, leveraging the magnetic softness and low loss of NiFe, and the high saturation magnetostriction (lambdas) and magnetization (MS) of FeGa. A systematic change was observed as the number of bilayers or interfaces increases: a seven-bilayer structure results in an 88% reduction in coercivity and a 55% reduction in FMR linewidth at X-band compared to a single phase FeGa film, while maintaining a high relative permeability of 700. The magnetostriction was slightly reduced by the addition of NiFe but still maintained up to 70% that of single phase FeGa. Analyses of the domain size revealed that this effect is a function of the layer thicknesses: thinner layers have larger in-plane domains, leading to lower coercivity. The depth-dependent composition and magnetization of these heterostructures as a function of magnetic and electric fields were assessed via polarized neutron reflectometry and the rotation of magnetization of the individual layers with applied strain was found to be deterministic. The tunability of these magnetic heterostructures makes them suitable candidates for RF magnetic applications requiring strong magnetoelastic coupling and low loss. Device functionality was assessed by integrating multilayer samples into two different antenna architectures. A surface acoustic wave (SAW) structure was used to determine the magnitude of absorption of acoustic wave energy from piezoelectric LiNbO3. Samples with the optimized 5 BL structure, 5 BL(SAW1) (50 nm) and 5 BL(SAW2) (100 nm), were fabricated and evaluated and absorbed 17 % of the acoustic energy from the strain wave. A bulk acoustic wave (BAW) structure was used to study how the material could convert the energy from an electromagnetic wave into an acoustic wave. A thick 12 BL(BAW) sample was integrated into a device and showed a low FMR linewidth and high permeability. This work provided the proof of concept that both doping and interfacial engineering are viabl approaches for tuning the magnetic properties of FeGa, and could be extended to other magnetoelastic systems. Multilayer magnetic materials are a promising alternative to single phase ferromagnetic materials as well as doped material systems for resonator or sensor applications. The low coercivity, high permeability, and high strain sensitivity of these samples make them promising candidates for high frequency, strain-coupled multiferroic systems.
Fabrication of hybrid molecular devices using multi-layer graphene break junctions.
Island, J O; Holovchenko, A; Koole, M; Alkemade, P F A; Menelaou, M; Aliaga-Alcalde, N; Burzurí, E; van der Zant, H S J
2014-11-26
We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.
Fabrication of hybrid molecular devices using multi-layer graphene break junctions
NASA Astrophysics Data System (ADS)
Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.
2014-11-01
We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.
Investigation of half-metallic ferromagnetism in Heusler compounds Co2VZ (Z = Ga, Ge, As, Se)
NASA Astrophysics Data System (ADS)
Han, Jiajia; Wang, Zhengwei; Xu, Weiwei; Wang, Cuiping; Liu, Xingjun
2017-11-01
The electronic structures and magnetic properties of 3d transition metal-based full Heusler compounds Co2VZ (Z = Ga, Ge, As, Se) are investigated using the projector augmented wave (PAW) pseudopotential method. By considering the strong localization of Co 3d-states and V 3d-states at the Fermi level, these Co2VZ (Z = Ga, Ge, As, Se) compounds were treated in the framework of the generalized gradient approximation (GGA)+U method, and the results from the conventional GGA method are presented for comparison. The results that were obtained from the density of states with the GGA+U and GGA methods show that the Co2VGa compound is a half-metallic ferromagnet. For the Co2VGe and Co2VAs compounds, the GGA+U method predicts that these two compounds are half-metallic ferromagnetic by shifting the Fermi level to a lower value with respect to the gap in the minority states, when compared to the conventional GGA method. The energy gaps are determined to be 0.283 eV and 0.425 eV, respectively. However, these results show that the density of states of the Co2VSe compound has a metallic character, although the 3d states were corrected when using the GGA+U method. We found that the characteristic of half-metallic ferromagnetism is attributed to the interaction between the V 3d-states other than Co 3d-states. The calculated total magnetic moments are 2.046 μB, 3.054 μB and 4.012 μB respectively for the Co2VZ (Z = Ga, Ge, As) compounds with the GGA+U method. The relationship between total spin magnetic moment per formula unit and total number of valence electrons of these Heusler compounds is in agreement with the Slater-Pauling rule.
Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure
NASA Astrophysics Data System (ADS)
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen
2017-07-01
Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.
Massive Dirac fermions in a ferromagnetic kagome metal
NASA Astrophysics Data System (ADS)
Ye, Linda; Kang, Mingu; Liu, Junwei; von Cube, Felix; Wicker, Christina R.; Suzuki, Takehito; Jozwiak, Chris; Bostwick, Aaron; Rotenberg, Eli; Bell, David C.; Fu, Liang; Comin, Riccardo; Checkelsky, Joseph G.
2018-03-01
The kagome lattice is a two-dimensional network of corner-sharing triangles that is known to host exotic quantum magnetic states. Theoretical work has predicted that kagome lattices may also host Dirac electronic states that could lead to topological and Chern insulating phases, but these states have so far not been detected in experiments. Here we study the d-electron kagome metal Fe3Sn2, which is designed to support bulk massive Dirac fermions in the presence of ferromagnetic order. We observe a temperature-independent intrinsic anomalous Hall conductivity that persists above room temperature, which is suggestive of prominent Berry curvature from the time-reversal-symmetry-breaking electronic bands of the kagome plane. Using angle-resolved photoemission spectroscopy, we observe a pair of quasi-two-dimensional Dirac cones near the Fermi level with a mass gap of 30 millielectronvolts, which correspond to massive Dirac fermions that generate Berry-curvature-induced Hall conductivity. We show that this behaviour is a consequence of the underlying symmetry properties of the bilayer kagome lattice in the ferromagnetic state and the atomic spin–orbit coupling. This work provides evidence for a ferromagnetic kagome metal and an example of emergent topological electronic properties in a correlated electron system. Our results provide insight into the recent discoveries of exotic electronic behaviour in kagome-lattice antiferromagnets and may enable lattice-model realizations of fractional topological quantum states.
Low temperature transport anomaly in Cr substituted (La0.67Sr0.33)MnO3 manganites
NASA Astrophysics Data System (ADS)
Tank, Tejas M.; Shelke, Vilas; Das, Sarmistha; Rana, D. S.; Thaker, C. M.; Samatham, S. S.; Ganesan, V.; Sanyal, S. P.
2017-06-01
The structural, electrical, and magnetic properties of La0.67Sr0.33Mn1-xCrxO3 (0 ≤ x ≤ 0.10) manganites have been studied by substitution of antiferromagnetic trivalent Cr ion at Mn-site. Systematic efforts have been carried out to understand the electrical resistivity behavior in the ferromagnetic metallic and paramagnetic semi-conducting phases of Cr substituted La0.67Sr0.33Mn1-xCrxO3 manganites. Polycrystalline samples show a resistivity minimum at a temperature (Tmin) of <40 K in the ferromagnetic metallic phase. Tmin shifts to higher temperatures on application of magnetic fields. The appearance of this resistivity minimum was analyzed by fittings the data according to the model that considers e-e scattering caused by enhanced Coulombic interactions. The electrical resistivity data has been best fitted in the metallic and semiconducting regime using various models. Present results suggest that intrinsic magnetic inhomogeneity like Cr3+ ions in these strongly electron-correlated manganite systems is originating due to the existence of the ferromagnetic interactions.
Unidirectional Anisotropy in Manganite Based Ferromagnetic-Antiferromagnetic Multilayers
2000-01-01
under ductile or tensile strain that results in changes of magnetic anisotropy and MR properties [23-27]. In what follows we report on the magnetic ...Simultaneous Structural, Magnetic , and Electronic Transitions in Lai.- CaMnO3 with x=0.25 and x=0.50, Phys. Rev. Lett. 75, 4488-4491 3. Yu Lu, U, X.W...Gang Xiao, Lecoeur, P., and, McGuire, T.R., (1996) Perovskite oxide superlattices: magnetotransport and magnetic properties Phys. Rev. B54, R3742-3745
New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder
NASA Astrophysics Data System (ADS)
Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro
2018-06-01
The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.
In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers
Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...
2016-04-09
By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less
Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.
Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M
2009-07-01
We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations.
X-ray resonant magnetic scattering ellipsometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z.; Randall, K.J.; Gluskin, E.
1996-09-01
It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less
Spin wave propagation spectra in Octonacci one-dimensional magnonic quasicrystals
NASA Astrophysics Data System (ADS)
Valeriano, Analine P.; Costa, Carlos H.; Bezerra, Claudionor G.
2018-06-01
In this paper, we study spin wave propagation in quasiperiodic magnonic superlattices that follow the so-called Octonacci quasiperiodic sequence, where the N-th stage can be obtained through the recurrence rule SN =SN-1SN-2SN-1 , for N ⩾ 3 , and starting with S1 = A and S2 = B . The multilayered magnonic nanostructure is composed of two simple cubic ferromagnetic materials, labeled A and B, which interact through bilinear and biquadratic exchange couplings at their interfaces. The ferromagnetic materials are described by the Heisenberg model, and a transfer matrix treatment is employed, with the calculations performed for the exchange-dominated regime, taking the random phase approximation (RPA) into account. The obtained numerical results show the effects of both (i) the Octonacci quasiperiodic sequence and (ii) the biquadratic exchange coupling on the band structure and transmission spectra of spin waves. Comparisons are also performed with the spectra found in other periodic and quasiperiodic structures.
Critical current of SF-NFS Josephson junctions
NASA Astrophysics Data System (ADS)
Soloviev, I. I.; Klenov, N. V.; Bakursky, S. V.; Kupriyanov, M. Yu.; Golubov, A. A.
2015-02-01
The properties of SF-NFS sandwiches composed of two superconducting (S) electrodes separated by a weak-link region formed by a normal-metal (N) step with the thickness d N situated on the top of a lower S electrode and a ferromagnetic (F) layer with the thickness d F deposited onto the step and the remaining free surface of the lower electrode have been studied theoretically. It has been shown in the approximation of linearized semiclassical Usadel equations that the two-dimensional problem in the weak-link region can be reduced to two one-dimensional problems in its SFS and SNFS segments. The spatial distributions of the critical current density J c in the segments as a function of the layer thickness d F have been calculated. The dependences of the critical current I c of the structure on the magnitude of the magnetization vector M of the ferromagnetic layer have been found for various directions of the magnetization within the junction plane. It has been shown that these dependences are affected considerably by both the orientation of M and the spatial distribution of J c.
Strain induced ferromagnetism and large magnetoresistance of epitaxial La1.5Sr0.5CoMnO6 thin films
NASA Astrophysics Data System (ADS)
Krishna Murthy, J.; Jyotsna, G.; N, Nileena; Anil Kumar, P. S.
2017-08-01
In this study, the structural, magnetic, and magneto-transport properties of La1.5Sr0.5CoMnO6 (LSCMO) thin films deposited on a SrTiO3 (001) substrate were investigated. A normal θ/2θ x-ray diffraction, rocking curve, ϕ-scan, and reciprocal space mapping data showed that prepared LSCMO thin films are single phase and highly strained with epitaxial nature. Temperature vs. magnetization of LSCMO films exhibits strain-induced ferromagnetic ordering with TC ˜ 165 K. In contrast to the bulk samples, there was no exchange bias and canted type antiferromagnetic and spin glass behavior in films having thickness (t) ≤ 26 nm. Temperature dependent resistivity data were explained using Schnakenberg's model and the polaron hopping conduction process. The slope change in resistivity and magnetoresistance maximum (˜65%) around TC indicates the existence of a weak double exchange mechanism between the mixed valence states of transition metal ions. Suppression of spin dependent scattering with the magnetic field is attributed for the large negative magnetoresistance in LSCMO films.
Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations
NASA Astrophysics Data System (ADS)
Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.
2018-04-01
The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.
SmNiO3/NdNiO3 thin film multilayers
NASA Astrophysics Data System (ADS)
Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.
2011-06-01
Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.
CPP magnetoresistance of magnetic multilayers: A critical review
NASA Astrophysics Data System (ADS)
Bass, Jack
2016-06-01
We present a comprehensive, critical review of data and analysis of Giant (G) Magnetoresistance (MR) with Current-flow Perpendicular-to-the-layer-Planes (CPP-MR) of magnetic multilayers [F/N]n (n=number of repeats) composed of alternating nanoscale layers of ferromagnetic (F) and non-magnetic (N) metals, or of spin-valves that allow control of anti-parallel (AP) and parallel (P) orientations of the magnetic moments of adjacent F-layers. GMR, a large change in resistance when an applied magnetic field changes the moment ordering of adjacent F-layers from AP to P, was discovered in 1988 in the geometry with Current flow in the layer-Planes (CIP). The CPP-MR has two advantages over the CIP-MR: (1) relatively simple two-current series-resistor (2CSR) and more general Valet-Fert (VF) models allow more direct access to the underlying physics; and (2) it is usually larger, which should be advantageous for devices. When the first CPP-MR data were published in 1991, it was not clear whether electronic transport in GMR multilayers is completely diffusive or at least partly ballistic. It was not known whether the properties of layers and interfaces would vary with layer thickness or number. It was not known whether the CPP-MR would be dominated by scattering within the F-metals or at the F/N interfaces. Nothing was known about: (1) spin-flipping within F-metals, characterized by a spin-diffusion length, lsfF; (2) interface specific resistances (AR=area A times resistance R) for N1/N2 interfaces; (3) interface specific resistances and interface spin-dependent scattering asymmetry at F/N and F1/F2 interfaces; and (4) spin-flipping at F/N, F1/F2 and N1/N2 interfaces. Knowledge of spin-dependent scattering asymmetries in F-metals and F-alloys, and of spin-flipping in N-metals and N-alloys, was limited. Since 1991, CPP-MR measurements have quantified the scattering and spin-flipping parameters that determine GMR for a wide range of F- and N-metals and alloys and of F/N pairs. This review is designed to provide a history of how knowledge of CPP-MR parameters grew, to give credit for discoveries, to explain how combining theory and experiment has enabled extraction of quantitative information about these parameters, but also to make clear that progress was not always direct and to point out where disagreements still exist. To limit its length, the review considers only collinear orientations of the moments of adjacent F-layers. To aid readers looking for specific information, we have provided an extensive table of contents and a detailed summary. Together, these should help locate over 100 figures plus 17 tables that collect values of individual parameters. In 1997, CIP-MR replaced anisotropic MR (AMR) as the sensor in read heads of computer hard drives. In principle, the usually larger CPP-MR was a contender for the next generation read head sensor. But in 2003, CIP-MR was replaced by the even larger Tunneling MR (TMR), which has remained the read-head sensor ever since. However, as memory bits shrink to where the relatively large specific resistance AR of TMR gives too much noise and too large an R to impedance match as a read-head sensor, the door is again opened for CPP-MR. We will review progress in finding techniques and F-alloys and F/N pairs to enhance the CPP-MR, and will describe its present capabilities.
Tsuyama, T; Chakraverty, S; Macke, S; Pontius, N; Schüßler-Langeheine, C; Hwang, H Y; Tokura, Y; Wadati, H
2016-06-24
We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150 ps) to fast (<70 ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.
Surfactant-assisted atomic-level engineering of spin valves
NASA Astrophysics Data System (ADS)
Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.
2002-03-01
Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.
Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi
2015-12-02
Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.
From nanoelectronics to nano-spintronics.
Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming
2011-01-01
Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
NASA Astrophysics Data System (ADS)
Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; Mitchell, J. F.
2009-07-01
We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ˜120K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers
NASA Astrophysics Data System (ADS)
Czeschka, F. D.; Dreher, L.; Brandt, M. S.; Weiler, M.; Althammer, M.; Imort, I.-M.; Reiss, G.; Thomas, A.; Schoch, W.; Limmer, W.; Huebl, H.; Gross, R.; Goennenwein, S. T. B.
2011-07-01
We systematically measured the dc voltage VISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, VISH invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.
NASA Astrophysics Data System (ADS)
Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2016-10-01
We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.
Varga, T; Kumar, A; Vlahos, E; Denev, S; Park, M; Hong, S; Sanehira, T; Wang, Y; Fennie, C J; Streiffer, S K; Ke, X; Schiffer, P; Gopalan, V; Mitchell, J F
2009-07-24
We report the magnetic and electrical characteristics of polycrystalline FeTiO_{3} synthesized at high pressure that is isostructural with acentric LiNbO_{3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below approximately 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
Magneto-optical properties of PdCo based multilayered films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Tsunashima, S.; Iwata, S.
1989-09-01
Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
First-principles study of ZnSnAs2-based dilute magnetic semiconductors
NASA Astrophysics Data System (ADS)
Kizaki, Hidetoshi; Morikawa, Yoshitada
2018-02-01
The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.
Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites
Araujo, C. Moyses; Nagar, Sandeep; Ramzan, Muhammad; Shukla, R.; Jayakumar, O. D.; Tyagi, A. K.; Liu, Yi-Sheng; Chen, Jeng-Lung; Glans, Per-Anders; Chang, Chinglin; Blomqvist, Andreas; Lizárraga, Raquel; Holmström, Erik; Belova, Lyubov; Guo, Jinghua; Ahuja, Rajeev; Rao, K. V.
2014-01-01
We report an unusual robust ferromagnetic order above room temperature upon amorphization of perovskite [YCrO3] in pulsed laser deposited thin films. This is contrary to the usual expected formation of a spin glass magnetic state in the resulting disordered structure. To understand the underlying physics of this phenomenon, we combine advanced spectroscopic techniques and first-principles calculations. We find that the observed order-disorder transformation is accompanied by an insulator-metal transition arising from a wide distribution of Cr-O-Cr bond angles and the consequent metallization through free carriers. Similar results also found in YbCrO3-films suggest that the observed phenomenon is more general and should, in principle, apply to a wider range of oxide systems. The ability to tailor ferromagnetic order above room temperature in oxide materials opens up many possibilities for novel technological applications of this counter intuitive effect. PMID:24732685
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
Kim, J. -W.; Choi, Y.; Chun, S. H.; ...
2018-03-26
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. -W.; Choi, Y.; Chun, S. H.
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
NASA Astrophysics Data System (ADS)
Kim, J.-W.; Choi, Y.; Chun, S. H.; Haskel, D.; Yi, D.; Ramesh, R.; Liu, J.; Ryan, P. J.
2018-03-01
The combination of strong electron correlations in 3 d transition-metal oxides and spin-orbit interactions in the 5 d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIr O3 (SIO) and L a2 /3S r1 /3Mn O3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolved x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular orbitals between the Mn and Ir layers modifying the Ir 5 d electronic configuration through the mixture of t2 g and eg states, resulting in a deviation from Jeff=1 /2 . This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5 d states with two-dimensional 3 d spin-polarized electrons through heterostructure design.
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
Multilayer thermal barrier coating systems
Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.
2000-01-01
The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.
NASA Astrophysics Data System (ADS)
Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek
2009-01-01
The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.
Defect-mediated, thermally-activated encapsulation of metals at the surface of graphite
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung; ...
2017-11-04
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study
Jiang, M.; Pickett, W. E.; Scalettar, R. T.
2013-04-03
Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study the impacts of an on-site Hubbard interaction U, finite temperature, and an external (Zeeman) magnetic field on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U on the degree of thermalmore » depolarization, and follow relative band shifts and monitor when significant gap states appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet → saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic properties are rather robust to U.« less
Metallic multilayers at the nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, A.F.
1994-11-01
The development of multilayer structures has been driven by a wide range of commercial applications requiring enhanced material behaviors. Innovations in physical vapor deposition technologies, in particular magnetron sputtering, have enabled the synthesis of metallic-based structures with nanoscaled layer dimensions as small as one-to-two monolayers. Parameters used in the deposition process are paramount to the Formation of these small layer dimensions and the stability of the structure. Therefore, optimization of the desired material properties must be related to assessment of the actual microstructure. Characterization techniques as x-ray diffraction and high resolution microscopy are useful to reveal the interface and layermore » structure-whether ordered or disordered crystalline, amorphous, compositionally abrupt or graded, and/or lattice strained Techniques for the synthesis of metallic multilayers with subnanometric layers will be reviewed with applications based on enhancing material behaviors as reflectivity and magnetic anisotropy but with emphasis on experimental studies of mechanical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Yao, K. L., E-mail: klyao@mail.hust.edu.cn
2014-11-03
Recently, ferromagnetic zinc-blende Mn{sub 1−x}Cr{sub x}S thin films (above x = 0.5) were fabricated experimentally on ZnSe substrate, which confirmed the previous theoretical prediction of half-metallic ferromagnetism in zinc-blende CrS. Here, we theoretically reveal that both Cr- and S-terminated (001) surfaces of the CrS thin films retain the half-metallicity. The CrS/ZnSe(001) heterogeneous junction exhibits excellent spin filtering and spin diode effects, which are explained by the calculated band structure and transmission spectra. The perfect spin transport properties indicate the potential applications of half-metallic CrS in spintronic devices. All computational results are obtained by using the density functional theory combined with nonequilibrium Green'smore » function.« less
Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe 3GeTe 2
Yi, Jieyu; Zhuang, Houlong; Zou, Qiang; ...
2016-11-15
Fe 3GeTe 2 is known as an air-stable layered metal with itinerant ferromagnetism with a transition temperature of about 220 K. From extensive dc and ac magnetic measurements, we have determined that the ferromagnetic layers of Fe 3GeTe 2 order antiferromagnetically along the c-axis blow 152 K. The antiferromagnetic state was further substantiated by theoretical calculation to be the ground state. A magnetic structure model was proposed to describe the antiferromagnetic ground state as well as competition between antiferromagnetic and ferromagnetic states. Furthermore, Fe 3GeTe 2 shares many common features with pnictide superconductors and may be a promising system inmore » which to search for unconventional superconductivity.« less
NASA Astrophysics Data System (ADS)
Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan
A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.
Broadband planar multilayered absorbers tuned by VO2 phase transition
NASA Astrophysics Data System (ADS)
Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun
2017-08-01
The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Pavlov, A. Yu.
2016-10-15
The Postgrowth processing of GaAs/AlGaAs multilayer heterostructures for terahertz quantumcascade lasers (QCLs) are studied. This procedure includes the thermocompression bonding of In–Au multilayer heterostructures with a doped n{sup +}-GaAs substrate, mechanical grinding, and selective wet etching of the substrate, and dry etching of QCL ridge mesastripes through a Ti/Au metallization mask 50 and 100 μm wide. Reactive-ion-etching modes with an inductively coupled plasma source in a BCl{sub 3}/Ar gas mixture are selected to obtain vertical walls of the QCL ridge mesastripes with minimum Ti/Au mask sputtering.
Effect of capping layer on spin-orbit torques
NASA Astrophysics Data System (ADS)
Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.
2018-04-01
In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.
Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olejnik, K.; Wadley, P.; Haigh, J.
2009-11-05
We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.
Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias
Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; ...
2015-11-05
We achieved a high-quality epitaxial growth of intermetallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Asar; Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.i
Cuprous oxide (Cu{sub 2}O) flower-like nanostructures doped with various metal ions i.e. Fe, Co, Ni and Mn have been synthesized by an organic phase solution method. The powder X-ray diffraction study clearly reveals them as single phase simple cubic cuprite lattice. Study of their magnetic properties have shown that these doped samples are ferromagnetic in nature; however, no such property was observed for the undoped Cu{sub 2}O sample. The magnitude of the ferromagnetic behavior was found to be dependent on the dopant metal ions amount, which increased consistently with its increase. As total magnetic moment contribution of the doped metalmore » ions calculated was insignificant, it is believed to have originated from the induced magnetic moments at cation deficiency sites in the material, created possibly due to the disturbance of the crystal lattice by the dopant ions. The existence of the defects has been supported by photoluminescence spectra of the doped samples. -- Graphical abstract: Room temperature ferromagnetic behavior was observed in the Cu{sub 2}O nanoflowers doped with Fe, Co, Ni and Mn ions. Cation deficiencies formed due to dopant ions were possibly responsible for ferromagnetism. Display Omitted« less
Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.
Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S
2015-12-01
This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of < 115 ppm/V2 and a low leakage current density of 4.457 x 10(-11) A/cm2 at 3 V are achieved which are suitable for analog and mixed signal applications. We found that the anodization voltage played a major role in electrical and structural properties of the thin film. This work suggests that the anodization method can offer crystalline multilayer dielectric stack required for high performance MIM capacitor.
Multi-layer light-weight protective coating and method for application
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)
1992-01-01
A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.
Smith, R. X.; Hoch, M. J. R.; Moulton, W. G.; ...
2016-01-25
The magnetoelectronic properties of La 1-xSr xCoO 3, which include giant magnetoresistance, are strongly dependent on the level of hole doping. The system evolves, with increasing x, from a spin glass insulator to a metallic ferromagnet with a metal-insulator (MI) transition at x C ~ 0.18. Nanoscale phase separation occurs in the insulating phase and persists, to some extent, into the just-metallic phase. The present experiments at 4.2 K have used 139La NMR to investigate the transition from hopping dynamics for x < x C to Korringa-like ferromagnetic metal behavior for x > x C. A marked decrease in themore » spin-lattice relaxation rate is found in the vicinity of x C as the MI transition is crossed. Lastly, this behavior is accounted for in terms of the evolution of the electronic structure and dynamics with cluster size.« less
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-04-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-06-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Sadeghi, K. H.; Ahmadian, F.
2018-02-01
The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.
Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed Ben Mohamed; Manchon, A.
2016-07-01
Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.
Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems
Jiang, Bingbing; Barnett, John B; Li, Bingyun
2009-01-01
There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464
Basic criteria for formation of growth twins in high stacking fault energy metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K. Y.; Zhang, X.; Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843
Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity ofmore » these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.« less
Guo, Chunsheng; Zhou, Yu; Shi, Xin-Qiang; Gan, Li-Yong; Jiang, Hong; Zhao, Yong
2016-04-28
The fluorinated boron nitride (F-BN) nanostructures are found to be fully spin polarized and half-metallic by means of first-principles calculations based on the Heyd-Scuseria-Ernzerhof hybrid functional. It is found that the full spin polarization and 1 μB local moment in F-BN nanotubes are independent of tube radius and it is also robust in planar ribbons and sheets. The long-ranged ferromagnetic coupling between local moments decreases with decreasing tube radius. This suggests that F-BN systems with small local curvatures could be more easily experimentally observed and have greater potential applications in spin devices.
Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem
The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µ{sub B}/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.
NASA Astrophysics Data System (ADS)
Fang, Jing; Song, Guofen; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Su, Huilan; Guo, Cuiping; Zhang, Di
2018-01-01
Photocatalytic water splitting via utilizing various semiconductors is recognized as a promising way for hydrogen production. Plasmonic metals with sub-micrometer textures can improve the photocatalytic performance of semiconductors via a localized surface plasmon resonance (LSPR) process. Moreover, arrays of multilayer metallic structures can help generate strong LSPR. However, artificial synthesis has difficulties in constructing novel multilayer metallic arrays down to nanoscales. Here, we use three dimensional (3D) scales from Morpho didius forewings (M) to prepare 3D Au-wings with intact hierarchical bio-structures. For comparison, we use Troides helena forewings (T) which are known for their antireflection quasi-honeycomb structures resulting in strong light absorbing ability. Results show that multilayer rib structures of Au-M can significantly amplify the LSPR of 3D Au and thus can efficiently help the photocatalytic process (9-fold increase). This amplification effect is obviously more superior to the straightforward enhancement of the absorption of incident light (Au-T, 5-fold increase). Thus, our study provides the possibility to prepare highly efficient plasmonic photocatalysts (possessing 3D multilayer rib structures) via an easy method. This work will also be revealing for plasmonic applications in other fields.
Multilayer apparent magnetization mapping approach and its application in mineral exploration
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Chen, Z.
2016-12-01
Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.
Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers
NASA Astrophysics Data System (ADS)
Giazotto, F.; Solinas, P.; Braggio, A.; Bergeret, F. S.
2015-10-01
We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal-ferromagnetic-insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz-1 /2 , a realistic amplifying chain will reduce the sensitivity up to 10 μ K Hz-1 /2 . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum-interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz-1 /2 . We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz /K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz-1 /2 thereby being potentially attractive for radiation-sensing applications.
Magnetotransport in magnetic nanostructures
NASA Astrophysics Data System (ADS)
Panchula, Alex F.
The unifying theme of this dissertation is the exploration of novel magnetic thin film materials to improve our understanding of spin-dependent transport in such materials, especially with regard to their use in the nascent field of spin based devices. Such devices, which rely on controlling the electron's spin rather than its charge as in conventional micro-electronics, may be important for applications in sensing, memory and computation. This dissertation covers research performed at the IBM Almaden Research Center between 2000 and 2003. One class of spin-based devices are magnetic tunnel junctions (MTJs), which display large changes in resistance in small magnetic fields. This tunneling magnetoresistance (TMR) is derived from changes in the relative alignment of the magnetic moments of thin ferromagnetic layers which are separated by thin insulating layers. The tunneling current spin polarization (TSP) determines the magnitude of the TMR. For typical transition-metal ferromagnets and their alloys the TSP is ˜50% although it is anticipated that half-metals should display nearly 100%. Confirming theoretical predictions, MTJs with electrodes of magnetite and a conventional ferromagnet such as a CoFe alloy, display an inverted TMR, consistent with negatively spin polarized magnetite electrodes. However, the magnitude of TSP of -48% at low temperatures, is not much larger than that exhibited by conventional 3d transition metal ferromagnets. At high temperatures, transport through the MTJ is dominated by tunneling across the alumina tunnel barrier, while at low temperatures the bulk properties of the magnetite dominates at low bias voltage. Another class of half-metals, the semi-heuslers exhibit low TSP, most likely due to surface disorder and, as revealed in this work, the possible formation of MnSb. The MnSb alloys studied in MTJs are found to behave as typical ferromagnets with a small positive TMR. Also considered are MTJs whose barriers are comprised of the wide band-gap semiconductors, ZnSe and Cr2O3. These low barrier height materials show typical tunneling behavior, although the TMR is lower than found for wide-gap insulators. Finally, the development of a high precision SQUID based voltmeter for application to low resistance devices with the current perpendicular to the plane of the materials is outlined.
First-principles study of the heavy metal atoms X (X=Au, Hg, Tl or Pb) doped monolayer WS2
NASA Astrophysics Data System (ADS)
Xie, Ling-Yun; Zhang, Jian-Min
2017-12-01
The heavy metal atoms X (X = Au, Hg, Tl or Pb) doped monolayer WS2 systems have been studied by using the spin-polarized first-principles calculations. Although pure monolayer WS2 system is a nonmagnetic semiconductor with a direct band gap of 1.820 eV, the Au and Hg atoms doped monolayer WS2 systems change to half-metal (HM) ferromagnets with the total magnetic moments 0.697 and 1.776 μB as well as the smaller spin-down gaps 0.605 and 0.527 eV, respectively, while the Tl and Pb atoms doped monolayer WS2 systems change to magnetic metal with the total magnetic moment 0.584 μB and a nonmagnetic metal. From the minimization of the formation energy, we find that it is easy to incorporate these heavy metal atoms into monolayer WS2 system under S-rich condition, especially for the Au doped monolayer WS2 system not only easily to be formed but also a HM ferromagnet, and thus the best candidate used in the spintronic devices.
Self-assembled metal nano-multilayered film prepared by co-sputtering method
NASA Astrophysics Data System (ADS)
Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping
2018-03-01
Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.
Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers
NASA Astrophysics Data System (ADS)
Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.
1998-12-01
Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.
NASA Astrophysics Data System (ADS)
Danilovic, Dusan S.
Magnetic properties of three families of metal-organic coordinated networks which have the general form of M(II)A(4,4'-bipyridine), where M=Fe, Ni, Co, and Cu and A=Cl2, (ox) and (N3)2, are studied in this dissertation. Novel Ni(N3)2(4,4'-bipyridine), Co(N3)2(4,4'-bipyridine) and Cu(N 3)2(4,4'-bipyridine) have been synthesized. We applied different synthesis procedures and produced Ni, Co, and Cu azide compounds for the first time, thus leaving the hydrothermal route procedure. Powder x-ray diffraction at room temperature was done in order to establish the crystal structure of the members of these three families. It was found that all of them crystallize in orthorhombic structure, where transitional metals have an octahedral coordination. Since all three families have identical crystal structure we got opportunity to examine how ligands facilitate magnetic interaction between metallic centers and also to test existing magnetic theoretical models. Since 4,4'-bipyridine is much longer than other ligands, our systems can be considered as 1-D magnetic systems. Their interchain magnetic interactions are very weak, and they order magnetically at very low temperatures of the order of few K. Measurements of M(H) at temperatures T=1.9K and T=2K and chi(T) in different external magnetic fields in zero field and field cooled modes have been made. In the case of MCl2(4,4'-bipyridine) family of compounds, we observed ferromagnetic interactions between metal ions within the chains and antiferromagnetic interactions between adjacent chains. M(ox)(4,4'-bipyridine) family of metal-organic compounds has antiferromagnetic interactions between the transitional metal ions within the chain, while weak ferromagnetic interaction exists between the chains. All members in the M(N3)2(4,4'-bipyridine) family except in the case of the copper compound were found to have ferromagnetic interactions between metal ions within the chains and then antiferromagnetic interactions between adjacent chains. The copper compound does not show magnetic ordering in the temperature range we considered. All the metal ions in these compounds were detected in high spin states. The magnetic susceptibility data was fit to appropriate 1-D models, which in the case of MCl2(4,4'-bipyridine) and M(N3)2(4,4'-bipyridine) were the Classical Spin Fisher model, and the Bonner Fisher model in the case M(ox)(4,4'-bipyridine). The experimental results and fitting to the appropriate model with the accuracy of 0.995 suggests that shorter Cl-M-Cl distances facilitate ferromagnetic interactions, which are more sensitive to the total spin value then to the sole distance between metal ions. The magnetic behavior of M(N3) 2(4,4'-bipyridine) family of coordinated metal-organic compounds is very interesting because family members exhibit both ferromagnetic and antiferromagnetic behavior. The ferromagnetic characteristics decrease with decreasing spin. Fitting the results for all compounds of the M(ox)(4,4'-bipyridine) family have shown that strong anisotropy exists in all of them, being highest in Ni(ox)(4,'4-bipyridine) and lowest in Co(ox)(4,4'-bipyridine). Specific heat measurements were performed in the case of cobalt and copper azide compounds and then compared with previously obtained results for the iron coordinated network of the same family. Although none of these compounds show the characteristic lambda shaped transition indicating magnetic ordering, all of them have unusually large values of the constant gamma, which indicates significant magnetic contribution to the observed specific heat, since the free electron contribution in these observed families is negligible. We have concluded that total spin of the transitional metal plays a more important role than the distance between ions within the chain in determining magnitude of interaction, and that (N3)2 is a better facilitator of ferromagnetic interaction between ions than Cl2.
Schuerger, Andrew C; Richards, Jeffrey T; Hintze, Paul E; Kern, Roger G
2005-08-01
Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.
2005-01-01
Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.
Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3
NASA Astrophysics Data System (ADS)
Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.
2006-09-01
LaNi3 exhibited a metallic antiferromagnetic property with T N = 30 K. La(Ni1-x Cox )3 with x = 0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x . La(Ni1-2z Coz Cuz )3 with z = 0.015 exhibited a ferromagnetic property with a small T C. A La(Ni1-y Cuy )3 sample with y = 0.01 exhibited a Pauli-paramagnetic property; those with y = 0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y = 0.05 exhibited a ferromagnetic property. The gradual metamagnetic M -H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one.
Recent progress in high-mobility thin-film transistors based on multilayer 2D materials
NASA Astrophysics Data System (ADS)
Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki
2017-04-01
Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.
Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
R, Lisha; P, Geetha; B, Aravind P.
2015-06-24
The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less
Electronic Correlation and Magnetism in the Ferromagnetic Metal Fe 3GeTe 2
Zhu, Jian-Xin; Janoschek, Marc; Chaves, D. S.; ...
2016-04-05
Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within local density approximation (LDA) of the density functional theory, and its combination with dynamical mean-field theory (DMFT). For comparison to these calculations, we have measured magnetic and thermodynamic properties as well as X-ray magnetic circular dichroism and the photoemission spectrum of single crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT.more » Additionally, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. Lastly, these results establish the importance of electronic correlations in this ferromagnet.« less
Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films
NASA Astrophysics Data System (ADS)
R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.
2015-06-01
The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.
Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof
2016-10-04
We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires.
Chen, Chih-Yen; Lin, Yu-Kai; Hsu, Chia-Wei; Wang, Chiu-Yen; Chueh, Yu-Lun; Chen, Lih-Juann; Lo, Shen-Chuan; Chou, Li-Jen
2012-05-09
One-dimensional metal silicide nanowires are excellent candidates for interconnect and contact materials in future integrated circuits devices. Novel core-shell Ni(2)Si/C54-TiSi(2) nanowires, 2 μm in length, were grown controllably via a solid-liquid-solid growth mechanism. Their interesting ferromagnetic behaviors and excellent electrical properties have been studied in detail. The coercivities (Hcs) of the core-shell Ni(2)Si/C54-TiSi(2) nanowires was determined to be 200 and 50 Oe at 4 and 300 K, respectively, and the resistivity was measured to be as low as 31 μΩ-cm. The shift of the hysteresis loop with the temperature in zero field cooled (ZFC) and field cooled (FC) studies was found. ZFC and FC curves converge near room temperature at 314 K. The favorable ferromagnetic and electrical properties indicate that the unique core-shell nanowires can be used in penetrative ferromagnetic devices at room temperature simultaneously as a future interconnection in integrated circuits.
Yang, Zhaolong; Gao, Daqiang; Zhang, Jing; Xu, Qiang; Shi, Shoupeng; Tao, Kun; Xue, Desheng
2015-01-14
High Curie temperature ferromagnetism has been realized in atomically thin MoS2 and WS2 nanosheets. The ultrathin nanosheet samples were prepared via a novel, simple and efficient chemical vapor deposition method; different kinds of transition metal disulfides (MoS2 and WS2) could be obtained by sulphuring the corresponding cation sources (MoO3 and WCl6). Through related morphological and structural characterization, we confirm that large-area, uniform, few-layer MoS2 and WS2 nanosheets were successfully synthesized by this method. Both nanosheet samples exhibit distinct ferromagnetic behavior. By careful measurement and fitting of the magnetization of MoS2 and WS2 samples at different temperatures, we deconstruct the magnetization into its diamagnetic, paramagnetic and ferromagnetic contributions. The ferromagnetic contributions persist until 865 K for MoS2 and 820 K for WS2. We attribute the observed ferromagnetic properties to the defects and dislocations produced during the growth process, as well as the presence of edge spins at the edge of the nanosheets.
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)
2013-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.
NASA Technical Reports Server (NTRS)
Sawko, Paul M. (Inventor)
1995-01-01
Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.
Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano
2008-01-01
Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.
Half-metallic ferromagnetism in substitutionally doped boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-11-01
We perform first-principles molecular dynamics simulations to investigate the magnetoelectronic response of substitutionally doped boronitrene to thermal excitation. We show that the local geometry, size, and edge termination of the substitutional complexes of boron, carbon, or nitrogen determine the thermodynamic stability of the monolayer. We find that hexagonal boron or triangular carbon clusters induce finite magnetic moments with 100% spin-polarized Fermi-level electrons in boronitrene. In such carbon substitutions, the spontaneous magnetic moment increases with the size of the embedded carbon cluster, and results in half-metallic ferrimagnetism above 750 K with a corresponding Curie point of 1250 K, above which the magnetization density vanishes. We predict an ultrahigh temperature half-metallic ferromagnetic phase in impurity-free boronitrene, when any three nearest-neighbor nitrogen atoms are substituted with boron, with unquenched magnetic moment up to its melting point.
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
Nanoscale ferromagnetism in phase-separated manganites
NASA Astrophysics Data System (ADS)
Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.
2007-03-01
Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjornrattanawanich, Benjawan
2002-09-01
The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their yttrium layers, respectively. Based on the optical properties, multilayers with higher oxygen content should have higher absorption. However, the 25%-oxygen multilayer had less interface roughness and thus had higher reflectance than the 0%-oxygen sample. The 39%-oxygen multilayer had the highest absorption and roughness, thus had the lowest reflectance among three samples. The optical and structural properties of the multilayers are competing in the reflectance results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad
2016-08-15
Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less
Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings
Montcalm, Claude; Mirkarimi, Paul B.
2001-01-01
A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.
High reflectance-low stress Mo-Si multilayer reflective coatings
Montcalm, Claude; Mirkarimi, Paul B.
2000-01-01
A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.
Electronic and magnetic transitions in perovskite SrRu{sub 1-x}Ir{sub x}O{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Abhijit; Lee, Yong Woo; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr
2015-09-07
We have investigated the electronic and magnetic properties of perovskite SrRu{sub 1−x}Ir{sub x}O{sub 3} (0.0≤ x ≤ 0.25) thin films grown by pulsed laser deposition on atomically flat (001) SrTiO{sub 3} substrates. SrRuO{sub 3} has the properties of a ferromagnetic metal (resistivity ρ ∼ 200 μΩ · cm at T = 300 K) with Curie temperature T{sub C} ∼ 150 K. Substituting Ir (5d{sup 5+}) for Ru (4d{sup 4+}) in SrRuO{sub 3}, films (0.0 ≤ x ≤ 0.20) showed fully metallic behavior and ferromagnetic ordering, although ρ increased and the ferromagnetic T{sub C} decreased. Films with x = 0.25 underwent the metal-to-insulator transition (T{sub MIT}∼75 K) in ρ, and spin-glass-like ordering (T{sub SG}∼45 K) with the elimination of ferromagnetic long-range ordering causedmore » by the electron localization at the substitution sites. In ferromagnetic films (0.0 ≤ x ≤ 0.20), ρ increased near-linearly with T at T > T{sub C}, but in paramagnetic film (x = 0.25) ρ increased as T{sup 3/2} at T > T{sub MIT}. Moreover, observed spin-glass-like (T{sub SG}) ordering with the negative magnetoresistance at T < T{sub MIT} in film with x = 0.25 validates the hypothesis that (Anderson) localization favors glassy ordering at amply disorder limit. These observations provide a promising approach for future applications and of fundamental interest in 4d and 5d mixed perovskites.« less
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
Redox switch-off of the ferromagnetic coupling in a mixed-spin tricobalt(II) triple mesocate.
Dul, Marie-Claire; Pardo, Emilio; Lescouëzec, Rodrigue; Chamoreau, Lise-Marie; Villain, Françoise; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Pasán, Jorge; Ruiz-Pérez, Catalina
2009-10-21
A prelude to redox-based, ferromagnetic "metal-organic switches" is exemplified by a new trinuclear oxalamide cobalt triple mesocate that presents two redox states (ON and OFF) with dramatically different magnetic properties; the two terminal high-spin d(7) Co(II) ions (S = (3)/(2)) that are ferromagnetically coupled in the homovalent tricobalt(II) reduced state (2) become uncoupled in the heterovalent tricobalt(II,III,II) oxidized state (2(ox)) upon one-electron oxidation of the central low-spin d(7) Co(II) ion (S = (1)/(2)) to a low-spin d(6) Co(III) ion (S = 0).
Spin filtering through ferromagnetic BiMn O3 tunnel barriers
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Bouzehouane, K.; Fusil, S.; Varela, M.; Fontcuberta, J.; Fert, A.
2005-07-01
We report on experiments of spin filtering through ultrathin single-crystal layers of the insulating and ferromagnetic oxide BiMnO3 (BMO). The spin polarization of the electrons tunneling from a gold electrode through BMO is analyzed with a counterelectrode of the half-metallic oxide La2/3Sr1/3MnO3 (LSMO). At 3K we find a 50% change of the tunnel resistances according to whether the magnetizations of BMO and LSMO are parallel or opposite. This effect corresponds to a spin-filtering efficiency of up to 22%. Our results thus show the potential of complex ferromagnetic insulating oxides for spin filtering and injection.
Evidence of superconductivity on the border of quasi-2D ferromagnetism in Ca2RuO4 at high pressure.
Alireza, Patricia Lebre; Nakamura, Fumihiko; Goh, Swee Kuan; Maeno, Yoshiteru; Nakatsuji, Satoru; Ko, Yuen Ting Chris; Sutherland, Michael; Julian, Stephen; Lonzarich, Gilbert George
2010-02-10
The layered perovskite Ca(2)RuO(4) is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ∼ 80 kbar with a maximum Curie temperature of 28 K. Above ∼ 90 and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ∼ 0.4 K in applied magnetic fields of up to ∼ 10 mT. This indicates that our specimens of Ca(2)RuO(4) are weakly superconducting on the border of a quasi-2D ferromagnetic state.
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard
2015-01-01
Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.
Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
NASA Astrophysics Data System (ADS)
Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.
2018-03-01
We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
Development of a novel polymeric fiber-optic magnetostrictive metal detector.
Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih
2010-01-01
The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.
Three dimensional multilayer solenoid microcoils inside silica glass
NASA Astrophysics Data System (ADS)
Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun
2016-01-01
Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.
Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts
NASA Astrophysics Data System (ADS)
Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon
2017-05-01
We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadeville, M.C.
Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less
Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity.
Lo, C K; Lai, W C; Cheng, J C
2011-08-01
A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.
Spin-Transfer Studies in Magnetic Multilayer Nanostructures
NASA Astrophysics Data System (ADS)
Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.
2003-03-01
Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA
Infrared spectra of magnetoresistive ferromagnets in magnetic fields
NASA Astrophysics Data System (ADS)
Telegin, A. V.; Bessonova, V. A.; Sukhorukov, Yu. P.
2018-05-01
The influence of a magnetic field on reflection and transmission spectra of ferromagnetic manganites possessed the colossal magnetoresistance effect has been in the infrared range studied. It was shown that observed magnetotransmission and magnetoreflection of unpolarized light are an optical response to the colossal magnetoresistance in optimally doped manganites. Compared to crystals and multilayers the effects are the most pronounced and reach the magnitude of up to few tens of percent in single-layer thin films near the Curie temperature. A new low-temperature mechanism of magnetotransmission connected with the tunnel magnetoresistance was revealed far below the Curie point in Ba-doped manganite films with a variant structure. The observed magneto-optical effects in manganites can be described in the framework of the magnetorefractive effect theory. The observed effects are one or two orders of magnitude greater than the conventional IR magnetooptical phenomena in manganites. Being quite large, magnetoreflection and magnetotransmission effects in manganites structures could be successfully used in optoelectronics.
Positive magnetoresistance effect in rare earth cobaltites
NASA Astrophysics Data System (ADS)
Troyanchuk, I. O.; Bushinskii, M. V.; Karpinsky, D. V.; Dobryanskii, V. M.; Sikolenko, V. V.; Balagurov, A. M.
2009-06-01
The structure, magnetic, and magnetotransport properties of the Pr0.5Sr0.5Co1 - x Fe x O3 system have been studied. The ferromagnet-spin glass ( x = 0.5)- G-type antiferromagnet ( x = 0.7) transitions and the metal—insulator transitions ( x = 0.25) have been revealed. It has been established that the magnetoresistance of the metallic ferromagnetic cobaltites changes sign from positive to negative as the external magnetic field increases. The positive component increases and the negative component decreases with decreasing temperature. The negative magnetoresistance increases sharply in the insulating spinglass phase. Possible causes of the low-magnetic-field positive magnetoresistance in the rare earth metallic cobaltites are discussed.
Perlepe, Panagiota S.; Cunha-Silva, Luis; Gagnon, Kevin J.; ...
2016-01-20
The initial employment of the fluorescent bridging ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH 2) in metal cluster chemistry has led to new Ni 12 (1) and Ni 5 (2) clusters with wheel-like and molecular-chain topologies, respectively. The doubly-deprotonated nacb 2- ligands were found to adopt four different coordination modes within 1 and 2. The nature of the ligand has also allowed unexpected organic transformations to occur and ferromagnetic and emission behaviors to emerge. The combined work presented here demonstrates the ability of some "ligands-with-benefits" to yield beautiful structures with exciting topologies and interesting physicochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlepe, Panagiota S.; Cunha-Silva, Luis; Gagnon, Kevin J.
The initial employment of the fluorescent bridging ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH 2) in metal cluster chemistry has led to new Ni 12 (1) and Ni 5 (2) clusters with wheel-like and molecular-chain topologies, respectively. The doubly-deprotonated nacb 2- ligands were found to adopt four different coordination modes within 1 and 2. The nature of the ligand has also allowed unexpected organic transformations to occur and ferromagnetic and emission behaviors to emerge. The combined work presented here demonstrates the ability of some "ligands-with-benefits" to yield beautiful structures with exciting topologies and interesting physicochemical properties.
Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2
NASA Astrophysics Data System (ADS)
Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki
2017-12-01
Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.
Quantum critical singularities in two-dimensional metallic XY ferromagnets
NASA Astrophysics Data System (ADS)
Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.
2018-02-01
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.
Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-05-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji
Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less
Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; ...
2017-07-17
Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K
A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less
Unexpected resonant response in [Fe(001)/Cr(001)]10/MgO(001) multilayers in a magnetic field.
Aliev, F G; Pryadun, V V; Snoeck, E
2009-01-23
We observed unexpected resonant response in [Fe/Cr]10 multilayers epitaxially grown on MgO(100) substrates which exists only when both ac current and dc magnetic field are simultaneously applied. The magnitude of the resonances is determined by the multilayer magnetization proving their intrinsic character. The reduction of interface epitaxy leads to nonlinear dependence of the magnitude of resonances on the alternating current density. We speculate that the existence of the interface transition zone could facilitate the subatomic vibrations in thin metallic films and multilayers grown on bulk insulating substrates.
1992-03-01
Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ
NASA Astrophysics Data System (ADS)
Singh, S. C.; Kotnala, R. K.; Gopal, R.
2015-08-01
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.
2015-08-14
Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less
Tunable magneto-optical effects in hole-doped group-IIIA metal-monochalcogenide monolayers
NASA Astrophysics Data System (ADS)
Feng, Wanxiang; Guo, Guang-Yu; Yao, Yugui
2017-03-01
Because of unusual properties and fascinating prospects for next-generation device applications, two-dimensional (2D) materials have attracted enormous attention since graphene was discovered in 2004. Among the 2D materials beyond graphene, group-IIIA metal-monochalcogenide (MX) monolayers (MLs), are receiving increasing interests because their excellent applications on electronics and optoelectronics. Recently, ferromagnetism and half-metallicity have been predicted in hole-doped GaS and GaSe MLs, which promise exciting potentials for semiconductor spintronics. Detection and measurement of spontaneous magnetization in these 2D materials will be essential for their spintronic applications. The magneto-optical (MO) effects not only are a powerful probe of magnetism in 2D materials but also have valuable applications in high-density data-storage technology. Furthermore, anomalous Hall effect is not only an ideal transport probe of itinerant magnetism but also of considerable current interest because of its topological nature. Here we perform a systematic first-principles density functional study on the MO Kerr and Faraday effects as well as such important magnetic and transport properties as magneto-crystalline anisotropy energy (MAE) and anomalous Hall conductivity (AHC) of all hole-doped MX (M = Ga, In; X = S, Se, Te) MLs. In this paper, we report the following important findings: (a) gate-tunable MO effects in MX MLs in a broad range of hole concentration; (b) large Kerr and Faraday rotation angles with Kerr angles comparable to well-known MO 3d-transition-metal multilayers and Faraday angles being among the largest ones reported; (c) tunable MAE and large AHC, making MX MLs suitable for magnetic memory devices current-driven via spin-transfer torque and also promising materials for magnetic field nanosensors with high sensitivity. Superior MO characteristics, together with the other interesting properties, would make MX MLs an excellent family of 2D materials for semiconductor MO and spintronic nanodevices.
Controlled manipulation of the Co-Alq3 interface by rational design of Alq3 derivatives.
Großmann, Nicolas; Magri, Andrea; Laux, Martin; Stadtmüller, Benjamin; Thielen, Philip; Schäfer, Bernhard; Fuhr, Olaf; Ruben, Mario; Cinchetti, Mirko; Aeschlimann, Martin
2016-11-15
Recently, research has revealed that molecules can be used to steer the local spin properties of ferromagnetic surfaces. One possibility to manipulate ferromagnetic-metal-molecule interfaces in a controlled way is to synthesize specific, non-magnetic molecules to obtain a desired interaction with the ferromagnetic substrate. Here, we have synthesized derivatives of the well-known semiconductor Alq 3 (with q = 8-hydroxyquinolinate), in which the 8-hydroxyquinolinate ligands are partially or completely replaced by similar ligands bearing O- or N-donor sets. The goal of this study was to investigate how the presence of (i) different donor atom sets and (ii) aromaticity in different conjugated π-systems influences the spin properties of the metal-molecule interface formed with a Co(100) surface. The spin-dependent metal-molecule-interface properties have been measured by spin-resolved photoemission spectroscopy, backed up by DFT calculations. Overall, our results show that, in the case of the Co-molecule interface, chemical synthesis of organic ligands leads to specific electronic properties of the interface, such as exciton formation or highly spin-polarized interface states. We find that these properties are even additive, i.e. they can be engineered into one single molecular system that incorporates all the relevant ligands.
Epitaxial growth of thermally stable cobalt films on Au(111)
NASA Astrophysics Data System (ADS)
Haag, N.; Laux, M.; Stöckl, J.; Kollamana, J.; Seidel, J.; Großmann, N.; Fetzer, R.; Kelly, L. L.; Wei, Z.; Stadtmüller, B.; Cinchetti, M.; Aeschlimann, M.
2016-10-01
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.
NASA Astrophysics Data System (ADS)
Liu, Yinghao; Xiong, Jie
2012-02-01
La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic half-metallic compound with nearly 100% spin polarization at room temperature, making it an ideal candidate for applications in spintronic devices. However, this useful functionality disappears when the thickness of LSMO film grown on SrTiO3 substrate is reduced to below 4 nm, limiting its application in nanoscale devices. Here, we show that metallic and ferromagnetic properties of ultrathin (< 4nm) LSMO film can be restored by interfacing it with a superconductor EuBa2Cu3O7- δ (EBCO). We use scanning tunneling microscopy and spectroscopy to probe the evolution of the electronic structure of LSMO film grown on EBCO as functions of LSMO layer thickness and aging of bilayer LSMO/EBCO. Our results reveal that the charge (hole) transfer at LSMO/EBCO interface is responsible for driving LSMO film (of only five-unit-cell thickness) to metallic state. The conductive behavior of aged LSMO/EBCO bilayers varies systematically with the thickness of LSMO layer, allowing us to estimate the charge-transfer depth to be 4˜5 nm on the LSMO side.
Multi-layered proton-conducting electrolyte
Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-27
The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).
Current noise generated by spin imbalance in presence of spin relaxation
NASA Astrophysics Data System (ADS)
Khrapai, V. S.; Nagaev, K. E.
2017-01-01
We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
NASA Astrophysics Data System (ADS)
Howe, Jane Y.; Puretzky, Alex A.; Geohegan, David B.; Cui, Hongtao; Eres, Varela; Maria, Alex A.; Lowndes, Douglas H.
2003-03-01
The structure of single-wall and multiwall carbon nanotubes and associated metal catalyst nanoparticles produced during chemical vapor deposition from multilayered metal films deposited on Si and Mo substrates were studied by high-resolution TEM and EDS. Electron beam-evaporated metal multilayer films (e.g. Al-Fe-Mo, typically 11-50 nm total thickness) roughen upon heat treatment to form a variety of catalyst particle sizes suitable for carbon nanotube growth by chemical vapor deposition using acetylene, hydrogen, and argon flow gases. This study investigates these nanoparticles, the type of nanotubes grown, their wall, tip, and basal structures, as well as the associated amounts of amorphous carbon deposited on their walls in different temperature and pressure ranges. Mixtures of SWNT and MWNT are found even for low growth temperatures (650-700 C), while rapid growth of vertically-aligned multiwall nanotubes (VA-MWNTs) predominate in a narrow temperature range at a given pressure. Arrested growth experiments were performed to determine the time periods for SWNT vs. MWNT growth. The nature of the catalyst nanoparticles, their support structure, and insights on the mechanisms of growth will be discussed.
NASA Astrophysics Data System (ADS)
Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun
2017-09-01
Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
The original colours of fossil beetles
McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Noh, Heeso; Cao, Hui
2012-01-01
Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group. PMID:21957131
The original colours of fossil beetles.
McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui
2012-03-22
Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.
NASA Astrophysics Data System (ADS)
Jacobsen, Sol; Kulagina, Iryna; Linder, Jacob
Superconducting spintronics has the potential to overcome the Joule heating and short decay lengths of electron transport by harnessing the dissipationless spin currents of superconductors in thin-film devices. Using conventional singlet superconductive sources, such dissipationless currents have only been demonstrated experimentally using intricate magnetically inhomogeneous multilayers, which can be difficult to construct, control and measure. Here we present analytic and numerical results proving the possibility of both generating and controlling a long-ranged spin supercurrent using only one single homogeneous magnetic element (arXiv:1510.02488). The spin supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up to the spin relaxation length. Through a novel interference term between long-ranged and short-ranged Cooper pairs, we expose the existence of a superconductivity-mediated torque even without magnetic inhomogeneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately via superconductors. Supported by COST Action MP-1201 and RCN Grant Numbers 205591, 216700 and 24806.
Multilayer Relaxation and Surface Energies of Metallic Surfaces
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John
1994-01-01
The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.
Half-metallic ferromagnetism in Sr3Ru2O7
NASA Astrophysics Data System (ADS)
Rivero, Pablo; Meunier, Vincent; Shelton, William
2017-05-01
The bilayered member of the Ruddesden-Popper family of ruthenates, Sr3Ru2O7 , has received increasing attention due to its interesting properties and phases. By using first principle calculations we find that the ground state is characterized by a ferromagnetic (FM) half-metallic state. This state strongly competes with an antiferromagnetic metallic phase, which indicates the possible presence of a particular state characterized by the existence of different magnetic domains. To drive the system towards a phase transition we studied the electronic and magnetic properties as a function of RuO6 octahedra rotations and found that the magnetic phase does not couple with the rotation angle. Our results provide accurate electronic, structure, and magnetic ground-state properties of Sr3Ru2O7 and stimulate the investigation of other types of octahedra rotations and distortions in the search of phase transitions.
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.
2017-10-01
Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.
Allenstein, Uta; Selle, Susanne; Tadsen, Meike; Patzig, Christian; Höche, Thomas; Zink, Mareike; Mayr, Stefan G
2015-07-22
Durable, mechanically robust osseointegration of metal implants poses one of the largest challenges in contemporary orthopedics. The application of biomimetic hydroxyapatite (HAp) coatings as mediators for enhanced mechanical coupling to natural bone constitutes a promising approach. Motivated by recent advances in the field of smart metals that might open the venue for alternate therapeutic concepts, we explore their mechanical coupling to sputter-deposited HAp layers in a combined experimental-theoretical study. While experimental delamination tests and comprehensive structural characterization, including high-resolution transmission electron microscopy, are utilized to establish structure-property relationships, density functional theory based total energy calculations unravel the underlying physics and chemistry of bonding and confirm the experimental findings. Experiments and modeling indicate that sputter-deposited HAp coatings are strongly adherent to the exemplary ferromagnetic shape-memory alloys, Ni-Mn-Ga and Fe-Pd, with delamination stresses and interface bonding strength exceeding the physiological scales by orders of magnitude.
EUO-Based Multifunctional Heterostructures
2015-06-06
magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal
Mechanically flexible organic electroluminescent device with directional light emission
Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc
2005-05-10
A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.
Strain control of oxygen vacancies in epitaxial strontium cobaltite films
Jeen, Hyoung Jeen; Choi, Woo Seok; Reboredo, Fernando A.; ...
2016-01-25
In this study, the ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoO x) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 °C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ≈30%, resultingmore » in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.« less
Composite Flexible Blanket Insulation
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)
1991-01-01
Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.
Multiple infrared bands absorber based on multilayer gratings
NASA Astrophysics Data System (ADS)
Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli
2018-03-01
The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.
{ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.
Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}
Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers
NASA Astrophysics Data System (ADS)
Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine
2017-07-01
The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.
Luminescent hyperbolic metasurfaces
NASA Astrophysics Data System (ADS)
Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.
2017-01-01
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less
NASA Astrophysics Data System (ADS)
Jia, Baoping; Zhang, Wei; Liu, Hui; Lin, Bencai; Ding, Jianning
2016-09-01
Heterostructured multilayer films of two different nanocrystals have been successfully fabricated by layer-by-layer stacking of Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle films. UV-Vis spectroscopy and AFM observation confirmed the successful alternating deposition in the multilayer buildup process. The average thickness of both Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle layers was determined to be about 1.4-1.7 and 5 nm, which was in good agreement with TEM results. Magneto-optical Kerr effect measurements demonstrated that the heteroassemblies exhibit gigantic magnetic circular dichroism (MCD) (2 × 104 deg/cm) at 320-360 nm, deriving from strong interlayer [Co2+]t2g-[Fe3+]eg d-d charge transfer which was further confirmed by X-ray photoelectron spectroscopy. Their structure-dependent MCD showed high potential in rational design and construction of high-efficiency magneto-optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chejanovsky, N.; Sharoni, A., E-mail: amos.sharoni@biu.ac.il
2014-08-21
Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection.more » We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.« less
Room temperature ferromagnetism in a phthalocyanine based carbon material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.
2014-02-07
We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya
2018-01-01
We systematically investigated the spin-torque ferromagnetic resonance (ST-FMR) in permalloy/Pt bilayer thin films under bias direct currents. According to the conventional ST-FMR theory, the half widths of the resonant peaks in the spectra can be modulated by bias currents, which give a reliable value of the spin injection efficiency of the spin Hall effect. On the other hand, the symmetric components of the spectra show an unexpected strong bias current dependence, while the asymmetric components are free from the modulation. These findings suggest that some contributions are missing in the ST-FMR analysis of the ferromagnetic/nonmagnetic metal bilayer thin films.
Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.
2005-05-01
We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.
Magnetic studies of Co2+, Ni2+, and Zn2+-modified DNA double-crossover lattices
NASA Astrophysics Data System (ADS)
Dugasani, Sreekantha Reddy; Oh, Young Hoon; Gnapareddy, Bramaramba; Park, Tuson; Kang, Won Nam; Park, Sung Ha
2018-01-01
We fabricated divalent-metal-ion-modified DNA double-crossover (DX) lattices on a glass substrate and studied their magnetic characteristics as a function of ion concentrations [Co2+], [Ni2+] and [Zn2+]. Up to certain critical concentrations, the DNA DX lattices with ions revealed discrete S-shaped hysteresis, i.e. characteristics of strong ferromagnetism, with significant changes in the coercive field, remanent magnetization, and susceptibility. Induced magnetic dipoles formed by metal ions in DNA duplex in the presence of a magnetic field imparted ferromagnetic behaviour. By considering hysteresis and the magnitude of magnetization in a magnetization-magnetic field curve, Co2+-modified DNA DX lattices showed a relatively strong ferromagnetic nature with an increasing (decreasing) trend of coercive field and remanent magnetization when [Co2+] ≤ 1 mM ([Co2+] > 1 mM). In contrast, Ni2+ and Zn2+-modified DNA DX lattices exhibited strong and weak ferromagnetic behaviours at lower (≤1 mM for Ni2+ and ≤0.5 mM for Zn2+) and higher (>1 mM for Ni2+ and >0.5 mM for Zn2+) concentrations of ions, respectively. About 1 mM of [Co2+], [Ni2+] and [Zn2+] in DNA DX lattices was of special interest with regard to physical characteristics and was identified to be an optimum concentration of each ion. Finally, we measured the temperature-dependent magnetic characteristics of the metal-ion-modified DNA DX lattices. Nonzero magnetization and inverse susceptibility with almost constant values were observed between 25 and 300 K, with no indication of a magnetic transition. This indicated that the magnetic Curie temperatures of Co2+, Ni2+ and Zn2+-modified DNA DX lattices were above 300 K.
X-ray Characterization of Oxide-based Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Idzerda, Yves
2008-05-01
Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.
NASA Astrophysics Data System (ADS)
Li, XiaoLi; Qi, ShiFei; Jiang, FengXian; Quan, ZhiYong; Xu, XiaoHong
2013-01-01
In this review, we review the progress of research on ZnO- and In2O3-based diluted magnetic oxides (DMOs). Firstly, we present the preparation and characterization of DMOs. The former includes the preparation methods and conditions, and the latter includes the characterization techniques for measuring microstructures. Secondly, we introduce the magnetic and transport properties of DMOs, as well as the relationship between them. Thirdly, the origin and mechanism of the ferromagnetism are discussed. Fourthly, we introduce other related work, including computational work and pertinent heterogeneous structures, such as multilayers and magnetic tunnel junctions. Finally, we provide an overview and outlook for DMOs.
2012-06-28
a collection of information if it does not display a currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...REPORT TYPE New Reprint 17. LIMITATION OF ABSTRACT UU 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM...ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER W911NF-08-1-0317 611103 Form Approved OMB NO. 0704-0188 54223-MS-MUR.32 11. SPONSOR/MONITOR’S
Ferromagnetic ordering and halfmetallic state in a shandite: Co3Sn2S2
NASA Astrophysics Data System (ADS)
Schnelle, Walter; Leithe-Jasper, Andreas; Rosner, Helge; Weihrich, Richard
2013-03-01
The rapid advance in spintronics challenges an improved understanding of the underlying microscopic properties. Here, we present a joint experimental and theoretical study of Co3Sn2S2 (shandite) and related compounds. From magnetic susceptibility, specific heat and magneto-transport measurements on a shandite single crystal sample we find a phase transition to a ferromagnetic metallic state at 177 K with a saturation moment of 0.92 μB/f.u. Full potential electronic structure calculations within the local spin density approximation result in a halfmetallic ferromagnetic groundstate with a moment of 1 μB/f.u. and a tiny gap in the minority spin channel. The calculated structure optimization and structure variations show that the size of the gap is rather sensitive to the lattice geometry. Possiblities to stabilize the halfmetallic ferromagnetic behavior by various substitutions have been studied theoretically and will be discussed.
Ferromagnetism in armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao
2009-01-01
Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.
Large magnetoresistance in oxide based ferromagnet/superconductor spin switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena, V.; Nemes, N.; Visani, C.
2006-01-01
We report large magnetoresistance (in excess of 1000%) in ferromagnet / superconductor / ferromagnet structures made of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and YBa{sub 2}Cu{sub 3}O{sub 7} in the current in plane (CIP) geometry. This magnetoresistance has many of the ingredients of the giant magnetoresistance of metallic superlattices: it is independent on the angle between current and magnetic field, depends on the relative orientation of the magnetization in the ferromagnetic layers, and takes very large values. The origin is enhanced scattering at the F/S interface in the anti parallel configuration of the magnetizations. Furthermore, we examine the dependence of the magnetoresistancemore » effect on the thickness of the superconducting layer, and show that the magnetoresistance dies out for thickness in excess of 30 nm, setting a length scale for the diffusion of spin polarized quasiparticles.« less
P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Liu, Peitao; Sun, Changqi; Wang, Tongtong; Tao, Kun; Gao, Daqiang
2017-05-01
Outstanding magnetic properties are highly desired for two-dimensional (2D) semiconductor nanosheets due to their potential applications in spintronics. Metal-free ferromagnetic 2D materials whose magnetism originated from the pure s/p electron configuration could give a long spin relaxation time, which plays the vital role in spin information transfer. Here, we synthesize 2D g-C3N4 nanosheets with room temperature ferromagnetism induced by P doping. In our case, the Curie temperature of P doped g-C3N4 nanosheets reaches as high as 911 K and the precise control of the P concentration can further adjust the saturation magnetization of the samples. First principles calculation results indicate that the magnetic moment is primarily due to strong hybridization between p bonds of P, N, and C atoms, giving the theoretical evidence of the ferromagnetism. This work opens another door to engineer a future generation of spintronic devices.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel
2017-12-01
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.
High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia
Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
Comprehensive process for the recovery of value and critical materials from electronic waste
Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; ...
2016-04-08
The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements (RE). Here, we present the development of a process that enables efficient recycling of metals from scrap mobile electronics. An electro recycling (ER) process, based on the regeneration of Fe 3+ as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separatemore » extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Furthermore, recovery and extraction efficiencies ca. 90 % were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (H 2SO 4, and HCl). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. We developed a comprehensive flow sheet to process electronic waste to value products.« less
Delamination analysis of metal-ceramic multilayer coatings subject to nanoindentation
Jamison, Ryan Dale; Shen, Yu -Lin
2016-01-22
Internal damage has been experimentally observed in aluminum (Al)/silicon carbide (SiC) multilayer coatings subject to nanoindentation loading. Post-indentation characterization has identified that delamination at the coating/substrate interface is the most prominent form of damage. In this study the finite element method is employed to study the effect of delamination on indentation-derived hardness and Young's modulus. The model features alternating Al/SiC nanolayers above a silicon (Si) substrate, in consistence with the actual material system used in earlier experiments. Cohesive elements with a traction–separation relationship are used to facilitate delamination along the coating/substrate interface. Delamination is observed numerically to be sensitive tomore » the critical normal and shear stresses that define the cohesive traction–separation behavior. Axial tensile stress below the edge of indentation contact is found to be the largest contributor to damage initiation and evolution. Delamination results in a decrease in both indentation-derived hardness and Young's modulus. As a result, a unique finding is that delamination can occur during the unloading process of indentation, depending on the loading condition and critical tractions.« less
Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance reflectivity
NASA Astrophysics Data System (ADS)
Andreeva, M. A.; Baulin, R. A.; Chumakov, A. I.; Rüffer, R.; Smirnov, G. V.; Babanov, Y. A.; Devyaterikov, D. I.; Milyaev, M. A.; Ponomarev, D. A.; Romashev, L. N.; Ustinov, V. V.
2018-01-01
We have studied the magnetization depth profiles in a [57Fe (dFe) /Cr (dCr) ]30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr≈2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mössbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost-antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ˜180∘ (spin flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magnetoresistance devices can be further tailored using ultrathin magnetic layers.
Li, Lei; Wu, Menghao
2017-06-27
Vertical ferroelectricity in two-dimensional (2D) materials is desirable for high-density data storage without quantum tunneling or high power consumption/dissipation, which still remains elusive due to the surface-depolarizing field. Herein, we report the first-principles evidence of 2D vertical ferroelectricity induced by interlayer translation, which exists extensively in the graphitic bilayer of BN, AlN, ZnO, MoS 2 , GaSe, etc.; the bilayer of some 2D ferromagnets like MXene, VS 2 , and MoN 2 can be even multiferroics with switchable magnetizations upon ferroelectric switching, rendering efficient reading and writing for high-density data storage. In particular, the electromechanical coupling between interlayer translation and potential can be used to drive the flow of electrons as nanogenerators for harvesting energy from human activities, ocean waves, mechanical vibration, etc. A ferroelectric superlattice with spatial varying potential can be formed in a bilayer Moire pattern upon a small twist or strain, making it possible to generate periodic n/p doped-domains and shape the periodicity of the potential energy landscape. Finally, some of their multilayer counterparts with wurtzite structures like a ZnO multilayer are revealed to exhibit another type of vertical ferroelectricity with greatly enhanced polarizations.
NASA Astrophysics Data System (ADS)
Niu, Li-Wei; Chen, Chang-Le; Dong, Xiang-Lei; Xing, Hui; Luo, Bing-Cheng; Jin, Ke-Xin
2016-10-01
Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).
Boron nitride nanotubes for spintronics.
Dhungana, Kamal B; Pati, Ranjit
2014-09-22
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.
Boron Nitride Nanotubes for Spintronics
Dhungana, Kamal B.; Pati, Ranjit
2014-01-01
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070
NASA Astrophysics Data System (ADS)
Hu, Feng-Xia; Qian, Xiao-Ling; Wang, Guang-Jun; Sun, Ji-Rong; Shen, Bao-Gen; Cheng, Zhao-Hua; Gao, Ju
2005-11-01
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fe1-xCox)11.9Si1.1 (x=0.04, 0.06 and 0.08) with Curie temperatures of 243 K, 274 K and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below TC, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above TC. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above TC, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.
Role of polar compensation in interfacial ferromagnetism of LaNiO3/CaMnO3 superlattices
NASA Astrophysics Data System (ADS)
Flint, C. L.; Jang, H.; Lee, J.-S.; N'Diaye, A. T.; Shafer, P.; Arenholz, E.; Suzuki, Y.
2017-07-01
Polar compensation can play an important role in the determination of interfacial electronic and magnetic properties in oxide heterostructures. Using x-ray absorption spectroscopy, x-ray magnetic circular dichroism, bulk magnetometry, and transport measurements, we find that interfacial charge redistribution via polar compensation is essential for explaining the evolution of interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices as a function of LaNiO3 layer thickness. In insulating superlattices (four unit cells or less of LaNiO3), magnetism is dominated by Ni-Mn superexchange, while itinerant electron-based Mn-Mn double exchange plays a role in thicker metallic superlattices. X-ray magnetic circular dichroism and resonant x-ray scattering show that Ni-Mn superexchange contributes to the magnetization even in metallic superlattices. This Ni-Mn superexchange interaction can be explained in terms of polar compensation at the LaNiO3-CaMnO3 interface. These results highlight the different mechanisms responsible for interfacial ferromagnetism and the importance of understanding compensation due to polar mismatch at oxide-based interfaces when engineering magnetic properties.
NASA Astrophysics Data System (ADS)
Cheng, Shufan; Cobas, Enrique; van't Erve, Olaf M. J.; Jonker, Berend T.
2016-03-01
Magnetic multilayer stacks incorporating several layers of graphene have been predicted to produce very high magnetoresistance and high conductivity, a combination of properties that would be useful in magnetic sensors and future spin-based data storage and processing technologies such as MRAM. To realize the theoretically modeled heterostructures and probe their properties, a clean, high-quality graphene-ferromagnet interface, such as one that results from CVD of graphene directly on ferromagnetic films, is required. However, past works using Ni and Co films for CVD of graphene employ the ferromagnetic film as a sacrificial layer to be dissolved after graphene growth and ignore changes to its morphology and magnetic properties. Here we investigated the effect of graphene CVD growth conditions on the properties of Co, Ni, Co90Fe10 and Ni80Fe20 ferromagnetic films. The magnetic films were grown by dc magnetron sputtering with different growth conditions onto c-Al2O3, Si/AlN and MgO substrates. The crystalline orientation, surface morphology/roughness and magnetic properties of the films were measured using X-ray diffraction, atomic force microscopy and vibrating sample magnetometry, respectively. Cobalt films grown at 500 °C were found to be hcp and heteroepitaxial on c-Al2O3. CoFe, Ni, and NiFe films on c-Al2O3 were found to be fcc and to be (111) textured but with grains having in-plane rotation differing by 60°. The CoFe and NiFe films on c-Al2O3 retained their small coercivity and high remanence while the pure Co and Ni films exhibited much smaller remanence after graphene growth, making them unsuitable for magnetic memory technologies. Films on Si/AlN were found to have the same rotational domains as those on sapphire c-Al2O3. The NiFe films on (111) MgO were found to be mostly single domain.
Structural and Magnetic Properties of Transition-Metal-Doped Zn 1-x Fe x O.
Abdel-Baset, T A; Fang, Yue-Wen; Anis, B; Duan, Chun-Gang; Abdel-Hafiez, Mahmoud
2016-12-01
The ability to produce high-quality single-phase diluted magnetic semiconductors (DMS) is the driving factor to study DMS for spintronics applications. Fe-doped ZnO was synthesized by using a low-temperature co-precipitation technique producing Zn 1-x Fe x O nanoparticles (x= 0, 0.02, 0.04, 0.06, 0.08, and 0.1). Structural, Raman, density functional calculations, and magnetic studies have been carried out in studying the electronic structure and magnetic properties of Fe-doped ZnO. The results show that Fe atoms are substituted by Zn ions successfully. Due to the small ionic radius of Fe ions compared to that of a Zn ions, the crystal size decreases with an increasing dopant concentration. First-principle calculations indicate that the charge state of iron is Fe (2+) and Fe (3+) with a zinc vacancy or an interstitial oxygen anion, respectively. The calculations predict that the exchange interaction between transition metal ions can switch from the antiferromagnetic coupling into its quasi-degenerate ferromagnetic coupling by external perturbations. This is further supported and explains the observed ferromagnetic bahaviour at magnetic measurements. Magnetic measurements reveal that decreasing particle size increases the ferromagnetism volume fraction. Furthermore, introducing Fe into ZnO induces a strong magnetic moment without any distortion in the geometrical symmetry; it also reveals the ferromagnetic coupling.
Electric-field-induced extremely large change in resistance in graphene ferromagnets
NASA Astrophysics Data System (ADS)
Song, Yu
2018-01-01
A colossal magnetoresistance (˜100×10^3% ) and an extremely large magnetoresistance (˜1×10^6% ) have been previously explored in manganite perovskites and Dirac materials, respectively. However, the requirement of an extremely strong magnetic field (and an extremely low temperature) makes them not applicable for realistic devices. In this work, we propose a device that can generate even larger changes in resistance in a zero-magnetic field and at a high temperature. The device is composed of graphene under two strips of yttrium iron garnet (YIG), where two gate voltages are applied to cancel the heavy charge doping in the YIG-induced half-metallic ferromagnets. By calculations using the Landauer-Büttiker formalism, we demonstrate that, when a proper gate voltage is applied on the free ferromagnet, changes in resistance up to 305×10^6% (16×10^3% ) can be achieved at the liquid helium (nitrogen) temperature and in a zero magnetic field. We attribute such a remarkable effect to a gate-induced full-polarization reversal in the free ferromagnet, which results in a metal-state to insulator-state transition in the device. We also find that the proposed effect can be realized in devices using other magnetic insulators, such as EuO and EuS. Our work should be helpful for developing a realistic switching device that is energy saving and CMOS-technology compatible.
Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11
NASA Astrophysics Data System (ADS)
Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.
2002-04-01
``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.
Electric Field-Dependent Photoluminescence in Multilayer Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Stanev, T. K.; Henning, A.; Sangwan, V. K.; Speiser, N.; Stern, N. P.; Lauhon, L. J.; Hersam, M. C.; Wang, K.; Valencia, D.; Charles, J.; Kubis, T. C.
Owing to interlayer coupling, transition metal dichalcogenides (TMDCs) such as MoS2 exhibit strong layer dependence of optical and electronic phenomena such as the band gap and trion and neutral exciton population dynamics. Here, we systematically measure the effect of layer number on the optical response of multilayer MoS2 in an external electric field, observing field and layer number dependent emission energy and photoluminescence intensity. These effects are studied in few (2-6) and bulk (11 +) layered structures at low temperatures. In MoS2\\ the observed layer dependence arises from several mechanisms, including interlayer charge transfer, band structure, Stark Effect, Fermi level changes, screening, and surface effects, so it can be challenging to isolate how these mechanisms impact the observables. Because it behaves like a stack of weakly interacting monolayers rather than multilayer or bulk, ReS2 provides a comparison to traditional TMDCs to help isolate the underlying physical mechanisms dictating the response of multilayers. This work is supported by the National Science Foundation MRSEC program (DMR-1121262), and the 2-DARE Grant (EFRI-1433510). N.P.S. is an Alfred P. Sloan Research Fellow.
Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...
2016-01-13
In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less
Molecular adsorption and multilayer growth of pentacene on Cu(100):Layer structure and energetics
NASA Astrophysics Data System (ADS)
Satta, M.; Iacobucci, S.; Larciprete, R.
2007-04-01
We used the partial charge tight binding method to perform a full structure optimization to determine equilibrium adsorption geometries, energetics, and local charge redistribution for molecular adsorption and multilayer growth of pentacene on Cu(100). We found that single molecule adsorption induces only a localized perturbation of the metal lattice which is limited to the topmost layers. At saturation coverage four stable topologies (Brick, Wave, Lines and Zigzag) were identified, all based on pentacene molecules lying flat on the metal surface and with the central phenyl ring adsorbed in top position. Only two (Brick and Wave) out of the four structures are able to sustain multilayer growth. In both cases, assembling beyond the second layer corresponds to a transition from the flat to a tilted geometry, in which the pentacenes adopt a face-plane-face arrangement leading to a herringbone structure. The energetics of the different structure are reported as a function of the molecular number density of the pentacene multilayer by calculating cohesive, stress, and electrostatic energies. The dominant tilted molecular orientation in the pentacene multilayer is in agreement with the average tilt angle of 65° between the molecular plane and the Cu surface derived by near edge x-ray absorption spectroscopy of a four monolayer pentacene film deposited on Cu(100).
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2006-03-01
Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661 (2003). [2] S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nature Mater. 3, 862 (2004). [3] C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang and S.S.P. Parkin, Phys. Rev. Lett. 94, 247203 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
Ghobadi, Amir; Hajian, Hodjat; Dereshgi, Sina Abedini; Bozok, Berkay; Butun, Bayram; Ozbay, Ekmel
2017-11-08
In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al 2 O 3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.
Zhao, K; Deng, Z; Wang, X C; Han, W; Zhu, J L; Li, X; Liu, Q Q; Yu, R C; Goko, T; Frandsen, B; Liu, Lian; Ning, Fanlong; Uemura, Y J; Dabkowska, H; Luke, G M; Luetkens, H; Morenzoni, E; Dunsiger, S R; Senyshyn, A; Böni, P; Jin, C Q
2013-01-01
Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga(3+),Mn(2+)) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba(1-x)K(x))(Zn(1-y)Mn(y))(2)As(2), which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr(2)Si(2) (122) structure. Holes are doped via (Ba(2+), K(1+)) replacements, while spins via isovalent (Zn(2+),Mn(2+)) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with T(C) up to 180 K, which is comparable to the highest T(C) for (Ga,Mn)As and significantly enhanced from T(C) up to 50 K of the '111'-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn)(2)As(2) shares the same 122 crystal structure with semiconducting BaZn(2)As(2), antiferromagnetic BaMn(2)As(2) and superconducting (Ba,K)Fe(2)As(2), which makes them promising for the development of multilayer functional devices.
Ferromagnetism observed in silicon-carbide-derived carbon
NASA Astrophysics Data System (ADS)
Peng, Bo; Zhang, Yuming; Wang, Yutian; Guo, Hui; Yuan, Lei; Jia, Renxu
2018-02-01
Carbide-derived carbon (CDC) is prepared by etching high purity 4H-SiC single crystals in a mixed atmosphere of 5% Cl2 and 95% Ar for 120 min and 240 min. The secondary ion mass spectroscopy (SIMS) bulk analysis technique excludes the possibility of ferromagnetic transition metal (TM) contamination arising during the experimental process. The paramagnetic and ferromagnetic components are separated from the measured magnetization-magnetic field curves of the samples. Through the use of the Brillouin function, paramagnetic centers carrying a magnetic moment of ˜1.3 μB are fitted. A resolvable hysteresis loop in the low magnetic field area is preserved at room temperature. The temperature dependence of the relative intensity of the Lorentzian-like electron spin resonance (ESR) line observed by electron spin spectroscopy reveals the existence of exchange interaction between the localized paramagnetic centers. First-principles calculations show the dominant configuration of defects in the graphitic CDC films. By calculating the energy difference between the antiferromagnetic and ferromagnetic phases, we deduce that the ferromagnetic coupling is sensitive to the concentration of defects.
NASA Astrophysics Data System (ADS)
Jia, S.; Bud'Ko, S. L.; Samolyuk, G. D.; Canfield, P. C.
2007-05-01
One of the historic goals of alchemy was to turn base elements into precious ones. Although the practice of alchemy has been superseded by chemistry and solid-state physics, the desire to dramatically change or tune the properties of a compound, preferably through small changes in stoichiometry or composition, remains. This desire becomes even more compelling for compounds that can be tuned to extremes in behaviour. Here, we report that the RT2Zn20 (R=rare earth and T=transition metal) family of compounds manifests exactly this type of versatility, even though they are more than 85% Zn. By tuning T, we find that YFe2Zn20 is closer to ferromagnetism than elemental Pd, the classic example of a nearly ferromagnetic Fermi liquid. By submerging Gd in this highly polarizable Fermi liquid, we tune the system to a remarkably high-temperature ferromagnetic (TC=86K) state for a compound with less than 5% Gd. Although this is not quite turning lead into gold, it is essentially tuning Zn to become a variety of model compounds.
De Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; ...
2014-11-24
The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. In this paper, we show that, even in the absence of direct Cu–O–Mn covalent bonding, the interfacial CuO 2 planes of superconducting La 1.85Sr 0.15CuO 4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La 0.66Sr 0.33MnO 3 ferromagnet.more » Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. Finally, the Dzyaloshinskii–Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO 2 planes into the superconductor, eventually depressing its critical temperature.« less
Normal-incidence reflectance of optimized W/B4C x-ray multilayers in the range 1.4 nm < λ < 2.4 nm
NASA Astrophysics Data System (ADS)
Windt, David L.; Gullikson, Eric M.; Walton, Christopher C.
2002-12-01
We have fabricated W/B4C multilayers having periods in the range d = 0.8-1.2 nm and measured their soft-x-ray performance near normal incidence in the wavelength range 1.4 < λ < 2.4 nm. By adjusting the fractional layer thickness of W we have produced structures having interface widths σ ~ 0.29 nm (i.e., as determined from normal-incidence reflectometry), thus having optimal soft-x-ray performance. We describe our results and discuss their implications, particularly with regard to the development of short-wavelength normal-incidence x-ray optics.
Pauling, Linus; Kamb, Barclay
1985-01-01
The statistical resonating-valence-bond theory of metals is applied in the purely theoretical calculation of the composition of the Ni-Cu alloy at the foot of the curve of saturation ferromagnetic moment, which marks the boundary between hypoelectronic and hyperelectronic metals and determines the value of the number of metallic orbitals per atom. The results, Ni44Cu56 and 0.722 metallic orbitals, agree with the observed values. This agreement provides strong support of the theory. PMID:16593633
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)
1995-01-01
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.
Pardo, Emilio; Ferrando-Soria, Jesús; Dul, Marie-Claire; Lescouëzec, Rodrigue; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Cañadillas-Delgado, Laura; Pasán, Jorge; Ruiz-Pérez, Catalina
2010-11-15
Double-stranded copper(II) string complexes of varying nuclearity, from di- to tetranuclear species, have been prepared by the Cu(II)-mediated self-assembly of a novel family of linear homo- and heteropolytopic ligands that contain two outer oxamato and either zero (1 b), one (2 b), or two (3 b) inner oxamidato donor groups separated by rigid 2-methyl-1,3-phenylene spacers. The X-ray crystal structures of these Cu(II) (n) complexes (n=2 (1 d), 3 (2 d), and 4 (3 d)) show a linear array of metal atoms with an overall twisted coordination geometry for both the outer CuN(2)O(2) and inner CuN(4) chromophores. Two such nonplanar all-syn bridging ligands 1 b-3 b in an anti arrangement clamp around the metal centers with alternating M and P helical chiralities to afford an overall double meso-helicate-type architecture for 1 d-3 d. Variable-temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 d-3 d show the occurrence of S=nS(Cu) (n=2-4) high-spin ground states that arise from the moderate ferromagnetic coupling between the unpaired electrons of the linearly disposed Cu(II) ions (S(Cu)=1/2) through the two anti m-phenylenediamidate-type bridges (J values in the range of +15.0 to 16.8 cm(-1)). Density functional theory (DFT) calculations for 1 d-3 d evidence a sign alternation of the spin density in the meta-substituted phenylene spacers in agreement with a spin polarization exchange mechanism along the linear metal array with overall intermetallic distances between terminal metal centers in the range of 0.7-2.2 nm. Cyclic voltammetry (CV) and rotating-disk electrode (RDE) electrochemical measurements for 1 d-3 d show several reversible or quasireversible one- or two-electron steps that involve the consecutive metal-centered oxidation of the inner and outer Cu(II) ions (S(Cu)=1/2) to diamagnetic Cu(III) ones (S(Cu)=0) at relatively low formal potentials (E values in the range of +0.14 to 0.25 V and of +0.43 to 0.67 V vs. SCE, respectively). Further developments may be envisaged for this family of oligo-m-phenyleneoxalamide copper(II) double mesocates as electroswitchable ferromagnetic 'metal-organic wires' (MOWs) on the basis of their unique ferromagnetic and multicenter redox behaviors.
Room temperature ferromagnetism in Fe-doped CuO nanoparticles.
Layek, Samar; Verma, H C
2013-03-01
The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.
Developing Multilayer Thin Film Strain Sensors With High Thermal Stability
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III
2006-01-01
A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.
2015-04-28
We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less
NASA Astrophysics Data System (ADS)
Chung, Seok-Hwan
This work focuses on two largely unexplored phenomena in micromagnetics: the temperature-driven paramagnetic insulator to ferromagnetic (FM) metallic phase transition in perovskite manganite and ballistic magnetoresistance in spin-polarized nanocontacts. To investigate the phase transition, an off-the-shelf commercial scanning force microscope was redesigned for operation at temperatures from 350 K to 100 K. This adaptation is elaborated in this thesis. Using this system, both ferromagnetic and charge-ordered domain structures of (La 1-xPrx)0.67Ca0.33MnO3 thin film were observed by magnetic force microscopy (MFM) and electric force microscopy (EFM) operated in the vicinity of the peak resistance temperature (Tp). Predominantly in-plane oriented FM domains of sub-micrometer size emerge below Tp and their local magnetic moment increased as the temperature is reduced. Charge-ordered insulating regions show a strong electrostatic interaction with an EFM tip at a few degrees above Tp and the interaction correlates well with the temperature dependence of resistivity of the film. Cross-correlation analysis between topography and magnetic structure on several substrates indicates FM domains form on the flat regions of the surface, while charge ordering occurs at surface protrusions. In the investigation of ballistic magnetoresistance, new results on half-metallic ferromagnets formed by atomic or nanometer contacts of CrO2-CrO 2 and CrO2-Ni are presented showing magnetoconductance as high as 400%. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that magnetoconductance of nanocontacts follows a universal mechanism. If the maximum magnetoconductance is normalized to unity and the conductance is scaled with the resistivity of the material, then all data points fall onto a universal curve independent of the contact material and the transport mechanism. The analysis has been applied to all available magnetoconductance data of magnetic nanocontacts in the literature. The results are in agreement with a theory that takes into account only the spin-scattering within a magnetic domain wall and are independent of whether the transport is ballistic or diffusive.
Biró, L. P.; Kertész, K.; Horváth, E.; Márk, G. I.; Molnár, G.; Vértesy, Z.; Tsai, J.-F.; Kun, A.; Bálint, Zs.; Vigneron, J. P.
2010-01-01
An unusual, intercalated photonic nanoarchitecture was discovered in the elytra of Taiwanese Trigonophorus rothschildi varians beetles. It consists of a multilayer structure intercalated with a random distribution of cylindrical holes normal to the plane of the multilayer. The nanoarchitectures were characterized structurally by scanning electron microscopy and optically by normal incidence, integrated and goniometric reflectance measurements. They exhibit an unsaturated specular and saturated non-specular component of the reflected light. Bioinspired, artificial nanoarchitectures of similar structure and with similar properties were realized by drilling holes of submicron size in a multilayer structure, showing that such photonic nanoarchitectures of biological origin may constitute valuable blueprints for artificial photonic materials. PMID:19933221
Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Jingtao; Zhou Sika; Li Haochuan
2010-07-10
Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.
Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.
Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang
2009-03-25
We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.
2012-01-01
We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144
LC and ferromagnetic resonance in soft/hard magnetic microwires
NASA Astrophysics Data System (ADS)
Tian, Bin; Vazquez, Manuel
2015-12-01
The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayle, Scott; Gupta, Tanuj; Davis, Sam
Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.
Metal oxide multilayer hard mask system for 3D nanofabrication
NASA Astrophysics Data System (ADS)
Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko
2018-02-01
We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.