Science.gov

Sample records for ferrous bisglycinate chelate

  1. Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate.

    PubMed

    Ferrari, Paola; Nicolini, Andrea; Manca, Maria Laura; Rossi, Giuseppe; Anselmi, Loretta; Conte, Massimo; Carpi, Angelo; Bonino, Ferruccio

    2012-09-01

    In cancer patients mild-moderate non-chemotherapy-induced iron deficiency anemia (IDA) is usually treated with oral iron salts, mostly ferrous sulfate. In this study, we compare efficacy and toxicity of oral ferrous bisglycinate chelate and ferrous sulfate in cancer patients with mild IDA. Twenty-four patients operated on for solid tumors (10 breast, 12 colorectal, 2 gastric), aged 61±10 years (range 45-75), with non-chemotherapy-induced hemoglobin (Hb) values between 10 and 12 g/dL and ferritin lower than 30 ng/mL were randomized to receive oral ferrous bisglycinate chelate, 28 mg per day for 20 days, and then 14 mg per day for 40 days (12 patients) (A group) or oral ferrous sulphate, 105 mg per day for 60 days (12 patients) (B group). Values of hemoglobin and ferritin obtained at diagnosis, 1 and 2 months from the beginning of treatment were compared. Adverse events (AEs) related to the two treatments were recorded. In the 12 patients treated with ferrous bisglycinate chelate, basal hemoglobin and ferritin values (mean±SD) were 11.6±0.8 g/dL and 16.1±8.0 ng/mL. After 2 months of treatment, they were 13.0±1.4 g/dL and 33.8±22.0 ng/mL, respectively (P=0.0003 and P=0.020). In the group treated with ferrous sulphate, hemoglobin and ferritin mean values were 11.3±0.6 g/dL and 19.0±6.4 ng/mL basally, and 12.7±0.70 g/dL and 40.8±28.1 ng/mL (P<0.0001 and P=0.017) after 2 months of treatment. AEs occurred in six cases. In all these six cases, two (17%) treated with ferrous bisglycinate chelate and four (33%) with ferrous sulphate, toxicity was grade 1. In conclusion, these data suggest that ferrous bisglycinate chelate has similar efficacy and likely lower GI toxicity than ferrous sulphate given at the conventional dose of 105 mg per day for the same time.

  2. Effect of supplementation with ferrous sulfate or iron bis-glycinate chelate on ferritin concentration in Mexican schoolchildren: a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Iron deficiency is one of the most common nutritional deficiencies worldwide. It is more prevalent when iron requirements are increased during pregnancy and during growth spurts of infancy and adolescence. The last stage in the process of iron depletion is characterized by a decrease in hemoglobin concentration, resulting in iron deficiency anemia. Iron deficiency, even before it is clinically identified as anemia, compromises the immune response, physical capacity for work, and intellectual functions such as attention level. Therefore, interventions addressing iron deficiency should be based on prevention rather than on treatment of anemia. The aim of this study was to compare short- and medium-term effects on ferritin concentration of daily supplementation with ferrous sulfate or iron bis-glycinate chelate in schoolchildren with iron deficiency but without anemia. Methods Two hundred schoolchildren from public boarding schools in Mexico City who had low iron stores as assessed by serum ferritin concentration but without anemia were randomly assigned to a daily supplement of 30 mg/day of elemental iron as ferrous sulfate or iron bis-glycinate chelate for 12 weeks. Iron status was evaluated at baseline, one week post-supplementation (short term), and 6 months (medium term) after supplementation. Results Ferritin concentration increased significantly between baseline and post-supplementation as well as between baseline and 6 months after supplementation. One week post-supplementation no difference was found in ferritin concentration between iron compounds, but 6 months after supplementation ferritin concentration was higher in the group that received bis-glycinate chelate iron. However, there is no difference in the odds for low iron storage between 6 months after supplementation versus the odds after supplementation; nor were these odds different by type of supplement. Hemoglobin concentration did not change significantly in either group after

  3. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols.

    PubMed

    Layrisse, M; García-Casal, M N; Solano, L; Barón, M A; Arguello, F; Llovera, D; Ramírez, J; Leets, I; Tropper, E

    2000-09-01

    This study was conducted to determine the bioavailability of iron amino acid chelate (ferrochel) added to fortify breads prepared from either precooked corn flour or white wheat flour + cheese and margarine compared with the same basal breakfast enriched with either ferrous sulfate or iron-EDTA. The inhibitory effect of phytate and polyphenols on iron absorption from ferrochel was also tested. A total of 74 subjects were studied in five experiments. Iron absorption from ferrochel was about twice the absorption from ferrous sulfate (P: < 0.05). When ferrous sulfate and ferrochel were administered together or in different meals, absorption from ferrochel was about twice the absorption from ferrous sulfate (P: < 0.05). Polyphenols present in coffee and tea inhibited iron absorption in a dose-dependent manner. American-type coffee did not modify iron absorption significantly, whereas both espresso-type coffee and tea reduced iron absorption from ferrochel by 50% (P: < 0. 05). Ferrochel partially prevented the inhibitory effect of phytates. Because of its high solubility in aqueous solutions even at pH 6, its low interactions with food and high absorption, ferrochel is a suitable compound for food fortification.

  4. Determination of the iron state in ferrous iron containing vitamins and dietary supplements: application of Mössbauer spectroscopy.

    PubMed

    Oshtrakh, M I; Milder, O B; Semionkin, V A

    2006-03-18

    Determination of the iron state in commercially manufactured iron containing vitamins and dietary supplements is important for evaluation of pharmaceuticals quality. Mössbauer (nuclear gamma-resonance) spectroscopy was used for analyzing the iron state in commercial pharmaceutical products containing ferrous fumarate (FeC(4)H(2)O(4)), ferrous sulfate (FeSO(4)), ferrous bisglycinate chelate (Ferrochel) and ferrous iron (hydrolyzed protein chelate). Mössbauer parameters and the iron states were determined for iron compounds in the studied pharmaceuticals. Various ferric and ferrous impurities were found in all of the commercial products. The quantities of ferric impurities exceeded the FDA limitation of 2% in products containing ferrous fumarate. The quantities of ferric impurities exceeded 58% and 30% in products containing ferrous bisglycinate chelate and ferrous iron (hydrolyzed protein chelate), respectively. The presence of ferrous and ferric impurities was not related to the ageing of the vitamins and dietary supplements. Two pharmaceutical products contained major iron compounds, the Mössbauer parameters of which did not correspond to the ferrous fumarate or ferrous bisglycinate chelate claimed by the manufacturer.

  5. Siderochelin, a new ferrous-ion chelating agent produced by Nocardia.

    PubMed

    Liu, W C; Fisher, S M; Wells, J S; Ricca, C S; Principe, P A; Trejo, W H; Bonner, D P; Gougoutos, J Z; Toeplitz, B K; Sykes, R B

    1981-07-01

    A new ferrous-ion chelating agent, siderochelin, was isolated from fermentation broths of Nocardia sp. SC 11,340. Siderochelin was produced by conventional submerged culture and purified by solvent extraction and recrystallization. The antibiotic was crystallized from acetonitrile as a mixture of diastereoisomers. The molecular formula of siderochelin was determined as C11H13N3O3 on the basis of elemental analysis and mass spectrometry, and the structure was elucidated by X-ray crystallography. The compound shows a broad spectrum of antimicrobial activity, being active against bacteria, fungi and protozoa.

  6. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    PubMed Central

    Huang, Saibo; Lin, Huimin; Deng, Shang-gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  7. Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti.

    PubMed

    Cho, Eunae; Choi, Jae Min; Kim, Hwanhee; Tahir, Muhammad Nazir; Choi, Youngjin; Jung, Seunho

    2013-04-01

    Iron is an essential nutrient for nitrogen-fixing legume root nodules, and the chelation of ferrous iron plays an important role in the mobility and availability of iron to the legume. In the present study, we investigated the iron-binding properties of low-molecular weight succinoglycans isolated from the nitrogen-fixing bacterium, Sinorhizobium meliloti. The low-molecular weight succinoglycans comprising three monomers (M1-M3), four dimers (D1-D4), and six trimers (T1-T6) of the succinoglycan repeating unit were purified by various chromatographic techniques. Interestingly, the colorimetric ferrozine method showed that the succinoglycans T6, M3, and D3 demonstrated a ferrous iron chelating ability of 83, 63, and 38 % per mg, respectively. The individual binding constants were determined as 43703, 2313, and 760 M(-1) for succinoglycans T6, M3, and D3 using ultraviolet-visible spectroscopy. The complexation of succinoglycan and ferrous iron can cause structural changes, which were analyzed by circular dichroism spectroscopy. Furthermore, the complex could provide antioxidant activity through an anti-Fenton reaction. These results demonstrate that the low-molecular weight succinoglycans can effectively modulate iron biochemistry as a novel ferrous iron-acquisition system of S. meliloti.

  8. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  9. Preparation and Bioavailability Analysis of Ferrous Bis Alanine Chelate as a New Micronutrient for Treatment of Iron Deficiency Anemia.

    PubMed

    Zargaran, Marzieh; Saadat, Ebrahim; Dinarvand, Rassoul; Sharifzadeh, Mohammad; Dorkoosh, Farid

    2016-09-01

    Purpose: One of the most nutritional disorders around the world is iron deficiency. A novel iron compound was synthesized by chelating ferrous ions with alanine for prevention and treatment of iron deficiency anemia. Methods: The newly synthesized compound was characterized both qualitatively and quantitatively by Fourier Transform Infrared (FT-IR) spectroscopy. The bioavailability of newly synthesized iron micronutrient was evaluated in four groups of Wistar rats. The group I was a negative control group and the other three groups received three different iron formulations. After 14 days, the blood samples were taken and analyzed accordingly. Results: Calculations showed that more than 91.8% of iron was incorporated in the chelate formulation. In vivo studies showed that serum iron, total iron binding capacity and hemoglobin concentrations were significantly increased in group IV, which received ferrous bis alanine chelate compared with the negative control group (p<0.05) and also group II, which received ferrous sulfate.7H2O (p<0.05). It indicates that the new formulation considerably improves the blood iron status compared with the conventional iron compounds. There were no significant differences (p<0.05) in the serum iron between group IV and group III, which received ferrous bis glycine. Conclusion: The results showed better bioavailability of ferrous bis alanine as a new micronutrient for treatment of iron deficiency anemia in comparison with ferrous sulfate. Ferrous bis alanine could be considered as a suitable supplement for prevention and treatment of iron deficiency anemia.

  10. Preparation and Bioavailability Analysis of Ferrous Bis Alanine Chelate as a New Micronutrient for Treatment of Iron Deficiency Anemia

    PubMed Central

    Zargaran, Marzieh; Saadat, Ebrahim; Dinarvand, Rassoul; Sharifzadeh, Mohammad; Dorkoosh, Farid

    2016-01-01

    Purpose: One of the most nutritional disorders around the world is iron deficiency. A novel iron compound was synthesized by chelating ferrous ions with alanine for prevention and treatment of iron deficiency anemia. Methods: The newly synthesized compound was characterized both qualitatively and quantitatively by Fourier Transform Infrared (FT-IR) spectroscopy. The bioavailability of newly synthesized iron micronutrient was evaluated in four groups of Wistar rats. The group I was a negative control group and the other three groups received three different iron formulations. After 14 days, the blood samples were taken and analyzed accordingly. Results: Calculations showed that more than 91.8% of iron was incorporated in the chelate formulation. In vivo studies showed that serum iron, total iron binding capacity and hemoglobin concentrations were significantly increased in group IV, which received ferrous bis alanine chelate compared with the negative control group (p<0.05) and also group II, which received ferrous sulfate.7H2O (p<0.05). It indicates that the new formulation considerably improves the blood iron status compared with the conventional iron compounds. There were no significant differences (p<0.05) in the serum iron between group IV and group III, which received ferrous bis glycine. Conclusion: The results showed better bioavailability of ferrous bis alanine as a new micronutrient for treatment of iron deficiency anemia in comparison with ferrous sulfate. Ferrous bis alanine could be considered as a suitable supplement for prevention and treatment of iron deficiency anemia. PMID:27766225

  11. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage.

    PubMed

    Zhuo, Zhao; Fang, Shenglin; Hu, Qiaoling; Huang, Danping; Feng, Jie

    2016-11-30

    The absorption of different iron sources is a trending research topic. Many studies have revealed that organic iron exhibits better bioavailability than inorganic iron, but the concrete underlying mechanism is still unclear. In the present study, we examined the differences in bioavailability of ferrous sulfate and ferrous glycinate in the intestines of SD rats using Illumina sequencing technology. Digital gene expression analysis resulted in the generation of almost 128 million clean reads, with expression data for 17,089 unigenes. A total of 123 differentially expressed genes with a |log2(fold change)| >1 and q-value < 0.05 were identified between the FeSO4 and Fe-Gly groups. Gene Ontology functional analysis revealed that these genes were involved in oxidoreductase activity, iron ion binding, and heme binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed relevant important pathways. In addition, the expression patterns of 9 randomly selected genes were further validated by qRT-PCR, which confirmed the digital gene expression results. Our study showed that the two iron sources might share the same absorption mechanism, and that differences in bioavailability between FeSO4 and Fe-Gly were not only in the absorption process but also during the transport and utilization process.

  12. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage

    PubMed Central

    Zhuo, Zhao; Fang, Shenglin; Hu, Qiaoling; Huang, Danping; Feng, Jie

    2016-01-01

    The absorption of different iron sources is a trending research topic. Many studies have revealed that organic iron exhibits better bioavailability than inorganic iron, but the concrete underlying mechanism is still unclear. In the present study, we examined the differences in bioavailability of ferrous sulfate and ferrous glycinate in the intestines of SD rats using Illumina sequencing technology. Digital gene expression analysis resulted in the generation of almost 128 million clean reads, with expression data for 17,089 unigenes. A total of 123 differentially expressed genes with a |log2(fold change)| >1 and q-value < 0.05 were identified between the FeSO4 and Fe-Gly groups. Gene Ontology functional analysis revealed that these genes were involved in oxidoreductase activity, iron ion binding, and heme binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed relevant important pathways. In addition, the expression patterns of 9 randomly selected genes were further validated by qRT-PCR, which confirmed the digital gene expression results. Our study showed that the two iron sources might share the same absorption mechanism, and that differences in bioavailability between FeSO4 and Fe-Gly were not only in the absorption process but also during the transport and utilization process. PMID:27901057

  13. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    SciTech Connect

    Liu, D.K.; Chang, S.G.

    1987-04-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide form of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistry relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.

  14. Combined NO/sub x//SO/sub 2/ removal from flue gas using ferrous chelates of SH-containing amino acids and alkali

    SciTech Connect

    Liu, D.K.; Chang, S.G.

    1987-01-01

    We report herein the use of ferrous chelates of SH-containing amino acids including cysteine, penicillamine, N-acetylcysteine, and N-acetylpenicillamine in neutral or alkaline solutions for the combined removal of NO and SO/sub 2/ in wet flue gas clean-up systems. These SH-containing amino acids not only can stabilize ferrous ions in alkaline solutions to promote the absorption of NO, but are also capable of rapidly reducing ferric ions formed during the scrubbing process back to ferrous ions. The disulfide from of the above amino acids can be reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting monomeric species. The chemistry relevant to the absorption of NO by the above ferrous chelates and the ligand regeneration process will be discussed.

  15. Use of ferrous chelates of SH-containing amino acids and peptides for the removal of NO/sub x/ and SO/sub 2/ from flue gas

    SciTech Connect

    Chang, S.G.; Littlejohn, D.; Liu, D.K.

    1988-11-01

    The use of ferrous complexes of SH-containing amino acids and peptides for the removal of NO and SO/sub 2/ in wet flue gas clean-up systems is reported. The ferrous chelates investigated in the present study include those of cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, glutathine, and cysteinylglycine. Compared to conventional chelates such as EDTA, these thioamino acids/peptides not only can stabilize ferrous ion in alkaline solutions to promote the absorption of NO but are also capable of rapidly reducing any ferric ions formed during the scrubbing process back to ferrous ions so that continual absorption of NO can be achieved. In the case of ferrous cysteine and ferrous penicillamine, most of the absorbed NO is reduced to N/sub 2/. The disulfide form of several of the thioamino acids/peptides produced upon oxidation can be conveniently reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting materials, thus making possible the recycling of the reagents.

  16. Structural, optical and dielectric studies of novel non-linear Bisglycine Lithium Nitrate piezoelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Sinha, Nidhi; Kumar, Binay

    2014-11-01

    The novel non-linear semiorganic Bisglycine Lithium Nitrate (BGLiN) single crystals were grown by slow evaporation technique. The structural analysis revealed that it belongs to non-centrosymmetric orthorhombic structure. The presence of various functional groups in the grown crystal was confirmed by FTIR and Raman analysis. Surface morphology of the grown crystal was studied by scanning electron microscopy. The optical studies show that crystal has good transmittance (more than 80%) in the entire visible region and a wide band gap (5.17 eV). The optical constants such as extinction coefficient (K), the reflectance (R) and refractive index (n) as a function of photon energy were calculated from the optical measurements. With the help of these optical constants the electric susceptibility (χc) and both the real (εr) and imaginary (εi) parts of the dielectric constants were also calculated which are required to develop optoelectronic devices. In photoluminescence studies, a broad emission band centered at 404 nm was found in addition to a small band at 352 nm. A broad transition (from 29 to 33 °C) was observed with low dielectric constant value. A high piezoelectric charge coefficient (d33) of 14 pC/N was measured at room temperature which implies its usefulness for various sensor applications. The second harmonic generation efficiency of crystal was found to be 1.5 times to that of KDP. From thermo gravimetric analysis and differential thermal analysis, thermal stability and melting point (246 °C) were investigated. The dielectric behavior, optical characterization, piezoelectric behavior and the non-linear optical properties of the Bisglycine Lithium Nitrate single crystals were reported for the first time which established the usefulness of these crystals for various piezo- and opto-electronics applications.

  17. Ferrous Sulfate (Iron)

    MedlinePlus

    Ferrous sulfate provides the iron needed by the body to produce red blood cells. It is used to ... Ferrous sulfate comes as regular, coated, and extended-release (long-acting) tablets; regular and extended-release capsules; and ...

  18. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  19. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous solution... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous gluconate. 184.1308 Section 184.1308 Food... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron...

  20. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous solution... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous gluconate. 184.1308 Section 184.1308 Food... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron...

  1. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous solution... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous gluconate. 184.1308 Section 184.1308 Food... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron...

  2. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ferrous sulfate or by heating freshly prepared ferrous carbonate with gluconic acid in aqueous solution... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous gluconate. 184.1308 Section 184.1308 Food... Specific Substances Affirmed as GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron...

  3. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in § 184.1311 of this chapter. (b) Specifications. Ferrous...

  4. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in § 184.1311 of this chapter. (b) Specifications. Ferrous...

  5. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in § 184.1311 of this chapter. (b) Specifications. Ferrous...

  6. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in § 184.1311 of this chapter. (b) Specifications. Ferrous...

  7. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in § 184.1311 of this chapter. (b) Specifications. Ferrous...

  8. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  9. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, Fe... pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate...

  10. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous...

  11. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous...

  12. 21 CFR 184.1308 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... is prepared by reacting hot solutions of barium or calcium gluconate with ferrous sulfate or by... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous gluconate. 184.1308 Section 184.1308 Food... GRAS § 184.1308 Ferrous gluconate. (a) Ferrous gluconate (iron (II) gluconate dihydrate,...

  13. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous sulfate. 184.1315 Section 184.1315 Food and... Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate... as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate...

  14. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous...

  15. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate.... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction...

  16. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate, C6H10FeO6, CAS Reg. No. 5905... reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with...

  17. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate.... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction...

  18. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate.... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction...

  19. Study of Vitamins and Dietary Supplements Containing Ferrous Fumarate and Ferrous Sulfate Using Moessbauer Spectroscopy

    SciTech Connect

    Oshtrakh, M. I.; Novikov, E. G.; Semionkin, V. A.; Dubiel, S. M.

    2010-07-13

    A study of several samples of vitamins and dietary supplements containing ferrous fumarate and ferrous sulfate was carried out using Moessbauer spectroscopy with a high velocity resolution. A presence of ferrous and ferric impurities was revealed. Small variations of Moessbauer hyperfine parameters were found for both ferrous fumarates and ferrous sulfates in the investigated medicines.

  20. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  1. Wastewater treatment using ferrous sulfate

    SciTech Connect

    Boetskaya, K.P.; Ioffe, E.M.

    1980-01-01

    Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

  2. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ferrous gluconate is the ferrous gluconate defined in the Food Chemicals Codex, 3d Ed. (1981), pp. 122-123... shall meet the specifications given in the Food Chemicals Codex, 3d Ed. (1981), which is incorporated...

  3. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ferrous gluconate is the ferrous gluconate defined in the Food Chemicals Codex, 3d Ed. (1981), pp. 122-123... shall meet the specifications given in the Food Chemicals Codex, 3d Ed. (1981), which is incorporated...

  4. Efficacy and safety of ferrous asparto glycinate in the management of iron deficiency anaemia in pregnant women.

    PubMed

    Kamdi, S P; Palkar, P J

    2015-01-01

    The aim of the present investigation was to compare the efficacy and safety of oral ferrous asparto glycinate and ferrous ascorbate in pregnant women with iron deficiency anaemia (IDA). We performed a double blind, prospective, randomised, multicentre, parallel group comparative clinical study at three different centres in India. A total of 73 pregnant women at 12-26 weeks' gestation were divided into two arms. While one group received ferrous ascorbate, another group was treated with ferrous asparto glycinate for a period of 28 days. The mean rise in haemoglobin and ferritin levels on day 14 and 28 was evaluated. At both time points, significantly higher levels of haemoglobin and ferritin were noticed with ferrous asparto glycinate treatment as compared with ferrous ascorbate. Our results showed that ferrous asparto glycinate is an effective iron-amino acid chelate in the management of IDA in pregnant women as compared with ferrous ascorbate. Nevertheless, additional large scale prospective, randomised trials are warranted to confirm the findings of the present efficacy trial, and also to find out the anaemia eradication rate.

  5. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1976-11-01

    ii TABLE OF CONTENTS ABSTRACT .......................... Introduction ........................ Continuous Rheocasting ...ferrous alloys is fully and reliably operational. The Continuous Rheocaster works dependably in production runs in which typically up to 500 pounds... Rheocast stainless steel and the initiation of large scale Thixocasting runs to test actual die life. More than 3000 pounds of Rheocast stainless

  6. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  7. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  8. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  9. 46 CFR 148.260 - Ferrous metal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ferrous metal. 148.260 Section 148.260 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.260 Ferrous metal. (a... waters of United States. (b) Ferrous metal may not be stowed or transported in bulk unless the...

  10. Effect of iron chelators on placental uptake and transfer of iron in rat

    SciTech Connect

    Wong, C.T.; McArdle, H.J.; Morgan, E.H.

    1987-05-01

    The uptake of radiolabeled transferrin and iron by the rat placenta has been studied using two approaches. The first involved injection of a ferrous or ferric iron chelator followed by injection of label. Neither chelator decreased the amount of labelled transferrin in the placenta after 2-h incubation and only bipyridine, a ferrous iron chelator, inhibited iron transport to the fetus. Deferoxamine (DFO), a ferric iron chelator, had no effect on iron transport to the fetus but reduced iron uptake by the liver. Both bipyridine and DFO increased iron excretion into the gut and by the urinary tract to the same degree into the gut, but there was a 10-fold greater urinary excretion with bipyridine than with DFO. Injection of iron attached to the chelators showed that neither bipyridine nor DFO could donate iron to the fetus as efficiently as transferrin. The mechanism involved was further investigated by studying the effect of the chelators on uptake of transferrin-bound iron by placental cells in culture. DFO inhibited iron accumulation more effectively than bipyridine in the cultured cells. The effect was not due to a decrease in the cycling time of the receptor. The results can be explained if the iron is released from the transferrin in intracellular vesicles in the ferrous form, where it may be chelated by bipyridine and prevented from passing to the fetus or converted to the ferric form once it is inside the cell matrix.

  11. Mineral resource of the month: ferrous slag

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on mineral resource ferrous slag. Ferrous slag is produced through the addition of materials such as limestone and dolomite to blast and steel furnaces to remove impurities from iron ore and to lower the heat requirements for processes in iron and steel making. It is stated that the method of cooling is important for the market uses and value of ferrous slag. Some types of slag can be used in construction, glass manufacturing and thermal insulation.

  12. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  13. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  14. Study of Vitamins and Dietary Supplements Containing Ferrous Fumarate and Ferrous Sulfate Using Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Novikov, E. G.; Dubiel, S. M.; Semionkin, V. A.

    2010-07-01

    A study of several samples of vitamins and dietary supplements containing ferrous fumarate and ferrous sulfate was carried out using Mössbauer spectroscopy with a high velocity resolution. A presence of ferrous and ferric impurities was revealed. Small variations of Mössbauer hyperfine parameters were found for both ferrous fumarates and ferrous sulfates in the investigated medicines.

  15. The Rules of Ferrous Metallurgy

    PubMed Central

    2010-01-01

    The ways in which the sciences have been delineated and categorized throughout history provide insights into the formation, stabilization, and establishment of scientific systems of knowledge. The Dresdener school’s approach for explaining and categorizing the genesis of the engineering disciplines is still valid, but needs to be complemented by further-reaching methodological and theoretical reflections. Pierre Bourdieu’s theory of social practice is applied to the question of how individual agents succeed in influencing decisively a discipline’s changing object orientation, institutionalisation and self-reproduction. Through the accumulation of social, cultural and economic capital, they succeed in realising their own organisational ideas and scientific programs. Key concepts for the analysis include the struggle for power and resources, monopolies of interpretation, and the degree of autonomy. A case study from the Aachener Technische Hochschule shows that the consolidation of ferrous metallurgy can be conceived as a symbolical struggle between Fritz Wüst, professor for ferrous metallurgy, and the German Iron and Steel Institute, leading to a construction of a system of differences in which scientists accepted being scientists rather than entrepreneurs, and entrepreneurs accepted becoming entrepreneurs and renounced science.

  16. Iron chelators target both proliferating and quiescent cancer cells

    PubMed Central

    Fryknäs, Mårten; Zhang, Xiaonan; Bremberg, Ulf; Senkowski, Wojciech; Olofsson, Maria Hägg; Brandt, Peter; Persson, Ingmar; D’Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Schughart, Leoni Kunz; Linder, Stig; Larsson, Rolf

    2016-01-01

    Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells. PMID:27924826

  17. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ferrous sulfate and sodium fumarate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous fumarate. 184.1307d Section 184.1307d Food... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II)...

  18. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  19. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ferrous sulfate and sodium fumarate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous fumarate. 184.1307d Section 184.1307d Food... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II)...

  20. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  1. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ferrous sulfate and sodium fumarate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous fumarate. 184.1307d Section 184.1307d Food... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II)...

  2. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  3. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  4. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ferrous sulfate and sodium fumarate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous fumarate. 184.1307d Section 184.1307d Food... Specific Substances Affirmed as GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II)...

  5. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  6. 21 CFR 184.1307c - Ferrous citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... citrate with ferrous sulfate or by direct action of citric acid on iron filings. (b) The ingredient must... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous citrate. 184.1307c Section 184.1307c Food... GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II) citrate, (C6H6FeO7), CAS Reg....

  7. 21 CFR 184.1307d - Ferrous fumarate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... produce a yellow streak when crushed. It is prepared by admixing hot solutions of ferrous sulfate and... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous fumarate. 184.1307d Section 184.1307d Food... GRAS § 184.1307d Ferrous fumarate. (a) Ferrous fumarate (iron (II) fumarate, (C4H2FeO4), CAS Reg....

  8. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  9. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  10. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  11. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferrous gluconate. 582.5308 Section 582.5308 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  12. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  13. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferrous gluconate. 582.5308 Section 582.5308 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  14. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  15. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  16. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  17. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferrous gluconate. 582.5308 Section 582.5308 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  18. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  19. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  20. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferrous gluconate. 582.5308 Section 582.5308 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  1. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  2. 21 CFR 582.5308 - Ferrous gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous gluconate. 582.5308 Section 582.5308 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  3. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  4. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  5. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  6. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this color additive is not necessary for the protection of the public health, and therefore batches... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.../federal_register/code_of_federal_regulations/ibr_locations.html. (b) Specifications. Ferrous...

  7. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this color additive is not necessary for the protection of the public health, and therefore batches... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.../federal_register/code_of_federal_regulations/ibr_locations.html. (b) Specifications. Ferrous...

  8. 21 CFR 73.160 - Ferrous gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this color additive is not necessary for the protection of the public health, and therefore batches... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.../federal_register/code_of_federal_regulations/ibr_locations.html. (b) Specifications. Ferrous...

  9. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous ascorbate. 184.1307a Section 184.1307a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Listing of Specific Substances Affirmed as GRAS § 184.1307a Ferrous ascorbate. (a) Ferrous ascorbate...

  10. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous ascorbate. 184.1307a Section 184.1307a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1307a Ferrous ascorbate. (a) Ferrous ascorbate (CAS Reg. No. 24808-52-4) is a...

  11. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferrous ascorbate. 184.1307a Section 184.1307a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Listing of Specific Substances Affirmed as GRAS § 184.1307a Ferrous ascorbate. (a) Ferrous ascorbate...

  12. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous ascorbate. 184.1307a Section 184.1307a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Listing of Specific Substances Affirmed as GRAS § 184.1307a Ferrous ascorbate. (a) Ferrous ascorbate...

  13. 21 CFR 184.1307a - Ferrous ascorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous ascorbate. 184.1307a Section 184.1307a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1307a Ferrous ascorbate. (a) Ferrous ascorbate (CAS Reg....

  14. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ferrous materials. 56.60-3 Section 56.60-3 Shipping... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material....

  15. 46 CFR 56.60-3 - Ferrous materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ferrous materials. 56.60-3 Section 56.60-3 Shipping... APPURTENANCES Materials § 56.60-3 Ferrous materials. (a) Ferrous pipe used for salt water service must be protected against corrosion by hotdip galvanizing or by the use of extra heavy schedule material....

  16. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy.

  17. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  18. Chelation of cadmium.

    PubMed Central

    Andersen, O

    1984-01-01

    The toxicity of cadmium is determined by chelation reactions: in vivo, Cd2+ exists exclusively in coordination complexes with biological ligands, or with administered chelating agents. The Cd2+ ion has some soft character, but it is not a typical soft ion. It has a high degree of polarizability, and its complexes with soft ligands have predominantly covalent bond characteristics. Cd2+ forms the most stable complexes with soft donor atoms (S much greater than N greater than 0). The coordination stereochemistry of Cd2+ is unusually varied, including coordination numbers from 2 to 8. Even though the Cd2+ ion is a d10 ion, disturbed coordination geometries are often seen. Generally, the stability of complexes increases with the number of coordination groups contributed by the ligand; consequently, complexes of Cd2+ with polydentate ligands containing SH groups are very stable. Cd2+ in metallothionein (MT) is coordinated with 4 thiolate groups, and the log stability constant is estimated to 25.5. Complexes between Cd2+ and low molecular weight monodentate or bidentate ligands, e.g., free amino acids (LMW-Cd), seem to exist very briefly, and Cd2+ is rapidly bound to high molecular weight proteins, mainly serum albumin. These complexes (HMW-Cd) are rapidly scavenged from blood, mainly by the liver, and Cd2+ is redistributed to MT. After about 1 day the Cd-MT complex (MT-Cd) almost exclusively accounts for the total retained dose of Cd2+, independent of the route of exposure. MT-Cd is slowly transferred to and accumulated in kidney cortex. The acute toxicity and interorgan distribution of parenterally administered Cd2+ are strongly influenced by preceding MT induction, or decreased capacity for MT synthesis; however, the gastrointestinal (GI) uptake of Cd2+ seems unaffected by preceding MT induction resulting in considerable capacity for Cd2+ chelation in intestinal mucosa, and this finding indicates that endogenous MT is not involved in Cd2+ absorption. The toxicity of

  19. [Arteriosclerosis and chelate therapy].

    PubMed

    Nissel, H

    1986-11-30

    Based on a case history the therapeutic value of an iv-chelate therapy in arteriosclerosis is discussed. Ethylenediaminetetraacetate (EDTA) is used as a standard regime in the treatment of poisoning with heavy metals. The usefulness of EDTA in arteriosclerosis is doubtful: some authors suppose, that Ca-deposits are removed from arteriosclerotic lesions. This concept has not yet been proven by in-vivo experiments. Severe side effects such as hypocalcemia may cause the death of a patient under treatment. Therefore no real indications exist for treatment of arteriosclerosis with EDTA.

  20. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  1. Inhibition of DNA synthesis in CCL 39 cells by impermeable iron chelators.

    PubMed

    Alcaín, F J; Löw, H; Crane, F L

    1997-02-01

    The synthesis of DNA in CCl 39 cells is inhibited by the presence of the Fe2+ chelator bathophenanthroline disulfonate (BPS) when growth is stimulated by thrombin EGF plus insulin, but not by fetal calf serum. The presence of transferrin and Fe3+ in fetal calf serum can be the basis for lack of BPS effect with serum. The impermeable Fe3+ chelator Tiron does not, by itself, inhibit growth factor induced DNA synthesis, but it induces together with BPS inhibition on fetal calf serum induced DNA synthesis. The combined effect of BPS and Tiron is similar to inhibition of DNA synthesis by impermeable polyvalent DTPA which can chelate both Fe2+ and Fe3+ but does not inhibit ribonucleotide reductase in intact cells. Ferrous iron that bind BPS can relieve the inhibition at stoichiometric concentration. Ferric iron also prevents the inhibition even though it does not bind BPS. BPS does not inhibit DNA synthesis in HeLa cells. BPS reacts with iron from CCl 39 cells but not from HeLa cells. Data show that iron available for impermeable external chelators is in the ferrous state, and that exogenous iron should be reduced before it reverses the inhibition.

  2. A contemporary microbially maintained subglacial ferrous "ocean".

    PubMed

    Mikucki, Jill A; Pearson, Ann; Johnston, David T; Turchyn, Alexandra V; Farquhar, James; Schrag, Daniel P; Anbar, Ariel D; Priscu, John C; Lee, Peter A

    2009-04-17

    An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.

  3. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  4. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  5. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  6. Macroreticular chelating ion-exchangers.

    PubMed

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  7. Novel polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  8. Polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1984-04-10

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula given in patent. Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO[sub 3]H, SO[sub 3]M, NO[sub 2], CO[sub 2]H or CO[sub 2]M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr[sub 3] or BCl[sub 3] in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated. No Drawings

  9. Polycatecholamide chelating agents

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1984-01-01

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula ##STR1## Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO.sub.3 H, SO.sub.3 M, NO.sub.2, CO.sub.2 H or CO.sub.2 M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr.sub.3 or BCl.sub.3 in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  10. Ferrous iron oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Widdel, Friedrich; Schnell, Sylvia; Heising, Silke; Ehrenreich, Armin; Assmus, Bernhard; Schink, Bernhard

    1993-04-01

    NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

  11. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  12. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.

    PubMed

    Zhou, Lei; Zheng, Wei; Ji, Yuefei; Zhang, Jinfeng; Zeng, Chao; Zhang, Ya; Wang, Qi; Yang, Xi

    2013-12-15

    In situ chemical oxidation (ISCO) can be an effective technology for the remediation of soil and groundwater polluted by organic and inorganic contaminants. This study investigated the oxidation of arsenic(III) (As(III)) and diuron using ferrous activated persulfate-based ISCO. The results indicated that Fe(II)/persulfate oxidation could be an effective method to oxidize As(III) and diuron. Effects of pH, S2O8(2-) and Fe(II) amounts on the destruction of As(III) and diuron were examined in batch experiments. Acidic conditions favored the removal of As(III) and diuron. Four chelating agents, citric acid (CA), Na2S2O3, diethylene triamine pentaacetic acid (DTPA) and ethylene diamine tetraacetic acid disodium (EDTA-Na2) were used in attempt to maintain the quantity of ferrous ion in solution. In our experiments, CA and Na2S2O3 were found to be more effective than DTPA and EDTA-Na2. Our results also revealed a widely practical prospect of inorganic chelating agent Na2S2O3. Hydroxyl and sulfate radical were determined to play key roles in the oxidation process by using ethanol and tertiary butanol as molecular probes. Oxidation of As(III) yielded As(V) via the electron-transfer reaction. In the oxidation process of diuron, a stepwise nucleophilic substitution of chlorine by hydroxyl and a stepwise oxidation process of the methyl on the dimethylurea group by hydroxyl and sulfate radical were proposed.

  13. Activation of mammalian tyrosinase by ferrous ions.

    PubMed

    Palumbo, A; d'Ischia, M; Misuraca, G; Carratú, L; Prota, G

    1990-03-26

    Kinetic experiments are reported showing that mammalian tyrosinase from B16 mouse melanoma is significantly activated by catalytic amounts of ferrous ions. Monitoring of tyrosine oxidation by both dopachrome formation and oxygen consumption showed that ferrous ions at micromolar concentrations induce a marked enzymatic activity with 0.01 U/ml of highly purified tyrosinase, whereas no detectable reaction occurs in the absence of metal over a sufficiently prolonged period of time. The extent of the activating effect, which is specific for the reduced form of iron, is proportional to the concentration of the added metal with a typical saturation profile, no further effect being observed beyond a threshold value. Changing the buffer system from phosphate to hepes or tris results in a marked decrease of the Fe2(+)-induced activation. Scavengers of active oxygen species, such as superoxide dismutase, catalase, formate and mannitol have no detectable effect on the tyrosinase activity. These results are accounted for in terms of an activation mechanism involving reduction of the cupric ions at the active site of the resting enzyme.

  14. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  15. Role of lipid oxidation, chelating agents, and antioxidants in metallic flavor development in the oral cavity.

    PubMed

    Omür-Özbek, Pinar; Dietrich, Andrea M; Duncan, Susan E; Lee, YongWoo

    2012-03-07

    This study investigated the production of metallic flavor, which is a combination of taste and retronasal odor. Chemical reactions in the oral cavity and saliva of healthy subjects were investigated after ingesting iron and copper solutions above and near threshold levels. Significant increase in lipid oxidation (p < 0.001) occurred after metal ingestion, detected as TBARS values. Ferrous ion caused the greatest flavor sensation and lipid oxidation, followed by cupric and cuprous ions. Ferric ion did not cause metallic sensation. Occurrence of oxidation was supported by damage to salivary proteins, detected as protein-carbonyls, and by a significant increase of odorous lipid oxidation related aldehydes. Sensory evaluation demonstrated that antioxidants (vitamins E and C) minimally reduced metallic flavor but that chelating agents (EDTA and lactoferrin) removed the metallic flavor. The role of lipid oxidation is essential for the production of a metallic flavor from ingestion of ferrous, cupric, and cuprous ions.

  16. Absorption of sulfur dioxide from gases by ferrous sulfate

    SciTech Connect

    Hansen, B.J.; Zambrano, A.R.

    1980-12-09

    This application is directed to the use of ferrous sulfate for absorption of sulfur from gases containing the same. The invention is predicated on the reaction of the sulfur oxides with ferrous sulfate in the presence of oxygen to form principally ferric sulfate.

  17. Method for hardfacing a ferrous base material

    SciTech Connect

    Sakaguchi, S.; Ito, H.; Shiroyama, M.

    1984-10-23

    Tungsten carbide and nickel-phosphorus alloy coexist in individual particles. The composite powder produced by a mechanical mix of these two substances consists of 30 about 95 percent by weight of tungsten carbide and valanced nickel-phosphorus alloy. This powder is sprayed to the ferrous base material, resulting in a uniform dispersion of both tungsten carbide and nickel-phosphorus, causing tight adhesion to the surface because the tungsten carbide and nickel-phosphorus alloy coexist in individual particles in the composite. A hard metal coating is produced having high hardness and excellent wear resistance, after the surface of the hard metal coating is heated and the high temperature of the nickel-phosphorus alloy causes a liquid phase under the condition of a nonoxidizing atmosphere. This hard metal coating is used for various kinds of the wear-resistant materials.

  18. Thermodynamic fundamentals of ferrous cake sulfitization

    NASA Astrophysics Data System (ADS)

    Tyurin, A. G.; Vasekha, M. V.; Biryukov, A. I.

    2016-03-01

    The Pourbaix diagrams of the systems SO 4 2- -SO 3 2- -H2O and iron hydroxide (oxide)-H2O are refined. The E(pH) dependence of the sulfitization of iron(III) hydroxide is refined with allowance for the regions of predominant phase constituents of the systems. The potential E-pH electrochemical equilibrium diagrams of the systems Fe(OH)3-H2SO4-SO 3 2- -H2O, FeOOH-H2SO4-SO 3 2- -H2O, and Fe2O3-H2SO4-SO 3 2- -H2O are plotted. These diagrams can be considered as a thermodynamic basis for the sulfite conversion of the ferrous cake of copper-nickel production.

  19. Removal of cyanides by complexation with ferrous compounds

    SciTech Connect

    Varuntanya, C.P.; Zabban, W.

    1995-12-31

    Alkaline chlorination, an oxidation process with chlorine (Cl{sub 2}) or hypochlorite (ClO{sup {minus}}), is the most widely accepted method of cyanide treatment. However, removal of cyanide from wastewater to the extent required by the effluent limits imposed by Federal and State regulatory authorities is practically impossible, especially when the majority of the cyanide is present as an iron-cyanide complex. One potential treatment method being further investigated uses ferrous (Fe{sup 2+}) compounds to react with free and complex cyanide ions and produce insoluble iron-cyanide complexes. However, sludges generated by this treatment method contain cyanide wastes which may be considered a hazardous waste by the US Environmental Protection Agency (US EPA). The studies reported in this paper demonstrate that ferrous (Fe{sup 2+}) precipitation can remove cyanide ions (both free and complex) to a concentration within the range of 1 to 2 mg/L. The wastewaters utilized in these tests were collected from a coke plant facility. Synthetic cyanide solutions were used in the studied as well. Ferrous compounds used in the studies included commercial-grade ferrous sulfate, commercial-grade ferrous chloride, and spent pickle liquor (containing ferrous ion). The desired effluent quality was successfully attained in the treatment of the above-mentioned wastewaters by using ferrous compounds as well as spent pickle liquor.

  20. The removal of hexavalent chromium from water by ferrous sulfate

    SciTech Connect

    Lin, C.J.J.; Vesilind, P.A.

    1995-12-31

    The redox reaction of hexavalent chromium and ferrous sulfate is investigated in his study. Hexavalent chromium, a highly toxic and mobile anion, could exist in raw water used as a public water supply due to the industrial chromium contamination of natural water or due to natural oxidation of trivalent chromium. Ferrous sulfate is one of the widely used coagulants in water treatment plants and has good reducing ability. Because of its reducing capacity, ferrous sulfate can be applied to remove hexavalent chromium from water. The required contact time to reach equilibrium, the effectiveness of Cr(VI) reduction at different initial pH, and the required ferrous sulfate dosage for complete reduction are investigated. The redox reaction can be completed within 10 minutes, allowing 30 mg/L of hexavalent chromium to react with stoichiometric dosage of ferrous sulfate in deionized water, regardless of the initial pH. The pH of the solution is depressed during the progress of the reaction due to the hydrolysis of the produced Fe(III) and Cr(III) ions from the reaction. Dissolved oxygen in water is found to interfere with the redox reaction by consuming ferrous ions when the initial pH of solutions is high. In deionized water, complete Cr(VI) reduction can be achieved by applying excess ferrous sulfate under the condition of this study. It is also achievable when the raw water from Durham Water Treatment Plant is used as the reaction medium, without additional dosage of ferrous sulfate. Based on the results, simultaneous removal of hexavalent chromium in water treatment by applying ferrous sulfate as the coagulant is theoretically feasible.

  1. METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES

    DOEpatents

    Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.

    1960-02-23

    A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.

  2. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  3. Questions and Answers on Unapproved Chelation Products

    MedlinePlus

    ... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...

  4. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  5. Ferrous iron partitioning in the lower mantle

    NASA Astrophysics Data System (ADS)

    Muir, Joshua M. R.; Brodholt, John P.

    2016-08-01

    We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.

  6. Sludge Generation from Ferrous/Sulfide Chromium Treatment.

    DTIC Science & Technology

    1984-08-01

    sodium bisulfite , sulfur dioxide, and sodium sulfide. While all these chemicals produce a satisfactory effluent, the quantity of sludge produced by the...34Treatment of Toxic Metal Wastewaters by Alkaline Ferrous Sulfate and Sodium Sulfied for Chromium Reduction, Precipitation and Coagulation," Pro... sodium sulfide and ferrous chloride (9:1 ratio) at pH 8.0 rapidly reduced hexavalent chromium and produced approximately one-fourth the sludge (on a

  7. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  8. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T.

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  9. Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells.

    PubMed

    Hohnholt, Michaela; Geppert, Mark; Dringen, Ralf

    2010-08-01

    The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 microM iron that was applied in the form of FAC, FeCl(2), ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.

  10. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  11. Luminescent lanthanide chelates and methods of use

    SciTech Connect

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  12. Micro-Raman studies of hydrous ferrous sulfates and jarosites.

    PubMed

    Chio, Chi Hong; Sharma, Shiv K; Muenow, David W

    2005-08-01

    Ferrous sulfates of various hydration states (FeSO(4) X xH(2)O; x=7, 4, 1) and jarosites (MFe(3)(SO(4))(2)(OH)(6); M=Na or K) were synthesized and studied by micro-Raman spectroscopy between 295 and 8K. Spectral analyses of the sulfate and water/hydroxyl vibrational modes are presented. Fingerprint regions attributed to the symmetric (nu(1)) and antisymmetric (nu(3)) stretching vibrations of the sulfate group are found to vary with the degree of hydration in hydrous ferrous sulfate. In jarosites, the Raman shift of the OH stretching mode is related to the type of alkali metal present between the tetrahedral and octahedral layers. The Raman technique can thus unambiguously identify ferrous sulfate of various hydration states and jarosites bearing different alkali metal ions.

  13. The origin of ferrous zoning in Allende chondrule olivines

    NASA Technical Reports Server (NTRS)

    Peck, Julia A.; Wood, John A.

    1987-01-01

    Very similar major and minor element compositions are noted in the ferrous olivine occurring in chondrules at olivine grain boundaries, along cracks in olivine grains, interleaved with enstatite, and in the inner portions of exposed olivine grain surface rims; simultaneous formation by a single process is therefore suggested. The ferrous chondrule olivine probably formed by the reaction of chondrules with very hot nebular vapors over a period of several hours, followed by the condensation of residual metal vapors onto those olivine surfaces that were in direct contact with the gas as the system cooled. The ferrous chondrule olivine that occurs interleaved with enstatite in Allende does not have a composition idendical to, and is not the precursor of, matrix olivine.

  14. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    PubMed

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.

  15. Phosphonated chelates for nuclear imaging.

    PubMed

    Abada, Sabah; Lecointre, Alexandre; Christine, Câline; Ehret-Sabatier, Laurence; Saupe, Falk; Orend, Gertraud; Brasse, David; Ouadi, Ali; Hussenet, Thomas; Laquerrière, Patrice; Elhabiri, Mourad; Charbonnière, Loïc J

    2014-12-21

    A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.

  16. Supplementation of total parenteral nutrition solutions with ferrous citrate.

    PubMed

    Sayers, M H; Johnson, D K; Schumann, L A; Ivey, M F; Young, J H; Finch, C A

    1983-01-01

    Daily infusion of a total parenteral nutrition (TPN) formulation containing 1 liter of 5.5% Travasol provides less than 0.1 milligrams of iron. By comparison, a formulation which includes a liter of 10% Travamin provides 2 milligrams of iron per day. To meet iron requirements in patients infusing formulations containing Travasol, iron was added as ferrous citrate. In in virto experiments, 74% of this iron was available to transferrin. In seven patients in whom in vivo availability was tested by red cell incorporation, the mean availability was 81%. Ferrous citrate is recommended as a safe, effective additive to TPN solutions for adult patients requiring iron supplements.

  17. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles.

    PubMed

    Kim, Jee Yeon; Lee, Changha; Love, David C; Sedlak, David L; Yoon, Jeyong; Nelson, Kara L

    2011-08-15

    This study demonstrates the inactivation of MS2 coliphage (MS2) by nano particulate zerovalent iron (nZVI) and ferrous ion (Fe[II]) in aqueous solution. For nZVI, the inactivation efficiency of MS2 under air-saturated conditions was greater than that observed under deaerated conditions, indicating that reactions associated with the oxidation of nZVI were mainly responsible for the MS2 inactivation. Under air-saturated conditions, the inactivation efficiency increased with decreasing pH for both nZVI and Fe(II), associated with the pH-dependent stability of Fe(II). Although the Fe(II) released from nZVI appeared to contribute significantly to the virucidal activity of nZVI, several findings suggest that the nZVI surfaces interacted directly with the MS2 phages, leading to their inactivation. First, the addition of 1,10-phenanthroline (a strong Fe(II)-chelating agent) failed to completely block the inactivation of MS2 by nZVI. Second, under deaerated conditions, a linear dose-log inactivation curve was still observed for nZVI. Finally, ELISA analysis indicated that nZVI caused more capsid damage than Fe(II).

  18. Beliefs about chelation among thalassemia patients

    PubMed Central

    2012-01-01

    Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ) was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC) of the Thalassemia Clinical Research Network (TCRN). Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y), 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump), 63% oral, 11% combination). Patients expressed high “necessity” for transfusion (96%), DFO chelation (92%) and oral chelation (89%), with lower “concern” about treatment (48%, 39%, 19% respectively). Concern about oral chelation was significantly lower than that of DFO (p<0.001). Self-reported adherence to chelation was not associated with views about necessity or concerns, but negatively correlated with perceived sensitivity to DFO (Sensitive Soma scale; r=−0.23, p=0.01) and side effects of oral chelation (r=−0.14, p=0.04). High ferritin iron levels, potentially indicating lower adherence, were found in 41% of patients reporting low necessity of oral chelation compared to 24% reporting high necessity (p=0.048). Concerns about treatment were associated with lower quality of life and more symptoms of anxiety and depression. Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804 PMID:23216870

  19. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  20. Method for the preparation of ferrous low carbon porous material

    SciTech Connect

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  1. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate....

  2. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate....

  3. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate....

  4. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate....

  5. 40 CFR 180.1230 - Ferrous sulfate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ferrous sulfate; exemption from the... Exemptions From Tolerances § 180.1230 Ferrous sulfate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of ferrous sulfate....

  6. Orange but not apple juice enhances ferrous fumarate absorption in small children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferrous fumarate is a common, inexpensive iron form increasingly used instead of ferrous sulfate as a food iron supplement. However, few data exist as to whether juices enhance iron absorption from ferrous fumarate. We studied 21 children, ages 4.0 to 7.9 years using a randomized crossover design. S...

  7. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferrous metal borings, shavings, turnings, or cuttings... Requirements for Certain Material § 148.04-13 Ferrous metal borings, shavings, turnings, or cuttings (excluding... described as ferrous metal borings, shavings, turnings, or cuttings on board vessels (excluding...

  8. Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linoleic acid hydroperoxide with ferrous ions.

    PubMed Central

    Iwahashi, H

    2000-01-01

    Effects of some polyphenols and their related compounds (chlorogenic acid, caffeic acid, quinic acid, ferulic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, 4-hydroxy-3-methoxybenzoic acid, salicylic acid, L-dopa, dopamine, L-adrenaline, L-noradrenaline, o-dihydroxybenzene, m-dihydroxybenzene, and p-dihydroxybenzene) on the formation of 13-hydroperoxide octadecadienoic (13-HPODE) acid-derived radicals (pentyl radical and octanoic acid radical) were examined. The ESR spin trapping showed that chlorogenic acid, caffeic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, L-dopa, dopamine, L-adrenaline, L-noradrenaline, and o-dihydroxybenzene inhibited the overall formation of 13-HPODE acid-derived radicals in the reaction mixture of 13-HPODE with ferrous ions. The ESR peak heights of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN)/13-HPODE-derived radical adducts decreased to 46+/-4% (chlorogenic acid), 54+/-2% (caffeic acid), 49+/-2% (gallic acid), 55+/-1% [D-(+)-catechin], 60+/-3% [D-(-)-catechin], 42+/-1% (L-dopa), 30+/-2% (dopamine), 49+/-2% (L-adrenaline), 24+/-2% (L-noradrenaline), and 54+/-5% (o-dihydroxybenzene) of the control, respectively. The high performance liquid chromatography-electron spin resonance (HPLC-ESR) and high performance liquid chromatography-electron spin resonance-mass spectrometries (HPLC-ESR-MS) showed that caffeic acid inhibited the formation of octanoic acid radical and pentyl radical to 42+/-2% and 52+/-7% of the control, respectively. On the other hand, the polyphenols and their related compounds had few inhibitory effects on the radical formation in the presence of EDTA. Visible absorbance measurement revealed that all the polyphenols exhibiting the inhibitory effect chelate ferrous ions. Above results indicated that the chelation of ferrous ion is essential to the inhibitory effects of the polyphenols. PMID:10677343

  9. Exploring copper chelation in Alzheimer's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of aging people in the U.S. alone. Clinical studies have indicated that metal chelation is a promising new approach in alleviating the symptoms of AD. Our study explores the as yet undetermined mechanism of copper chelation in amyloid-β, a protein implicated in AD. The structure of amyloid-β is derived from experimental results and incorporates a planar copper-ion-binding structure in a semi-solvated state. We investigate the chelation process using the nudged elastic band method implemented in our ab initio real-space multigrid code. We find that an optimal sequence of unbonding and rebonding events as well as proton transfers are required for a viable chelation process. These findings provide fundamental insight into the process of chelation that may lead to more effective AD therapies.

  10. Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments.

    PubMed

    Theil, Elizabeth C; Chen, Huijun; Miranda, Constanza; Janser, Heinz; Elsenhans, Bernd; Núñez, Marco T; Pizarro, Fernando; Schümann, Klaus

    2012-03-01

    Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC (59)Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency.

  11. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  12. Effect of Fe-chelating complexes on a novel M2FC performance with ferric chloride and ferricyanide catholytes.

    PubMed

    Chung, Kyungmi; Lee, Ilgyu; Han, Jong-In

    2012-01-01

    As an effort to better utilize the microbial fuel cell (MFC) technology, we previously proposed an innovative MFC system named M2FC consisting of ferric-based MFC part and ferrous-based fuel cell (FC) part. In this reactor, ferric ion, the catholyte in the MFC part, was efficiently regenerated by the FC part with the generation of additional electricity. When both units were operated separately, the ferric-based MFC part produced approximately 1360 mW m(-2) of power density with FeCl(3) as catholyte and Fe-citrate as anolyte. The ferrous-based FC part with FeCl(3) as catholyte and Fe-EDTA as anolyte displayed the highest power density (1500 mW m(-2)), while that with ferricyanide as catholyte and Fe-noligand as anolyte had the lowest power density (380 mW m(-2)). The types of catholytes and chelating complexes as anolyte were found to play important roles in the reduction of ferric ions and oxidation of ferrous ion. Linear sweep voltammetry results supported that the cathode electrolytes were electrically active and these agreed well with the M2FC reactor performance. These results clearly showed that ligands played critical role in the efficiency and rate for recycling iron ion and thus the M2FC performance.

  13. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 2

    SciTech Connect

    1992-12-01

    Successful pilot plant tests of simultaneous removal of SO{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The test, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot plant facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7 a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for SO{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 MW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 96% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangeably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology. Volume 2 covers: description and results of NO{sub x} removal tests; and description and results of waste characterization studies.

  14. A waste minimization study of a chelated copper complex in wastewater -- Treatability and process analysis

    SciTech Connect

    Chang, L.Y.

    1995-12-01

    This study demonstrated an integrated waste minimization approach for the printed circuit board manufacturing shop of Lawrence Berkeley Laboratory (LBL). It included process waste assessment, process optimization and treatability analysis of the treatment system, and source reduction assessment. The results of a process waste assessment indicated that over 99.5% of the waste stream was rinsewater and less than 0.5% was characterized as hazardous waste. This finding led to a thorough source reduction assessment. From the process and treatability analysis, it was found that an organic chelating ligand in the wastewater was causing a copper precipitation problem. The results of a series of bench and process experiments indicated that optimization of pH, chemical dosage, and addition of ferrous sulfate were needed to destabilize the complexed copper. The destabilization mechanism of Cu-EDTA with ferrous sulfate at pH 6--9 was discussed. Different separation/recycling technologies were also evaluated through the source reduction assessment. A closed-loop process was simulated and designed. Through the source reduction and treatment process optimization efforts, at least 90% reduction of total acid wastes and wastewater and more than 99% metal removal were achieved. A material life-cycle analysis was also performed. The results indicated that a total quality control strategy is crucial to minimize wastes and reduce product rejection rate.

  15. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  16. Chelation in root canal therapy reconsidered.

    PubMed

    Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas

    2005-11-01

    The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.

  17. [Influence of ionizing radiation, application of iron ions and their chelate complexes on the oxidative status of blood serum of rats].

    PubMed

    Riabchenko, N I; Ivannik, B P; Riabchenko, V I; Dzikovskaia, L A

    2011-01-01

    Influence of ionizing radiation, ions of iron and their chelate complexes on the oxidative status of blood serum of rats has been investigated. Animals were irradiated by gamma-rays 60Co at a dose of 4 Gy. Ions of iron and iron chelates with nitrilotriacetic acid and citric acid were introduced into animals intra-abdominally at a doze of 10 mg of iron on 1 kg of body weight. The oxidative status of blood serum was determined according to the estimated content of oxidizing peroxide equivalents which oxidize ferrous iron in ferric iron with the subsequent estimation of ferric iron by means of xylenol orange. We also estimated the total content of iron in blood serum using ferrozine as an indicator. The oxidative status was defined 24 and 96 hours after irradiation and 2 hours after introduction of iron ions and their chelates. The research conducted has shown that the concentration of oxidizing peroxide equivalents in serum and the total iron concentration increase 1.47 times and 1.63 times correspondingly 24 hours after irradiation. The increase in the content of oxidizing peroxide equivalents and iron owing to Fenton's reaction can lead to the appearance of OH* radical and raise the level of damage of nuclear and membrane structures in irradiated cells. 2 hours after introduction of iron ions and their chelates, the content of oxidizing peroxide equivalents increased in the blood serum of irradiated and non-irradiated rats, and the maximum effect was observed when introducing ferrous iron and its chelate with citric acid.

  18. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  19. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  20. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution.

    PubMed

    Rantamäki, Susanne; Meriluoto, Jussi; Spoof, Lisa; Puputti, Eeva-Maija; Tyystjärvi, Taina; Tyystjärvi, Esa

    2016-12-01

    The Earth has had a permanently oxic atmosphere only since the great oxygenation event (GOE) 2.3-2.4 billion years ago but recent geochemical research has revealed short periods of oxygen in the atmosphere up to a billion years earlier before the permanent oxygenation. If these "whiffs" of oxygen truly occurred, then oxygen-evolving (proto)cyanobacteria must have existed throughout the Archaean aeon. Trapping of oxygen by ferrous iron and other reduced substances present in Archaean oceans has often been suggested to explain why the oxygen content of the atmosphere remained negligible before the GOE although cyanobacteria produced oxygen. We tested this hypothesis by growing cyanobacteria in anaerobic high-CO2 atmosphere in a medium with a high concentration of ferrous iron. Microcystins are known to chelate iron, which prompted us also to test the effects of microcystins and nodularins on iron tolerance. The results show that all tested cyanobacteria, especially nitrogen-fixing species grown in the absence of nitrate, and irrespective of the ability to produce cyanotoxins, were iron sensitive in aerobic conditions but tolerated high concentrations of iron in anaerobicity. This result suggests that current cyanobacteria would have tolerated the high-iron content of Archaean oceans. However, only 1 % of the oxygen produced by the cyanobacterial culture was trapped by iron, suggesting that large-scale cyanobacterial photosynthesis would have oxygenated the atmosphere even if cyanobacteria grew in a reducing ocean. Recent genomic analysis suggesting that ability to colonize seawater is a secondary trait in cyanobacteria may offer a partial explanation for the sustained inefficiency of cyanobacterial photosynthesis during the Archaean aeon, as fresh water has always covered a very small fraction of the Earth's surface. If oxygenic photosynthesis originated in fresh water, then the GOE marks the adaptation of cyanobacteria to seawater, and the late-Proterozoic increase

  1. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching

    SciTech Connect

    Hiroyoshi, Naoki; Hirota, Masahiko; Hirajima, Tsuyoshi; Tsunekawa, Masami

    1999-08-20

    A substantial amount of copper is obtained by dump leaching of low-grade ore that would otherwise become waste. It is generally accepted that iron-oxidizing bacteria. Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm{sup 3} ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction.

  2. Iron reverses impermeable chelator inhibition of DNA synthesis in CCl 39 cells.

    PubMed

    Alcain, F J; Löw, H; Crane, F L

    1994-08-16

    Treatment of Chinese hamster lung fibroblasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  3. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  4. Substructures of the (252) ferrous martensite and their crystallographic significance

    SciTech Connect

    Wang Shidao |; Hei Zukun

    1999-04-23

    Many ferrous martensites have been found to possess a macroscopically invariant habit plane close to (252){sub f} and to exhibit complex and variable substructures that cannot be not only satisfactorily explained but also fully characterized so far. The present work attempts to examine the mechanism of occurrence of the complex substructures and their correlation to other crystallographic properties, esp. to the shape strain, on the basis of a new theory. The theory describes the atomic movements in the lattice change represented with the Bain distortion in the past.

  5. Copper Chelation in Alzheimer's Disease Protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- β protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- β-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  6. Iron (FeII) Chelation, Ferric Reducing Antioxidant Power, and Immune Modulating Potential of Arisaema jacquemontii (Himalayan Cobra Lily)

    PubMed Central

    Sudan, Rasleen; Bhagat, Madhulika; Singh, Jasvinder; Koul, Anupurna

    2014-01-01

    This study explored the antioxidant and immunomodulatory potential of ethnomedicinally valuable species, namely, Arisaema jacquemontii of north-western Himalayan region. The tubers, leaves, and fruits of this plant were subjected to extraction using different solvents. In vitro antioxidant studies were performed in terms of chelation power on ferrous ions and FRAP assay. The crude methanol extract of leaves was found to harbour better chelating capacity (58% at 100 μg/mL) and reducing power (FRAP value 1085.4 ± 0.11 μMFe3+/g dry wt.) than all the other extracts. The crude methanol extract was thus further partitioned with solvents to yield five fractions. Antioxidant study of fractions suggested that the methanol fraction possessed significant chelation capacity (49.7% at 100 μg/mL) and reducing power with FRAP value of 1435.4 μM/g dry wt. The fractions were also studied for immune modulating potential where it was observed that hexane fraction had significant suppressive effect on mitogen induced T-cell and B-cell proliferation and remarkable stimulating effect on humoral response by 141% and on DTH response by 168% in immune suppressed mice as compared to the controls. Therefore, it can be concluded that A. jacquemontii leaves hold considerable antioxidant and immunomodulating potential and they can be explored further for the identification of their chemical composition for a better understanding of their biological activities. PMID:24895548

  7. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis.

    PubMed

    Zha, Qian; Wang, Yi; Zhang, Xin-Zhong; Han, Zhen-Hai

    2014-01-01

    To better understand the mechanism of low-iron stress tolerance in Malus xiaojinensis, the differences in physiological parameters and gene expression between an iron deficiency-sensitive species, Malus baccata, and an iron deficiency-tolerant species, M. xiaojinensis were investigated under low-iron (4 μM Fe) conditions. Under iron sufficient conditions, the expressions of iron uptake- and transport-related genes, i.e. FIT1, IRT1, CS1, FRD3 and NRMAP1, and the immanent leaf and root active iron contents were higher in M. xiaojinensis than those in M. baccata. However, on the first three days of low iron stress, the rhizospheric pH decreased and the root ferric chelate reductase (FCR) activity and the expression of ferrous uptake- and iron transport-related genes in the roots increased significantly only in M. xiaojinensis. Leaf chlorosis occurred on the 3rd and the 9th day after low-iron treatment in M. baccata and M. xiaojinensis, respectively. The expression of iron relocalization-related genes, such as NAS1, FRD3 and NRMAP3, increased after the 5th or 6th day of low iron stress in leaves of M. xiaojinensis, whereas the expression of NAS1, FRD3 and NRMAP3 in the leaves of M. baccata increased immediately after the onset of low iron treatment. Conclusively, the relative high active iron contents caused by the immanently active root ferrous uptake and the increased root ferrous uptake in response to low iron stress were the dominant mechanisms for the tolerance to iron deficiency in M. xiaojinensis.

  8. Tryptophan-to-heme electron transfer in ferrous myoglobins

    PubMed Central

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-01-01

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp14) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe–porphyrin π [FeII(porph●−)] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu69) and valine 68 (Val68) residues. The results on ferric Mbs and the present ones highlight the generality of Trp–porphyrin electron transfer in heme proteins. PMID:25902517

  9. Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Hwang, Jiann-Yang; Mouris, Joe; Hutcheon, Ron; Sun, Xiang

    2011-08-01

    The temperature dependence of the microwave absorption of conventionally heated nonstoichiometric ferrous oxide (Fe0.925O) was characterized via the cavity perturbation technique between 294 K and 1373 K (21 °C and 1100 °C). The complex relative permittivity and permeability of the heated Fe0.925O sample slightly change with temperature from 294 K to 473 K (21 °C to 200 °C). The dramatic variations of permittivity and permeability of the sample from 473 K to 823 K (200 °C to 550 °C) are partially attributed to the formation of magnetite (Fe3O4) and metal iron (Fe) from the thermal decomposition of Fe0.925O, as confirmed by the high-temperature X-ray diffraction (HT-XRD). At higher temperatures up to 1373 K (1100 °C), it is found that Fe0.925O regenerates and remains as a stable phase with high permittivity. Since the permittivity dominates the microwave absorption of Fe0.925O above 823 K (550 °C), resulting in shallow microwave penetration depth (~0.11 and ~0.015 m at 915 and 2450 MHz, respectively), the regenerated nonstoichiometric ferrous oxide exhibits useful microwave absorption capability in the temperature range of 823 K to1373 K (550 °C to 1100 °C).

  10. Biopharmaceutical characterization of ciprofloxacin HCl-ferrous sulfate interaction.

    PubMed

    Parojčić, Jelena; Stojković, Aleksandra; Tajber, Lidia; Grbić, Sandra; Paluch, Krzysztof J; Djurić, Zorica; Corrigan, Owen I

    2011-12-01

    The ciprofloxacin-iron interaction, resulting in a lower bioavailability, is well documented in vivo; however, a mechanistic explanation supported by experimental data of this interaction is missing. In the present study, ciprofloxacin hydrochloride (HCl) and ferrous sulfate interaction was simulated in vitro by performing solubility and dissolution studies in the reactive media containing ferrous sulfate. Characterization of the precipitate formed indicated its probable chemical structure as Fe(SO(4) (2-) )(2) (Cl(-) )(2) (ciprofloxacin)(2) × (H(2) O)(n) , where n is up to 12 molecules of water. The solubility of this complex in water was estimated to be approximately 2  mg/mL, being about 20-fold lower than the solubility of ciprofloxacin HCl. The solubility of the complex was used as input parameter for an in silico modeling by GastroPlus™ and the resulting predicted plasma time curves were in good agreement with the in vivo data. These results strongly indicate that ciprofloxacin-iron interaction in vivo is caused by the formation of a low soluble complex. This interaction was also simulated by in vitro dissolution, in which a mini scale apparatus provided more biorelevant results than the standard dissolution apparatus, probably because the drug concentrations in the mini apparatus were higher and, thus, closer to the conditions encountered in vivo.

  11. Analyzing the International Exergy Flow Network of Ferrous Metal Ores

    PubMed Central

    Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing

    2014-01-01

    This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407

  12. Tryptophan-to-heme electron transfer in ferrous myoglobins.

    PubMed

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-05-05

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin π [Fe(II)(porph(●-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.

  13. Combined SO{sub 2}/NO{sub x} control using ferrous{center_dot}EDTA and a secondary additive in a lime-based aqueous scrubber system

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-12-01

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center_dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center_dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center_dot}EDTA. 5 refs., 10 figs.

  14. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  15. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  16. Objectives and Methods of Iron Chelation Therapy

    PubMed Central

    Hershko, C.; Abrahamov, A.; Konijn, A. M.; Breuer, W.; Cabantchik, I. Z.; Pootrakul, P.; Link, G.

    2003-01-01

    Recent developments in the understanding of the molecular control of iron homeostasis provided novel insights into the mechanisms responsible for normal iron balance. However in chronic anemias associated with iron overload, such mechanisms are no longer sufficient to offer protection from iron toxicity, and iron chelating therapy is the only method available for preventing early death caused mainly by myocardial and hepatic damage. Today, long-term deferoxamine (DFO) therapy is an integral part of the management of thalassemia and other transfusion-dependent anemias, with a major impact on well-being and survival. However, the high cost and rigorous requirements of DFO therapy, and the significant toxicity of deferiprone underline the need for the continued development of new and improved orally effective iron chelators. Within recent years more than one thousand candidate compounds have been screened in animal models. The most outstanding of these compounds include deferiprone (L1); pyridoxal isonicotinoyl hydrazone (PIH) and; bishydroxy- phenyl thiazole. Deferiprone has been used extensively as a substitute for DFO in clinical trials involving hundreds of patients. However, L1 treatment alone fails to achieve a negative iron balance in a substantial proportion of subjects. Deferiprone is less effective than DFO and its potential hepatotoxicity is an issue of current controversy. A new orally effective iron chelator should not necessarily be regarded as one displacing the presently accepted and highly effective parenteral drug DFO. Rather, it could be employed to extend the scope of iron chelating strategies in a manner analogous with the combined use of medications in the management of other conditions such as hypertension or diabetes. Coadministration or alternating use of DFO and a suitable oral chelator may allow a decrease in dosage of both drugs and improve compliance by decreasing the demand on tedious parenteral drug administration. Combined use of DFO

  17. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Piwonka, T.S.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  18. 76 FR 9810 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys (17 Forms)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Geological Survey Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys... to supply the USGS with domestic consumption data of 13 ores, concentrates, metals, and ferroalloys... OMB Control Number: 1028-0068. Form Number: Various (17 forms). Title: Ferrous Metals Surveys. Type...

  19. A Mössbauer and X-ray powder diffraction study of some ferrous hematinics.

    PubMed

    Coe, E M; Bowen, L H; Bereman, R D

    1995-06-01

    Iron deficiency anemia is a relatively common illness that can arise from a number of different causes. Three ferrous salts are usually used in its treatment: ferrous fumarate, gluconate, and sulfate. They are administered orally and are relatively well tolerated. These hematinics have been studied by Mössbauer spectroscopy and X-ray powder diffraction, and can easily be distinguished by both techniques. It was found that the two ferrous sulfates studied (Eckerd and SmithKline Beckman Co.) most closely resemble the monohydrate by comparison of the X-ray powder pattern with those of the JCPDS. Both the ferrous fumarate (Femiron) and gluconate (Spring Valley) had approximately 10% ferric iron present. To the authors' knowledge, this is the first reported Mössbauer spectrum for ferrous fumarate.

  20. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  1. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented.

  2. Iron-chelating compound from Mycobacterium avium.

    PubMed Central

    McCullough, W G; Merkal, R S

    1976-01-01

    A iron-chelating monohydroxamate was isolated from cultures of Mycobacterium avium grown on an iron-limiting medium. The hydroxyamate metabolite was characterized by chemical degradation and spectral measurements as L-alpha-asparaginyl-L-alpha-(N-hydroxy)-asparagine. PMID:185194

  3. Matching chelators to radiometals for radiopharmaceuticals.

    PubMed

    Price, Eric W; Orvig, Chris

    2014-01-07

    Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

  4. Microwave Power Absorption in Materials for Ferrous Metallurgy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Yang, Mengshen; Hwang, Jiann-Yang; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-02-01

    The characteristics of microwave power absorption in materials for ferrous metallurgy, including iron oxides (Fe2O3, Fe3O4 and Fe0.925O) and bitumite, were explored by evaluating their dielectric loss ( Q E) and/or magnetic loss ( Q H) distributions in the 0.05-m-thick slabs of the corresponding materials exposed to 1.2-kW and 2.45-GHz microwave radiation at temperatures below 1100°C. It is revealed that the dielectric loss contributes primarily to the power absorption in Fe2O3, Fe0.925O and the bitumite at all of the examined temperatures. Their Q E values at room temperature and slab surface are 9.1311 × 103 W m-3, 23.7025 × 103 W m-3, and 49.5999 × 103 W m-3, respectively, showing that the materials have the following heating rate initially under microwave irradiation: bitumite > Fe0.925O > Fe2O3. Compared with the other materials, Fe3O4 has much stronger power absorption, primarily originated from its magnetic loss (e.g., Q H = 1.0615 × 106 W m-3, Q H/ Q E = 2.4185 at 24°C and slab surface), below its Curie point, above which the magnetic susceptibility approaches to zero, thereby causing a very small Q H value at even the surface ( Q H = 1.0416 × 105 W m-3 at 880°C). It is also demonstrated that inhomogeneous power distributions occur in all the slabs and become more pronounced with increasing temperature mainly due to rapid increase in permittivity. Characterizing power absorption in the oxides and the coal is expected to offer a strategic guide for improving use of microwave energy in ferrous metallurgy.

  5. Microwave Power Absorption in Materials for Ferrous Metallurgy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Yang, Mengshen; Hwang, Jiann-Yang; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2016-11-01

    The characteristics of microwave power absorption in materials for ferrous metallurgy, including iron oxides (Fe2O3, Fe3O4 and Fe0.925O) and bitumite, were explored by evaluating their dielectric loss (Q E) and/or magnetic loss (Q H) distributions in the 0.05-m-thick slabs of the corresponding materials exposed to 1.2-kW and 2.45-GHz microwave radiation at temperatures below 1100°C. It is revealed that the dielectric loss contributes primarily to the power absorption in Fe2O3, Fe0.925O and the bitumite at all of the examined temperatures. Their Q E values at room temperature and slab surface are 9.1311 × 103 W m-3, 23.7025 × 103 W m-3, and 49.5999 × 103 W m-3, respectively, showing that the materials have the following heating rate initially under microwave irradiation: bitumite > Fe0.925O > Fe2O3. Compared with the other materials, Fe3O4 has much stronger power absorption, primarily originated from its magnetic loss (e.g., Q H = 1.0615 × 106 W m-3, Q H/Q E = 2.4185 at 24°C and slab surface), below its Curie point, above which the magnetic susceptibility approaches to zero, thereby causing a very small Q H value at even the surface (Q H = 1.0416 × 105 W m-3 at 880°C). It is also demonstrated that inhomogeneous power distributions occur in all the slabs and become more pronounced with increasing temperature mainly due to rapid increase in permittivity. Characterizing power absorption in the oxides and the coal is expected to offer a strategic guide for improving use of microwave energy in ferrous metallurgy.

  6. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa.

    PubMed

    Tvrdá, Eva; Kováčik, Anton; Tušimová, Eva; Massányi, Peter; Lukáč, Norbert

    2015-01-01

    Resveratrol (RES) is a natural polyphenol and phytoestrogen exhibiting cardioprotective, anticancer, antibacterial and vasorelaxing properties. It is also a powerful reactive oxygen species (ROS) scavenger and chelating agent. This study was designed to determine the efficiency of RES to reverse the ROS-mediated impairment of the motility, viability and intracellular antioxidant profile of bovine spermatozoa. Spermatozoa were washed out of fresh bovine semen, suspended in 2.9% sodium citrate and subjected to RES treatment (5, 10, 25 and 50 μmol L(-1)) in the presence or absence of a pro-oxidant, i.e., ferrous ascorbate (FeAA; 150 μmol L(-1) FeSO4 and 750 μmol L(-1) ascorbic acid) during a 6-h in vitro culture. Spermatozoa motion parameters were assessed using the SpermVision computer-aided sperm analysis (CASA) system. Cell viability was examined with the metabolic activity (MTT) assay, and the nitroblue-tetrazolium (NBT) test was applied to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the in vitro experiments in order to investigate the intracellular activity of superoxide dismutase (SOD), catalase (CAT), as well as the concentrations of glutathione (GSH) and malondialdehyde (MDA). FeAA treatment led to a reduced sperm motility (P < 0.001) and viability (P < 0.001), decreased the antioxidant parameters of the samples (P < 0.001 in case of SOD; P < 0.01 with respect to CAT; P < 0.05 in relation to GSH) but increased the superoxide production (P < 0.001) and lipid peroxidation (P < 0.001). RES supplementation resulted in a preservation of the spermatozoa vitality and antioxidant characteristics (P < 0.001 in case of SOD; P < 0.01 with respect to 25-50 μmol L(-1) RES and P < 0.05 in relation to 10 μmol L(-1) RES; P < 0.05 in case of GSH), with 50 μmol L(-1) RES proving to be the most effective RES concentration. Our results suggest that RES possesses significant antioxidant properties that may prevent the deleterious

  7. Effects of iron polymaltose complex, ferrous fumarate and ferrous sulfate treatments in anemic pregnant rats, their fetuses and placentas.

    PubMed

    Toblli, Jorge E; Cao, Gabriel; Oliveri, Leda; Angerosa, Margarita

    2013-06-01

    Although oral iron preparations are widely prescribed to prevent and to treat iron deficiency anemia in pregnancy, comparative data on their effects to the mother, fetus and placenta are limited. In this study, the effects of oral iron polymaltose complex (IPC), ferrous fumarate (FF) and ferrous sulfate (FS) were compared in anemic pregnant rats, their fetuses and placentas. Hematological variables and oxidative stress markers in the liver, heart and kidneys of the dams and fetuses as well as the markers for oxidative stress, inflammation and hypoxia in placentas were assessed. Pregnancy outcome was measured by number of fetuses, and by neonate and placental weight. All therapies were comparably effective in correcting anemia. FS and FF, but not IPC, resulted in liver damage in dams and oxidative stress in dams, fetuses and placentas. FS group presented the highest catalase and GPx levels in dams, fetuses and placentas. IPC, but not FF or FS, restored normal TNF-α and IL6 expression levels in placentas whereas FS-treated animals presented the highest cytokine levels, suggesting a local inflammatory reaction. Anemia-induced high levels of HIF-1α were partially lowered by IPC and FF but further elevated by FS. Most of the negative effects associated with IDA were resolved by IPC treatment. Especially FS treatment was found to elicit hepatic damage in the dams, oxidative stress in the dams, fetuses and placenta as well as inflammation and high levels of HIF-1α in the placenta. Pregnancy outcome of FFand FS-treated animals was worse than that of IPC-treated animals.

  8. Relationship among Chelator Adherence, Change in Chelators, and Quality of Life in Thalassemia

    PubMed Central

    Trachtenberg, Felicia L.; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A.; Neufeld, Ellis J.; Yamashita, Robert

    2015-01-01

    Purpose Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of Health-Related Quality of Life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Methods Thalassemia Longitudinal Cohort participants in the US, UK, and Canada completed the SF-36v2 (ages 14+), and the PF-28 CHQ (parents of children<14 years). Chelation adherence was defined as self-reported percent of doses administered in the last 4 weeks. Results 258 adults/adolescents (mean 29.7 years) and 133 children (mean 8.5 years) completed a mean of 2.8 years follow-up. Children made few chelator changes, whereas a mean of 2.2 changes was observed among the 37% of adults/adolescents who made chelator changes, mainly, due to patient preference or medical necessity. Physical HRQOL improved among those with lower iron burden (better health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from DFO infusion to oral deferasirox (p=0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical QOL. Conclusions Strategies to balance medical needs with family, work, and personal life may assist in adherence. PMID:24682717

  9. Safety evaluation of zinc threoninate chelate.

    PubMed

    Hu, Xiao-bo; Gong, Yi; Li, Lei; Nie, Shao-ping; Wang, Yuan-xing; Xie, Ming-yong

    2010-07-01

    The acute toxicity of zinc threoninate chelate was assessed. The oral lethal dose 50% (LD(50)) was 2710 mg/kg in female rats and 3160 mg/kg in male rats. Genotoxicity was assessed by Ames test in Salmonella typhimurium strains TA97, TA98, TA100, and TA102, by bone marrow mouse micronucleus test and a sperm abnormality test with mice. Thirty-day repeat dose toxicity study was conducted at oral daily doses of 0, 42, 169, and 675 mg/kg in rats. Teratogenicity was assessed at the same daily dose in pregnant rats by gavage. No significant changes in body weight, food consumption, organ weight, relative organ weight, hematology, blood biochemistry, histopathology, behavior, mortality, sperm abnormality, mutagenicity, and micronucleus formation were observed and no clinical signs or adverse effects were detected. Zinc threoninate chelate had no significant teratogenic effect at a daily dose of 42 mg/kg.

  10. Obligatory Reduction of Ferric Chelates in Iron Uptake by Soybeans

    PubMed Central

    Chaney, Rufus L.; Brown, John C.; Tiffin, Lee O.

    1972-01-01

    The contrasting Fe2+ and Fe3+ chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe3+-chelates. EDDHA binds Fe3+ strongly, but Fe2+ weakly; BPDS binds Fe2+ strongly but Fe3+ weakly. Addition of an excess of BPDS to nutrient solutions containing Fe3+-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)3]4− accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe3+-chelates appear to require reduction of Fe3+-chelate to Fe2+-chelate at the root, with Fe2+ being the principal form of Fe absorbed by soybean. PMID:16658143

  11. Bronchial stenosis following ferrous sulfate aspiration: Case report and review of the literature.

    PubMed

    Venci, Nicholas M; Watson, Thomas J; Kallay, Michael C

    2014-01-01

    Aspiration of ferrous sulfate tablets is a rare and potentially serious condition that can lead to permanent airway stenosis. Diagnosis may be difficult, as presentation often includes nonspecific symptoms. Disease progression and treatment courses have been detailed in a limited number of publications. Herein, we report a case of severe bronchial stenosis that developed following aspiration of a ferrous sulfate tablet. To the best of our knowledge, this is the first reported attempt of laser fulguration to correct ferrous sulfate-induced bronchial stenosis.

  12. Iron chelation therapy in thalassemia syndromes.

    PubMed

    Cianciulli, Paolo

    2009-12-29

    Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron) the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO) has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce complications, and improve survival and quality of life of transfused patients.

  13. Iron Chelation Therapy in Thalassemia Syndromes

    PubMed Central

    Cianciulli, Paolo

    2009-01-01

    Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron) the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO) has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce complications, and improve survival and quality of life of transfused patients. PMID:21415999

  14. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  15. Oxidation kinetics of ferrous sulfate over active carbon

    SciTech Connect

    Roennholm, M.R.; Waernaa, J.; Salmi, T.; Turunen, I.; Luoma, M.

    1999-07-01

    Catalyzed oxidation kinetics of dissolved Fe{sup 2+} ions to Fe{sup 3+} over active carbon in concentrated H{sub 2}SO{sub 4}-FeSO{sub 4} solutions was studied with isothermal and isobaric experiments carried out in a laboratory-scale pressurized autoclave. The experiments were performed at temperatures between 60 and 130 C, and the pressure of oxygen (O{sub 2}) was varied between 4 and 10 bar. The kinetic results revealed that the oxidation rate was enhanced by increasing the temperature and pressure and that the catalytic and noncatalytic oxidations proceed as parallel processes. A rate equation was obtained for the catalytic oxidation process, based on the assumption that the oxidation of Fe{sup 2+} with adsorbed oxygen is rate determining. The total oxidation rate was simulated by including a previously determined rate equation for the noncatalytic oxidation into the global model, from which the kinetic parameters of the catalytic oxidation rate were determined. A comparison of the model fit with the experimental data revealed that the proposed rate equation is applicable for the prediction of the Fe{sup 2+} oxidation kinetics in acidic ferrous sulfate solutions.

  16. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  17. Soluble ferrous iron (Fe (II)) enrichment in airborne dust

    NASA Astrophysics Data System (ADS)

    Bhattachan, Abinash; Reche, Isabel; D'Odorico, Paolo

    2016-09-01

    The input of soluble iron in dust delivered to the ocean and lakes is critical to their biogeochemistry and phytoplankton productivity. Most iron in soils and sediment deposits is insoluble, while only a tiny fraction is soluble and therefore suitable to meet the phytoplankton's requirements for photosynthesis and nitrogen assimilation. Aerosol deposition constitutes a major source of soluble iron to oceans and lakes, and in some regions the low phytoplankton productivity has been related to limitations in the supply of soluble iron from terrestrial sources. It is suggested that during atmospheric transport part of the insoluble iron is converted into soluble form. While the understanding of increased bioavailability of iron during atmospheric transport is improving, there are only a limited number of studies that actually quantify the increase in iron bioavailability in dust. In this study we compare the soluble ferrous iron, Fe (II) content in dust collected at deposition sites in the high-altitude mountains of the Sierra Nevada, Spain, to the source of dust in North Africa. We found that the dust is greatly enriched (on average 15 times) in Fe (II) relative to the fine fraction (<45 µm) of the parent soil collected from North African dust sources.

  18. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  19. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume

    USGS Publications Warehouse

    Gschwend, Philip M.; Reynolds, Matthew D.

    1987-01-01

    Groundwater samples collected near a secondary-sewage infiltration site on Cape Cod, Massachusetts were examined for colloidal materials (10–1000 nm). In two wells the water contained a population of monodisperse 100-nm particles, detected using laser-light scattering and autocorrelation data processing. SEM and SEM-EDAX analysis of these colloidal materials collected on ultrafilters confirmed the laser light scattering result and revealed that these microparticles consisyed of primarily iron and phosphorus in a 1.86 Fe to 1.0 P stoichiometric ratio. Chemical analyses of the water samples, together with equilibrium solubility calculations, strongly suggest that the ion-activity product should exceed the solubility product of a 100-nm diameter predominantly vivianite-type (Fe3(PO4)2 · 8H2O) colloidal phase. In light of our results, we conclude that these microparticles were formed by sewage-derived phosphate combining with ferrous iron released from the aquifer solids, and that these colloids may be moving in the groundwater flow. Such a subsurface transport process could have major implications regarding the movement of particle-reactive pollutants traditionally viewed as non-mobile in groundwater.

  20. [Hypothyroidism as the result of drug interaction between ferrous sulfate and levothyroxine].

    PubMed

    Fiaux, E; Kadri, K; Levasseur, C; Le Guillou, C; Chassagne, P

    2010-10-01

    We report a case of drug-drug interaction between ferrous sulfate and l-thyroxin. A 95-year-old woman treated successfully with l-thyroxin for many years received ferrous sulfate for anemia. This association led rapidly to recurrence of hypothyroidism with elevated serum than TSH level which completely resolved after withdrawal of iron therapy. Interaction was confirmed after both drugs were daily administrated separately without recurrence of hypothyroidism.

  1. Effect of oral coadministration of artesunate with ferrous sulfate on rat liver mitochondrial membrane permeability transition.

    PubMed

    Fafowora, Mosebolatan V; Atanu, Francis; Sanya, Olayinka; Olorunsogo, Olufunso O; Erukainure, Ochuko L

    2011-07-01

    The recent resurgence of interest in the study of mitochondria has been fuelled in large part by the recognition that genetic and/or metabolic alterations in this organelle are causative or contributing factors in a variety of human diseases including cancer. This study hypothesizes that co-administration of artesunate and ferrous sulfate could induce apoptosis which can be targeted on cancerous cells in such a manner, thus providing a novel, viable and perhaps inexpensive way of dealing with the cancer scourge. Artesunate and Ferrous sulfate were co-administered to rats at various doses for seven days. At the end of the treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Low ionic strength mitochondria were isolated from hepatic cells of the rats and assayed for protein content; changes in the absorbance of the liver mitochondria; and mitochondrial swelling. Co-administration of artesunate and ferrous sulfate resulted in a significant increase (P<0.05) in pore opening. The difference in pore opening was found to be statistically significant (P<0.05) when the artesunate and ferrous iron-treated groups were compared with the artesunate only treated group. Results from this study show that co-administration of artesunate and ferrous sulfate can cause an opening in the mitochondrial membrane transition pore. A combined dose of ferrous sulfate and artesunate may prove to be a more potent therapy for targeting cancerous cells.

  2. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.

    PubMed

    Yu, Xubiao; Xu, Ronghua; Wei, Chaohai; Wu, Haizhen

    2016-01-25

    The effect of ferrous sulfate (FeSO4) treatment on the removal of cyanide compounds and the improvement of biodegradability of coking wastewater were investigated by varying Fe:TCN molar ratios. Results suggested that the reaction between FeSO4 and coking wastewater was a two-step process. At the first step, i.e., 0≤Fe:TCN≤1.0, the reaction mechanisms were dominated by the precipitation of FeS, the complexation of CN(-), and the coagulation of organic compounds. The COD of coking wastewater decreased from 3748.1 mg/L to 3450.2 mg/L, but BOD5:COD (B/C) was improved from 0.30 to 0.51. At the second step, i.e., 1.0ferrous ions was the dominating mechanism. The COD showed a continuous increase to 3542.2 mg/L (Fe:TCN=3.2) due to the accumulated ferrous ions in coking wastewater. Moreover, B/C decreased progressively to 0.35, which was attributed to the negative effects of excess ferrous ions on biodegradability. To improve coking wastewater's biodegradability, a minimum ferrous dosage is required to complete the first step reaction. However, the optimum ferrous dosage should be determined to control a safe residual TCN in coking wastewater for the further biological treatment.

  3. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.

    PubMed

    Oehmig, Wesley N; Roessler, Justin G; Zhang, Jianye; Townsend, Timothy G

    2015-01-01

    The recovery of ferrous and non-ferrous metals from waste to energy (WTE) ash continues to advance as the sale of removed metals improves the economics of waste combustion. Published literature suggests that Fe and Fe oxides play a role in suppressing Pb leaching in the Toxicity Characteristic Leaching Procedure (TCLP); further removal of ferrous metals from WTE ashes may facilitate higher Pb leaching under the TCLP. Eight WTE bottom ash size-fractions, from three facilities, were evaluated to assess the effect of metallic Fe addition and ferrous metal removal on TCLP leaching. Metallic Fe addition was demonstrated to reduce Pb leaching; the removal of ferrous metals by magnet resulted in a decrease in total available Pb (mg/kg) in most ash samples, yet Pb leachability increased in 5 of 6 ash samples. The research points to two chemical mechanisms to explain these results: redox interactions between Pb and Fe and the sorption of soluble Pb onto Fe oxide surfaces, as well as the effect of the leachate pH before and after metals recovery. The findings presented here indicate that generators, processors, and regulators of ash should be aware of the impact ferrous metal removal may have on Pb leaching, as a substantial increase in leaching may have significant implications regarding the management of WTE ashes.

  4. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.

    PubMed

    Connolly, Erin L; Campbell, Nathan H; Grotz, Natasha; Prichard, Charis L; Guerinot, Mary Lou

    2003-11-01

    The Arabidopsis FRO2 gene encodes the low-iron-inducible ferric chelate reductase responsible for reduction of iron at the root surface. Here, we report that FRO2 and IRT1, the major transporter responsible for high-affinity iron uptake from the soil, are coordinately regulated at both the transcriptional and posttranscriptional levels. FRO2 and IRT1 are induced together following the imposition of iron starvation and are coordinately repressed following iron resupply. Steady-state mRNA levels of FRO2 and IRT1 are also coordinately regulated by zinc and cadmium. Like IRT1, FRO2 mRNA is detected in the epidermal cells of roots, consistent with its proposed role in iron uptake from the soil. FRO2 mRNA is detected at high levels in the roots and shoots of 35S-FRO2 transgenic plants. However, ferric chelate reductase activity is only elevated in the 35S-FRO2 plants under conditions of iron deficiency, indicating that FRO2 is subject to posttranscriptional regulation, as shown previously for IRT1. Finally, the 35S-FRO2 plants grow better on low iron as compared with wild-type plants, supporting the idea that reduction of ferric iron to ferrous iron is the rate-limiting step in iron uptake.

  5. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.

    PubMed

    Ding, Hong; Duan, Lihong; Wu, Huilan; Yang, Rongxin; Ling, Hongqing; Li, Wen-Xue; Zhang, Fusuo

    2009-07-01

    Iron deficiency-induced chlorosis in peanut during anthesis was alleviated when peanut was intercropped with maize in field and pot experiments. Iron acquisition of graminaceous plants is characterized by the synthesis and secretion of the iron-chelating phytosiderophores. Compared to the roots of monocropped maize, the roots of maize intercropped with peanut always secreted higher amounts of phytosiderophores during peanut anthesis. For non-graminaceous plants, reduction of ferric to ferrous iron on the root surface is the rate-limiting step for mobilizing iron from soil. The full-length cDNA, AhFRO1, which is encoding an Fe(III)-chelate reductase, was isolated from peanut. AhFRO1 expression in yeast conferred Fe(III)-chelate reductase activity to the cells. Consistent with its function in iron uptake, AhFRO1 was determined to be a membrane protein by transient expression analysis. AhFRO1 mRNA accumulated under iron deficiency conditions. During pre-anthesis, the Fe(III)-chelate reductase activity and the transcript levels of AhFRO1 were similar in monocropped and intercropped peanut. When the iron deficiency-induced chlorosis developed in the monocropped peanuts, both the Fe(III)-chelate reductase activity of peanut and the transcript levels of AhFRO1 were higher in intercropped than in monocropped peanuts, which is consistent with the secretion of phytosiderophores by maize roots. We conclude that AhFRO1 in peanut and phytosiderophores from maize co-operate to improve the iron nutrition of peanut when intercropped with maize.

  6. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  7. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson's disease model induced by MPTP via chelating iron.

    PubMed

    Wang, Y-Q; Wang, M-Y; Fu, X-R; Peng-Yu; Gao, G-F; Fan, Y-M; Duan, X-L; Zhao, B-L; Chang, Y-Z; Shi, Z-H

    2015-01-01

    Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP(+)-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.

  8. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects.

    PubMed

    Blanusa, Maja; Varnai, Veda M; Piasek, Martina; Kostial, Krista

    2005-01-01

    The effects of chelating drugs used clinically as antidotes to metal toxicity are reviewed. Human exposure to a number of metals such as lead, cadmium, mercury, manganese, aluminum, iron, copper, thallium, arsenic, chromium, nickel and platinum may lead to toxic effects, which are different for each metal. Similarly the pharmacokinetic data, clinical use and adverse effects of most of the chelating drugs used in human metal poisoning are also different for each chelating drug. The chelating drugs with worldwide application are dimercaprol (BAL), succimer (meso-DMSA), unithiol (DMPS), D-penicillamine (DPA), N-acetyl-D-penicillamine (NAPA), calcium disodium ethylenediaminetetraacetate (CaNa(2)EDTA), calcium trisodium or zinc trisodium diethylenetriaminepentaacetate (CaNa(3)DTPA, ZnNa(3)DTPA), deferoxamine (DFO), deferiprone (L1), triethylenetetraamine (trientine), N-acetylcysteine (NAC), and Prussian blue (PB). Several new synthetic homologues and experimental chelating agents have been designed and tested in vivo for their metal binding effects. These include three groups of synthetic chelators, namely the polyaminopolycarboxylic acids (EDTA and DTPA), the derivatives of BAL (DMPS, DMSA and mono- and dialkylesters of DMSA) and the carbodithioates. Many factors have been shown to affect the efficacy of the chelation treatment in metal poisoning. Within this context it has been shown in experiments using young and adult animals that metal toxicity and chelation effects could be influenced by age. These findings may have a bearing in the design of new therapeutic chelation protocols for metal toxicity.

  9. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  10. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  11. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.

    PubMed

    Ji, Yuefei; Ferronato, Corinne; Salvador, Arnaud; Yang, Xi; Chovelon, Jean-Marc

    2014-02-15

    The wide occurrence of antibiotics in groundwater raised great scientific interest as well as public awareness in recent years due to their potential ability to spread antibiotic resistant gene and pose risk to humans. The present study investigated the ferrous ion (Fe(II)) activated decomposition of persulfate (S2O8(2-)), as a potential in situ chemical oxidation (ISCO) approach, for remediation of groundwater contaminated by antibiotics. Fe(II)-persulfate mediated ciprofloxacin (CIP) degradation was found to be more efficient than sulfamethoxazole (SMX) at near neutral pH (pH6.0), probably due to the higher electric density in CIP molecule and its ability to form complex with Fe(II) as a ligand. Hydroxyl (HO) and sulfate radical (SO4(-)) were determined to be responsible for the degradation of CIP and SMX in Fe(II)-persulfate system by molecular probes. No enhancement in the degradation of CIP was observed when citrate (CA), ethylenediaminetetraacetate (EDTA) and (S,S)-ethylenediamine-N,N'-disuccinate (EDDS) were used as Fe(II) chelating agents in Fe(II)-persulfate system. For SMX, CA and EDTA accelerated the degradation by Fe(II)-persulfate. Degradation of antibiotics in river water matrix was nearly the same as that in Milli-Q water, implying the possibility of using Fe(II)-persulfate for antibiotics depletion under environmentally relevant condition. A comparison of the degradation efficiency of SMX with other sulfonamides and sulfanilic acid indicated that the heterocyclic ring has a large impact on the degradation of sulfonamides. Transformation products of CIP and SMX by Fe(II)-persulfate were analyzed by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) technique. Based on the intermediate products, Fe(II)-persulfate mediated CIP degradation pathways were tentatively proposed.

  12. Precise determination of ferrous iron in silicate rocks

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Nakamura, Eizo

    2002-03-01

    We have developed a highly precise method for the determination of ferrous iron (Fe 2+) in silicate rocks. Our new method is based on Wilson's procedure (1955) in which surplus V 5+ is used to oxidize Fe 2+ into Fe 3+ while equivalently reducing V 5+ into V 4+. Because V 4+ is more resistant to atmospheric oxidation than Fe 2+, Fe 2+ in the sample can be determined by measuring unreacted V 5+ by adding excess Fe 2+ after sample decomposition and then titrating the unreacted Fe 2+ with Cr 6+. With our method, which involves conditioning the sample solution with 5 M H 2SO 4 in a relatively small beaker (7 mL), the oxidation of Fe 2+ or V 4+ that leads to erroneous results can be completely avoided, even in 100-h sample decompositions at 100°C. We have measured the concentration of FeO in 15 standard silicate rock powders provided by the Geological Survey of Japan (GSJ). Analytical reproducibility was better than 0.5% (1σ) for all but those samples that had small amounts of Fe 2+ (<1.5 wt.% of FeO). Fourteen of these samples gave FeO contents significantly higher than the GSJ reference values. This likely indicates that the GSJ reference values, obtained by compiling previously published data, contain a large number of poor-quality data obtained by methods with lower recovery of Fe 2+ caused by oxidation or insufficient sample decomposition during analyses. To achieve accurate determinations of Fe 2+ in our method, several factors besides the oxidation must be considered, including: (1) long-term variations in the concentration of Fe 2+ solution must be corrected; (2) excess use of the indicator must be avoided; and (3) the formation of inert FeF + complex must be avoided during titration when using boric acid as a masking agent.

  13. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    PubMed

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  14. Myelodysplastic Syndromes and Iron Chelation Therapy

    PubMed Central

    Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto

    2017-01-01

    Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409

  15. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Koutsospyros, Agamemnon; Christodoulatos, Christos; Gevgilili, Halil; Malik, Moinuddin; Kalyon, Dilhan M

    2009-07-15

    The effectiveness of the treatment of chromite ore processing residue (COPR) with ferrous sulfate and encapsulation into asphalt were explored separately and in combination. The asphalt treatment was conducted by mixing COPR or ferrous sulfate pretreated COPR with varying amounts of asphalt. To assess the efficacy of the treatment, the leachability of toxicity characteristic leaching procedure (TCLP) total chromium (Cr) from all treated samples was determined for curing periods up to 16 months. X-ray absorption near edge structure (XANES) analyses were also performed to evaluate the Cr(6+) concentration in the selected samples. The combination treatment of ferrous sulfate and the encapsulation of the treated COPR into asphalt reduced the TCLP total Cr concentration to lower than the regulatory limit of 5mg/L for Cr contaminated soils, after 16 months. However, the Cr concentrations were still higher than the universal treatment standards (UTS) of 0.6 mg/L for hazardous waste. On the other hand, treatment with ferrous sulfate alone or the encapsulation of the COPR in asphalt failed to meet the TCLP total Cr concentration of 5mg/L, after 16 months. XANES analyses results showed that more than 75% Cr(6+) reduction was achieved upon pretreatment with ferrous sulfate.

  16. Iron isotope fractionation during photo-oxidation of aqueous ferrous iron

    NASA Astrophysics Data System (ADS)

    Staton, S.; Amskold, L.; Gordon, G.; Anbar, A.; Konhauser, K.

    2006-05-01

    The classic interpretation of banded iron formations (BIFs) presumes the presence of dissolved O2 in the surface ocean to oxidize ferrous Fe. However, at least two alternative oxidation mechanisms are possible: UV photo-oxidation; and the activity of anaerobic Fe(II)-oxidizing photosynthetic bacteria. We are investigating Fe isotope fractionation as a means of differentiating amongst these mechanisms. Photo-oxidation has been examined at pH ~ 3 and 41°C in the absence of ligands other than H2O, OH-, and Cl- using UVA (316-400 nm) and UVC (200-280 nm) light sources. In these experiments, ferrous Fe was oxidized and precipitated as ferric oxyhydroxide. We find that isotopically heavy Fe was preferentially removed from solution. The fractionation factor (α) for the overall reaction is ~ 1.0025. This value is comparable to the α between Fe2+ and Fe3+ hexaquo complexes, but larger than the effect seen during the overall process of ferrous Fe oxidation and precipitation at near-neutral pH. The magnitude of isotope fractionation is likely to change at higher pH for two reasons. First, ferric oxyhydroxide precipitation, which may impart a kinetic isotope effect, is faster at higher pH. Second, the major UV-absorbing ferrous species in the ocean is the ferrous hydroxide ion [Fe(OH)+], the concentration of which is strongly pH dependent. Photo-oxidation experiments at realistic seawater pH are under current investigation.

  17. Melting of low-level radioactive non-ferrous metal for release

    SciTech Connect

    Quade, Ulrich; Kluth, Thomas; Kreh, Rainer

    2007-07-01

    Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

  18. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    PubMed Central

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  19. Potential for microbial oxidation of ferrous iron in basaltic glass.

    PubMed

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  20. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  1. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  2. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    PubMed Central

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies of using principles of metal chelation in medicinal contexts beyond the traditional notion of chelation therapy. These strategies include altering metal biodistribution, inhibiting specific metalloenzymes associated with disease, enhancing the reactivity of a metal complex to promote cytotoxicity, and conversely, passivating the reactivity of metals by site-activated chelation to prevent cytotoxicity. PMID:23332666

  3. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  4. Chelation in metal intoxication XXI: chelation in lead intoxication during vitamin B complex deficiency

    SciTech Connect

    Not Available

    1986-09-01

    The vitamin B-complex deficiency increases the vulnerability to neuro- and systemic toxicity of Pb in young rats. Thus, the nutritional status of vitamins like that of protein or minerals seems to influence the etiology of Pb toxicity and may be expected to affect the response toward Pb chelators. 2,3 dimercaptosuccinic acid (DMSA) and N-(2-hydroxyethyl) ethylene-diamine triacetic acid (HEDTA) have been found to be effective antidotes to Pb intoxication. In the present study, these selective metal chelating agents were compared for their ability to reduce the body burden of Pb and restore the altered biochemical parameters in young developing Pb intoxicated rats maintained on normal or vitamin B-complex deficient diet. The investigation was aimed to suggest suitable prophylaxis of Pb poisoning prevalent among children who may also be suffering from vitamin deficiency in developing and poor countries.

  5. Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects.

    PubMed

    Seo, Jai Woong; Mahakian, Lisa M; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F; Ferdani, Riccardo; Anderson, Carolyn J; Ferrara, Katherine W

    2010-07-21

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long-circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of (64)Cu-TETA, (64)Cu-TETA-PEG2k, and (64)Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 h of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that approximately 50% of the radioactivity cleared from the blood pool in 16-18 h. As expected, the in vivo biodistribution and TAC data obtained at 48 h demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a poly(ethylene glycol)-2k (PEG2k) brush. Our data suggest that (64)Cu-TETA and (64)Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however, clearance of Cu-64 from the liver and spleen are faster when injected as (64)Cu-TETA-chelated liposomes rather than (64)Cu-CB-TE2A-chelated liposomes.

  6. Liposomal Cu-64 labeling method using bifunctional chelators: polyethylene glycol spacer and chelator effects

    PubMed Central

    Seo, Jai Woong; Mahakian, Lisa M.; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F.; Ferdani, Riccardo; Anderson, Carolyn J.; Ferrara, Katherine W.

    2010-01-01

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane- 1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of 64Cu-TETA, 64Cu-TETA-PEG2k, and 64Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 hours of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that ~50% of the radioactivity cleared from the blood pool in 16 - 18 hours. As expected, the in vivo biodistribution and TAC data obtained at 48 hours demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a polyethylene glycol-2k (PEG2k) brush. Our data suggest that 64Cu-TETA and 64Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however clearance of Cu-64 from the liver and spleen are faster when injected as 64Cu-TETA-chelated liposomes rather than 64Cu-CB-TE2A-chelated liposomes. PMID:20568726

  7. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein.

    PubMed

    Angove, H C; Yoo, S J; Münck, E; Burgess, B K

    1998-10-09

    The MoFe protein of nitrogenase catalyzes the six-electron reduction of dinitrogen to ammonia. It has long been believed that this protein receives the multiple electrons it requires one at a time, from the [4Fe-4S]2+/+ couple of the Fe protein. Recently an all-ferrous [4Fe-4S]0 state of the Fe protein was demonstrated suggesting instead a series of two electron steps involving the [4Fe-4S]2+/0 couple. We have examined the interactions of the [4Fe-4S]0 Fe protein with nucleotides and its ability to transfer electrons to the MoFe protein. The [4Fe-4S]0 Fe protein binds both MgATP and MgADP and undergoes the MgATP induced conformational change and then binds properly to the MoFe protein, as evidenced by the fact that the behavior of the 0 and +1 oxidation states in the chelation and chelation protection assays are indistinguishable. Nucleotide binding does not effect the distinctive UV/Vis, CD, or Mössbauer spectra exhibited by the [4Fe-4S]0 Fe protein; however, because the intensity of the g = 16.4 EPR signal of the [4Fe-4S]0 Fe protein is extremely sensitive to minor variations of the rhombicity parameter E/D, the EPR signal is sensitive to the binding of nucleotides. A 50:50 mixture of [4Fe-4S]2+ and [4Fe-4S]0 Fe protein results in electron self-exchange and 100% production of [4Fe-4S]+ Fe protein, demonstrating that the +1/0 couple is fully reversible. MgATP is absolutely required for electron transfer from the [4Fe-4S]0 Fe protein to the reduced state of the MoFe protein. In that reaction both electrons are transferred and are used to reduce substrate.

  8. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  9. Ferrous sulfate versus iron polymaltose complex for treatment of iron deficiency anemia in children.

    PubMed

    Bopche, Ankur Vikas; Dwivedi, Rashmi; Mishra, Rakesh; Patel, G S

    2009-10-01

    We assessed the clinical response and side effects of Ferrous sulfate (FS) and Iron polymaltose complex (IPC) in 118 children with Iron deficiency anemia (IDA). Subjects were randomized to receive therapy with either oral IPC (Group A, n=59) or oral FS (Group B, n=59); all were given elemental iron in three divided doses of 6 mg/kg/day. One hundred and six children could be followed up; 53 in each group. Children who received ferrous sulfate were having higher hemoglobin level, and less residual complaints as compared to those who had received iron polymaltose complex. Our study suggests ferrous sulfate has a better clinical response and less significant adverse effects during treatment of IDA in children.

  10. Severe Endobronchial Inflammation Induced by Aspiration of a Ferrous Sulfate Tablet.

    PubMed

    Lim, Sang Youn; Sohn, Sung Birm; Lee, Jung Min; Lee, Ji Ae; Chung, Sangmi; Kim, Junga; Choi, Juwhan; Kim, Sehwa; Yoo, Ah Young; Roh, Jong Ah; Park, Haein; Kim, Won Shik; Sim, Jae Kyeom; Shim, Jae Jeong; Min, Kyung Hoon

    2016-01-01

    Iron supplements such as ferrous sulfate tablets are usually used to treat iron-deficiency anemia in some elderly patients with primary neurologic disorders or decreased gag reflexes due to stroke, senile dementia, or parkinsonism. While the aspiration of ferrous sulfate is rarely reported, it is a potentially life-threatening condition that can lead to airway necrosis and bronchial stenosis. A detailed history and high suspicion of aspiration are required to avoid delays in diagnosis and treatment. The diagnosis can be confirmed by bronchoscopic examination and a tissue biopsy. Early removal of the aspirated tablet prevents acute complications, such as bronchial necrosis, hemoptysis, and lobar consolidation. Tablet removal is also necessary to prevent late bronchial stenosis. We presented the first case in Korea of a ferrous sulfate tablet aspiration that induced severe endobronchial inflammation.

  11. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women.

    PubMed

    Paesano, R; Berlutti, F; Pietropaoli, M; Goolsbee, W; Pacifici, E; Valenti, P

    2010-01-01

    Iron homeostasis in pregnancy compensates for increased iron requirements and in women of child-bearing age for iron loss in menses. Oral administration of ferrous sulfate, prescribed to cure iron deficiency (ID) and ID anemia (IDA), often fails to increase hematological parameters and causes adverse effects. Recently, we demonstrated safety and efficacy of bovine lactoferrin (bLf) in pregnant women suffering from ID/IDA. Two clinical trials were conducted on pregnant and non-pregnant women of child-bearing age suffering from ID/IDA. In both trials, women received oral administration of bLf 100 mg/twice/day (Arm A), or ferrous sulfate 520 mg/day (Arm B). Hematological parameters, serum IL-6 and prohepcidin were assayed before and after therapy. Unlike ferrous sulfate, bLf increased hematological parameters (P less than 0.0001). In pregnant women, bLf decreased serum IL-6 (P less than 0.0001), and increased prohepcidin (P=0.0007). In non-pregnant women bLf did not change the low IL-6 levels while it increased prohepcidin (P less than 0.0001). Ferrous sulfate increased IL-6 (P less than 0.0001) and decreased prohepcidin (P=0.093). bLf established iron homeostasis by modulating serum IL-6 and prohepcidin synthesis, whereas ferrous sulfate increased IL-6 and failed to increase hematological parameters and prohepcidin. bLf is a more effective and safer alternative than ferrous sulfate for treating ID and IDA.

  12. DNA nuclease activity of Rev-coupled transition metal chelates.

    PubMed

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  13. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  14. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    PubMed Central

    Sears, Margaret E.

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease. PMID:23690738

  15. In vitro copper-chelating properties of flavonoids.

    PubMed

    Ríha, Michal; Karlícková, Jana; Filipský, Tomáš; Jahodár, Ludek; Hrdina, Radomír; Mladenka, Premysl

    2014-10-01

    Copper is an indispensable trace element for human body and the association between a disruption of copper homeostasis and a series of pathological states has been well documented. Flavonoids influence the human health in a complex way and the chelation of transient metal ions indisputably contributes to their mechanism of the action, however, the information about their copper-chelating properties have been sparse. This in vitro study was thus aimed at the detailed examination of flavonoids-copper interactions by two spectrophotometric assays at four (patho)physiologically relevant pH conditions (4.5-7.5), with the emphasis on the structure-activity relationship. The tested flavonoids were compared with the clinically used copper chelator, trientine. Most of the 26 flavonoids chelated copper ions, however, in a variable extent. Only flavones and flavonols were able to form stable complexes with both cupric and cuprous ions. The 3-hydroxy-4-keto group and 5,6,7-trihydroxyl group represented the most efficient chelation sites in flavonols and flavones, respectively, and the 2,3-double bond was essential for the stable copper chelation. Interestingly, the 3´,4´-dihydroxyl (catechol) group was associated only with a weak activity. Although none of the tested flavonoids were more potent than trientine at physiological or slightly acidic conditions, 3-hydroxyflavone, kaempferol and partly baicalein surpassed trientine at acidic conditions. Conclusively, flavonoids containing appropriate structural features were efficient copper chelators and some of them were even more potent than trientine under acidic conditions.

  16. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  17. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities.

  18. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  19. Ceric and ferrous dosimeters show precision for 50-5000 rad range

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Henry, V. D.

    1968-01-01

    Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET.

  20. Effect of purification pretreatment on the recovery of magnetite from waste ferrous sulfate

    NASA Astrophysics Data System (ADS)

    Yu, Wang; Peng, Ying-lin; Zheng, Ya-jie

    2016-08-01

    The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of NaOH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.

  1. Non-heme iron as ferrous sulfate does not interact with heme iron absorption in humans.

    PubMed

    Gaitán, Diego; Olivares, Manuel; Lönnerdal, Bo; Brito, Alex; Pizarro, Fernando

    2012-12-01

    The absorption of heme iron has been described as distinctly different from that of non-heme iron. Moreover, whether heme and non-heme iron compete for absorption has not been well established. Our objective was to investigate the potential competition between heme and non-heme iron as ferrous sulfate for absorption, when both iron forms are ingested on an empty stomach. Twenty-six healthy nonpregnant women were selected to participate in two iron absorption studies using iron radioactive tracers. We obtained the dose-response curve for absorption of 0.5, 10, 20, and 50 mg heme iron doses, as concentrated red blood cells. Then, we evaluated the absorption of the same doses, but additionally we added non-heme iron, as ferrous sulfate, at constant heme/non-heme iron molar ratio (1:1). Finally, we compare the two curves by a two-way ANOVA. Iron sources were administered on an empty stomach. One factor analysis showed that heme iron absorption was diminished just by increasing total heme iron (P < 0.0001). The addition of non-heme iron as ferrous sulfate did not have any effect on heme iron absorption (P = NS). We reported evidence that heme and non-heme iron as ferrous sulfate does not compete for absorption. The mechanism behind the absorption of these iron sources is not clear.

  2. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  3. Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises

    SciTech Connect

    M.I. Fal'kov

    2009-07-15

    Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

  4. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.

    PubMed

    Xenidis, Anthimos; Stouraiti, Christina; Papassiopi, Nymphodora

    2010-05-15

    The chemical immobilization of Pb and As in contaminated soil from Lavrion, Greece, using monocalcium phosphate and ferrous sulfate as stabilizing agents was investigated. Monocalcium phosphate was added to contaminated soil at PO(4) to Pb molar ratios equal to 0, 0.5, 1, 1.5 and 2.5, whereas ferrous sulfate was added at Fe to As molar ratios equal to 0, 2.5, 5, 10 and 20. Phosphates addition to contaminated soil decreased Pb leachability, but resulted in significant mobilization of As. Simultaneous immobilization of Pb and As was obtained only when soil was treated with mixtures of phosphates and ferrous sulfate. Arsenic uptake by plants was also seen to increase when soil was treated only with phosphates, but co-addition of ferrous sulfate was efficient in maintaining As phytoaccumulation at low levels. The addition of at least 1.5M/M phosphates and 10M/M iron sulfate to soil reduced the dissolved levels of Pb and As in the water extracts to values in compliance with the EU drinking water standards. However, both additives contributed in the acidification of soil, decreasing pH from 7.8 to values as low as 5.6 and induced the mobilization of pH sensitive elements, such as Zn and Cd.

  5. Martian weathering/alteration scenarios from spectral studies of ferric and ferrous minerals

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Adams, John B.; Morris, Richard V.

    1992-01-01

    We review the major aspects of our current knowledge of martian ferric and ferrous mineralogy based on the available ground-based telescopic and spacecraft data. What we know and what we don't know are used to constrain various weathering/alteration models and to identify key future measurements and techniques that can distinguish between these models.

  6. IN SITU CR(VI) TREATMENT USING A FERROUS IRON-BASED REDUCTANT

    EPA Science Inventory

    Laboratory and field studies were conducted to evaluate the performance of a ferrous sulfate/ sodium hydrosulfite (dithionite) reductant blend in treating a hexavalent chromium (Cr(VI)) source area and Cr(VI) dissolved phase plume at a former industrial site in Charleston, South ...

  7. Compatibility of Anti-Wear Additives with Non-Ferrous Engine Bearing Alloys

    SciTech Connect

    Qu, Jun; Zhou, Yan

    2017-01-01

    Investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected non-ferrous engine bearing alloys, specifically aluminum and bronze alloys that are commonly used in connecting rod end journal bearings and bushings, to gain fundamental understanding to guide future development of engine lubricants

  8. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  9. 76 FR 31357 - Agency Information Collection Activities: Comment Request for the Ferrous Metals Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Metals Surveys AGENCY: U.S. Geological Survey (USGS), Interior. ACTION: Notice of a revision of a... requirements for the Ferrous Metals Surveys. This collection consists of 17 forms. This notice provides the... these forms to supply the USGS with domestic consumption data of 13 ores, concentrates, metals,...

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  11. An Evaluation of the Chelating Agent EDDS for Marigold Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. The offsite runoff and contamina...

  12. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  13. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  14. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  15. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  16. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  17. Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins.

    PubMed

    Chin, Lily; Leung, David W M; Harry Taylor, H

    2009-07-01

    Reported correlations between tannin level and metal accumulation within plant tissues suggest that metal-chelating tannins may help plants to tolerate toxic levels of heavy metal contaminants. This paper supports such correlations using a new method that demonstrated the ability of plant tannins to chelate heavy metals, and showed that the relative levels of tannins in tissues were quantitatively related to lead chelation in vitro. Using this in vitro metal chelation method, we showed that immobilised tannins prepared from lateral roots of Symphytum officinale L., that contained high tannin levels, chelated 3.5 times more lead than those from main roots with lower tannin levels. This trend was confirmed using increasing concentrations of tannins from a single root type, and using purified tannins (tannic acid) from Chinese gallnuts. This study presents a new, simple, and reliable method that demonstrates direct lead-tannin chelation. In relation to phytoremediation, it also suggests that plant roots with more 'built-in' tannins may advantageously accumulate more lead.

  18. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  19. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  1. The magnesium chelation step in chlorophyll biosynthesis

    SciTech Connect

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  2. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  3. The influence of ferrous sulfate utilization on the sugar yields from dilute-acid pretreatment of softwood for bioethanol production.

    PubMed

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2011-01-01

    By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4.

  4. Dissimilatory reduction of FeIII (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption.

    PubMed

    Ma, Bi-yao; Li, Wei; Jing, Guo-hua; Shi, Yao

    2004-01-01

    In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, FeIII(EDTA) can be reduced to FeII(EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of FeIII(EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of FeIII due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of FeII more than ethanol as the carbon sources. The microorganisms cultured at 50 degrees C were not very sensitive to the other experimental temperature, the reduction percentage of FeIII varied little with the temperature range of 30-50 degrees C. Concentrated Na2CO3 solution was added to adjust the solution pH to an optimal pH range of 6-7. The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix-culture are probably neutrophilic, moderately thermophilic FeIII reducers.

  5. Oxidative Transformations of Ferrous Iron-Bearing Smecitites: Routes to Martian Nontronites

    NASA Astrophysics Data System (ADS)

    Beehr, A. R.; Catalano, J. G.

    2011-12-01

    Data collected by the OMEGA spectrometer and the CRISM instrument indicate the presence of iron-bearing phyllosilicates on Mars' surface. Identified species include chlorite, saponite (Mg-rich smectite), and nontronite (Fe(III)-bearing smectite). The observed phyllosilicates occur in units that were deposited during the Noachian, which is thought to have had chemically reducing and alkaline conditions. Phyllosilicates are expected aqueous weathering products of basaltic minerals; the aqueous activity may have occurred episodically and hydrothermally, or as prolonged, low temperature alteration. Aqueous alkaline and reducing conditions favor the initial formation of ferrous iron-bearing phyllosilicates; subsequent surface alteration events are required to have oxidized these units into ferric smectites. Understanding the formation and oxidation of ferrous phyllosilicates can offer insight into the early Martian environment by allowing us to determine by what mechanism the oxidation occurred. We have investigated chemical and structural changes that occur upon oxidation of a synthetic ferrous saponite to determine the conditions under which such a process can produce nontronite or other ferric smectites. Both H2O2 and NO3- were used as oxidants. Hydrogen peroxide is likely the dominant oxidant currently present on Mars and nitrate is a plausible oxidant produced through photochemical processes. Deposition of photochemical nitrate is observed in the Antarctic dry valleys where it co-occurs with perchlorate, which was recently identified in Martian soil by the Phoenix lander. The initial ferrous saponite contains Fe(II) in the octahedral sheet. X-ray absorption spectroscopy (XAS) indicates that in the presence of a 1m nitrate solution under hydrothermally conditions the ferrous saponite undergoes oxidation to an Fe(III)-bearing phyllosilicate. Similar oxidation is not observed at 22°C, but this appears to be a kinetic phenomenon as oxidation is thermodynamically

  6. Regional siderosis: a new challenge for iron chelation therapy

    PubMed Central

    Cabantchik, Zvi Ioav; Munnich, Arnold; Youdim, Moussa B.; Devos, David

    2013-01-01

    The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g., sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson's disease). We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation of dual activity, one based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The “scavenging and redeployment” mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson's disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic functions. PMID:24427136

  7. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  8. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  9. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  10. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review.

  11. Essential Metalloelement Chelates Facilitate Repair of Radiation Injury

    PubMed Central

    Soderberg, Lee S. F.; Chang, Louis W.; Walker, Richard B.

    2001-01-01

    Treatment with essential metalloelement (Cu, Fe, Mn, and Zn) chelates or combinations of them before and/or after radiation injury is a useful approach to overcoming radiation injury. No other agents are known to increase survival when they are used to treat after irradiation, in a radiorecovery treatment paradigm. These chelates may be useful in facilitating de novo syntheses of essential metalloelement-dependent enzymes required to repair radiation injury. Reports of radioprotection, which involves treatment before irradiation, with calcium-channel blockers, acyl Melatonin homologs, and substituted anilines, which may serve as chelating agents after biochemical modification in vivo, as well as Curcumin, which is a chelating agent, have been included in this review. These inclusions are intended to suggest additional approaches to combination treatments that may be useful in facilitating radiation recovery. These approaches to radioprotection and radiorecovery offer promise in facilitating recovery from radiation-induced injury experienced by patients undergoing radiotherapy for neoplastic disease and by individuals who experience environmental, occupational, or accidental exposure to ultraviolet, x-ray, or γ-ray radiation. Since there are no existing treatments of radiation-injury intended to facilitate tissue repair, studies of essential metalloelement chelates and combinations of them, as well as combinations of them with existing organic radioprotectants, seem worthwhile. PMID:18475999

  12. Oxidation-Induced Degradable Nanogels for Iron Chelation

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-02-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.

  13. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  14. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO3) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  15. Oxidative Alteration of Ferrous Smectites: A Formation Pathway for Martian Nontronite?

    NASA Technical Reports Server (NTRS)

    Chemtob, S. M.; Catalano, J. G.; Nickerson, R. D.; Morris, R. V.; Agresti, D. G.; Rivera-Banuchi, V.; Liu, W.; Yee, N.

    2017-01-01

    Ferric (Fe3+-bearing) smectites, including nontronite, constitute the majority of hydrous mineral exposures observed on Mars. These smectite exposures are commonly interpreted as weathering products of Martian basaltic crust. However, ferrous (Fe2+-dominated) smectites, not ferric, are the thermo-dynamically predicted products of weathering in anoxic conditions, as predicted for early Mars. Earth was anoxic until the Proterozoic Great Oxidation Event; Mars likely experienced an analogous oxidative evolution to its present oxidized state, but the timing of this evolution is unresolved. We hypothesize that Fe3+-smectites observed by orbital spectroscopy are not the initial products of Noachian-era chemical weathering, but are instead the oxidative products of primary Fe2+-smectites. To test this hypothesis experimentally, we synthesized ferrous smectites and exposed them to Mars-relevant oxidants.

  16. Development of ferrous laminated composites with unique microstructures by control of carbon diffusion

    NASA Astrophysics Data System (ADS)

    Kum, D. W.; Oyama, T.; Ruano, O. A.; Sherby, O. D.

    1986-09-01

    A novel method is described for preparing ferrous laminated composites, containing ultrahigh carbon steel as one of the components, which results in hard and soft layers bounded by sharp and discrete interfaces. The method is based on increasing the activity of carbon in iron by silicon addition; in this manner, the carbon is made to segregate into specific layers by heat treatment at low temperatures (˜770 °C). The results are ferrous laminated composites with discrete and sharp interfaces that consist of hard layers containing spherical carbide particles embedded in a matrix of ultrafine martensite or ferrite adjoining soft layers of a coarse grained iron alloy. In addition, the high activity of carbon is shown to result in total depletion of carbon in a silicon containing UHC steel ribbon bonded to mild steel.

  17. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    NASA Astrophysics Data System (ADS)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  18. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  19. Estimation of Depth, Orientation, Length and Diameter of Long, Horizontal Ferrous Rods Using a Fluxgate Magnetometer

    DTIC Science & Technology

    1993-04-01

    applications where a horizontal ferrous rod, rope, pipe or cable lies underneath a smooth planar surface at a constant depth. In such cases one often...Brown sensor as the preferred magnetometer and by constructing preliminary magnetometer sensors and circuits. Richard Pinnell , formerly with TDG...smooth planar surface at a constant depth. In such cases one often would like to determine the position and orientation in the plane, the depth of

  20. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  1. Stress corrosion cracking of several high strength ferrous and nickel alloys

    NASA Technical Reports Server (NTRS)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  2. The role of chelation in the treatment of other metal poisonings.

    PubMed

    Smith, Silas W

    2013-12-01

    These proceedings will review the role of chelation in five metals-aluminum, cadmium, chromium, cobalt, and uranium-in order to illustrate various chelation concepts. The process of "chelation" can often be oversimplified, leading to incorrect assumptions and risking patient harm. For chelation to be effective, two critical assumptions must be fulfilled: the presumed "metal toxicity" must correlate with a given body or a particular compartment burden, and reducing this compartmental or the body burden (through chelation) attenuates toxicity. Fulfilling these assumptions requires an established dose-response relationship, a validated, reproducible means of toxicity assessment (clinical, biochemical, or radiographical), and an appropriate assessment mechanisms of body or compartment burden. While a metal might "technically" be capable of chelation (and readily demonstrable in urine or feces), this is an insufficient endpoint. Clinical relevance must be affirmed. Deferoxamine is an accepted chelator for appropriately documented aluminum toxicity. There is a very minimal treatment window in order to address chelation in cadmium toxicity. In acute toxicity, while no definitive chelation benefit is described, succimer (DMSA), diethylenetriaminepentaacetate (DTPA), and potentially ethylenediaminetetraacetic acid (EDTA) have been considered. In chronic toxicity, chelation is unsupported. There is little evidence to suggest that currently available chromium chelators are efficacious. Similarly, scant human evidence exists with which to provide recommendation for cobalt chelation. DTPA has been recommended for cobalt radionuclide chelation, although DMSA, EDTA, and N-acetylcysteine have also been suggested. DTPA is unsupported for uranium chelation. Sodium bicarbonate is currently recommended, although animal evidence is conflicting.

  3. The effect of oxidant addition on ferrous iron removal from multi-element acidic sulphate solutions

    NASA Astrophysics Data System (ADS)

    Mbedzi, Ndishavhelafhi; Ibana, Don; Dyer, Laurence; Browner, Richard

    2017-01-01

    This study was an investigation on the hydrolytic precipitation of iron from simulated pregnant leach solution (PLS) of nickel laterite atmospheric leaching. The effect of equilibrium pH, temperature and the addition of oxidant on total iron (ferrous (Fe (II)) and ferric (Fe (III)), aluminium and chromium removal was investigated together with the associated nickel and cobalt losses to the precipitate. Systematic variations of the experimental variables revealed ≥99% of the ferric iron can be removed from solution at conditions similar to those used in standard partial neutralisation in zinc and nickel production, pH of 2.5 and temperature less than 100 °C with minimal losses (<0.5%) of both nickel and cobalt. Temperature variation from 55 to 90 °C had no significant effect on the magnitude of Fe (III) precipitation but led to a significant increase in aluminium removal from 67% to 95% and improved the filterability of the precipitates. There was no ferrous iron precipitation even at a pH of 3.75 in the absence of an oxidant with its removal (98%) achieved by oxidative precipitation with oxygen gas at pH 3.5. Unlike Fe (III) precipitation, the operating temperature significantly affects oxidative precipitation of Fe (II). Hence, in practical application, the hydrolytic precipitation and oxidation to remove iron must be operated at 85 °C to ensure both ferrous and ferric iron are precipitated.

  4. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species

    PubMed Central

    Brickman, Timothy J.; Armstrong, Sandra K.

    2012-01-01

    Summary A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval. PMID:22924881

  5. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species.

    PubMed

    Brickman, Timothy J; Armstrong, Sandra K

    2012-11-01

    A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.

  6. Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women.

    PubMed

    Paesano, Rosalba; Berlutti, Francesca; Pietropaoli, Miriam; Pantanella, Fabrizio; Pacifici, Enrica; Goolsbee, William; Valenti, Piera

    2010-06-01

    Iron deficiency (ID) and iron deficiency anemia (IDA) are the most common iron disorders throughout the world. ID and IDA, particularly caused by increased iron requirements during pregnancy, represent a high risk for preterm delivery, fetal growth retardation, low birth weight, and inferior neonatal health. Oral administration of ferrous sulfate to cure ID and IDA in pregnancy often fails to increase hematological parameters, causes adverse effects and increases inflammation. Recently, we have demonstrated safety and efficacy of oral administration of 30% iron saturated bovine lactoferrin (bLf) in pregnant women suffering from ID and IDA. Oral administration of bLf significantly increases the number of red blood cells, hemoglobin, total serum iron and serum ferritin already after 30 days of the treatment. The increasing of hematological values by bLf is related to the decrease of serum IL-6 and the increase of serum hepcidin, detected as prohepcidin, whereas ferrous sulfate increases IL-6 and fails to increase hematological parameters and prohepcidin. bLf is a more effective and safer alternative than ferrous sulfate for treating ID and IDA in pregnant women.

  7. LITERATURE REVIEW: REDUCTION OF NP(V) TO NP (IV)-ALTERNATIVES TO FERROUS SULFAMATE

    SciTech Connect

    Kessinger, G.; Kyser, E.; Almond, P.

    2009-09-28

    The baseline approach to control of Np oxidation in UREX and PUREX separation processes is the reduction of Np(V) and Np(VI) to Np(IV) using ferrous sulfamate. Use of this reagent results in increased sulfur and iron concentrations in the liquid waste streams from the process. Presence of these two elements, especially sulfur, increases the complexity of the development of wasteforms for immobilizing these effluents. Investigations are underway to identify reductants that eliminate sulfur and iron from the Np reduction process. While there are a variety of chemical reductants that will reduce Np to Np(IV) in nitric acid media, the reaction rates for most are so slow that the reductants are not be feasible for use in an operating plant process. In an attempt to identify additional alternatives to ferrous sulfamate, a literature search and review was performed. Based on the results of the literature review, it is concluded that photochemical and catalytic processes should also be investigated to test the utility of these two approaches. The catalytic process could be investigated for use in conjunction with chemical oxidants to speed the reaction rates for reductants that react slowly, but would otherwise be appropriate replacements for ferrous sulfamate. The photochemical approach, which has received little attention during the past few decades, also shows promise, especially the photocatalytic approach that includes a catalyst, such as Pt supported on SiC, which can be used in tandem with an oxidant, for Np reduction.

  8. Ferrous iron-dependent delivery of therapeutic agents to the malaria parasite

    PubMed Central

    Mahajan, Sumit S; Gut, Jiri; Rosenthal, Philip J; Renslo, Adam R

    2013-01-01

    Background The malaria parasites Plasmodium falciparum and Plasmodium vivax generate significant concentrations of free unbound ferrous iron heme as a side product of hemoglobin degradation. The presence of these chemically reactive forms of iron, rare in healthy cells, presents an opportunity for parasite-selective drug delivery. Accordingly, our group is developing technologies for the targeted delivery of therapeutics to the intra-erythrocytic malaria parasite. These so-called ‘fragmenting hybrids’ employ a 1,2,4-trioxolane ring system as an iron(II)-sensing ‘trigger’ moiety and a ‘traceless’ retro-Michael linker to which a variety of partner drug species may be attached. After ferrous iron-promoted activation in the parasite, the partner drug is released via a β-elimination reaction. Methods In this report, we describe three orthogonal experimental approaches that were explored in order to generate in vitro proof-of-concept for ferrous iron-dependent drug delivery from a prototypical fragmenting hybrid. Conclusion Studies of two fragmenting hybrids by orthogonal approaches confirm that a partner drug species can be delivered to live P. falciparum parasites. A key advantage of this approach is the potential to mask a partner drug’s intrinsic bioactivity prior to release in the parasite. PMID:23234548

  9. Stable intermediate-spin ferrous iron in lower-mantle perovskite

    SciTech Connect

    McCammon, C.; Kantor, I.; Narygina, O.; Rouquette, J.; Ponkratz, U.; Sergueev, I.; Mezouar, M.; Prakapenka, V.; Dubrovinsky, L.

    2008-11-10

    The lower mantle is dominated by a magnesium- and iron-bearing mineral with the perovskite structure. Iron has the ability to adopt different electronic configurations, and transitions in its spin state in the lower mantle can significantly influence mantle properties and dynamics. However, previous studies aimed at understanding these transitions have provided conflicting results. Here we report the results of high-pressure (up to 110 GPa) and high-temperature (up to 1,000 K) experiments aimed at understanding spin transitions of iron in perovskite at lower-mantle conditions. Our Moessbauer and nuclear forward scattering data for two lower-mantle perovskite compositions demonstrate that the transition of ferrous iron from the high-spin to the intermediate-spin state occurs at approximately 30 GPa, and that high temperatures favour the stability of the intermediate-spin state. We therefore infer that ferrous iron adopts the intermediate-spin state throughout the bulk of the lower mantle. Our X-ray data show significant anisotropic compression of lower-mantle perovskite containing intermediate-spin ferrous iron, which correlates strongly with the spin transition. We predict spin-state heterogeneities in the uppermost part of the lower mantle associated with sinking slabs and regions of upwelling. These may affect local properties, including thermal and electrical conductivity, deformation (viscosity) and chemical behaviour, and thereby affect mantle dynamics.

  10. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates

    PubMed Central

    Mikhailov, Oleg V.

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis. PMID:24516711

  11. Kinetics of dissociation of trivalent actinide chelates of TMDTA

    SciTech Connect

    Muscatello, A.C.; Choppin, G.R.; D'Olieslager, W. )

    1989-03-22

    Measurements by a radiotracer technique show that the dissociation of TMDTA (trimethylenediamine-N,N-tetraacetic acid) chelates with Am, Cm, Bk, Cf, and Eu proceeds through an acid-catalyzed pathway. The rates of dissociation of An(TMDTA){sup {minus}} are 2 orders of magnitude faster than those of the corresponding EDTA chelates, presumably due to the greater lability of the nitrogen atom in the six-membered nitrogen-metal-nitrogen ring of TMDTA chelates. The rate of dissociation also decreased with decreasing metal ion radius. A proton-catalyzed mechanism similar to that for dissociation of EDTA complexes of lanthanide and actinide cations is consistent with the rate data. 19 refs., 6 figs., 2 tabs.

  12. Characterization of a metal-chelating substance in coffee.

    PubMed

    Takenaka, Makiko; Sato, Naoko; Asakawa, Hiromi; Wen, Xu; Murata, Masatsune; Homma, Seiichi

    2005-01-01

    A metal-chelating substance in brewed coffee was separated and characterized by its chemical structure. This substance was a brown polymer. The contents of sugars, amino acids and phenolics in the substance were evaluated. This polymer contained small amounts of sugars and amino acids in its partial structure. After being decomposed by alkaline fusion, the decomposition products were identified by HPLC and GC-MS. Several phenolics were detected in the decomposed products. To characterize this substance, various types of model compounds were prepared by roasting chlorogenic acid, sucrose, and (or) protein with cellulose powder. Among these model compounds, the polymer-forming ability was highest in the model prepared from all four of materials, but the metal-chelating ability was the highest in the model prepared from chlorogenic acid and cellulose. These results suggest that this metal-chelating substance was a melanoidin-like polymer formed by the decomposition and polymerization of sugars, amino acids and phenolics.

  13. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates.

    PubMed

    Mikhailov, Oleg V

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis.

  14. Car–Parrinello molecular dynamics in the DFT + U formalism: Structure and energetics of solvated ferrous and ferric ions

    SciTech Connect

    Sit, P H L.; Cococcioni, Matteo; Marzari, Nicola N.

    2007-09-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car–Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT + U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexaaqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe–O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe–O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.

  15. Interaction of chelating agents with cadmium in mice and rats.

    PubMed Central

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  16. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  17. Efficacy of chelation therapy to remove aluminium intoxication.

    PubMed

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  18. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    PubMed

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage.

  19. Interaction of chelating agents with cadmium in mice and rats

    SciTech Connect

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-03-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl/sub 2/ and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl/sub 2/ was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl/sub 2/ and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes.

  20. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    SciTech Connect

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  1. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  2. Dendritic poly-chelator frameworks for multimeric bioconjugation.

    PubMed

    Reich, Dominik; Wurzer, Alexander; Wirtz, Martina; Stiegler, Veronika; Spatz, Philipp; Pollmann, Julia; Wester, Hans-Jürgen; Notni, Johannes

    2017-02-23

    Starting from multifunctional triazacyclononane-triphosphinate chelator cores, dendritic molecules with the ability to bind metal ions within their framework were synthesized. A cooperative interaction of the chelator cages resulted in a markedly increased affinity towards (67/68)Ga(III). A hexameric PSMA inhibitor conjugate with high affinity (IC50 = 1.2 nM) and favorable in vivo PET imaging properties demonstrated practical applicability. The novel scaffolds are useful for synthesis of structurally well-defined multimodal imaging probes or theranostics.

  3. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Kargel, J.S.

    2003-01-01

    Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused

  4. Scintigraphic monitoring of immunotoxins using radionuclides and heterobifunctional chelators

    SciTech Connect

    Reardan, D.; Bernhard, S.

    1991-10-22

    This patent describes a method for in vivo radioimmunodetection of cytotoxic immunotoxin. It comprises administering internally to a mammal a radio-labeled immunotoxin, wherein a heterobifunctional chelating agent provides a chemical bridge between a radiolabel and a cytotoxic component bound to the antigen-binding component of the immunotoxin, and detecting externally the distribution of the immunotoxin in the mammal.

  5. Evaluation of intakes of transuranics influenced by chelation therapy

    SciTech Connect

    LaBone, T.R.

    1994-02-01

    Once an intake of transuranics occurs, there are only three therapeutic procedures available to the physician for reducing the intake and mitigating the dose: excision of material from wounds, removal of material from the lungs with lavage, and chelation therapy. The only chelation agents approved in the United States for the treatment of occupational intakes of transuranics are the zinc and calcium salts of diethylene-triamine-pentaacetic acid, better known as Zn-DTPA and Ca-DTPA. In the past 35 years, approximately 3000 doses of DTPA have been administrated to over 500 individuals who had intakes of transuranics. The drug is considered to be quiet safe and has few side effects. For the internal dosimetrist, perhaps the most important aspects of chelation therapy is that if enhances the excretion rate of a transuranic and perturbs the shape of the urinary excretion curve. These perturbations last for months and are so great that standard urinary excretion models cannot be used to evaluate the intake. We review here a method for evaluating intakes of transuranics influenced by chelation therapy that has been used with some degree of success at the Savannah River Site for over 20 years.

  6. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  7. Technical Report Summary: Metal Chelate, Eu-QCTME

    SciTech Connect

    Richter, James, A.

    2008-05-08

    A novel fluorescent metal complex, Eu-QCTME has shown promise for the early stage detection of cancer. This material has been shown to bind preferentially to xenographic tumors. The study, using HT29 murine xenographic tumors was performed to determine if the chelate preferentially binds to tumor tissue and the potential for an early stage diagnostic test and treatment for epithelial cell cancers.

  8. Chelation And Extraction Of Metals For GC-MS Analysis

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    1995-01-01

    Chelation followed by supercritical-fluid extraction enables mass-spectrometric analysis. When fully developed, method implemented in field-portable apparatus for detection and quantification of metals in various matrices without need for elaborate preparation of samples. Used to analyze soil samples for toxic metals.

  9. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  10. The Effects of Nanoparticles Containing Iron on Blood and Inflammatory Markers in Comparison to Ferrous Sulfate in Anemic Rats

    PubMed Central

    Shafie, Elaheh Honarkar; Keshavarz, Seyed Ali; Kefayati, Mohammad Esmaiel; Taheri, Fatemeh; Sarbakhsh, Parvin; Vafa, Mohammad Reza

    2016-01-01

    Background: Ferrous sulfate is the most used supplement for treating anemia, but it can result in unfavorable side effects. Nowadays, nanotechnology is used as a way to increase bioavailability and decrease the side effects of drugs and nutrients. This study investigates the effects of nanoparticles containing iron on blood and inflammatory markers in comparison to ferrous sulfate in anemic rats. Methods: To induce the model of hemolytic anemia, 50 mg/kg bw phenylhydrazine was injected intraperitoneally in rats on the 1st day and 25 mg/kg bw for the four following days. Then, rats were randomly divided into five groups. No material was added to the nipple of the Group 1 (control). Group 2 received 0.4 mg/day nanoparticles of iron; Group 3 received 0.4 mg/day ferrous sulfate, and Groups 4 and 5 received double dose of iron nanoparticle and ferrous sulfate, respectively for ten days. Results: Hemoglobin and red blood cell (RBC) in Group 2 were significantly higher than Group 3 (P < 0.05). In addition, hemoglobin and RBC in Group 4 and 5 were significantly higher than Group 3 (P < 0.05). The average level of serum iron in Groups 2 and 4 was remarkably more than the groups received ferrous sulfate with similar doses (P < 0.05). C-reactive protein in Group 3 was more than Group 2 and in Group 5 was more compare to all other groups. Conclusions: Single dose of nanoparticles had more bioavailability compare to ferrous sulfate, but this did not occur for the double dose. Furthermore, both doses of nanoparticles caused lower inflammation than ferrous sulfate. PMID:27857830

  11. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  12. Mössbauer spectroscopic study of iron-chelate trammels

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Meena, S. S.; Ningthoujam, R. S.; Goswami, D.

    2014-04-01

    Any kind of waste effluent in the Indian context and other countries contains a lot of iron in any ore. During mining, milling, extraction and purification process iron acts as contaminant towards other metal's purity. It is essential to remove iron to the maximum extent. In this case, an "IN-HOUSE" resin polyacrylamidehydroxamic acid (PHOA) has been designed and developed which is highly hydrophilic three dimensionally cross-linked. It has an excellent iron binding capacity with almost no leaching. Interaction of resin with ammonium ferrous sulphate and red-mod (Fe2O3) is studied using Mössbauer spectroscopy.

  13. Picture of a chelate in exchange: the crystal structure of NaHoDOTMA, a 'semi'-hydrated chelate.

    PubMed

    Payne, Katherine M; Valente, Edward J; Aime, Silvio; Botta, Mauro; Woods, Mark

    2013-03-21

    Crystallography generally only provides static structural information. This can render it an ineffective technique for probing dynamic solution state processes. A crystal of HoDOTMA affords unique structures that effectively represent that of a lanthanide tetra-acetate chelate mid-way through the water exchange process.

  14. EDTA Chelation Therapy, Without Added Vitamin C, Decreases Oxidative DNA Damage and Lipid Peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chelation therapy is thought to not only remove contaminating metals, but also to decrease free radical production. However, in standard EDTA chelation therapy high doses of vitamin C with potential prooxidant effects are often added to the chelation solution. We demonstrated previously that the in...

  15. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic.

    PubMed

    Appelo, C A J; Van Der Weiden, M J J; Tournassat, C; Charlet, L

    2002-07-15

    Surface complexation models are commonly used to predict the mobility of trace metals in aquifers. For arsenic in groundwater, surface complexation models cannot be used because the database is incomplete. Both carbonate and ferrous iron are often present at a high concentration in groundwater and will influence the sorption of arsenic, but the surface complexation constants are absent in the database of Dzombak and Morel. This paper presents the surface complexation constants for carbonate and ferrous iron on ferrihydrite as derived for the double-layer model. For ferrous iron the constants were obtained from published data supplemented by new experiments to determine the sorption on the strong sites of ferrihydrite. For carbonate the constants were derived from experiments by Zachara et al., who employed relatively low concentrations of carbonate. The double-layer model, optimized for low concentrations, was tested against sorption experiments of carbonate on goethite at higher concentration by Villalobos and Leckie, and reasonable agreement was found. Sorption was also estimated using linear free energy relations (LFER), and results compared well with our derived constants. Model calculations confirm that sorption of particularly carbonate at common soil and groundwater concentrations reduces the sorption capacity of arsenic on ferrihydrite significantly. The displacing effect of carbonate on sorbed arsenate and arsenite has been overlooked in many studies. It may be an important cause for the high concentrations of arsenic in groundwater in Bangladesh. Sediments containing high amounts of sorbed arsenic are deposited in surface water with low carbonate concentrations. Subsequently the sediments become exposed to groundwater with a high dissolved carbonate content, and arsenic is mobilized by displacement from the sediment surface.

  16. Suboptimal response to ferrous sulfate in iron-deficient patients taking omeprazole.

    PubMed

    Ajmera, Akash V; Shastri, Ghanshyam S; Gajera, Mithil J; Judge, Thomas A

    2012-05-01

    Iron deficiency anemia is commonly encountered in outpatient practice. Gastric acid is one of the important factors for optimum absorption of iron. Proton pump inhibitors are very commonly prescribed medications. One of the debated effects of proton pump inhibitors is on oral iron absorption. Their effect on absorption of oral iron supplementation in iron-deficient patients has not been studied. At the Cooper Hematology Outpatient office, we reviewed charts of iron-deficient anemic patients who were on omeprazole for the last 4 years. Fifty patients having no apparent ongoing blood loss, having other causes of anemia especially that of chronic diseases ruled out, and on omeprazole while starting ferrous sulfate therapy for iron deficiency were selected for chart review. The iron-study results at the start of oral ferrous sulfate therapy and at 3 months follow-up were compared to evaluate the response of ferrous sulfate. The mean hemoglobin change was 0.8 ± 1.2 g/L. The mean change in ferrtin values was 10.2 ± 7.8 μg/L. Only 16% of the patients had a normal response to hemoglobin levels (rise of >2 g/dL), and only 40% had a normal response to ferritin levels (rise of >20 μg/dL). The average age of patients having a suboptimal response to both hemoglobin and ferritin was significantly higher compared with that of the patients with an optimal response. Omeprazole and possibly all proton pump inhibitors decrease the absorption of oral iron supplementation. Iron-deficient patients taking proton pump inhibitors may have to be treated with high dose iron therapy for a longer duration or with intravenous iron therapy.

  17. Oxygen isotope fractionation of dissolved oxygen during reduction by ferrous iron

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Poulson, Simon R.

    2009-01-01

    The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO 4 at 10-54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L -1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10 -6 s -1 under neutral conditions and 2.1 to 37.4 × 10 -7 s -1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol -1 and 49.7 ± 13.0 kJ mol -1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors ( ɛ) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ɛ values ranging from -4.5‰ to -11.6‰. Under neutral conditions, ɛ does not show any systematic trends vs. temperature or ferrous iron concentration, with ɛ values ranging from -7.3 to -10.3‰. Characterization of the oxygen isotope fractionation factor associated with O 2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place.

  18. Covalent heme attachment in Synechocystis hemoglobin is required to prevent ferrous heme dissociation

    PubMed Central

    Hoy, Julie A.; Smagghe, Benoit J.; Halder, Puspita; Hargrove, Mark S.

    2007-01-01

    Synechocystis hemoglobin contains an unprecedented covalent bond between a nonaxial histidine side chain (H117) and the heme 2-vinyl. This bond has been previously shown to stabilize the ferric protein against denaturation, and also to affect the kinetics of cyanide association. However, it is unclear why Synechocystis hemoglobin would require the additional degree of stabilization accompanying the His117–heme 2-vinyl bond because it also displays endogenous bis-histidyl axial heme coordination, which should greatly assist heme retention. Furthermore, the mechanism by which the His117–heme 2-vinyl bond affects ligand binding has not been reported, nor has any investigation of the role of this bond on the structure and function of the protein in the ferrous oxidation state. Here we report an investigation of the role of the Synechocystis hemoglobin His117–heme 2-vinyl bond on structure, heme coordination, exogenous ligand binding, and stability in both the ferrous and ferric oxidation states. Our results reveal that hexacoordinate Synechocystis hemoglobin lacking this bond is less stable in the ferrous oxidation state than the ferric, which is surprising in light of our understanding of pentacoordinate Hb stability, in which the ferric protein is always less stable. It is also demonstrated that removal of the His117–heme 2-vinyl bond increases the affinity constant for intramolecular histidine coordination in the ferric oxidation state, thus presenting greater competition for the ligand binding site and lowering the observed rate and affinity constants for exogenous ligands. PMID:17242429

  19. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  20. Characterization of a Ferrous Iron-Responsive Two-Component System in Nontypeable Haemophilus influenzae

    PubMed Central

    Steele, Kendra H.; O'Connor, Lauren H.; Burpo, Nicole; Kohler, Katharina

    2012-01-01

    Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen that is commonly found in the human upper respiratory tract, has only four identified two-component signal transduction systems. One of these, an ortholog to the QseBC (quorum-sensing Escherichia coli) system, was characterized. This system, designated firRS, was found to be transcribed in an operon with a gene encoding a small, predicted periplasmic protein with an unknown function, ygiW. The ygiW-firRS operon exhibited a unique feature with an attenuator present between ygiW and firR that caused the ygiW transcript level to be 6-fold higher than the ygiW-firRS transcript level. FirRS induced expression of ygiW and firR, demonstrating that FirR is an autoactivator. Unlike the QseBC system of E. coli, FirRS does not respond to epinephrine or norepinephrine. FirRS signal transduction was stimulated when NTHI cultures were exposed to ferrous iron or zinc but was unresponsive to ferric iron. Notably, the ferrous iron-responsive activation only occurred when a putative iron-binding site in FirS and the key phosphorylation aspartate in FirR were intact. FirRS was also activated when cultures were exposed to cold shock. Mutants in ygiW, firR, and firS were attenuated during pulmonary infection, but not otitis media. These data demonstrate that the H. influenzae strain 2019 FirRS is a two-component regulatory system that senses ferrous iron and autoregulates its own operon. PMID:22961857

  1. Clean Ferrous Casting Technology Research. Annual report, September 29, 1993--September 28, 1994

    SciTech Connect

    Stefanescu, D.M.; Lane, A.M.; Giese, S.R.; Pattabhi, R.; El-Kaddah, N.H.; Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1994-10-01

    This annual report covers work performed in the first year of research on Clean Ferrous Casting Technology Research. During this year the causes of penetration of cast iron in sand molds were defined and a program which predicts the occurrence of penetration was written and verified in commercial foundries. Calculations were made to size a reaction chamber to remove inclusions from liquid steel using electromagnetic force and the chamber was built. Finally, significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  2. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W.; Bagshaw, Gary H.

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  3. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  4. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M.

    1996-01-31

    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  5. Kinetic and equilibrium constants of phytic acid and ferric and ferrous phytate derived from nuclear magnetic resonance spectroscopy.

    PubMed

    Heighton, Lynne; Schmidt, Walter F; Siefert, Ronald L

    2008-10-22

    Inositol phosphates are metabolically derived organic phosphates (P) that increasingly appear to be an important sink and source of P in the environment. Salts of myo-inositol hexakisdihydrogen phosphate (IHP) or more commonly phytate are the most common inositol phosphates in the environment. IHP resists acidic dephosphorylation and enzymatic dephosphorylation as ferric or ferrous IHP. Mobility of IHP iron complexes is potentially pH and redox responsive, making the time scale and environmental fate and transport of the P associated with the IHP of interest to the mass balance of phosphorus. Ferric and ferrous complexes of IHP were investigated by proton nuclear magnetic resonance spectroscopy ( (1)H NMR) and enzymatic dephosphorylation. Ferrous IHP was found to form quickly and persist for a longer period then ferric IHP. Dissociation constants derived from (1)H NMR experiments of chemically exchanging systems at equilibrium were 1.11 and 1.19 and formation constants were 0.90 and 0.84 for ferric and ferrous IHP, respectively. The recovery of P from enzymatic dephosphorylation of ferric and ferrous IHP was consistent with the magnitude of the kinetic and equilibrium rate constants.

  6. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  7. Ferrous Analysis.

    ERIC Educational Resources Information Center

    Straub, William A.

    1989-01-01

    Elements covered in this review include: aluminum, antimony, arsenic, bismuth, boron, calcium, carbon, chromium, cobalt, copper, hydrogen, iron, lead, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, oxygen, phosphorus, platinum, rare earths, silicons, sulfur, tin, titanium, tungsten, vanadium, zinc, and zirconium. Analytical methods…

  8. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.

    PubMed

    Chen, Peng; Yan, Lei; Leng, Feifan; Nan, Wenbing; Yue, Xiaoxuan; Zheng, Yani; Feng, Na; Li, Hongyu

    2011-02-01

    The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.

  9. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-02

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.

  10. Assessment of the effects of orally administered ferrous sulfate on Oncopeltus fasciatus (Heteroptera: Lygaeidae).

    PubMed

    Ferrero, Amparo; Torreblanca, Amparo; Garcerá, María Dolores

    2017-02-13

    Iron is an essential nutrient needed for multiple biological processes, but it is also an effective pro-oxidant in its reduced form. Environmental sources of iron toxic species include reduced soils from rice plantations, polluted natural areas from metal industry waste, or iron oxides used in soil bioremediation. Few studies have been conducted to assess the toxicity of iron species in insects. The present work aims to assess the oxidative stress effects of ferrous sulfate administered in drinking water after acute exposure (96 h) to adults of the insect model Oncopeltus fasciatus (Dallas). Mortality was higher in exposed groups and significantly associated with iron treatment (OR [95% CI]; 11.8 [6.1-22.7]). Higher levels of body iron content were found in insects exposed to ferrous sulfate, with an increase of 5-6 times with respect to controls. Catalase activity and lipid peroxidation (TBARS content), but not glutathione S-transferase activity, were significantly higher in exposed insects and significantly correlated with body iron content (Pearson coefficient of 0.68 and 0.74, respectively) and between them (0.78). The present work demonstrates that, despite the disruption in water and food intake caused by iron administration, this metal is accumulated by insect causing lipid peroxidation and eliciting an antioxidant response mediated by catalase.

  11. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    SciTech Connect

    Tejabhiram, Y.; Pradeep, R.; Helen, A.T.; Gopalakrishnan, C.; Ramasamy, C.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitation and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.

  12. Ultrafast geminate recombination and vibrational relaxation processes in ferrous nicotinate myoglobin

    NASA Astrophysics Data System (ADS)

    Pereira, Marco A.; Boffi, Alberto; Ridsdale, Andrew

    1998-04-01

    The photolysis, geminate recombination and vibrational relaxation of the low affinity ferrous myoglobin nicotinate complex have been studied by femtosecond transient absorption spectroscopy. This is an interesting system due to the peculiar interaction between ligand and protein fluctuations. This ligand is bulky and affects the naturally occurring protein fluctuations in a way similar to a doorstop precluding a door from closing totally. The whole Q band absorption transient spectrum of the photoproduct has been monitored starting from 100 fs to 100 ps. The time evolution of the spectrum has clearly shown two distinct phases, a vibrational cooling process occurring within 4 ps after the photolyzing pulse and a geminate rebinding process with a time constant of 28.8 +/- 0.1 ps. The transient spectra show different cooling rates for the different excited normal modes. The geminate rebinding process appears to be complete within 100 ps and hence appears to be the fastest geminate recombination process reported to date for a hemoprotein. This is the first report on the photolysis of a ferrous heme adduct with a nitrogenous base, previously considered as photoinert.

  13. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  14. Effect of ferrous and ferric ions on copigmentation in model solutions

    NASA Astrophysics Data System (ADS)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Szabó, Kornélia; Nikfardjam, Martin Pour

    2008-11-01

    The thermodynamics of the molecular association process between malvidin-3- O-glucoside and ellagic acid (so-called "copigmentation") was studied in model wine solutions in the presence and absence, respectively, of ferrous and ferric ions. The Gibbs free energy, enthalpy, and entropy values of the complexation process were determined by means of a spectrofluorometric method. A combination of the Job's method with the van't Hoff theory was used for data evaluation. The results show the generally exothermic character of the process. The free enthalpy changes obtained during formation of malvidin-3- O-glucoside-ellagic acid complexes increase from -17.8 kJ/mol to -40.5 kJ/mol in the presence of Fe(II) ions. The increased free enthalpy is a consequence of the drastic reduction of entropy change due to the slight "swinging" movement of the interacting malvidin and ellagic acid molecules in the complexes stabilized by the ferrous ions. These results are also supported by the findings of other authors stating that iron ions play an important role in the stabilization of color in the plant kingdom and various plant products.

  15. The photochemical origins of life and photoreaction of ferrous ion in the archaean oceans

    NASA Technical Reports Server (NTRS)

    Mauzerall, David C.

    1990-01-01

    A general argument is made for the photochemical origins of life. A constant flux of free energy is required to maintain the organized state of matter called life. Solar photons are the unique source of the large amounts of energy probably required to initiate this organization and certainly required for the evolution of life to occur. The completion of this argument will require the experimental determination of suitable photochemical reactions. It is shown that biogenetic porphyrins readily photooxidize substrates and emit hydrogen in the presence of a catalyst. These results are consistent with the Granick hypothesis, which relates a biosynthetic pathway to its evolutionary origin. It has been shown that photoexcitation of ferrous ion at neutral pH with near ultraviolet light produces hydrogen with high quantum yield. This same simple system may reduce carbon dioxide to formaldehyde and further products. These reactions offer a solution to the dilemma confronting the Oparin-Urey-Miller model of the chemical origin of life. If carbon dioxide is the main form of carbon on the primitive earth, the ferrous photoreaction may provide the reduced carbon necessary for the formation of amino acids and other biogenic molecules. These results suggest that this progenitor of modern photosynthesis may have contributed to the chemical origins of life.

  16. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. [in primitive earth

    NASA Technical Reports Server (NTRS)

    Borowska, Zofia K.; Mauzerall, David C.

    1987-01-01

    A possible origin of early hydrogen by UV-induced photoreduction of ferrous ions was investigated by measuring the rate of H2 formation from irradiated FeSO4 solutions as a function of pH and the range of UV sources. It was found that, in addition to the known reaction in acid solution which decreases in yield with increasing pH and requires far-UV light, there is an efficient reaction occurring between pH 6 and 9 which utilizes near-UV light (of a 200-W mercury arc lamp). This latter reaction is a linear function of both the concentration of Fe(2+) and the light intensity. These results support the suggestion of Braterman et al. (1983) that the near-UV-driven photooxidation of ferrous ions may be responsible for the origin of the banded iron formations on the early earth. The efficient photoreaction could also explain the source of reducing equivalents for CO2 reduction.

  17. Prospects for Ukrainian ferrous metals in the post-soviet period

    USGS Publications Warehouse

    Levine, R.M.; Bond, A.R.

    1998-01-01

    Two specialists on the mineral industries of the countries of the former USSR survey current problems confronting producers of ferrous metals in Ukraine and future prospects for domestic production and exports. A series of observations documenting the importance of ferrous metals production to Ukraine's economy is followed by sections describing investment plans and needs in the sector, and the role played by Ukraine within the iron and steel industry of the Soviet Union. The focus then turns to assessment of the current regional and global competitive position of Ukrainian producers for each of the major commodities of the sector-iron ore, manganese ore, ferroalloys, steel, and the products of the machine manufacturing and metal working industries. In conclusion, the paper discusses a potential regional industrial integration strategy analogous to that employed in the United States' Great Lakes/Midwest region, which possesses similar types of iron ore deposits and similar transport cost advantages and metallurgical and manufacturing industries. Journal of Economic Literature, Classification Numbers: F14, L61, L72. 1 table, 26 references.

  18. A ferrous oxalate mediated photo-Fenton system: toward an increased biodegradability of indigo dyed wastewaters.

    PubMed

    Vedrenne, Michel; Vasquez-Medrano, Ruben; Prato-Garcia, Dorian; Frontana-Uribe, Bernardo A; Hernandez-Esparza, Margarita; de Andrés, Juan Manuel

    2012-12-01

    This study assessed the applicability of a ferrous oxalate mediated photo-Fenton pretreatment for indigo-dyed wastewaters as to produce a biodegradable enough effluent, likely of being derived to conventional biological processes. The photochemical treatment was performed with ferrous oxalate and hydrogen peroxide in a Compound Parabolic Concentrator (CPC) under batch operation conditions. The reaction was studied at natural pH conditions (5-6) with indigo concentrations in the range of 6.67-33.33 mg L(-1), using a fixed oxalate-to-iron mass ratio (C(2)O(4)(2-)/Fe(2+)=35) and assessing the system's biodegradability at low (257 mg L(-1)) and high (1280 mg L(-1)) H(2)O(2) concentrations. In order to seek the optimal conditions for the treatment of indigo dyed wastewaters, an experimental design consisting in a statistical surface response approach was carried out. This analysis revealed that the best removal efficiencies for Total Organic Carbon (TOC) were obtained for low peroxide doses. In general it was observed that after 20 kJ L(-1), almost every treated effluent increased its biodegradability from a BOD(5)/COD value of 0.4. This increase in the biodegradability was confirmed by the presence of short chain carboxylic acids as intermediate products and by the mineralization of organic nitrogen into nitrate. Finally, an overall decrease in the LC(50) for Artemia salina indicated a successful detoxification of the effluent.

  19. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment.

    PubMed

    Dermatas, Dimitris; Chrysochoou, Maria; Moon, Deok Hyun; Grubb, Dennis G; Wazne, Mahmoud; Christodoulatos, Christos

    2006-09-15

    A pilot-scale treatment study was implemented at a deposition site of chromite ore processing residue (COPR) in New Jersey. Ferrous sulfate heptahydrate (FeSO4 x 7H2O) was employed to reduce hexavalent chromium in two dosages with three types of soil mixing equipment. XANES analyses of treated samples cured for 240 days indicated that all treatment combinations failed to meet the Cr(VI) regulatory limit of 240 mg/kg. More importantly, the discrepancy between XANES and alkaline digestion results renders the latter unreliable for regulatory purposes when applied to ferrous-treated COPR. Regardless of Cr-(VI), the introduction of reductant containing sulfate, mechanical mixing, water, acidity, and the resulting temperature increase in treated COPR promoted dissolution of brownmillerite (Ca2FeAlO5), releasing alumina and alkalinity. The pH increase caused initially precipitated gypsum (CaSO4 x 2H2O) to progressively convert to ettringite (Ca6Al2(SO4)3 x 32H2O) and its associated volume expansion under both in situ and ex situ conditions, with a maximum of 0.8 m vertical swell within 40 days of curing. While Cr-(VI) treatment remains a challenge, the intentional exhaustion of the heave potential of COPR by transforming all Al sources to ettringite emerges as a possible solution to delayed ettringite formation, which would hamper site redevelopment.

  20. Studies with Ferrous Sulfamate and Alternate Reductants for 2nd Uranium Cycle

    SciTech Connect

    Crowder, M.L.

    2003-01-15

    A wide range of miniature mixer-settler tests were conducted to determine the source of iron and sulfur contamination in the uranium product stream (''1EU'') of H Canyon's 2nd Uranium Cycle. The problem was reproduced on the laboratory scale mixer-settlers by changing the feed location of ferrous sulfamate from stage D4 to stage D1. Other process variables effected no change. It was later determined that ferrous sulfamate (FS) solids had plugged the FS line to stage D4, causing FS to backup a ventline and enter the Canyon process at stage D1. Pluggage was almost certainly due to precipitation of FS solids during extended process downtime. During the search for the root cause, tests showed that FS solids were quite small (1-10 mm), and a portion of them could bypass the current Canyon prefilter (3-mm). Also, additional tests were done to find an alternate means of reducing and thereby removing plutonium and neptunium from the uranium product. These tests showed that FS was a more effective reductant than either ascorbic acid or a hydroxylamine nitrate (HAN) / dilute FS combination.

  1. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  2. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    SciTech Connect

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  3. Chemical Fixation of Trace Elements in Coal Fly Ash using Ferrous Sulfate Treatment

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.

    2008-12-01

    Coal fired electric power plants produce 50% of the electricity consumed in the US and generate large volumes of fly ash and other coal combustion by-products (CCBs). The majority of the CCB materials are disposed of in surface impoundments and landfills located throughout the US. Fly ash contains trace elements such as As, B, Cr, Mo, Ni, Se, Sr and V which can have a negative impact on the environment due to leaching by acid rain and groundwater with time. The potential release of these toxic trace elements into the environment is a big concern for the US power industry due to the high cost involved in lining the old and existing ash disposal sites. As a result, simple and effective treatment techniques are needed to stabilize the coal combustion by-products produced by power plants in the ash disposal sites and also to increase the use of coal fly ash for beneficial purposes. This paper reports the results of batch experiments designed to chemically treat coal fly ash with ferrous sulfate solution by promoting the formation of insoluble iron oxy- hydroxide phases that immobilize the toxic trace elements. Four fly ash samples, three acidic (HA, HB and MA) and one alkaline (PD), were treated with a ferrous sulfate (FS) solution (322 ppm Fe) and a ferrous sulfate + calcium carbonate (FS+CC) solution (322 ppm Fe and 28 ppm CaCO3) at solid:liquid ratios of 1:3 and 1:30. The effectiveness of this treatment technique was evaluated by the batch sequential leaching of treated and untreated coal fly ash samples using a synthetic acid rain (SAR) solution (USEPA Method 1312B) and also by a 7-step sequential chemical extraction procedure (SCEP) to understand the mechanism of treatment. The unbuffered FS solution at the 1:30 ratio was highly successful in reducing the mobility of the oxyanionic trace elements As (24-91%), Cr (82-97%), Mo (79-100%), Se (41-87%) and V (55-100%). However, the unbuffered FS treatment failed to reduce the mobility of B, Ni and Sr for the acidic fly

  4. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  5. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  6. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  7. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    NASA Astrophysics Data System (ADS)

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  8. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    PubMed

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  9. EFFECT OF TEMPERATURE ON THE SORPTION OF CHELATED RADIONUCLIDES.

    USGS Publications Warehouse

    Maest, Ann S.; Crerar, David A.; Dillon, Edward C.; Trehu, Stephen M.; Rountree, Tamara N.; ,

    1985-01-01

    Temperature effects in the near-field radioactive waste disposal environment can result in changes in the adsorptive capacity and character of the substrate and the chemistry of the reacting fluids. This work examines the effect of temperature on 1) the kinetics of radionuclide sorption onto clays from 25 degree -75 degree C and 2) the degradation and metal-binding ability of two organic complexing agents found in chelated radioactive wastes and natural groundwaters.

  10. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease

    PubMed Central

    Moreau, Caroline; Devedjian, Jean Christophe; Kluza, Jérome; Petrault, Maud; Laloux, Charlotte; Jonneaux, Aurélie; Ryckewaert, Gilles; Garçon, Guillaume; Rouaix, Nathalie; Duhamel, Alain; Jissendi, Patrice; Dujardin, Kathy; Auger, Florent; Ravasi, Laura; Hopes, Lucie; Grolez, Guillaume; Firdaus, Wance; Sablonnière, Bernard; Strubi-Vuillaume, Isabelle; Zahr, Noel; Destée, Alain; Corvol, Jean-Christophe; Pöltl, Dominik; Leist, Marcel; Rose, Christian; Defebvre, Luc; Marchetti, Philippe; Cabantchik, Z. Ioav; Bordet, Régis

    2014-01-01

    Abstract Aims: The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. Results: For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. Innovation: A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. Conclusions: The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD. Antioxid

  11. Lipophilic chelator inhibition of electron transport in Escherichia coli.

    PubMed Central

    Crane, R T; Sun, I L; Crane, F L

    1975-01-01

    The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition. PMID:1092663

  12. Chelation therapy and vanadium: effect on reproductive organs in rats.

    PubMed

    Shrivastava, Sadhana; Jadon, Anjana; Shukla, Sangeeta; Mathur, Ramesh

    2007-06-01

    Present investigation was planned to evaluate the therapeutic effectiveness of chelating agents against vanadium intoxication on blood and reproductive organs of rats. Male and female albino rats were injected vanadyl sulphate (7.5 mg/kg, po, for 21 days, 5 days in a week). Chelating agents tiron (T) alone and in combination with lipoic acid (LA), vitamin E (vit E) and selenium (Se) were given for 2 days/week. With the administration of vanadyl sulphate to rats fructose level in seminal vesicles was significantly (P< or =0.05) declined. The activities of alkaline phosphatase and adenosine triphosphatase were also decreased, whereas glycogen content and acid phosphatase activity increased in testis, seminal vesicles, ovaries and uterus after toxicant exposure. Significant changes in serum transaminases, serum alkaline phosphatase and lactate dehydrogenase were recouped by chelation therapy. Lipid peroxidation, reduced glutathione level and triglycerides levels altered significantly after exposure to vanadium in rats. The ultrastructural damage in spermatogenic stages in treated animals showed recovery pattern after therapy. Co-treatment with antioxidants restored these activities. The most effective combination was tiron + selenium followed by tiron + vitamin E, and tiron + lipoic acid.

  13. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  14. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  15. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  16. Hydroxyurea could be a good clinically relevant iron chelator.

    PubMed

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2013-01-01

    Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  17. Proteomic profiling reveals that collismycin A is an iron chelator

    PubMed Central

    Kawatani, Makoto; Muroi, Makoto; Wada, Akira; Inoue, Gyo; Futamura, Yushi; Aono, Harumi; Shimizu, Kenshirou; Shimizu, Takeshi; Igarashi, Yasuhiro; Takahashi-Ando, Naoko; Osada, Hiroyuki

    2016-01-01

    Collismycin A (CMA), a microbial product, has anti-proliferative activity against cancer cells, but the mechanism of its action remains unknown. Here, we report the identification of the molecular target of CMA by ChemProteoBase, a proteome-based approach for drug target identification. ChemProteoBase profiling showed that CMA is closely clustered with di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, an iron chelator. CMA bound to both Fe(II) and Fe(III) ions and formed a 2:1 chelator-iron complex with a redox-inactive center. CMA-induced cell growth inhibition was completely canceled by Fe(II) and Fe(III) ions, but not by other metal ions such as Zn(II) or Cu(II). Proteomic and transcriptomic analyses showed that CMA affects the glycolytic pathway due to the accumulation of HIF-1α. These results suggest that CMA acts as a specific iron chelator, leading to the inhibition of cancer cell growth. PMID:27922079

  18. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  19. Full-scale implementation of the sodium sulfide/ferrous sulfate treatment process. Final report, October 1987-March 1989

    SciTech Connect

    Beller, J.M.; Carpenter, G.S.; McAtee, R.E.; Pryfogle, P.A.; Suciu, D.F.

    1989-09-01

    In Phase I, jar and dynamic testing showed that the sodium sulfide/ferrous sulfate process was a viable method for reducing hexavalent chromium and removing heavy metals from the Tinker AFB industrial wastewater with a significant decrease in sludge production and treatment costs. In Phase II pilot-plant field verification studies were conducted to evaluate the chemical and physical parameters of the chromium reduction process, the precipitation and clarification process, and the activated sludge system. Sludge production was evaluated and compared to the sulfuric acid/sulfur dioxide/lime process. The impact of and procedure for change-over to the sodium sulfide/ferrous sulfate process were also investigated.

  20. An experimental study for enhancing the catalytic effects of various copper forms on the oxidation of ferrous iron.

    PubMed

    Babak, Manizhe Moradi Shahre; Goharrizi, Ataallah Soltani; Mirzaei, Mohammad; Roayaei, Emad

    2013-01-01

    In this research the catalytic effect of copper compounds (ionic, oxide and oxide nanopowder) on the oxidation of ferrous iron by aeration was studied experimentally. When copper exists in solution, the oxidation rate of iron(II) will increase. The experimental results showed that the oxidation rate increases with an increasing copper concentration. From the experimental data it can be determined that the copper oxide nanopowder is the most effective for the oxidation reaction among the used copper forms. Aeration is the most economical oxidation method when water exhibits a high ferrous iron concentration.

  1. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    NASA Astrophysics Data System (ADS)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  2. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  3. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.

    PubMed

    Delangle, Pascale; Mintz, Elisabeth

    2012-06-07

    Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.

  4. Tests of stability on waste produced in pilot plant testing using ferrous{center_dot}EDTA and magnesium-enhanced lime for combined SO{sub 2}/NO{sub x} removal

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1994-03-01

    A pilot-plant-scale study of combined sulfur dioxide/nitrogen oxides (SO{sub 2}/NO{sub x}) removal has been performed by the Dravo Lime Company at the Cincinnati Gas and Electric Company`s Miami Fort Station in North Bend, Ohio. This study used Dravo`s patented Thiosorbic{reg_sign} lime process, utilizing a magnesium-enhanced lime, along with Argonne National Laboratory`s (ANL`s) patented ARGONOX metal-chelate additive, ferrous{center_dot}ethylenediaminetetraacetic acid (Fe{center_dot}EDTA). For approximately nine months, scrubbing tests were carried out, and waste samples were collected. Waste testing at ANL involved two types of long-term chemical stability experiments. In one experiment, the gas-phase composition above several different samples was studied by mass spectrometry over a period of about 22 months. Significant changes were noted for oxygen (O{sub 2}), carbon dioxide (CO{sub 2}), and hydrogen sulfide (H{sub 2}S) gases. The other experiment involved solid-phase leaching using the Toxicity Characteristic Leaching Procedure (TCLP). Samples were stored for up to 14 months before leaching. Then each leachate was tested for total Kjeldahl nitrogen and for some nitrogen-containing species. Total leachable nitrogen was found to stabilize after about the first seven months of storage.

  5. Bipyridine, an iron chelator, does not lessen intracerebral iron-induced damage or improve outcome after intracerebral hemorrhagic stroke in rats.

    PubMed

    Caliaperumal, Jayalakshmi; Wowk, Shannon; Jones, Sarah; Ma, Yonglie; Colbourne, Frederick

    2013-12-01

    Iron chelators, such as the intracellular ferrous chelator 2,2'-bipyridine, are a potential means of ameliorating iron-induced injury after intracerebral hemorrhage (ICH). We evaluated bipyridine against the collagenase and whole-blood ICH models and a simplified model of iron-induced damage involving a striatal injection of FeCl2 in adult rats. First, we assessed whether bipyridine (25 mg/kg beginning 12 h post-ICH and every 12 h for 3 days) would attenuate non-heme iron levels in the brain and lessen behavioral impairments (neurological deficit scale, corner turn test, and horizontal ladder) 7 days after collagenase-induced ICH. Second, we evaluated bipyridine (20 mg/kg beginning 6 h post-ICH and then every 24 h) on edema 3 days after collagenase infusion. Body temperature was continually recorded in a subset of these rats beginning 24 h prior to ICH until euthanasia. Third, bipyridine was administered (as per experiment 2) after whole-blood infusion to examine tissue loss, neuronal degeneration, and behavioral impairments at 7 days post-stroke, as well as body temperature for 3 days post-stroke. Finally, we evaluated whether bipyridine (25 mg/kg given 2 h prior to surgery and then every 12 h for 3 days) lessens tissue loss, neuronal death, and behavioral deficits after striatal FeCl2 injection. Bipyridine caused a significant hypothermic effect (maximum drop to 34.6 °C for 2-5 h after each injection) in both ICH models; however, in all experiments bipyridine-treated rats were indistinguishable from vehicle controls on all other measures (e.g., tissue loss, behavioral impairments, etc.). These results do not support the use of bipyridine against ICH.

  6. Ferrous Iron Binding Key to Mms6 Magnetite Biomineralisation: A Mechanistic Study to Understand Magnetite Formation Using pH Titration and NMR Spectroscopy.

    PubMed

    Rawlings, Andrea E; Bramble, Jonathan P; Hounslow, Andrea M; Williamson, Michael P; Monnington, Amy E; Cooke, David J; Staniland, Sarah S

    2016-06-01

    Formation of magnetite nanocrystals by magnetotactic bacteria is controlled by specific proteins which regulate the particles' nucleation and growth. One such protein is Mms6. This small, amphiphilic protein can self-assemble and bind ferric ions to aid in magnetite formation. To understand the role of Mms6 during in vitro iron oxide precipitation we have performed in situ pH titrations. We find Mms6 has little effect during ferric salt precipitation, but exerts greatest influence during the incorporation of ferrous ions and conversion of this salt to mixed-valence iron minerals, suggesting Mms6 has a hitherto unrecorded ferrous iron interacting property which promotes the formation of magnetite in ferrous-rich solutions. We show ferrous binding to the DEEVE motif within the C-terminal region of Mms6 by NMR spectroscopy, and model these binding events using molecular simulations. We conclude that Mms6 functions as a magnetite nucleating protein under conditions where ferrous ions predominate.

  7. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  8. Use of a Ferrous Sulfate - Sodium Dithionite Blend to Treat a Dissolved Phase Cr(VI) Plume

    EPA Science Inventory

    A field study was conducted to evaluate the use of a combination of sodium dithionite and ferrous sulfate in creating an in situ redox zone for treatment of a dissolved phase Cr(VI) plume at a former industrial site. The reductant blend was injected into the path of a dissolved ...

  9. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives.

    PubMed

    Kunnus, Kristjan; Zhang, Wenkai; Delcey, Mickaël G; Pinjari, Rahul V; Miedema, Piter S; Schreck, Simon; Quevedo, Wilson; Schröder, Henning; Föhlisch, Alexander; Gaffney, Kelly J; Lundberg, Marcus; Odelius, Michael; Wernet, Philippe

    2016-07-28

    The valence-excited states of ferric and ferrous hexacyanide ions in aqueous solution were mapped by resonant inelastic X-ray scattering (RIXS) at the Fe L2,3 and N K edges. Probing of both the central Fe and the ligand N atoms enabled identification of the metal- and ligand-centered excited states, as well as ligand-to-metal and metal-to-ligand charge-transfer excited states. Ab initio calculations utilizing the RASPT2 method were used to simulate the Fe L2,3-edge RIXS spectra and enabled quantification of the covalencies of both occupied and empty orbitals of π and σ symmetry. We found that π back-donation in the ferric complex is smaller than that in the ferrous complex. This is evidenced by the relative amounts of Fe 3d character in the nominally 2π CN(-) molecular orbital of 7% and 9% in ferric and ferrous hexacyanide, respectively. Utilizing the direct sensitivity of Fe L3-edge RIXS to the Fe 3d character in the occupied molecular orbitals, we also found that the donation interactions are dominated by σ bonding. The latter was found to be stronger in the ferric complex, with an Fe 3d contribution to the nominally 5σ CN(-) molecular orbitals of 29% compared to 20% in the ferrous complex. These results are consistent with the notion that a higher charge at the central metal atom increases donation and decreases back-donation.

  10. INJECTION OF A FERROUS SULFATE/SODIUM DITHIONITE REDUCTANT FOR IN-SITU TREATMENT OF HEXAVALENT CHROMIUM

    EPA Science Inventory

    An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...

  11. Arsenic Encapsulation Using Portland Cement With Ferrous Sulfate/Lime And Terra-BondTM Technologies - Microcharacterization And Leaching Studies

    EPA Science Inventory

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...

  12. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    NASA Technical Reports Server (NTRS)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  13. Activation energy for a model ferrous-ferric half reaction from transition path sampling.

    PubMed

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-21

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004)]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  14. Direct recycling of municipal ferrous wastes for local foundry application. Final technical report

    SciTech Connect

    Not Available

    1981-01-09

    This project investigated the concept of direct recycling as an appropriate technology (AT) approach to improving resource recovery from wastes in Region III. Direct recycling is the process of bringing waste materials directly to reprocessing facilities with few or no intermediate processing steps. Municipal Ferrous Waste (MFW) was the waste material involved. The Region III states were surveyed for (a) municipal recycling systems incorporating MFW separation and (b) grey iron foundries where MFW could be utilized. Contacts and visits were made with foundry and recycling group personnel. A handbook titled Tin Cans and Trash Recovery was prepared for distribution to interested persons in Region III. This handbook delineates the direct recycling method for MFW, describes recycling potential for areas of different populations in the Region, and lists foundries, recycling groups, and resource persons for the Region. It was distributed widely in Region III and elsewhere.

  15. [The organization of the comprehensive prevention of urolithiasis among ferrous metallurgy workers].

    PubMed

    Egorova, A M

    2009-01-01

    The purpose of study is to evaluate the effectiveness of the set of preventive measures as applied to 321 workers of basic ferrous metallurgy specialties (steel makers, mill men, hot metal shearers). During the clinical examination all the workers were divided on three groups: the workers without any pathology (11.83%, the first group), the workers with metabolic disorders only without urolitiasis (64.81%, the second group) and the workers with urolitiasis diagnosis approved by ultrasonography (23.36%, the third group). The effectiveness of rehabilitation measures was evaluated during half a year (diet therapy, drinking regimen, medicinal plants treatment). After the course of preventive measures was applied the overall health condition of most workers ameliorated and the number of workers with urolitiasis development risk factors reliably decreased up to 6-12%.

  16. Optimization of hydrous ferrous sulfate dehydration by microwave heating using response surface methodology.

    PubMed

    Yu, Yan-Tao; Liu, Bing-Guo; Chen, Guo; Peng, Jin-Hui; Srinivasakannan, C

    2012-01-01

    The work relates to assessing the ability of the microwave for dehydration of large amount of waste hydrous ferrous sulfate generated from the titanium pigment process industry. The popular process optimization tool of response surface methodology with central composite design was adopted to estimate the effect of dehydration. The process variables were chosen to be power input, duration of heating and the bed thickness, while the response variable being the weight loss. An increase in all the three process variables were found to significantly increase the weight loss, while the effect of interaction among the parameters were found to be insignificant. The optimized process conditions that contribute to the maximum weight loss were identified to be a power input of 960 W, duration of heating of 14 min and bed thickness of 5 cm, resulting in a weight loss of 31.44%. The validity of the optimization process was tested with the repeat runs at optimized conditions.

  17. Structural and Thermal Adaptations in Polyaniline Emeraldine Salt Composites with Ferrous Oxalate

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ekta; Prasher, Sangeeta; Kumar, Mukesh; Kaur, Updesh; Sahni, Manju

    2017-02-01

    We report on the modifications induced in the structural, optical and electrical properties of polyaniline onto the ferrous oxalate composites of the polymer. Fourier transform infrared spectra, x-ray diffraction patterns and digital thermal analysis studies have been employed to associate the modifications induced in the polymer due to the enhanced dopant concentration. The studies revealed that the cation dopant may bond with the lone pair of N- of the polymer, making the polymer stretched and crystalline. The polymer has been greatly influenced at the maximum dopant concentration. It seems that the dopant has modified the initial conformation of the polymer, whereas the main chain has remained unchanged. The thermal studies also indicate that the polymer has been stabilized to a greater extent on doping.

  18. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter.

    PubMed

    Jacques, Ismaele; Andrews, Norma W; Huynh, Chau

    2010-03-01

    Leishmania amazonensis LIT1 was identified based on homology with IRT1, a ferrous iron transporter from Arabidopsis thaliana. Deltalit1L. amazonensis are defective in intracellular replication and lesion formation in vivo, a virulence phenotype attributed to defective intracellular iron acquisition. Here we functionally characterize LIT1, directly demonstrating that it functions as a ferrous iron membrane transporter from the ZIP family. Conserved residues in the predicted transmembrane domains II, IV, V and VII of LIT1 are essential for iron transport in yeast, including histidines that were proposed to function as metal ligands in ZIP transporters. LIT1 also contains two regions within the predicted intracellular loop that are not found in Arabidopsis IRT1. Deletion of region I inhibited LIT1 expression on the surface of Leishmania promastigotes. Deletion of region II did not interfere with LIT1 trafficking to the surface, but abolished its iron transport capacity when expressed in yeast. Mutagenesis revealed two motifs within region II, HGHQH and TPPRDM, that are independently required for iron transport by LIT1. D263 was identified as a key residue required for iron transport within the TPPRDM motif, while P260 and P261 were dispensable. Deletion of proline-rich regions within region I and between regions I and II did not affect iron transport in yeast, but in L. amazonensis were not able to rescue the intracellular growth of Deltalit1 parasites, or their ability to form lesions in mice. These results are consistent with a potential role of the unique intracellular loop of LIT1 in intracellular regulation by Leishmania-specific factors.

  19. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  20. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    PubMed

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  1. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement.

  2. A Review on Iron Chelators in Treatment of Iron Overload Syndromes

    PubMed Central

    Mobarra, Naser; Shanaki, Mehrnoosh; Ehteram, Hassan; Nasiri, Hajar; Sahmani, Mehdi; Saeidi, Mohsen; Goudarzi, Mehdi; Pourkarim, Hoda; Azad, Mehdi

    2016-01-01

    Iron chelation therapy is used to reduce iron overload development due to its deposition in various organs such as liver and heart after regular transfusion. In this review, different iron chelators implicated in treatment of iron overload in various clinical conditions have been evaluated using more up-to-date studies focusing on these therapeutic agents. Deferoxamine, Deferiprone and Deferasirox are the most important specific US FDA-approved iron chelators. Each of these chelators has their own advantages and disadvantages, various target diseases, levels of deposited iron and clinical symptoms of the afflicted patients which may affect their selection as the best modality. Taken together, in many clinical disorders, choosing a standard chelator does not have an accurate index which requires further clarifications. The aim of this review is to introduce and compare the different iron chelators regarding their advantages and disadvantages, usage dose and specific applications. PMID:27928480

  3. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties

    PubMed Central

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-01-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  4. Radiation protection and radiation recovery with essential metalloelement chelates

    SciTech Connect

    Sorenson, J.R.J.; Soderberg, L.S.F.; Chang, L.W.

    1995-12-01

    This review presents the roles of some essential metalloelement-dependent enzymes in tissue maintenance and function, and their responses to radiation injury in accounting for radiation protection and recovery effects observed for nontoxic doses of essential metalloelement compounds. Effects of biochemicals including water undergoing bond radiolysis and the effects of free radicals derived from diatomic oxygen account for the acute and chronic aspects of radiation injury. Copper chelates have radiation protection and radiation recovery activities and cause rapid recovery of immunocompetency and recovery from radiation-induced histopathology. Mice treated with Cu(II){sub 2}(3,5-disopropylsalicy-late){sub 4}[Cu(II){sub 2}(3,5-DIPS){sub 4}] had increased survival and corresponding increases in numbers of myeloid and multipotential progenitor cells early after irradiation and earlier recovery of immune reactivity. Examination of radiation-induced histopathology in spleen, bone marrow, thymus, and small intestine also revealed Cu(II){sub 2}(3,5-DIPS){sub 4}-mediated rapid recovery of radiation-induced histopathology. Most recently, Fe, Mn, and Zn complexes have also been found to prevent death in lethally irradiated mice. These pharmacological effects of essential metalloelement chelates can be understood as due to facilitation of de novo synthesis of essential metalloelement-dependent enzymes which have roles in preventing the accumulation of pathological concentrations of oxygen radicals or repairing biochemical damage caused by radiation-induced bond homolysis. Essential metalloelement chelates offer a physiological approach to prevention and/or treatment of radiation injury. 97 refs., 5 figs., 1 tab.

  5. Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis

    PubMed Central

    Tolkien, Zoe; Stecher, Lynne; Mander, Adrian P.; Pereira, Dora I. A.; Powell, Jonathan J.

    2015-01-01

    Background The tolerability of oral iron supplementation for the treatment of iron deficiency anemia is disputed. Objective Our aim was to quantify the odds of GI side-effects in adults related to current gold standard oral iron therapy, namely ferrous sulfate. Methods Systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating GI side-effects that included ferrous sulfate and a comparator that was either placebo or intravenous (IV) iron. Random effects meta-analysis modelling was undertaken and study heterogeneity was summarised using I2 statistics. Results Forty three trials comprising 6831 adult participants were included. Twenty trials (n = 3168) had a placebo arm and twenty three trials (n = 3663) had an active comparator arm of IV iron. Ferrous sulfate supplementation significantly increased risk of GI side-effects versus placebo with an odds ratio (OR) of 2.32 [95% CI 1.74–3.08, p<0.0001, I2 = 53.6%] and versus IV iron with an OR of 3.05 [95% CI 2.07-4.48, p<0.0001, I2 = 41.6%]. Subgroup analysis in IBD patients showed a similar effect versus IV iron (OR = 3.14, 95% CI 1.34-7.36, p = 0.008, I2 = 0%). Likewise, subgroup analysis of pooled data from 7 RCTs in pregnant women (n = 1028) showed a statistically significant increased risk of GI side-effects for ferrous sulfate although there was marked heterogeneity in the data (OR = 3.33, 95% CI 1.19-9.28, p = 0.02, I2 = 66.1%). Meta-regression did not provide significant evidence of an association between the study OR and the iron dose. Conclusions Our meta-analysis confirms that ferrous sulfate is associated with a significant increase in gastrointestinal-specific side-effects but does not find a relationship with dose. PMID:25700159

  6. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.

    PubMed

    Heising, S; Richter, L; Ludwig, W; Schink, B

    1999-08-01

    A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the epsilon-subclass of the Proteobacteria closely related to "Geospirillum arsenophilum" on the basis of physiological properties and 16S rRNA sequence comparison. The "Geospirillum" strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner.

  7. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  8. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  9. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  10. Role of Coordination and Chelation in Utilization of Nutritionally Essential Trace Elements.

    DTIC Science & Technology

    BIOCHEMISTRY, *TRANSITION METALS), (*CHELATE COMPOUNDS, BIOCHEMISTRY), (*DIALYSIS, CHEMICAL ANALYSIS), NUTRITION , IRON, CHROMIUM, PHOSPHATES, AMINO ACIDS, HYDROXIDES, ALCOHOLS, PEPTIDES, MEMBRANES, LIQUID FILTERS

  11. Effect of metal chelators on the oxidative stability of model wine.

    PubMed

    Kreitman, Gal Y; Cantu, Annegret; Waterhouse, Andrew L; Elias, Ryan J

    2013-10-02

    Oxidation is a major problem with respect to wine quality, and winemakers have few tools at their disposal to control it. In this study, the effect of exogenous Fe(II) (bipyridine; Ferrozine) and Fe(III) chelators (ethylenediaminetetraacetic acid, EDTA; phytic acid) on nonenzymatic wine oxidation was examined. The ability of these chelators to affect the formation of 1-hydroxyethyl radicals (1-HER) and acetaldehyde was measured using a spin trapping technique with electron paramagnetic resonance (EPR) and by HPLC-PDA, respectively. The chelators were then investigated for their ability to prevent the oxidative loss of an important aroma-active thiol, 3-mercaptohexan-1-ol (3MH). The Fe(II)-specific chelators were more effective than the Fe(III) chelators with respect to 1-HER inhibition during the early stages of oxidation and significantly reduced oxidation markers compared to a control during the study. However, although the addition of Fe(III) chelators was less effective or even showed an initial pro-oxidant activity, the Fe(III) chelators proved to be more effective antioxidants compared to Fe(II) chelators after 8 days of accelerated oxidation. In addition, it is shown for the first time that Fe(II) and Fe(III) chelators can significantly inhibit the oxidative loss of 3MH in model wine.

  12. The Influence of Chelating Agents on the Kinetics of Calcite Dissolution.

    PubMed

    Fredd; Fogler

    1998-08-01

    The kinetics of calcite dissolution in the presence of calcium chelating agents was investigated over the pH range of 3.3-12 using a rotating disk apparatus. The results show that the rate of dissolution is increased significantly by the presence of chelating agents such as CDTA, DTPA, and EDTA. The rate of dissolution is influenced by the kinetics of the chelation reactions and varies considerably with pH and type of chelating agent. A surface chelation mechanism was introduced to describe the dissolution. The mechanism involves the adsorption of the chelating agent onto the calcite surface and follows Langmuir-Hinshelwood kinetics. The dissolution is different from conventional hydrogen ion attack in that the chelating agent attacks the calcium component of the lattice rather than the carbonate component. Therefore, the rate of dissolution is enhanced by the influence of hydrogen ion attack at low pH. In addition, the various ionic forms of the chelating agents react with the calcite surface at different rates depending on the number of hydrogen ions associated with the species. In general, the rate of dissolution increases with increasing protonation. The surface complexation mechanism was shown to describe the rate of calcite dissolution in the presence of chelating agents over the pH range of 4-12. Copyright 1998 Academic Press.

  13. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhou, Lixiang; Zhang, Shasha; Liu, Lanlan; Wang, Ming

    2015-12-15

    Bio-oxidation of ferrous ions prior to lime neutralization exhibits great potential for acid mine drainage (AMD) treatment, while slow ferrous ion bio-oxidation or total iron precipitation is a bottleneck in this process. In this study, neutralized solid waste (NSW) harvested in an AMD lime neutralization procedure was added as a crystal seed in AMD for iron oxyhydroxysulfate bio-synthesis. The effect of this waste on ferrous ion oxidation efficiency, total iron precipitation efficiency, and iron oxyhydroxysulfate minerals yield during ferrous ion bio-oxidation by Acidithiobacillus ferrooxidans was investigated. Ferrous ion oxidation efficiency was greatly improved by adding NSW. After 72 h incubation, total iron precipitation efficiency in treatment with 24 g/L of NSW was 1.74-1.03 times higher than in treatment with 0-12 g/L of NSW. Compared with the conventional treatment system without added NSW, the iron oxyhydroxysulfate minerals yield was increased by approximately 21.2-80.9% when 3-24 g/L of NSW were added. Aside from NSW, jarosite and schwertmannite were the main precipitates during ferrous ion bio-oxidation with NSW addition. NSW can thus serve as the crystal seed for iron oxyhydroxysulfate mineral bio-synthesis in AMD, and improve ferrous ion oxidation and total iron precipitation efficiency significantly.

  14. Metal chelation as a potential therapy for Alzheimer's disease.

    PubMed

    Cuajungco, M P; Fagét, K Y; Huang, X; Tanzi, R E; Bush, A I

    2000-01-01

    Alzheimer's disease is a rapidly worsening public health problem. The current lack of effective treatments for Alzheimer's disease makes it imperative to find new pharmacotherapies. At present, the treatment of symptoms includes use of acetylcholinesterase inhibitors, which enhance acetylcholine levels and improve cognitive functioning. Current reports provide evidence that the pathogenesis of Alzheimer's disease is linked to the characteristic neocortical amyloid-beta deposition, which may be mediated by abnormal metal interaction with A beta as well as metal-mediated oxidative stress. In light of these observations, we have considered the development of drugs that target abnormal metal accumulation and its adverse consequences, as well as prevention or reversal of amyloid-beta plaque formation. This paper reviews recent observations on the possible etiologic role of A beta deposition, its redox activity, and its interaction with transition metals that are enriched in the neocortex. We discuss the effects of metal chelators on these processes, list existing drugs with chelating properties, and explore the promise of this approach as a basis for medicinal chemistry in the development of novel Alzheimer's disease therapeutics.

  15. Hematein chelates of unusual metal ions for tinctorial histochemistry.

    PubMed

    Smith, A A

    2010-02-01

    Hematoxylin is oxidized easily to hematein, an excellent stain for metal ions. If it already is bound to a substrate, the metal ion becomes a mordant linking the dye to the substrate. Metal ions added to hematein in solution are chelated by the hematein to form a lake. Most of these chelates stain animal tissues. They usually are bound to the tissue by a combination of hydrogen bonding of the hematein and ionic bonding of the metal ion. When binding of the lake to the tissue occurs by way of the metal ion, the metal ion is a mordant. Mordant staining often is specific. Chromium hematoxylin binds to strong acids; it can be made selective for protein-bound sulfonic acids. Zirconyl hematoxylin is selective for acidic mucins. Mucihematein can be made selective for all acidic mucins or for sulfomucins alone. Bismuth hematoxylin appears to be selective for the guanido group of arginine and there is some evidence that the bonding is covalent. Although it is not a histochemical stain, copper-chrome hematoxylin is an excellent stain for organelles with double membranes, i.e., mitochondria and nuclei.

  16. Using iron chelating agents to enhance dermatological PDT

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  17. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    PubMed

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  18. Uranyl binary and ternary chelates of tenoxicam Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals.

    PubMed

    El-Gamel, Nadia E A

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  19. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  20. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  1. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates

    NASA Astrophysics Data System (ADS)

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar + laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Ω6 value for erbium chelate is and larger photoluminescence intensity at 1.54 μm is, and Ω2 value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 μm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF 3 in β-diketone for erbium chelates.

  2. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  3. Infrared spectroscopic studies of dimethylglyoxime chelates of nickel, cobalt, copper, palladium and platinum

    NASA Astrophysics Data System (ADS)

    Panja, Prabhat K.; Bala, Sibsankar; Pal, Chadramadhab; Ghosh, Pradip N.

    1991-09-01

    Infrared spectra of dimethylglyoxime chelates of nickel, cobalt, copper, palladium and platinum are measured in the range 4000-200 cm -1. The shifts of the OH stretching frequencies caused by chelation provide information on hydrogen bonding. The frequency shifts and hydrogen bond distances are calculated from the Lippincott—Schroeder potential using X-ray crystallographic data and compared with the observed values.

  4. Synergistic De-colorization of CanLan-Green Solution with Attapulgite-Ferrous Sulfate Composite Coagulator

    NASA Astrophysics Data System (ADS)

    Han, Hong; Gu, Xu; Li, Dong; Zhou, Sumin; Jiang, Saibo; Lu, Humei

    2010-11-01

    Attapulgite clay has strong adsorptive ability, excellent chemical stability and biological safety, thus has attracted more and more attention in application for environmental field recently. In this study, 0.01 g/L Canlan-Green solution was prepared as treatment target, and the optimal preparation conditions of attapulgite-ferrous sulfate composite coagulator were obtained by methods of heat pretreatment, high temperature calcination and orthogonal experiments; Then the best dosage of composite coagulator for de-colorization of CanLan-Green solution was determined via inspecting factors as pH, reaction temperature, settlement time, reaction time, agitation rate etc. Compared with conventional coagulator ferrous sulfate, composite coagulator possesses advantages of less dosage, excellent decolorization performance, speediness, better settlement ability, cheaper and safer and so on. It proves to be an ideal inorganic composite coagulator choice.

  5. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases.

    PubMed

    Kuban-Jankowska, Alicja; Gorska, Magdalena; Jaremko, Lukasz; Jaremko, Mariusz; Tuszynski, Jack A; Wozniak, Michal

    2015-12-01

    Hydrogen peroxide is an important regulator of protein tyrosine phosphatase activity via reversible oxidation. However, the role of iron in this reaction has not been yet elucidated. Here we compare the influence of hydrogen peroxide and the ferrous iron (reagent for Fenton reaction) on the enzymatic activity of recombinant CD45, LAR, PTP1B phosphatases and cellular CD45 in Jurkat cells. The obtained results show that ferrous iron (II) is potent inhibitor of CD45, LAR and PTP1B, but the inhibitory effect is concentration dependent. We found that the higher concentrations of ferrous iron (II) increase the inactivation of CD45, LAR and PTP1B phosphatase caused by hydrogen peroxide, but the addition of the physiological concentration (500 nM) of ferrous iron (II) has even a slightly preventive effect on the phosphatase activity against hydrogen peroxide.

  6. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  7. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  8. Rare-Earth Metal Postmetallocene Catalysts with Chelating Amido Ligands

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Jenter, Jelena; Roesky, Peter W.

    This review deals with the synthesis and the catalytic application of noncyclopentadienyl complexes of the rare-earth elements. The main topics of the review are amido metal complexes with chelating bidentate ligands, which show the most similarities to cyclopentadienyl ligands. Benzamidinates and guanidinates will be reviewed in a separate contribution within this book. Beside the synthesis of the complexes, the broad potential of these compounds in homogeneous catalysis is demonstrated. Most of the reviewed catalytic transformations are either C-C multiple bond transformation such as the hydroamination and hydrosilylation or polymerization reaction of polar and nonpolar monomers. In this area, butadiene and isoprene, ethylene, as well as lactides and lactones were mostly used as monomers.

  9. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  10. Comparison of 225actinium chelates: tissue distribution and radiotoxicity.

    PubMed

    Davis, I A; Glowienka, K A; Boll, R A; Deal, K A; Brechbiel, M W; Stabin, M; Bochsler, P N; Mirzadeh, S; Kennel, S J

    1999-07-01

    The biodistribution and tissue toxicity of intravenously administered 225-actinium (225Ac) complexed with acetate, ethylene diamine tetraacetic acid (EDTA), 1, 4, 7, 10, 13-pentaazacyclopentadecane-N, N', N", N"', N"-pentaacetic acid (PEPA), or the "a" isomer of cyclohexyl diethylenetriamine pentaacetic acid (CHX-DTPA), were examined. The percent of injected dose per organ and per gram of tissue for each chelate complex was determined. 225Ac-CHX-DTPA was evaluated further for radiotoxic effects. Mice receiving > or =185 kBq 225Ac-CHX-DTPA suffered 100% morbidity by 5 days and 100% mortality by 8 days postinjection, and all animals evaluated had significant organ damage. The in vivo instability of the 225Ac-CHX-DTPA complex likely allowed accumulation of free 225Ac in organs, which resulted in tissue pathology.

  11. Iron chelation therapy in myelodysplastic syndromes: where do we stand?

    PubMed Central

    Mitchell, Mhairi; Gore, Steven D; Zeidan, Amer M

    2014-01-01

    Anemia leading to transfusion dependency (TD) and iron overload (IO) is commonly observed in patients with myelodysplastic syndromes (MDS). In MDS, TD and IO have been retrospectively associated with inferior survival and worse clinical outcomes, including cardiac, hepatic and endocrine dysfunction, and, in some analyses, with leukemic progression and infectious complications. Although suggested by retrospective analyses, clear prospective documentation of the beneficial effects of iron chelation therapy (ICT) on organ function and survival in MDS patients with TD and IO is currently lacking. Consequently, the role of ICT in MDS patients with TD and IO remains a very controversial aspect in the management of MDS. In this review, the authors summarize the current knowledge regarding IO in MDS and the role of ICT. PMID:23991926

  12. Competitive coordination between lead and oligoelements with respect to some therapeutic heavy-metal chelators

    NASA Astrophysics Data System (ADS)

    Gourlaouen, C.; Parisel, O.

    The competitive complexation of Ca2+, Fe2+, Cu2+, Zn2+, and Pb2+ toward ethylene diamine tetraacetate (EDTA), dimercaprol and D-penicillamine, three liganding agents commonly used in chelation therapy against heavy metal, especially lead, poisonings is examined by means of B3LYP calculations, natural population analyses, and the topological analysis of the electron localization function. It is shown that Pb2+ can displace any of Ca2+, Fe2+, Cu2+, or Zn2+ chelated by any of dimercaprol or D-penicillamine, but can only displace Ca2+ if EDTA is concerned. The first two chelators thus appear as better entities than EDTA to be used in chelation therapy, where in vivo selective complexation is essential. Moreover, the comparison of the bonding characteristics of Pb2+ with those of the other cations allows deriving three features to be taken into account in designing new chelators expecting to have an increased selectivity toward this cation.

  13. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan

    SciTech Connect

    Wu, F.C.; Tseng, R.L.; Juang, R.S.

    1999-01-01

    The role of pH in adsorption of Cu(II) from aqueous solutions containing chelating agents on chitosan was emphasized. Four chelating agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, and sodium gluconate were used. It was shown that the adsorption ability of Cu(II) on chitosan from its chelated solutions varied significantly with pH variations. The competition between coordination of Cu(II) with unprotonated chitosan and electrostatic interaction of the Cu(II) chelates with protonated chitosan took place because of the change in solution pH during adsorption. The maximum adsorption capacity was obtained within each optimal pH range determined from titration curves of the chelated solutions. Coordination of Cu(II) with the unprotonated chitosan was found to dominate at pH below such an optimal pH value.

  14. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    PubMed Central

    Veríssimo, Monica Pinheiro de Almeida; Loggetto, Sandra Regina; Fabron Junior, Antonio; Baldanzi, Giorgio Roberto; Hamerschlak, Nelson; Fernandes, Juliano Lara; Araujo, Aderson da Silva; Lobo, Clarisse Lopes de Castro; Fertrin, Kleber Yotsumoto; Berdoukas, Vasilios Antonios; Galanello, Renzo

    2013-01-01

    In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox) providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA), presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams) and the role of T2* magnetic resonance imaging (MRI) to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions. PMID:24478610

  15. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  16. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    SciTech Connect

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  17. Low Dose Ferrous Gluconate Supplement Fails to Alter the Iron Status of Female Officers-In-Training

    DTIC Science & Technology

    2005-07-01

    supplementation. Other less common nutritional causes of anaemia, such as folic acid and vitamin B12 deficiency, should also be eliminated before...salts has a maximum level of 5–7% [15]. Oral iron supplements are generally available as ferrous salts (chloride, fumarate , gluconate...glycerophosphate, succinate, sulfate)—which are more readily absorbed than ferric salts [16]—and as iron-polysaccharide, amino acid , dextran, sorbitol, sucrose and

  18. The Effect of Ferrous Sulfate on Sulfide-Induced Corrosion of Copper-Base Condenser Alloys in Aerated Seawater.

    DTIC Science & Technology

    1982-01-01

    been further 8-16 enhanced by the addition of iron to the seawater. This iron has been introduced either through addition of ferrous sulfate or by...direct oxidation of an iron "waster piece" using an externally applied current. 6 North and Pryor conducted experiments on copper in sodium chloride... iron -containing surface films on copper alloys. 15 Gasparini, et al, built upon the work of North and Pryor by investigating the colloidal chemistry

  19. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  20. Ferrous Iron Induces Nrf2 Expression in Mouse Brain Astrocytes to Prevent Neurotoxicity.

    PubMed

    Cui, Zhenwen; Zhong, Zhihong; Yang, Yong; Wang, Baofeng; Sun, Yuhao; Sun, Qingfang; Yang, Guo-Yuan; Bian, Liuguan

    2016-08-01

    Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF-E2-related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe(2+) . Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe(2+) on Nrf2 expression. The results demonstrated that 24-h Fe(2+) exposure exerted time- and concentration-dependent cytotoxicity in astrocytes. Furthermore, Fe(2+) exposure in astrocytes resulted in time- and concentration-dependent increases in Nrf2 expression, which preceded Fe(2+) toxicity. Nrf2-specific siRNA further knocked down Nrf2 levels, resulting in greater Fe(2+) -induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self-defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe(2+) -induced neurotoxicity.

  1. Activation energy for a model ferrous-ferric half reaction from transition path sampling

    NASA Astrophysics Data System (ADS)

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-01

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004), 10.1080/08927020412331294869]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  2. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J; Bostick, Benjamin C

    2016-02-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6-7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.

  3. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability.

    PubMed

    Wei, Yanyan; Shohag, M J I; Ying, Feng; Yang, Xiaoe; Wu, Chunyong; Wang, Yuyan

    2013-06-01

    The present study evaluated the effectiveness of germination and iron fortification on iron concentration and bioavailability of brown rice. Iron fortification during germination process with 0.05-2 g/L ferrous sulfate increased the iron concentration in germinated brown rice from 1.1 to 15.6 times than those in raw brown rice. Based on the recommended dietary allowance of iron, maximum germination rate and γ-aminobutyric acid, we recommend the brown rice fortified with 0.25 g/L FeSO(4) as a suitable fortification level to use in germination process. Iron fortification during the germination process has a positive effect on iron concentration and bioavailability. A significant difference was observed among the cultivars in respect to the capacity for iron accumulation and bioavailability. Germination alone could improve in vitro iron solubility, but had no effect on iron bioavailability in Caco-2 cell, the additional fortification process should be combined to get high amount of bioavailable iron from the brown rice.

  4. Lung cancer in a non-ferrous smelter: the role of cadmium.

    PubMed Central

    Ades, A E; Kazantzis, G

    1988-01-01

    Lung cancer mortality was examined in a cohort of 4393 men employed at a zinc-lead-cadmium smelter. There was an excess of lung cancer (overall SMR = 124.5, 95% confidence interval 107-144) which was particularly evident for those employed for more than 20 years. A statistically significant trend in SMRs with increasing duration of employment was apparent. Quantitative estimates of exposure to cadmium and ordinal rankings for lead, arsenic, zinc, sulphur dioxide, and dust were used to calculate cumulative exposures from job histories. Matched logistic regression was used to compare the cumulative exposures of cases of lung cancer to those of controls matched for date of birth and date of starting work and surviving at the time of death of the matched cases. The increasing risk of lung cancer associated with increasing duration of employment could not be accounted for by cadmium and did not appear to be restricted to any particular process or department. Although lung cancer mortality was associated with estimates of cumulative exposure to arsenic and to lead, it was not possible to determine whether the increased risk might be due to arsenic, lead, or to other contaminants in the smelter. These results are compared with findings from other non-ferrous smelters. PMID:3395580

  5. Ferrous ion induced photon emission as a method to quantify oxidative stress in stored boar spermatozoa.

    PubMed

    Gogol, Piotr; Pieszka, Marek

    2008-01-01

    The aim of the study was to evaluate the effect of semen storage on ferrous ion induced luminescence of boar spermatozoa and to determine the relationship between parameters of this luminescence and lipid peroxidation as measured by malondialdehyde (MDA) contents. Boar semen samples were diluted in Biosolwens extender and stored for 12 days at 15 degrees C. Luminescence and MDA were measured directly after dilution (day 0) and at 6 and 12 days of semen storage. Luminescence was measured at 20 degrees C using a luminometer equipped with a cooled photomultiplier with a spectral response range from 370 to 620 nm. Emission was induced by adding FeSO4 solution (final concentration 0.05 mM). MDA content was measured by the HPLC method. The day of storage had a significant effect on some luminescence parameters and MDA content in spermatozoa. A significant correlation was observed between luminescence parameters and MDA concentration. The results of the study confirm that induced luminescence is strictly related to lipid peroxidation in spermatozoa that occur during boar semen storage. Parameters of luminescence treated as a holistic response of cells to oxidative stress can be useful for monitoring spermatozoa quality during semen preservation.

  6. Modified ferrous ammonium sulfate benzoic acid xyelenol orange (MFBX) and thermoluminescent dosimeters--a comparative study.

    PubMed

    Brindha, S; Rose, J V R; Sathyan, S; Singh I, Rabi Raja; Ravindran, B Paul

    2002-06-07

    Radiation dosimetry deals with the determination of absorbed dose to the medium exposed to ionizing radiation. Chemical dosimetry depends on oxidation or reduction of chemicals by ionizing radiation. A ferrous ammonium sulfate benzoic acid xyelenol orange (FBX) dosimeter based on this principle is being used as a clinical dosimeter at present. Certain modifications were carried out in the preparation and storage of the FBX dosimeter to increase its shelf life. The resulting dosimeter was called a modified FBX (MFBX) dosimeter and has been used in our department for the past few years. An extensive study of the dose, dose rate and energy response of the dosimeter was carried out and compared with a thermoluminescent (LiF7) dosimeter. The results obtained were found to be comparable to the thermoluminescent (LiF7) dosimeter. Hence it was concluded that the MFBX dosimeter could be used for phantom dosimetry, data collection and in vivo measurements. Easier preparation and availability of the reagents are added advantages of using MFBX as a clinical dosimeter in small radiotherapy departments.

  7. Magnetic ferrous-doped graphene for improving Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Hou, Ting; Kong, Lingyu; Guo, Xiaoyu; Wu, Yiping; Wang, Feng; Wen, Ying; Yang, Haifeng

    2016-04-01

    A highly reductive and magnetic graphene/Fe3O4 composite (abbreviated as HR-M-GO/Fe3O4) was synthesized via graphene oxide (GO) oxidizing FeCl2 in situ. This superparamagnetic composite could be used for the highly efficient removal of Cr(VI) from waste water conveniently by applying an external magnet. The maximum adsorption capacity of the HR-M-GO/Fe3O4 for Cr(VI) reaches 31.8 mg g-1, which is greater than the graphene/γ-Fe2O3 composite. According to x-ray photoelectron spectroscopy (XPS), the possible mechanism of HR-M-GO/Fe3O4 removing Cr(VI) effectively was that Cr(VI) was reduced to Cr(III) by ferrous hydroxide moieties in the graphene structure and the resulting Cr(III) ions were easily captured by the negatively charged HR-M-GO/Fe3O4. In addition, such HR-M-GO/Fe3O4 with large surface area, negative charge and superior magnetism could be applied to remove Pb(II), Cu(II), and Zn(II) with an efficiency of almost 100%. This composite could therefore be used to remove trace Cr(VI), Pb(II), Cu(II), and Zn(II) from water for super purification.

  8. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate

    DOE PAGES

    Sun, Jing; Chillrud, Steven N.; Mailloux, Brian J.; ...

    2015-10-23

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. In this paper, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated bymore » the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6–7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. Finally, these results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.« less

  9. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride.

    PubMed

    Eberhardt, Thomas L; Min, Soo-Hong; Han, James S

    2006-12-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater capacity for phosphate removal, a fiber pretreatment with an aqueous solution of a non-toxic anionic polymer, carboxymethyl cellulose (CMC), was evaluated. Problems with excessive viscosities during the screening of commercially available CMC products led to the selection of an ultra low viscosity CMC product that was still usable at a 4% concentration in water. Soxhlet extractions of chipped aspen wood and refined aspen wood fiber samples showed a higher extractives content for the refined material. Analysis of these extracts by FTIR spectroscopy suggested that the higher extractives content for the refined material resulted from the fragmentation of cell wall polymers (e.g., lignin, hemicelluloses) normally insoluble in their native states. Spectroscopic analysis of CMC and ferrous chloride treated fibers showed that the complex formed was sufficiently stable to resist removal during subsequent water washes. Equilibrium sorption data, which fit better with a Freundlich isotherm model than a Langmuir isotherm model, showed that phosphate removal could be enhanced by the CMC pretreatment. Results suggest that the process outlined may provide a facile means to improve the phosphate removal capacity of biomass-based stormwater filtration media.

  10. INTERPRETATION OF AT-LINE SPECTRA FROM AFS-2 BATCH #3 FERROUS SULFAMATE TREATMENT

    SciTech Connect

    Kyser, E.; O'Rourke, P.

    2013-12-10

    Spectra from the “at-line” spectrometer were obtained during the ferrous sulfamate (FS) valence adjustment step of AFS-2 Batch #3 on 9/18/2013. These spectra were analyzed by mathematical principal component regression (PCR) techniques to evaluate the effectiveness of this treatment. Despite the complications from Pu(IV), we conclude that all Pu(VI) was consumed during the FS treatment, and that by the end of the treatment, about 85% was as Pu(IV) and about 15% was as Pu(III). Due to the concerns about the “odd” shape of the Pu(IV) peak and the possibility of this behavior being observed in the future, a follow-up sample was sent to SRNL to investigate this further. Analysis of this sample confirmed the previous results and concluded that it “odd” shape was due to an intermediate acid concentration. Since the spectral evidence shows complete reduction of Pu(VI) we conclude that it is appropriate to proceed with processing of this the batch of feed solution for HB-Line including the complexation of the fluoride with aluminum nitrate.

  11. Enhanced and Stabilized Arsenic Retention in Microcosms through the Microbial Oxidation of Ferrous Iron by Nitrate

    PubMed Central

    SUN, JING; CHILLRUD, STEVEN N.; MAILLOUX, BRIAN J.; STUTE, MARTIN; SINGH, RAJESH; DONG, HAILIANG; LEPRE, CHRISTOPHER J.; BOSTICK, BENJAMIN C.

    2016-01-01

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. Here, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II)(aq)(as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II)(aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6 – 7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. These results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers. PMID:26454120

  12. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate

    SciTech Connect

    Sun, Jing; Chillrud, Steven N.; Mailloux, Brian J.; Stute, Martin; Singh, Rajesh; Dong, Hailiang; Lepre, Christopher J.; Bostick, Benjamin C.

    2015-10-23

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. In this paper, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated by the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6–7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. Finally, these results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.

  13. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.

    PubMed

    Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H

    2016-12-01

    Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.

  14. Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion.

    PubMed

    Khandarkhaeva, Marina; Batoeva, Agniya; Aseev, Denis; Sizykh, Marina; Tsydenova, Oyuna

    2017-03-01

    The oxidation of s-triazines (using atrazine (ATZ) as a model compound) by a solar-enhanced Fenton-like process involving persulfate and ferrous ion was studied. A flow-through tubular photoreactor was employed for the experiments. The solar-enhanced oxidative system involving ferrous ion and persulfate (Solar/S2O8(2-)/Fe(2+)) showed the highest ATZ degradation efficiency when compared with other treatments (unactivated S2O8(2-), Solar - sunlight only, S2O8(2-)/Fe(2+), Solar/S2O8(2-)). Complete degradation of ATZ and 20% reduction in total organic carbon (TOC) content were observed after 30min of the treatment. The in situ generated (•)ОН and SO4(-•) radicals were shown to be involved in ATZ oxidation using the radical scavengers methanol and tert-butyl alcohol. Furthermore, iron compounds were shown to act not only as catalysts but also as photo-sensitizers, as the introduction of ferrous ion into the reaction mixture led to an increased absorbance of the solution and expansion of the absorption spectrum into the longer wavelength spectral region.

  15. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters.

    PubMed

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Meng, Yang; Yang, Hai; Wang, Fengyang; Hao, Jiming

    2012-12-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09-2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45-88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70-97% of the mercury was removed from the flue gas to the waste water and 1-17% to the sulfuric acid product. Totally 0.3-13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies.

  16. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice.

    PubMed

    Elhassanny, Ahmed E M; Anderson, Eric S; Menscher, Evan A; Roop, R Martin

    2013-06-01

    Iron transport has been linked to the virulence of Brucella strains in both natural and experimental hosts. The genes designated BAB2_0837-0840 in the Brucella abortus 2308 genome sequence are predicted to encode a CupII-type ferrous iron transporter homologous to the FtrABCD transporter recently described in Bordetella. To study the role of the Brucella FtrABCD in iron transport, an isogenic ftrA mutant was constructed from B. abortus 2308. Compared with the parental strain, the B. abortus ftrA mutant displays a decreased capacity to use non-haem iron sources in vitro, a growth defect in a low iron medium that is enhanced at pH 6, and studies employing radiolabelled FeCl3 confirmed that FtrABCD transports ferrous iron. Transcription of the ftrA gene is induced in B. abortus 2308 in response to iron deprivation and exposure to acid pH, and similar to other Brucella iron acquisition genes that have been examined the iron-responsiveness of ftrA is dependent upon the iron response regulator Irr. The B. abortus ftrA mutant exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, supporting the proposition that ferrous iron is a critical iron source for these bacteria in the mammalian host.

  17. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  18. An experimental determination of ferrous chloride and acetate complexation in aqueous solutions to 300°C

    NASA Astrophysics Data System (ADS)

    Palmer, Donald A.; Hyde, K. E.

    1993-04-01

    The formation of the monochloroiron(II) complex, FeCl +, was studied potentiometrically from 125 to 295°C at 25 degree intervals at one molal ionic strength in aqueous solutions containing acetic acid, sodium acetate, and sodium trifluoromethanesulfonate. In this method, competition between chloride and acetate ions for the ferrous cation resulted in a change in solution pH, which in turn was monitored in situ in a hydrogen-electrode, concentration cell. A simple empirical approach was used to extrapolate these formation quotients to infinite dilution. The resulting constants proved to be in excellent agreement with previous spectrophotometric results obtained from 25 to 200°C. Thus, the present study confirms the validity of the conclusions made based on these earlier data concerning the solubility of Fe-containing minerals in hydrothermal brines. Formation constants at infinite dilution for FeCl + are compared with the stability of ferrous acetate and hydroxide complexes. The original potentiometric titration data for ferrous acetate complex formation were combined in a new fit with values determined from the present study at unit ionic strength. Two empirical treatments (namely the isocoulombic method and the temperature/water density function) were considered for fitting and extrapolating the infinite dilution formation constants to 350°C.

  19. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one.

    PubMed Central

    Kontoghiorghes, G J; Aldouri, M A; Hoffbrand, A V; Barr, J; Wonke, B; Kourouclaris, T; Sheppard, L

    1987-01-01

    The main iron chelator used for transfusional iron overload is desferrioxamine, which is expensive, has toxic side effects, and has to be given subcutaneously. An orally active iron chelator is therefore required. The effects of oral 1,2-dimethyl-3-hydroxypyrid-4-one on urinary iron excretion were studied in eight patients who had received multiple transfusions: four had myelodysplasia and four beta thalassaemia major. Different daily doses of the drug up to 100 mg/kg/day, alone or in combination with ascorbic acid, were used. In three patients with thalassaemia the effect of the drug was compared with that of subcutaneous desferrioxamine at the same daily dose. In all eight patients a single dose of oral 1,2-dimethyl-3-hydroxypyrid-4-one resulted in substantial urinary iron excretion, mainly in the first 12 hours. Urinary iron excretion increased with the dose and with the degree of iron loading of the patient. Giving two or three divided doses over 24 hours resulted in higher urinary iron excretion than a single dose of the same amount over the same time. In most patients coadministration of oral ascorbic acid further increased urinary iron excretion. 1,2-Dimethyl-3-hydroxypyrid-4-one caused similar iron excretion to that achieved with subcutaneous desferrioxamine at a comparable dose. In some cases the iron excretion was sufficiently high (maximum 99 mg/day) to suggest that a negative iron balance could be easily achieved with these protocols in patients receiving regular transfusions. No evidence of toxicity was observed on thorough clinical examination or haematological and biochemical testing in any of the patients. None of the patients had any symptoms that could be ascribed to the drug. These results suggest that the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one is as effective as subcutaneous desferrioxamine in increasing urinary iron excretion in patients loaded with iron. Its cheap synthesis, oral activity, and lack of obvious toxicity at effective

  20. Efficacy, Tolerability, and Acceptability of Iron Hydroxide Polymaltose Complex versus Ferrous Sulfate: A Randomized Trial in Pediatric Patients with Iron Deficiency Anemia.

    PubMed

    Yasa, Beril; Agaoglu, Leyla; Unuvar, Emin

    2011-01-01

    Iron polymaltose complex (IPC) offers similar efficacy with superior tolerability to ferrous sulfate in adults, but randomized trials in children are rare. In a prospective, open-label, 4-month study, 103 children aged >6 months with iron deficiency anemia (IDA) were randomized to IPC once daily or ferrous sulfate twice daily, (both 5 mg iron/kg/day). Mean increases in Hb to months 1 and 4 with IPC were 1.2 ± 0.9 g/dL and 2.3 ± 1.3 g/dL, respectively, (both P = 0.001 versus baseline) and 1.8 ± 1.7 g/dL and 3.0 ± 2.3 g/dL with ferrous sulfate (both P = 0.001 versus baseline) (n.s. between groups). Gastrointestinal adverse events occurred in 26.9% and 50.9% of IPC and ferrous sulfate patients, respectively (P = 0.012). Mean acceptability score at month 4 was superior with IPC versus ferrous sulfate (1.63 ± 0.56 versus 2.14 ± 0.75, P = 0.001). Efficacy was comparable with IPC and ferrous sulfate over a four-month period in children with IDA, but IPC was associated with fewer gastrointestinal adverse events and better treatment acceptability.

  1. Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers.

    PubMed

    Ma, W Q; Sun, H; Zhou, Y; Wu, J; Feng, J

    2012-11-01

    The study was conducted to determine the effects of iron glycine chelate (Fe-Gly) on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. A total of 360 1-day-old commercial broilers (Ross × Ross) were randomly allotted to six dietary treatments with six replications of ten chicks per replicate. Broilers were fed a control diet with no Fe supplementation, while five other treatments consisted of 40, 80, 120, and 160 mg Fe/kg diets from Fe-Gly, and 160 mg Fe/kg from ferrous sulfate, respectively. After a 42-day feeding trial, the results showed that 120 and 160 mg Fe/kg as Fe-Gly improved the average daily gain (P < 0.05) and average daily feed intake (P < 0.05) of broilers (4-6 weeks). Addition with 120 and 160 mg Fe/kg from Fe-Gly and 160 mg Fe/kg from FeSO(4) increased Fe concentration in serum (P < 0.05), liver (P < 0.05), breast muscle (P < 0.05), tibia (P < 0.05), and feces (P < 0.01) at 21 and 42 days. There were linear responses to the addition of Fe-Gly from 0 to 160 mg/kg Fe on Fe concentration in serum (21 days, P = 0.005; 42 days, P = 0.001), liver (P = 0.001), breast muscle (P = 0.001), tibia (P = 0.001), and feces (21 days, P = 0.011; 42 days, P = 0.032). Liver Cu/Zn superoxide dismutase activities of chicks were increased by the addition of 80, 120, and 160 mg Fe/kg as Fe-Gly to diets at 42 days. There were no differences in liver catalase activities of chicks among the treatments (P > 0.05). This study indicates that addition with Fe-Gly could improve growth performance and iron tissue storage and improves the antioxidant status of broiler chickens.

  2. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    PubMed Central

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed. PMID:26878770

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    NASA Astrophysics Data System (ADS)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  4. Removal of pamidronate from bone in rats using systemic and local chelation

    PubMed Central

    Howie, R. Nicole; Bhattacharyya, Maryka; Salama, Mohamed; El Refaey, Mona; Isales, Carlos; Borke, James; Daoudi, Asma; Medani, Fardous; Elsalanty, Mohammed

    2015-01-01

    Objectives Bisphosphonates become adsorbed on hydroxyapatite crystals in the bone matrix. In case of side-effects, stopping the treatment would not affect the bisphosphonates already deposited in bone. This study tests the feasibility of in-vivo targeted removal of bisphosphonates from bone using chelating agents. Design 32 Sprague Dawley rats were given an injection of fluorescent pamidronate (OsteoSense EX; 0.16 nmol/g). They were treated with either systemic (cadmium) or local [ethylenediaminetetraacetic (EDTA) or citric acid (CA)] chelating agents to induce the removal of the bisphosphonate from bone. We evaluated the decrease in fluorescence in the alveolar bone, femur, tibia, and vertebrae. We also analyzed the systemic effects of treatment. Results Systemic chelation reduced the pamidronate signal universally. However, the maximum reduction was observed in the alveolar bone and femur (22% and 21%, p values 0.008 and 0.028, respectively). Systemic chelation did not impair calcium homeostasis. The chelation effect was not due to a systemic toxic effect on the liver or kidney. On the other hand local chelation at the extraction site significantly (p=0.011) decreased the pamidronate signal at bony surfaces of the socket. Conclusions Systemic and local chelating agents can remove bisphosphonate from bone. This study establishes a new concept for the prevention of side effects of bisphosphonates during high-risk situations. PMID:26431826

  5. Cultivable diversity of thermophilic arsenite/ferrous-oxidizing microorganisms in hot springs of Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, G.; Lin, Y.; Chang, Y.; Wang, P.; Lin, L.

    2009-12-01

    Elevated levels of arsenic in groundwater and surface water bodies have posed a stringent threat to the deterioration of the water quality for drinking and agriculture purposes around the world. In particular, arsenic liberated from volcanic and sedimentary rocks at high temperatures would be immobilized through adsorption on iron oxide and/or crystallization of iron-bearing minerals downstream at low temperatures. Understanding how microbially-catalytic reactions are involved in the changes of the redox state of arsenic and iron along a flow path would provide important constraints on the arsenic mobility in natural occurrences. The aims of this study were to isolate and characterize thermophilic arsenite- and iron-oxidizing microbes that would facilitate to establish the linkages between microbial distribution and in situ Fe/As cycling processes. Four source waters (LH05, LH08, SYK and MT) from acid-sulfate springs (pH 2-3, 60-97oC) located in the Tatun volcanic area of northern Taiwan were collected and inoculated into media targeting on autotrophic ferrous iron (FC3), arsenite (AC3 ,ACC3, AC7, ACC7), arsenite-resistant hydrogen (AH23), arsenite-resistant hydrogen-sulfur (AH2S3), and arsenite-resistant sulfur oxidations(AS3), and heterotrophic arsenite oxidation(AH3, AH7) at pH 3, and 7 at temperatures of 50, 70 and 80oC. Samples from the Kuantzuling mud springs (KTL) in southwestern Taiwan known with elevated arsenic levels (0.4 ppm) were also collected, inoculated into the heterotrophic medium and incubated at 50, 60, 70 and 80oC. Isolates obtained from KTL were subject to test on the AH7 and ACC7. Two positive enrichments for iron oxidation at 50oC and 70oC were confirmed by the steadily decrease of ferrous iron and increase of precipitates over 4 transfers for samples from the SYK spring. Diverse morphological types of microbes were enriched in all types of arsenite-bearing media at 50oC except for AH23. At 70oC, positive enrichments were found in media

  6. Selective divalent copper chelation for the treatment of diabetes mellitus.

    PubMed

    Cooper, G J S

    2012-01-01

    Oxidative stress and mitochondrial dysfunction have been identified by many workers as key pathogenic mechanisms in ageing-related metabolic, cardiovascular and neurodegenerative diseases (for example diabetes mellitus, heart failure and Alzheimer's disease). However, although numerous molecular mechanisms have been advanced to account for these processes, their precise nature remains obscure. This author has previously suggested that, in such diseases, these two mechanisms are likely to occur as manifestations of a single underlying disturbance of copper regulation. Copper is an essential but highly-toxic trace metal that is closely regulated in biological systems. Several rare genetic disorders of copper homeostasis are known in humans: these primarily affect various proteins that mediate intracellular copper transport processes, and can lead either to tissue copper deficiency or overload states. These examples illustrate how impaired regulation of copper transport pathways can cause organ damage and provide important insights into the impact of defects in specific molecular processes, including those catalyzed by the copper-transporting ATPases, ATP7A (mutated in Menkes disease), ATP7B (Wilson's disease), and the copper chaperones such as those for cytochrome c oxidase, SCO1 and SCO2. In diabetes, impaired copper regulation manifests as elevations in urinary CuII excretion, systemic chelatable-CuII and full copper balance, in increased pro-oxidant stress and defective antioxidant defenses, and in progressive damage to the blood vessels, heart, kidneys, retina and nerves. Linkages between dysregulated copper and organ damage can be demonstrated by CuII-selective chelation, which simultaneously prevents/reverses both copper dysregulation and organ damage. Pathogenic structures in blood vessels that contribute to binding and localization of catalytically-active CuII probably include advanced glycation end products (AGEs), as well as atherosclerotic plaque: the

  7. Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescent probes

    PubMed Central

    Ma, Yongmin; de Groot, Herbert; Liu, Zudong; Hider, Robert C.; Petrat, Frank

    2005-01-01

    A series of fluorescent iron chelators has been synthesized such that a fluorescent function is covalently linked to a 3-hydroxypyridin-4-one. In the present study, the fluorescent iron chelators were loaded into isolated rat hepatocytes. The intracellular fluorescence was not only quenched by an addition of a highly lipophilic 8-hydroxyquinoline–iron(III) complex but also was dequenched by the addition of an excess of the membrane-permeable iron chelator CP94 (1,2-diethyl-3-hydroxypyridin-4-one). The time course of uptake of iron and iron chelation in single, intact cells was recorded on-line by using digital fluorescence microscopy. Intracellular concentrations of various fluorescent iron chelators were determined by using a spectrofluorophotometer subsequent to lysis of probe-loaded cells and were found to depend on their partition coefficients; the more hydrophobic the compound, the higher the intracellular concentration. An ex situ calibration method was used to determine the chelatable iron pool of cultured rat hepatocytes. CP655 (7-diethylamino-N-[(5-hydroxy-6-methyl-4-oxo-1,4-dihydropyridin-3-yl)methyl]-N-methyl-2-oxo-2H-chromen-3-carboxamide), which is a moderately lipophilic fluorescent chelator, was found to be the most sensitive probe for monitoring chelatable iron, as determined by the intracellular fluorescence increase induced by the addition of CP94. The concentration of the intracellular chelatable iron pool in hepatocytes was determined by this probe to be 5.4±1.3 μM. PMID:16336208

  8. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    PubMed

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  9. Alteration of tissue disposition of cadmium by chelating agents. [Mice; rats

    SciTech Connect

    Klaassen, C.D.; Waalkes, M.P.; Cantilena, L.R. Jr.

    1984-03-01

    The effect of several chelating agents (diethyldithiocarbamic acid, DDC; nitrilotriacetic acid, NTA; 2,3-dimercaptopropanol, BAL; d,l-penicillamine, PEN; 2,3-dimercaptosuccinic acid, DMSA; ethylenediaminetetraacetic acid, EDTA; and diethylenetriaminepentaacetic acid, DTPA) on the toxicity, distribution and excretion of cadmium (Cd) was determined in mice. When chelators were administered immediately after Cd, significant increases in survival were noted after treatment with DMSA, EDTA, and DTPA. DTPA, followed by EDTA and then DMSA, were consistently the most effective in decreasing the tissue concentrations of Cd and increasing the excretion of Cd. NTA, BAL, DDC and PEN had no beneficial effects. To determine the role of MT in the acute decrease in chelator efficacy following Cd poisoning, rats were injected IV with Cd followed by DTPA at various times after Cd. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal metallothionein (MT) did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D failed to eliminate this decreased DTPA effectiveness. Therefore, it appears that MT does not play an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The effect of repeated daily administration of chelators on the distribution and excretion of Cd was studied by administering chelators daily for 5 days starting 48 hr after Cd. DTPA, EDTA, DMSA and BAL significantly increased the urinary elimination of Cd. Thus, mobilization of Cd into urine occurs with repeated chelation therapy, which may decrease tissue concentrations of Cd and reduce the toxicity of the metal. 4 references, 15 figures, 2 tables.

  10. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion.

    PubMed

    Jiang, Xiaoxuan; Wu, Yanlin; Wang, Peng; Li, Hongjing; Dong, Wenbo

    2013-07-01

    Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4(-·)), which was generated by the activation of persulfate (S2O8(2-)) with ferrous ion (Fe(2+)). S2O8(2-) was activated by Fe(2+) to produce SO4(-·), and iron powder (Fe(0)) was used as a slow-releasing source of dissolved Fe(2+). The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8(2-) or Fe(2+) concentrations and then decreased with excess Fe(2+) concentration. The adding mode of Fe(2+) had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97% with sequential addition of Fe(2+), while complete degradation was observed with continuous diffusion of Fe(2+), and the latter achieved higher TOC removal rate. When Fe(0) was employed as a slow-releasing source of dissolved Fe(2+), 100% of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85%) was obtained within 2 h. In the Fe(0)-S2O8(2-) system, Fe(0) as the activator of S2O8(2-) could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe(0)-S2O8(2-) system has perspective for future works.

  11. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1

    PubMed Central

    Bennett, Brittany D.; Brutinel, Evan D.

    2015-01-01

    Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe3+) results in the production of ferrous iron (Fe2+) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe2+ from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe2+. The export function of FeoE is specific for Fe2+, as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd2+, Co2+, Cu2+, Mn2+, Ni2+, or Zn2+). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd2+/Zn2+ or Fe2+/Zn2+ exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe2+ compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe2+ exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found. PMID:26341213

  12. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    PubMed Central

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable. PMID:21602354

  13. Long-term Fate of Arsenic under the Oxidation of Ferrous Iron by Nitrate.

    NASA Astrophysics Data System (ADS)

    Sun, J.; Prommer, H.; Siade, A. J.; Chillrud, S. N.; Mailloux, B. J.; Bostick, B. C.

    2015-12-01

    In situ precipitation of iron (Fe) minerals can be an effective means of remediating groundwater arsenic (As) contamination. Among different Fe minerals, magnetite is promising as a host-mineral for As in situ immobilization in that it is stable under a wide range of geochemical conditions, including Fe(III) reducing conditions under which As are often mobilized. Our previous laboratory studies suggest that the formation of nanoparticulate magnetite can be achieved by the oxidation of ferrous Fe with nitrate. Magnetite can incorporate As into its structure during formation, in which case desorption and As(V) reduction are less likely. Nanoparticulate magnetite, once formed, can also immobilize As by surface adsorption, and thus serve as a reactive filter when contaminated groundwater migrates through the treatment zone. In this study, a reactive transport model is develop for the magnetite based As immobilization strategy. The initial numerical model development was guided by experimental data and hypothesized processes from the laboratory one-dimensional column studies. Our modeling results suggest that the ratio between Fe(II) and nitrate in the injectant regulates the extent and distribution of magnetite and ferrihydrite formation, and thus regulates the long-term potential of As immobilization. Based on these results, two-dimensional field-scale model scenarios were developed to predict and compare the impact of chemical and operational parameters on the efficiency of the remediation technology. The modeling results, which suggest that long-term groundwater As removal is feasible, favor scenarios that rely on the chromatographic mixing of Fe(II) and nitrate after injection. This study highlights the importance of combining laboratory studies and reactive transport modeling for elucidating the complex hydro-biogeochemical processes that control the fate of As and for up-scaling of the technology.

  14. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1.

    PubMed

    Nishio, Yoshiaki; Fujino, Masayuki; Zhao, Mingyi; Ishii, Takuya; Ishizuka, Masahiro; Ito, Hidenori; Takahashi, Kiwamu; Abe, Fuminori; Nakajima, Motowo; Tanaka, Tohru; Taketani, Shigeru; Nagahara, Yukitoshi; Li, Xiao-Kang

    2014-04-01

    5-Aminolevulinic acid (5-ALA) is the naturally occurring metabolic precursor of heme. Heme negatively regulates the Maf recognition element (MARE) binding- and repressing-activity of the Bach1 transcription factor through its direct binding to Bach1. Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide. These metabolites of heme protect against apoptosis, inflammation and oxidative stress. Monocytes and macrophages play a critical role in the initiation, maintenance and resolution of inflammation. Therefore, the regulation of inflammation in macrophages is an important target under various pathophysiological conditions. In order to address the question of what is responsible for the anti-inflammatory effects of 5-ALA, the induction of HO-1 expression by 5-ALA and sodium ferrous citrate (SFC) was examined in macrophage cell line (RAW264 cells). HO-1 expression induced by 5-ALA combined with SFC (5-ALA/SFC) was partially inhibited by MEK/ERK and p38 MAPK inhibitor. The NF-E2-related factor 2 (Nrf2) was activated and translocated from the cytosol to the nucleus in response to 5-ALA/SFC. Nrf2-specific siRNA reduced the HO-1 expression. In addition, 5-ALA/SFC increased the intracellular levels of heme in cells. The increased heme indicated that the inactivation of Bach1 by heme supports the upregulation of HO-1 expression. Taken together, our data suggest that the exposure of 5-ALA/SFC to RAW264 cells enhances the HO-1 expression via MAPK activation along with the negative regulation of Bach1.

  15. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

    PubMed

    Zariwala, M Gulrez; Elsaid, Naba; Jackson, Timothy L; Corral López, Francisco; Farnaud, Sebastien; Somavarapu, Satyanarayana; Renshaw, Derek

    2013-11-18

    Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery.

  16. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of

  17. Radiolabeled technetium chelates for use in renal function determinations

    DOEpatents

    Fritzberg, Alan; Kasina, Sudhaker; Johnson, Dennis L.

    1994-01-01

    The present invention is directed to novel radiopharmaceutical imaging agents incorporating Tc-99m as a radiolabel. In particular, the novel imaging agents disclosed herein have relatively high renal extraction efficiencies, and hence are useful for conducting renal function imaging procedures. The novel Tc-99m compounds of a present invention have the following general formula: ##STR1## wherein X is S or N; and wherein Y is --H or wherein Y is ##STR2## and where R.sub.1 is --H, --CH.sub.3, or --CH.sub.2 CH.sub.3 ; R.sub.2 is --H, --CH.sub.2 CO.sub.2 H, --CH.sub.2 CONH.sub.2, --CH.sub.2 CH.sub.2 CO.sub.2 H, --CH.sub.2 CH.sub.2 CONH.sub.2, --CH.sub.3, --CH.sub.2 CH.sub.3, CH.sub.2 C.sub.6 H.sub.5, or --CH.sub.2 OH; and Z is --H, --CO.sub.2 H, --CONH.sub.2, --SO.sub.3 H, --SO.sub.2 NH.sub.2, or --CONHCH.sub.2 CO.sub.2 H; and the Tc is Tc-99m; and water-soluble salts thereof. Of the foregoing, the presently preferred Tc-99m compound of the present invention is Tc-99m-mercaptoacetylglycylglycylglycine (Tc-99m-MAGGG). The present invention is also directed to novel chelating agents that may be reacted with Tc-99m to form the foregoing compounds. Such novel chelating agents have the following general formula. ##STR3## where X and Y have the same definitions as above, and wherein Y' is --H.sub.2 when X is N, or wherein Y' is --H, or a suitable protective group such as --COCH.sub.3, --COC.sub.6 H.sub.5, --CH.sub.2 NHCOCH.sub.3, --COCF.sub.3, or --COCH.sub.2 OH when X is S. The present invention also provides methods for preparing and using the novel Tc-99m compounds.

  18. Radiolabeled technetium chelates for use in renal function determinations

    DOEpatents

    Fritzberg, Alan; Kasina, Sudhakar; Johnson, Dennis L.

    1990-01-01

    The present invention is directed to novel radiopharmaceutical imaging agents incorporating Tc-99m as a radiolabel. In particular, the novel imaging agents disclosed herein have relatively high renal extraction efficiencies, and hence are useful for conducting renal function imaging procedures. The novel Tc-99m compounds of a present invention have the following general formula: ##STR1## wherein X is S or N; and wherein Y is--H or wherein Y is ##STR2## and where R.sub.1 is --H, --CH.sub.3, or --CH.sub.2 CH.sub.3 ; R.sub.2 is --H, --CH.sub.2 CO.sub.2 H, --CH.sub.2 CONH.sub.2, --CH.sub.2 CH.sub.2 CO.sub.2 H, --CH.sub.2 CH.sub.2 CONH.sub.2, --CH.sub.3, --CH.sub.2 CH.sub.3, CH.sub.2 C.sub.6 H.sub.5, or --CH.sub.2 OH; and Z is --H, --CO.sub.2 H, --CONH.sub.2, --SO.sub.3 H, --SO.sub.2 NH.sub.2, or --CONHCH.sub.2 CO.sub.2 H; and the Tc is Tc-99m; and water-soluble salts thereof. Of the foregoing, the presently preferred Tc-99m compound of the present invention is Tc-99m-mercaptoacetylglycylglycylglycine (Tc-99m-MAGGG). The present invention is also directed to novel chelating agents that may be reacted with Tc-99m to form the foregoing compounds. Such novel chelating agents have the following general formula. ##STR3## where X and Y have the same definitions as above, and wherein Y' is --H.sub.2 when X is N, or wherein Y' is --H, or a suitable protective group such as --COCH.sub.3, --COC.sub.6 H.sub.5, --CH.sub.2 NHCOCH.sub.3, --COCF.sub.3, or --COCH.sub.2 OH when X is S. The present invention also provides methods for preparing and using the novel Tc-99m compounds.

  19. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  20. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  1. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  2. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  3. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features.

    PubMed

    Carlsson, C; Ernster, L

    1981-12-14

    (1) Certain metal chelates of 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline, BPh) are potent inhibitors of soluble mitochondrial F1-ATPase. (2) The BPh-metal chelate inhibition of soluble mitochondrial F1-ATPase is relieved by uncouplers of oxidative phosphorylation. (3) The uncouplers appear to interact directly with the inhibitory chelates, forming stoichiometric adducts. (4) A complex between F1 and bPh3Fe2+, containing 3 mol BPh3Fe2+/mol F1, has been isolated. The enzymically inactive F1-BPh3Fe2+ complex binds uncouplers, yielding an enzymically active F1-BPh3Fe2+-uncoupler complex.

  4. Chelating ability and biological activity of hesperetin Schiff base.

    PubMed

    Lodyga-Chruscinska, Elzbieta; Symonowicz, Marzena; Sykula, Anna; Bujacz, Anna; Garribba, Eugenio; Rowinska-Zyrek, Magdalena; Oldziej, Stanislaw; Klewicka, Elzbieta; Janicka, Magdalena; Krolewska, Karolina; Cieslak, Marcin; Brodowska, Katarzyna; Chruscinski, Longin

    2015-02-01

    Hydrazone hesperetin Schiff base (HHSB) - N-[(±)-[5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-ylidene]amino]benzamide has been synthesized and its crystal structure was determined. This compound was used for the formation of Cu(II) complexes in solid state and in solution which were characterized using different spectroscopic methods. The analyses of potentiometric titration curves revealed that monomeric and dimeric complexes of Cu(II) are formed above pH7. The ESI-MS (electrospray ionization-mass spectrometry) spectra confirmed their formation. The EPR and UV-visible spectra evidenced the involvement of oxygen and nitrogen atoms in Cu(II) coordination. Hydrazone hesperetin Schiff base can show keto-enol tautomerism and coordinate Cu(II) in the keto (O(-), N, Oket) and in the enolate form (O(-), N, O(-)enol). The semi-empirical molecular orbital method PM6 and DFT (density functional theory) calculations have revealed that the more stable form of the dimeric complex is that one in which the ligand is present in the enol form. The CuHHSB complex has shown high efficiency in the cleavage of plasmid DNA in aqueous solution, indicating its potential as chemical nuclease. Studies on DNA interactions, antimicrobial and cytotoxic activities have been undertaken to gain more information on the biological significance of HHSB and copper(II)-HHSB chelate species.

  5. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  6. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  7. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  8. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals.

    PubMed

    Kluba, Christiane A; Mindt, Thomas L

    2013-03-12

    The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction) enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (bio)molecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  9. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  10. The Management of Iron Chelation Therapy: Preliminary Data from a National Registry of Thalassaemic Patients

    PubMed Central

    Ceci, Adriana; Mangiarini, Laura; Felisi, Mariagrazia; Bartoloni, Franco; Ciancio, Angela; Capra, Marcello; D'Ascola, Domenico; Cianciulli, Paolo; Filosa, Aldo

    2011-01-01

    Thalassaemia and other haemoglobinopathies constitute an important health problem in Mediterranean countries, placing a tremendous emotional, psychological, and economic burden on their National Health systems. The development of new chelators in the most recent years had a major impact on the treatment of thalassaemia and on the quality of life of thalassaemic patients. A new initiative was promoted by the Italian Ministry of Health, establishing a Registry for thalassaemic patients to serve as a tool for the development of cost-effective diagnostic and therapeutic approaches and for the definition of guidelines supporting the most appropriate management of the iron-chelating therapy and a correct use of the available iron-chelating agents. This study represents the analysis of the preliminary data collected for the evaluation of current status of the iron chelation practice in the Italian thalassaemic population and describes how therapeutic interventions can widely differ in the different patients' age groups. PMID:21738864

  11. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications.

    PubMed

    Chappell, L L; Deal, K A; Dadachova, E; Brechbiel, M W

    2000-01-01

    225Ac (t(1/2) = 10 days) is an alternative alpha-emitter that has been proposed for radioimmunotherapy (RIT) due to its many favorable properties, such as half-life and mode of decay. The factor limiting use of (225)Ac in RIT is the lack of an acceptably stable chelate for in vivo applications. Herein is described the first reported bifunctional chelate for (225)Ac that has been evaluated for stability for in vivo applications. The detailed synthesis of a bifunctional chelating agent 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid (HEHA-NCS) is reported. This ligand was conjugated to three monoclonal antibodies, CC49, T101, and BL-3 with chelate-to-protein ratios between 1.4 and 2. The three conjugates were radiolabeled with (225)Ac, and serum stability study of the [(225)Ac]BL-3-HEHA conjugate was performed.

  12. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  13. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  14. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    PubMed Central

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  15. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    SciTech Connect

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  16. Fortifying milk with ferrous gluconate and zinc oxide in a public nutrition program reduced the prevalence of anemia in toddlers.

    PubMed

    Villalpando, Salvador; Shamah, Teresa; Rivera, Juan A; Lara, Yaveth; Monterrubio, Eric

    2006-10-01

    We aimed to assess the efficacy of whole cow's milk fortified with ferrous gluconate and zinc oxide, along with ascorbic acid, in reducing the prevalence of anemia and improving iron status of low income children 10-30 mo of age. Healthy children were randomly assigned to drink 400 mL/d of cow's whole milk, either fortified milk (FM) with 5.8 mg/400 mL of iron as ferrous gluconate, 5.28 mg/400 mL of zinc as zinc oxide, and 48 mg/400 mL of ascorbic acid, or nonfortified milk (NFM) with 0.2 mg iron/400 mL, 1.9 mg zinc/400 mL, and 6.8 mg ascorbic acid/400 mL. Hemoglobin, serum ferritin, soluble transferrin receptors (TfR), and C-reactive protein concentrations were measured at baseline and 6 mo after intervention. The prevalence of anemia declined from 41.4 to 12.1% (P < 0.001), or 29 percentage points, in the FM group; there was no change in the NFM group. Hemoglobin (coefficient = 0.22, P < 0.01) was positively and TfR (coefficient = -0.29, P < 0.001) negatively associated with treatment, controlling for their respective baseline values, age, and gender. Treatment with FM was negatively associated with the likelihood of being anemic (pseudo R(2) = 0.085, P < 0.03) after 6 mo of intervention. Ferrous gluconate added to whole cow's milk as a fortificant along with ascorbic acid is efficacious in reducing the prevalence of anemia and in improving iron status of Mexican toddlers. The results of this study lead to broadening a subsidized FM distribution program to 4.2 million beneficiary children 1-11 y of age in Mexico.

  17. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  18. Contribution of ferrous iron to maintenance of the gastric colonization of Helicobacter pylori in miniature pigs.

    PubMed

    Koga, Tetsufumi; Shimada, Yukio; Sato, Kiyoshi; Takahashi, Keigo; Kikuchi, Isamu; Okazaki, Yoko; Miura, Tomoko; Katsuta, Mitsuo; Iwata, Masayuki

    2002-01-01

    Our previous study showed that the colonization levels of Helicobacter pylori were higher in the stomachs of 5-day-old miniature pigs than in 2-week-old ones. As dietary factors can cause these differences, we compared two diets, i.e., Weanymilk and a similar formula with a higher concentration of Fe(II), Weanylobulin. The colonization levels in the fundic mucosa were significantly higher in 2-week-old pigs fed Weanylobulin than in those fed Weanymilk. Supplementing Weanylobulin with an iron chelator, deferoxamine mesylate, significantly lowered the bacteria counts in the gastric mucosa. Normal diets supplemented with Fe(II) in 2-month-old pigs caused significantly more sites of bacteria in the antrum compared with normal diets alone. In addition, ranitidine, an inhibitor of gastric acid secretion that reduces Fe(III) to Fe(II) in the stomach, decreased the bacteria counts in 10-month-old pigs. These results suggested that Fe(II) maintained the colonization levels of H. pylori in the stomach of the miniature pigs.

  19. Chelating agents used for plutonium and uranium removal in radiation emergency medicine.

    PubMed

    Fukuda, Satoshi

    2005-01-01

    The prospects of using chelating agents for increasing the excretion of actinides are reviewed. The removal of plutonium by chelating agents is of great importance because plutonium is extremely dangerous and induces cancer due to radiation toxicity. Similarly, uranium is a radionuclide, which causes severe renal dysfunction within a short time period due to chemical toxicity. It may also induce cancers such as leukemia and osteosarcoma in cases of long-term internal radiation exposure. Investigations on chelating agents for the removal of plutonium were initiated in the 1960's and 1970's. Diethylenetriaminepentaacetic acid (DTPA) is recognized as a chelating agent that accelerates the excretion of plutonium in early treatment after an accident. Thereafter, there has long been an interest in finding new chelating agents with radionuclide removal properties for use in therapy, and many chelating agents such as 3,4,3-LIHOPO and CBMIDA have been studied for their ability to remove plutonium and uranium. Recently, the focus has turned to drugs that have been used successfully in the treatment of a variety of other diseases, for example the iron chelating drug deferiprone or 1,2-dimethyl-3-hydroxypyrid-4-one (L1), which is used in thalassaemia and ethane-1-hydroxy-1,1-bisphosphonate (EHBP), which is used in osteoporosis. Within this context, it is important to examine the clinical use of these two drugs as well as the properties of the experimental chelators 3,4,3-LIHOPO and CBMIDA in order to identify possible uses in the treatment of radiation workers contaminated with plutonium and uranium.

  20. Chromium uptake by Spirodela polyrrhiza (L. ) Schleiden in relation to metal chelators and pH

    SciTech Connect

    Tripathi, R.D.; Chandra, P. )

    1991-11-01

    This paper reports the influence of metal chelators, ethylenediaminetetraacetic acid (EDTA) and salicylic acid, and pH on the accumulation of Cr by S. polyrrhiza under the laboratory conditions. This also includes the results of K.D. pond water treatment study by cultured fronds of S. polyrrhiza. In view of the occurrence of metal chelators in natural waters and pH variation the present study would enable to assess the performance of this species under the influence of these factors.

  1. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  2. Removal of chelated aluminium during haemodialysis using polysulphone high-flux dialysers.

    PubMed

    Aarseth, H P; Ganss, R

    1990-01-01

    Polysulphone high-flux dialysers were used for removal of chelated aluminium in desferrioxamine-treated patients on maintenance haemodialysis. When compared with charcoal haemoperfusion in series with a cuprophane dialyser, the same aluminium clearance was obtained (34% of blood flow). During 4 h of haemodialysis serum aluminium was reduced to the concentration seen before desferrioxamine infusion. We conclude that high-flux polysulphone dialysers remove chelated aluminium as efficiently as does charcoal haemoperfusion, and at a lower cost.

  3. Fate of labeled hydroxamates during iron transport from hydroxamate-ion chelates.

    PubMed

    Arceneaux, J E; Davis, W B; Downer, D N; Haydon, A H; Byers, B R

    1973-09-01

    The fate of the hydroxamic acid-iron transport cofactors during iron uptake from the (59)Fe(3+) chelates of the (3)H-labeled hydroxamates schizokinen and aerobactin was studied by assay of simultaneous incorporation of both (59)Fe(3+) and (3)H. In the schizokinen-producing organism Bacillus megaterium ATCC 19213 transport of (59)Fe(3+) from the (3)H-schizokinen-(59)Fe(3+) chelate at 37 C was accompanied by rapid uptake and release (within 2 min) of (3)H-schizokinen, although (3)H-schizokinen discharge was temperature-dependent and did not occur at 0 C. In the schizokinen-requiring strain B. megaterium SK11 similar release of (3)H-schizokinen occurred only at elevated concentrations of the double-labeled chelate; at lower chelate concentrations, (3)H-schizokinen remained cell-associated. Temperature-dependent uptake of deferri (iron-free) (3)H-schizokinen to levels equivalent to those incorporated from the chelate form was noted in strain SK11, but strain ATCC 19213 showed only temperature-independent binding of low concentrations of deferri (3)H-schizokinen. These results indicate an initial temperature-independent binding of the ferric hydroxamate which is followed rapidly by temperature-dependent transport of the chelate into the cell and an enzyme catalyzed separation of iron from the chelate. The resulting deferri hydroxamate is discharged from the cell only when a characteristic intracellular concentration of the hydroxamate is exceeded, which happens in the schizokinen-requiring strain only at elevated concentrations of the chelate. This strain also appears to draw the deferri hydroxamate into the cell by a temperature-dependent mechanism. The aerobactin-producing organism Aerobacter aerogenes 62-1 also demonstrated rapid initial uptake and temperature-dependent discharge of (3)H-aerobactin during iron transport from (3)H-aerobactin-(59)Fe(3+), suggesting a similar ferric hydroxamate transport system in this organism.

  4. Stereoselective Arylation of Amino Aldehydes: Overriding Natural Substrate Control through Chelation.

    PubMed

    Martins, Bruna S; Moro, Angélica V; Lüdtke, Diogo S

    2017-03-03

    The chelation-controlled arylation reaction of chiral, enantiopure acyclic α-amino aldehydes enabled by a B/Zn exchange reaction between arylboronic acids and Et2Zn is reported. The presence of dibenzyl substituents at the nitrogen plays a key role in the stereochemical outcome of the reaction, and chelation is favored over the natural tendency of this type of substrate to undergo Felkin-Anh controlled additions with organomagnesium and organolithium reagents.

  5. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  6. Pilot field-verification studies of the sodium sulfide/ferrous sulfate treatment process. Final report, September 1987-May 1988

    SciTech Connect

    Wiloff, P.M.; Suciu, D.F.; Prescott, D.S.; Schober, R.K.; Loyd, F.S.

    1988-09-01

    In previous project, jar and dynamic testing showed that the sodium sulfide/ferrous sulfate process was a viable method for reducing hexavalent chromium and removing heavy metals from the Tinker AFB industrial wastewater with significant decrease in sludge production and treatment costs. In this phase, pilot-plant field verification studies were conducted to evaluate the chemical and physical parameters of the chromium reduction process, the precipitation and clarification process, and the activated-sludge system. Sludge production was evaluated and compared to the sulfuric acid/sulfur dioxide/lime process.

  7. Assessment of mapping exposed ferrous and ferric iron compounds using Skylab-EREP data. [Pisgah Crater, California

    NASA Technical Reports Server (NTRS)

    Vincent, R. (Principal Investigator); Wagner, H.; Pillars, W.; Bennett, C.

    1976-01-01

    The author has identified the following significant results. The S190B color photography is as useful as LANDSAT data for the mapping of color differences in the rocks and soils of the terrain. An S192 ratio of 0.79 - 0.89 and 0.93 - 1.05 micron bands produced an apparently successful delineation of ferrous, ferric, and other materials, in agreement with theory and ratio code studies. From an analysis of S191 data, basalt and dacite were separated on the basis of differences in spectral emissivity in the 8.3 - 12 micron region.

  8. Stability of salt double-fortified with ferrous fumarate and potassium iodate or iodide under storage and distribution conditions in Kenya.

    PubMed

    Oshinowo, Toks; Diosady, Levente; Yusufali, Rizwan; Laleye, Louis

    2004-09-01

    The stability of table salt double-fortified with iron as ferrous fumarate, and with iodine as potassium iodide or potassium iodate, has been investigated under actual field conditions of storage and distribution in the coastal and highland regions of Kenya. Seven 200-g sample packets of double-fortified salt in sealed polyethylene bags and a similar packet containing a datalogger for monitoring temperature and humidity were packaged with 21 sample bags of salt from another study into a bundle, which then entered the distribution network from a salt manufacturer's facility to the consumer. Iodine retention values of up to 90% or more were obtained during the three-month study. Double-fortified salt was prepared using ferrous fumarate microencapsulated with a combination of binders and coloring agents and coated with soy stearine, in combination with either iodated salt or salt iodized with potassium iodide microencapsulated with dextrin and coated with soy stearine. Most of the ferrous iron was retained, with less than 17% being oxidized to the ferric state. The polyethylene film overwrap of salt packs in the bundles provided significant protection from ambient humidity. Salt double-fortified with iodine and microencapsulated iron ferrous fumarate premix was generally quite stable, because both iodine and ferrous iron were protected during distribution and retail in typical tropical conditions in Kenya's highlands and humid lowlands.

  9. Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process.

    PubMed

    Lin, S H; Lai, S L; Leu, H G

    2000-08-28

    Copper and zinc removal from aqueous solution by chelating resin was investigated theoretically and experimentally in the present study. A multistage process was proposed as an alternative for enhancement of the heavy removal of the single-stage process. Heavy metal mass balance equations with empirical Freundlich adsorption isotherm were developed to represent the multistage process and the theoretical model permits determination of the inter-stage heavy metal concentrations and the total amount of chelating resin required for achieving a desired level of heavy metal removal. Optimization of the linearized theoretical model shows that equal division of the total amount of chelating resin among all stages of the multistage process yields the best results in terms of saving of chelating resin for a given heavy metal removal or enhanced heavy metal removal for a given total amount of chelating resin. Experimental tests were also conducted to establish the equilibrium adsorption of heavy metal by the chelating resin and to empirically verify the advantages of the multistage adsorption process.

  10. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  11. The role of chelation in the treatment of arsenic and mercury poisoning.

    PubMed

    Kosnett, Michael J

    2013-12-01

    Chelation for heavy metal intoxication began more than 70 years ago with the development of British anti-lewisite (BAL; dimercaprol) in wartime Britain as a potential antidote the arsenical warfare agent lewisite (dichloro[2-chlorovinyl]arsine). DMPS (unithiol) and DMSA (succimer), dithiol water-soluble analogs of BAL, were developed in the Soviet Union and China in the late 1950s. These three agents have remained the mainstay of chelation treatment of arsenic and mercury intoxication for more than half a century. Animal experiments and in some instances human data indicate that the dithiol chelators enhance arsenic and mercury excretion. Controlled animal experiments support a therapeutic role for these chelators in the prompt treatment of acute poisoning by arsenic and inorganic mercury salts. Treatment should be initiated as rapidly as possible (within minutes to a few hours), as efficacy declines or disappears as the time interval between metal exposure and onset of chelation increases. DMPS and DMSA, which have a higher therapeutic index than BAL and do not redistribute arsenic or mercury to the brain, offer advantages in clinical practice. Although chelation following chronic exposure to inorganic arsenic and inorganic mercury may accelerate metal excretion and diminish metal burden in some organs, potential therapeutic efficacy in terms of decreased morbidity and mortality is largely unestablished in cases of chronic metal intoxication.

  12. Effect of chelators on copper metabolism and copper pools in mouse hepatocytes

    SciTech Connect

    McArdle, H.J.; Gross, S.M.; Creaser, I.; Sargeson, A.M.; Danks, D.M.

    1989-04-01

    Disorders of copper storage are usually treated by chelation therapy. It is generally thought that the chelators act by mobilizing copper from the liver, hence allowing excretion in the urine. This paper has examined the effect of chelators on copper uptake and storage in mouse hepatocytes. Penicillamine, a clinically important chelator, does not block the uptake of copper or remove copper from hepatocytes. Two other copper chelators, sar and diamsar, which form very stable and kinetically inert Cu2+ complexes by encapsulating the metal ion in an organic cage, were shown to block copper accumulation by the cells and to remove up to 80% of cell-associated copper. They also removed most (approximately 80%) of the /sup 64/Cu accumulated by the cells in 30 min, but released only a small percentage (less than 20%) of that accumulated over 18 h. The results show that copper in the hepatocyte can be divided into at least two pools, an easily accessible one, and another, not removable even after long-term incubation with any of the chelators. Most of the copper normally found in the cell appeared to be associated with the former pool.

  13. Iron overload in thalassemia and related conditions: therapeutic goals and assessment of response to chelation therapies.

    PubMed

    Porter, John B; Shah, Farrukh T

    2010-12-01

    Transfusional iron loading inevitably results in hepatic iron accumulation, with variable extrahepatic distribution that is typically less pronounced in sickle cell disease than in thalassemia disorders. Iron chelation therapy has the goal of preventing iron-mediated tissue damage through controlling tissue iron levels, without incurring chelator-mediated toxicity. Historically, target levels for tissue iron control have been limited by the increased frequency of deferoxamine-mediated toxicity and low levels of iron loading. With newer chelation regimes, these limitations are less evident. The reporting of responses to chelation therapies has typically focused on average changes in serum ferritin in patient populations. This approach has three limitations. First, changes in serum ferritin may not reflect trends in iron balance equally in all patients or for all chelation regimens. Second, this provides no information about the proportion of patients likely respond. Third, this gives insufficient information about iron trends in tissues such as the heart. Monitoring of iron overload has advanced with the increasing use of MRI techniques to estimate iron balance (changes in liver iron concentration) and extrahepatic iron distribution (myocardial T2*). The term nonresponder has been increasingly used to describe individuals who fail to show a downward trend in one or more of these variables. Lack of a response of an individual may result from inadequate dosing, high transfusion requirement, poor treatment adherence, or unfavorable pharmacology of the chelation regime. This article scrutinizes evidence for response rates to deferoxamine, deferiprone (and combinations), and deferasirox.

  14. Effect of roasting on properties of the zinc-chelating substance in coffee brews.

    PubMed

    Wen, Xu; Enokizo, Akiko; Hattori, Harumi; Kobayashi, Satiko; Murata, Masatsune; Homma, Seiichi

    2005-04-06

    ApV is a brownish polymer with zinc-chelating activity in brewed coffee. We investigated in this study the effects of roasting on the zinc-chelating, reducing, and antioxidative activities of ApV from light-, medium-, and dark-roasted coffee. We also discuss the effect on the zinc-chelating activity of adding milk to the brewed coffee. The chelating activities of ApVs were evaluated by the tetramethyl murexide method. As the intensity of roasting increased, the yield of ApV increased, and the brown color and molecular weight of ApV respectively became darker and higher. Increasing the degree of roasting also decreased the zinc-chelating activity of ApV. The reducing activities of ApVs estimated by the indophenol method were stronger than those of ascorbic acid. Both the antioxidative activity estimated by the ABTS assay and the reducing activity of ApV increased with roasting. When milk was added to instant coffee and its ApV was prepared, the zinc-chelating activity of ApV was not changed.

  15. Fatty liver-hemorrhagic syndrome observed in commercial layers fed diets containing chelated minerals.

    PubMed

    Branton, S L; Lott, B D; Maslin, W R; Day, E J

    1995-01-01

    This study was originally conducted to determine the effect of various chloride levels and consumption of chelated versus non-chelated minerals on egg production and eggshell breaking strength. However, the focus of this report changed after fatty liver-hemorrhagic syndrome (FLHS) was observed in hens that consumed diets containing chelated minerals. No FLHS was observed in hens that consumed a diet that contained non-chelated minerals. Four hundred thirty-two 35-week-old commercial laying hens were housed in individual cages in groups of nine hens each. The treatments were factorially arranged (3 x 2) such that six experimental diets differing in chloride levels and in source of minerals were fed for six 28-day laying periods. A significantly higher mortality attributed to FLHS was observed in hens that consumed the diets having chelated minerals as compared with hens that consumed the diets with non-chelated minerals. No difference in mortality was observed among the hens fed the various chloride diets.

  16. Hydroxypyri(mi)dine-based chelators as antidotes of toxicity due to aluminum and actinides.

    PubMed

    Santos, M A; Esteves, M A; Chaves, S

    2012-01-01

    This review is focused on recent developments on hydroxypyri(mi)dines, as aluminum and actinide chelating agents to combat the toxicity due to accumulations of these metal ions in human body resulting from excessive metal exposure. After a brief update revision of the most common processes of aluminum (Al) exposure, as well as the associated toxicities and pathologies, we will focus on the current available Al chelators and future perspective as potential antidotes of Al toxicity. Due to the similarity between Al and Fe, a major emphasis is given to the hydroxypyridinone and hydroxypyrimidinone chelators, since they are analogues of the current iron chelators in clinical use (DFP and DFO). This review includes issues such as molecular design strategies and corresponding effects on the associated physico-chemical properties, lipo-hydrophilic balance, toxicity, in vivo bioassays and current clinical applications. The hydroxypyri(mi)dine chelators are also suitable for other hard metal ions, such as the radiotoxic actinides, and so a brief review is included on the applications of these chelators in actinides scavenging.

  17. Iron chelators in medicinal applications - chemical equilibrium considerations in pharmaceutical activity.

    PubMed

    Manning, Thomas; Kean, Greg; Thomas, Jessica; Thomas, Khaleh; Corbitt, Michael; Gosnell, Donna; Ware, Ronald; Fulp, Sonya; Jarrard, Joey; Phillips, Dennis

    2009-01-01

    Iron chelators are being examined as a potential class of pharmaceutical agents to battle different types of cancer as well as iron overload diseases. In recent studies, iron binding species such as desferrioxamine, triapine, tachpyridine, Dp44Mt, and PIH have been tested in cell line tests and clinical trials. Using published chemical equilibrium values (stability constants, equilibrium constants), it is argued that an iron chelator cannot competitively remove iron from a heme-containing biomolecule (i.e. hemoglobin (Hb), myoglobin) causing a cancerous cell to die. This type of reaction (DFO(aq) + [Fe(2+,3+)-Hb] --> [Fe(2+,3+)-DFO] + Hb) has been proposed in a number of published studies using circumstantial evidence. It is argued that iron chelators can potentially interact with iron from ferritin or iron that has precipitated or flocculated as oxyhydroxide under physiological pH's. It is argued that chelators can interfere with various physiological processes by binding cations such as Ca(2+), Zn(2+) or K(+). A number of siderophores and natural products that have the ability to bind Fe(3+)/Fe(2+) as well as other cations are discussed in terms of their potential pharmaceutical activity as chelators. Chemical equilibria between cations and pharmaceutical agents, which are rarely quantitated in explaining medicinal mechanisms, are used to show that chelators can bind and remove iron and other cations from physiologically important systems required for cell survival and propagation.

  18. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.

    PubMed

    Jagetiya, Bhagawatilal; Sharma, Anubha

    2013-04-01

    A greenhouse experiment was set up to investigate the ability of citric acid (CA), oxalic acid (OA), nitrilotriacetic acid (NTA) and EDTA for phytoremediation of uranium tailings by Indian mustard [Brassica juncea (L.) Czern. et Coss]. Uranium tailings were collected from Umra mining region and mixed with 75% of garden soil which yielded a 25:75 mixture. Prepared pots were divided into four sets and treated with following different concentrations - 0.1, 0.5, 2.5 and 12.5 mmol kg(-1) soil additions for each of the four chelators. Control pots which were not treated with chelators. Experiments were conducted in completely randomized block design with triplicates. The optimum concentrations of these chelators were found on the basis of biomass production, tolerance and accumulation potential. The data collected were expressed statistically. EDTA produced maximum growth depression whereas, minimum occurred in the case of NTA. Maximum U uptake (3.5-fold) in the roots occurred at 2.5 mmol of CA, while NTA proved to be the weakest for the same purpose. Severe toxicity in the form of reduced growth and plant death was recorded at 12.5 mmol of each chelator. Minimum growth inhibition produced by chelators occurred in NTA which was followed by OA, moderate in CA and maximum was traced in EDTA applications. Chelator strengthened U uptake in the present study follows the order: CA>EDTA>OA>NTA.

  19. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    PubMed Central

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  20. Hydrogen peroxide-independent generation of superoxide by plant peroxidase: hypotheses and supportive data employing ferrous ion as a model stimulus

    PubMed Central

    Kimura, Makoto; Umemoto, Yosuke; Kawano, Tomonori

    2014-01-01

    When plants are threaten by microbial attacks or treated with elicitors, alkalization of extracellular space is often induced and thus pH-dependent extracellular peroxidase-mediated oxidative burst reportedly takes place, especially at the site of microbial challenge. However, direct stimulus involved in activation of peroxidase-catalyzed oxidative burst has not been identified to date. Here, we would like to propose a likely role for free ferrous ion in reduction of ferric native peroxidase into ferrous enzyme intermediate which readily produces superoxide anion via mechanism involving Compound III, especially under alkaline condition, thus, possibly contributing to the plant defense mechanism. Through spectroscopic and chemiluminescence (CL) analyses of reactions catalyzed by horseradish peroxidase (HRP), the present study proposed that plant peroxidase-catalyzed production of superoxide anion can be stimulated in the absence of conventional peroxidase substrates but in the presence of free ferrous ion. PMID:25071789