Sample records for ferrous iron based

  1. In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers.

    PubMed

    Kapsokefalou, Maria; Alexandropoulou, Isidora; Komaitis, Michail; Politis, Ioannis

    2005-06-01

    The objectives of the present study were: to compare the solubility and dialyzability of various iron fortificants (iron pyrophosphate, ferrous bis-glycinate, ferrous gluconate, ferrous lactate, ferrous sulfate) added, in the presence of ascorbic acid, to pasteurized milk samples produced under laboratory conditions; and to compare the solubility and dialyzability of iron in commercial pasteurized, UHT and condensed milk products available in the Greek market fortified with various vitamins and minerals including iron and targeted towards infants (6-12 months old) and toddlers. Iron solubility and dialyzability were determined using a simulated gastrointestinal digestive system. Ferrous dialyzable iron (molecular weight lower than 8000) was used as an index for prediction of iron bioavailability. Ferrous dialyzable iron in pasteurized milk samples fortified with iron pyrophosphate, ferrous lactate and ferrous bis-glycinate was higher (P < 0.05) than that in milk samples fortified with ferrous sulfate and ferrous gluconate. In commercial liquid pasteurized or UHT milk products, formation of ferrous dialyzable iron in products fortified with ferrous lactate was not different (P > 0.05) from those fortified with ferrous sulfate. Ferrous dialyzable iron in four condensed commercial milk products was higher (P < 0.05) than the corresponding values of the liquid UHT milk samples fortified with the same fortificant (ferrous sulfate). Ferrous dialyzable iron was higher (P < 0.05) in products targeted for infants compared with those targeted for toddlers. In conclusion, the type of iron source, milk processing and the overall product composition affect formation of ferrous dialyzable iron and may determine the success and effectiveness of iron fortification of milk.

  2. Effect of Low-Dose Ferrous Sulfate vs Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children With Nutritional Iron-Deficiency Anemia: A Randomized Clinical Trial.

    PubMed

    Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L

    2017-06-13

    Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.

  3. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  4. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  5. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans.

    PubMed

    Meruane, G; Salhe, C; Wiertz, J; Vargas, T

    2002-11-05

    The influence of solution Eh on the rate of ferrous iron oxidation by Acidithiobacillus ferrooxidans is characterized. The experimental approach was based on the use of a two-chamber bioelectrochemical cell, which can determine the ferrous iron oxidation rate at controlled potential. Results enabled the formulation of a novel kinetic model, which incorporates the effect of solution Eh in an explicit form but still integrates the effect of ferrous iron concentration and ferric inhibition. The results showed that at Eh values below 650 mV (standard hydrogen electrode, SHE) the bacterial oxidative activity is mainly dependent on ferrous iron concentration. At Eh values between 650 and 820 mV (SHE) the oxidation rate is mainly controlled by ferric inhibition. Over 820 mV (SHE) the bacterial oxidative activity is strongly inhibited by the Eh increase, being completely inhibited at Eh = 840 mV (SHE). Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 280-288, 2002.

  6. Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.

    PubMed

    Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng

    2017-01-01

    The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

  7. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  8. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    EPA Science Inventory

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  9. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

    PubMed

    García-Casal, M N; Layrisse, M

    2001-03-01

    The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

  10. Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China.

    PubMed

    Jiang, Chengying; Liu, Ying; Liu, Yanyang; Guo, Xu; Liu, Shuang-Jiang

    2009-01-01

    Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the common ferrous-iron and sulfur oxidizers from such environments. This study focused on the Tengchong sofataric region, located in Yunnan Province, Southwest China. Based on cultivation, 9 strains that grow on ferrous-iron and sulfuric compounds were obtained. Analysis of 16S rRNA genes of the 9 strains indicated that they were affiliated to Acidithiobacillus, Alicyclobacillus, Sulfobacillus, Leptospirillum and Acidiphilium. Physiological and phylogenetic studies indicated that two strains (TC-34 and TC-71) might represent two novel members of Alicyclobacillus. Strain TC-34 and TC-71 showed 94.8%-97.1% 16S rRNA gene identities to other species of Alicyclobacillus. Different from the previously described Alicyclobacillus species, strains TC-34 and TC-71 were mesophilic and their cellular fatty acids do not contain omega-cyclic fatty acids. Strain TC-71 was obligately dependent on ferrous-iron for growth. It was concluded that the ferrous-iron oxidizers were diversified and Alicyclobacillus species were proposed to take part in biochemical geocycling of iron in the Tengchong solfataric region.

  11. Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomized trial.

    PubMed

    Milman, Nils; Jønsson, Lisbeth; Dyre, Pernille; Pedersen, Palle Lyngsie; Larsen, Lise Grupe

    2014-03-01

    To compare the effects of oral ferrous bisglycinate 25 mg iron/day vs. ferrous sulfate 50 mg iron/day in the prevention of iron deficiency (ID) and iron deficiency anemia (IDA) in pregnant women. Randomized, double-blind, intention-to-treat study. Antenatal care clinic. 80 healthy ethnic Danish pregnant women. Women were allocated to ferrous bisglycinate 25 mg elemental iron (Aminojern®) (n=40) or ferrous sulfate 50 mg elemental iron (n=40) from 15 to 19 weeks of gestation to delivery. Hematological status (hemoglobin, red blood cell indices) and iron status (plasma iron, plasma transferrin, plasma transferrin saturation, plasma ferritin) were measured at 15-19 weeks (baseline), 27-28 weeks and 36-37 weeks of gestation. Occurrence of ID (ferritin <15 μg/L) and IDA (ferritin <12 μg/L and hemoglobin <110 g/L). At inclusion, there were no significant differences between the bisglycinate and sulfate group concerning hematological status and iron status. The frequencies of ID and IDA were low and not significantly different in the two iron groups. The frequency of gastrointestinal complaints was lower in the bisglycinate than in the sulfate group (P=0.001). Newborns weight was slightly higher in the bisglycinate vs. the sulfate group (3601±517 g vs. 3395±426 g, P=0.09). In the prevention of ID and IDA, ferrous bisglycinate was not inferior to ferrous sulfate. Ferrous bisglycinate in a low dose of 25 mg iron/day appears to be adequate to prevent IDA in more than 95% of Danish women during pregnancy and postpartum.

  12. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin

    PubMed Central

    McCarthy, Ryan C; Park, Yun-Hee; Kosman, Daniel J

    2014-01-01

    A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer’s disease. PMID:24867889

  13. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    PubMed

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.

  14. Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans

    PubMed Central

    Liljeqvist, Maria; Rzhepishevska, Olena I.

    2013-01-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  15. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  16. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    PubMed Central

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  17. Nonheme-iron absorption in first-degree relatives is highly correlated: a stable-isotope study in mother-child pairs.

    PubMed

    Zimmermann, Michael B; Harrington, Mary; Villalpando, Salvador; Hurrell, Richard F

    2010-03-01

    Iron absorption in humans is highly variable even after iron status and dietary components that influence iron absorption are controlled for. Inherited factors may help explain this variance. Our objective was to compare nonheme-iron absorption from a noninhibitory, stable-isotope-labeled test meal in preschool-aged children and their mothers. We provided 72 test meals based on degermed maize flour and milk powder and fortified with [(57)Fe]ferrous fumarate or [(58)Fe]ferrous sulfate to healthy Mexican preschool children [n = 18; mean (+/-SD) age: 3.6 +/- 1.0 y] and their mothers [n = 18; mean (+/-SD) age: 28.0 +/- 5.2 y]. Iron absorption was calculated on the basis of incorporation of isotopes into erythrocytes after 14 d and was adjusted for differences in iron status. There was a wide variation in iron absorption from the test meals: in the mothers and children, the median fractional absorption of ferrous sulfate was 22.55% (range: 1.65-54.83%) and 5.51% (range: 2.23-17.20%), respectively (P < 0.0001). After adjustment for serum ferritin, the significant difference in absorption between mothers and their children disappeared. Despite this broad range of iron absorption, corrected fractional iron absorption from the ferrous fumarate-fortified (r(2) = 0.582) and the ferrous sulfate-fortified test meals (r(2) = 0.557) was strongly correlated in mothers and their children (P < 0.0001). There was a striking positive correlation between the mean corrected fractional iron absorption from both test meals in mothers and their children (r(2) = 0.782, P < 0.0001). In regression analyses that included age, sex, and hemoglobin, the only significant predictor of corrected fractional iron absorption in children was corrected fractional iron absorption in their mothers (standardized beta = 0.884, P < 0.001). Nonheme-iron absorption exhibits a strong familial tendency. After differences in meal matrix and serum ferritin are accounted for, these data suggest that inheritance and/or shared environmental factors explain most of the variance in dietary iron absorption.

  18. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  19. Characterization of Alicyclobacillus disufldooxidans HIB4 Isolated from an Acid Mine Drainage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Suto, Koichi; Joe, Seong Jin; Inoue, Chihiro; Chida, Tadashi

    2006-05-01

    A heterotrophic bacterium, designated as HIB4, having an ability to oxidize ferrous iron was isolated from the sample of an enrichment culture with 9K medium, by using the modified WAYE (washed agarose/yeast extract) medium with ferrous sulphate. This isolate was identified as Alicyclobacillus disulfidooxidans from 16S rDNA sequence analysis. The isolate grew and oxidized ferrous iron in an inorganic medium containing 0.02 % (w/v) of yeast extract and Ferrous iron oxidation occurred at the almost end of its logarithmic phase. Yeast extract was an essential substrate for the isolate because the isolate could not grow or oxidize ferrous iron without yeast extract. However, higher concentration of yeast extract inhibited the growth of the isolate. On the other hand, it was confirmed that the isolate was able to grow without ferrous ion so that it did not get any energy by ferrous ion oxidation. Its optimum concentration of yeast extract was 0.02% (w/v) at the concentration of ferrous ion 0.08mol/liter. Its optimum pH was 1.5 and the optimum temperature was 30 °C These physiological characteristics were completely different from A. disulfidooxidans SD-11 which is the type strain.

  20. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.

    PubMed

    Johnson, D Barrie; Kanao, Tadayoshi; Hedrich, Sabrina

    2012-01-01

    Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.

  1. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects

    PubMed Central

    Johnson, D. Barrie; Kanao, Tadayoshi; Hedrich, Sabrina

    2012-01-01

    Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed. PMID:22438853

  2. Higher iron bioavailability of a human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Ruemmler, P.S.; Ryan, J.L.

    Neptunium-237(V) nitrate was administered by gavage to groups of fed or fasted adult and 5-day-old rats. Some groups also received the oxidants quinhydrone or ferric iron and others received the reducing agent ferrous iron. Adult mice received ferric or ferrous iron and /sup 235/Np. When the adult rats were killed at 7 days after gavage, measurements showed that, compared with rats that were fed, a 24-hr fast caused a fivefold increase in /sup 237/Np absorption and retention. Both quinhydrone and ferric iron caused an even greater increase in absorption in both fed and fasted rats. Ferrous iron, on the othermore » hand, decreased absorption in fasted rats to values lower than those obtained in fed rats. Similar results were obtained in mice treated with /sup 235/Np and either ferric or ferrous iron. The effects of ferric and ferrous iron on neptunium absorption by neonatal rats were similar to their effects on adult animals but of lesser magnitude. These results are consistent with the hypothesis that Np(V), when given in small mass quantities to fed animals, is reduced in the gastrointestinal tract to Np(IV), which is less well absorbed than Np(V).« less

  4. IN SITU CR(VI) TREATMENT USING A FERROUS IRON-BASED REDUCTANT

    EPA Science Inventory

    Laboratory and field studies were conducted to evaluate the performance of a ferrous sulfate/ sodium hydrosulfite (dithionite) reductant blend in treating a hexavalent chromium (Cr(VI)) source area and Cr(VI) dissolved phase plume at a former industrial site in Charleston, South ...

  5. Rapid assay for microbially reducible ferric iron in aquatic sediments

    USGS Publications Warehouse

    Lovely, Derek R.; Philips , Elizabeth J.P.

    1987-01-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction.

  6. Iron bioavailability in corn-masa tortillas is improved by the addition of disodium EDTA.

    PubMed

    Walter, Tomás; Pizarro, Fernando; Olivares, Manuel

    2003-10-01

    Corn-masa flour flat bread tortillas are the main staple of Mexican and Central American populations. Due to high concentrations of inhibitors of iron absorption, the bioavailability from this matrix is unknown. We wanted to determine the most suitable fortificant that would efficaciously improve iron bioavailability. In tortillas prepared with commercial precooked, lime-treated, corn-masa flour, we examined the in vitro solubility of the following forms of iron: native iron with and without Na2EDTA, elemental reduced iron plus Na2EDTA, ferrous fumarate with and without Na2EDTA, bisglycine iron, ferrous sulfate and NaFeEDTA. We also examined the in vivo bioavailability in humans with double radioiron erythrocyte incorporation of ferrous fumarate with and without Na2EDTA, bisglycine iron, NaFeEDTA and native iron plus Na2EDTA, beans and rice. In vitro, solubility ranged from 1% in iron forms without Na2EDTA to 19.4% for NaFeEDTA. Forms of iron with Na2EDTA had intermediate values. In vivo radioiron studies showed that iron forms without Na2EDTA also had low bioavailability (< or =1%). NaFeEDTA had the highest bioavailability (5.3%). The bioavailability of all iron forms improved significantly when tested with Na2EDTA (<0.05). Adding Na2EDTA to ferrous fumarate increased bioavailability from 0.87% to 2.9% (P < 0.001). We conclude that NaFeEDTA is the form of iron best absorbed, but alternatively, ferrous fumarate plus Na2EDTA comprises a feasible option as a fortificant.

  7. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  8. Sensorial evaluation of nutritional supplements (PROGRESA) enriched with 3 different forms of iron in a rural Mexican community.

    PubMed

    Morales, J; Vargas, F; Cassís, L; Sánchez, E; Villalpando, S

    2008-01-01

    As part of the efforts to reduce iron deficiency anemia (IDA), the Mexican Federal program PROGRESA distributes complementary foods to toddlers and pregnant women living in extreme poverty. Complementary foods were originally fortified with hydrogen-reduced iron, which proved a limited efficacy. The supplement was reformulated to provide higher iron bioavailability. This investigation aims to assess the sensory changes and the acceptance of new versions of the complementary foods fortified with either reduced iron, ferrous fumarate, or ferrous sulfate, stored at room temperature for 2, 4, and 6 mo. Complementary foods were presented without flavor (plain) or flavored with either chocolate or vanilla. The complementary foods were evaluated in toddlers and their mothers using a hedonic scale. The percentage of overall acceptance for the baby foods was higher in toddlers (80% to 88%) than in their mothers (63% to 68%). The complementary foods with a better acceptance were those fortified with reduced iron (63% to 68%) and ferrous fumarate (61% to 80%) independently of the flavoring added. The acceptance of the beverage intended for women was better for those fortified with reduced iron (52% to 63%) or ferrous fumarate (44% to 63%) in their vanilla-flavored version. For women, the most accepted sources of iron were reduced iron (50% to 60%) and ferrous fumarate (50% to 58%).

  9. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    PubMed

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P < 0.001; SunActive Fe r = -0.76, P = 0.01). SunActive Fe was well absorbed from apple juice and is a potentially useful fortificant for liquid food products.

  10. Carotenoids, but not vitamin A, improve iron uptake and ferritin synthesis by Caco-2 cells from ferrous fumarate and NaFe-EDTA.

    PubMed

    García-Casal, María N; Leets, Irene

    2014-04-01

    Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco-2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro-vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe-EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing (59) Fe and different iron compounds. Vitamin A, ferrous fumarate, β-carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco-2 cells, and was significantly lower from NaFe-EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe-EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco-2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe-EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco-2 cell from NaFe-EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate. © 2014 Institute of Food Technologists®

  11. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous sulfate...

  12. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Kargel, J.S.

    2003-01-01

    Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.

  13. INJECTION OF A FERROUS SULFATE/SODIUM DITHIONITE REDUCTANT FOR IN-SITU TREATMENT OF HEXAVALENT CHROMIUM

    EPA Science Inventory

    An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...

  14. Mineral resource of the month: ferrous slag

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on mineral resource ferrous slag. Ferrous slag is produced through the addition of materials such as limestone and dolomite to blast and steel furnaces to remove impurities from iron ore and to lower the heat requirements for processes in iron and steel making. It is stated that the method of cooling is important for the market uses and value of ferrous slag. Some types of slag can be used in construction, glass manufacturing and thermal insulation.

  15. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  16. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.

    PubMed

    Ebrahimi, S; Fernández Morales, F J; Kleerebezem, R; Heijnen, J J; van Loosdrecht, M C M

    2005-05-20

    In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations. (c) 2005 Wiley Periodicals, Inc.

  17. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    PubMed

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P < 0.05) with the following rank order: Carbonyl (64%; Ferronyl, U.S.) > Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  18. The Effects of Nanoparticles Containing Iron on Blood and Inflammatory Markers in Comparison to Ferrous Sulfate in Anemic Rats

    PubMed Central

    Shafie, Elaheh Honarkar; Keshavarz, Seyed Ali; Kefayati, Mohammad Esmaiel; Taheri, Fatemeh; Sarbakhsh, Parvin; Vafa, Mohammad Reza

    2016-01-01

    Background: Ferrous sulfate is the most used supplement for treating anemia, but it can result in unfavorable side effects. Nowadays, nanotechnology is used as a way to increase bioavailability and decrease the side effects of drugs and nutrients. This study investigates the effects of nanoparticles containing iron on blood and inflammatory markers in comparison to ferrous sulfate in anemic rats. Methods: To induce the model of hemolytic anemia, 50 mg/kg bw phenylhydrazine was injected intraperitoneally in rats on the 1st day and 25 mg/kg bw for the four following days. Then, rats were randomly divided into five groups. No material was added to the nipple of the Group 1 (control). Group 2 received 0.4 mg/day nanoparticles of iron; Group 3 received 0.4 mg/day ferrous sulfate, and Groups 4 and 5 received double dose of iron nanoparticle and ferrous sulfate, respectively for ten days. Results: Hemoglobin and red blood cell (RBC) in Group 2 were significantly higher than Group 3 (P < 0.05). In addition, hemoglobin and RBC in Group 4 and 5 were significantly higher than Group 3 (P < 0.05). The average level of serum iron in Groups 2 and 4 was remarkably more than the groups received ferrous sulfate with similar doses (P < 0.05). C-reactive protein in Group 3 was more than Group 2 and in Group 5 was more compare to all other groups. Conclusions: Single dose of nanoparticles had more bioavailability compare to ferrous sulfate, but this did not occur for the double dose. Furthermore, both doses of nanoparticles caused lower inflammation than ferrous sulfate. PMID:27857830

  19. The root iron reductase assay: an examination of key factors that must be respected to generate meaningful assay results

    USDA-ARS?s Scientific Manuscript database

    Plant iron researchers have been quantifying root iron reductase activity since the 1970's, using a simple spectrophotometric method based on the color change of a ferrous iron chromophore. The technique was used by Chaney, Brown, and Tiffin (1972) to demonstrate the obligatory reduction of ferric i...

  20. Bioextraction of Copper from Printed Circuit Boards: Influence of Initial Concentration of Ferrous Iron

    NASA Astrophysics Data System (ADS)

    Yamane, Luciana Harue; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery. This study investigated the influence of initial concentration of ferrous iron on bacterial leaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non magnetic material used in this study. A shake flask study was carried out on the non magnetic material using a rotary shaker at 30°C, 170 rpm and different initial concentrations of ferrous iron (gL-1): 6.75; 13.57 and 16.97. Abiotic controls were also run in parallel. The monitored parameters were pH, Eh, ferrous iron concentration and copper extraction (spectroscopy of atomic absorption). The results showed that using initial concentration of ferrous iron of 6.75gL-1 were extracted 99% of copper by bacterial leaching.

  1. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability.

    PubMed

    Wei, Yanyan; Shohag, M J I; Ying, Feng; Yang, Xiaoe; Wu, Chunyong; Wang, Yuyan

    2013-06-01

    The present study evaluated the effectiveness of germination and iron fortification on iron concentration and bioavailability of brown rice. Iron fortification during germination process with 0.05-2 g/L ferrous sulfate increased the iron concentration in germinated brown rice from 1.1 to 15.6 times than those in raw brown rice. Based on the recommended dietary allowance of iron, maximum germination rate and γ-aminobutyric acid, we recommend the brown rice fortified with 0.25 g/L FeSO(4) as a suitable fortification level to use in germination process. Iron fortification during the germination process has a positive effect on iron concentration and bioavailability. A significant difference was observed among the cultivars in respect to the capacity for iron accumulation and bioavailability. Germination alone could improve in vitro iron solubility, but had no effect on iron bioavailability in Caco-2 cell, the additional fortification process should be combined to get high amount of bioavailable iron from the brown rice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, Fe... pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate produces...

  3. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy in slightly oxygenated cold deep ocean water. Ferrihydrite, precipitated along the oxic-anoxic interface along the bottom of the buoyant plume could then settle to the floor of the basin without interference of dissolved ferrous iron. This model requires that oxygen, derived from photosynthesis in shallow water, circulated down to deep water creating a slightly oxygenated ocean basin system invaded by buoyant anoxic ferrous plumes. In areas where these plumes came in contact with the basin floor, magnetite and/or carbonate facies iron formation formed; the latter in areas of highest organic carbon influx. Extensive glacial diamictites in the Witwatersrand-Mozaan basin argues for climatic zonation in the Mesoarchean driving deep ocean currents. This model may explain why the rise of oxygen in the atmosphere was so long delayed after development of oxygenic photosynthesis; simply because in the dynamic ocean system oxygen could come into contact with much larger volumes of reduced species in the water column and along the ocean floor than in a static stratified system. It also impacts on reconstruction of microbial communities in Archean oceans.

  4. [Ferrous sulfate in the treatment of iron deficiency anemia: The positions continue].

    PubMed

    Dvoretsky, L I

    The paper discusses treatment strategy and tactics for iron deficiency anemia. It gives data on the comparative efficacy of different iron sulfate drugs, their bioavailability, effects on peroxidation processes, and side effects. The paper also considers the clinical significance of a dosage form of iron-containing drugs with a sustained iron release, as well as ways to reduce the frequency and magnitude of side effects when ferrous sulfate is used.

  5. Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation

    PubMed Central

    Lanigan, Noreen; Bottacini, Francesca; Casey, Pat G.; O'Connell Motherway, Mary; van Sinderen, Douwe

    2017-01-01

    Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model. PMID:28620359

  6. Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region

    DTIC Science & Technology

    2006-02-01

    insoluble but ferrous iron easily enters the soil solution and is moved or translocated to other areas of the soil. Areas that have lost iron...causing oxidation of ferrous iron present in the soil solution . They are evidence of saturated and reduced soil conditions during the plant’s

  7. [Stabilization and long-term effect of chromium contaminated soil].

    PubMed

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  8. Iron in pregnancy: How do we secure an appropriate iron status in the mother and child?

    PubMed

    Milman, Nils

    2011-01-01

    Iron deficiency and iron deficiency anemia (IDA) during pregnancy are risk factors for preterm delivery, prematurity, and small for gestational age birth weight. Iron deficiency has a negative effect on intelligence and behavioral development in the infant. It is essential to prevent iron deficiency in the fetus by preventing iron deficiency in the pregnant woman. The requirements for absorbed iron increase during pregnancy from ∼1.0 mg/day in the first trimester to 7.5 mg/day in the third trimester. More than 90% of Scandinavian women of reproductive age have a dietary iron intake below the recommended 15 mg/day. Among nonpregnant women of reproductive age, ∼40% have plasma ferritin ≤30 μg/l, i.e. an unfavorable iron status with respect to pregnancy. An adequate iron status during pregnancy implies body iron reserves ≥500 mg at conception, but only 15-20% of women have iron reserves of such a magnitude. Iron supplements during pregnancy reduce the prevalence of IDA. In Europe, IDA can be prevented by a general low-dose iron prophylaxis of 30-40 mg ferrous iron taken between meals from early pregnancy to delivery. In affluent societies, individual iron prophylaxis tailored by the ferritin concentration should be preferred to general prophylaxis. Suggested guidelines are: ferritin >70 μg/l, no iron supplements; ferritin 31-70 μg/l, 30-40 mg ferrous iron per day, and ferritin ≤30 μg/l, 60-80 mg ferrous iron per day. In women with ferritin <15 μg/l, i.e. depleted iron reserves and possible IDA, therapeutic doses of 100 mg ferrous iron per day should be advised. Copyright © 2011 S. Karger AG, Basel.

  9. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans.

    PubMed

    Moinier, Danielle; Byrne, Deborah; Amouric, Agnès; Bonnefoy, Violaine

    2017-01-01

    The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans , grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At. ferrooxidans , it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans , the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA) on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s) was (were) located upstream from the -35 (or -24) box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed.

  10. UV-light-driven prebiotic synthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.

    2017-12-01

    Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.

  11. Rapid quantification of iron content in fish sauce and soy sauce: a promising tool for monitoring fortification programs.

    PubMed

    Laillou, Arnaud; Icard-Vernière, Christèle; Rochette, Isabelle; Picq, Christian; Berger, Jacques; Sambath, Pol; Mouquet-Rivier, Claire

    2013-06-01

    In a number of Southeast Asian countries and China, fish sauce and soy sauce produced at the industrial level are fortified with iron. Unfortunately, the food producers and regulatory agencies implementing fortification programs do not always have the capacity to monitor the programs on an ongoing basis. To assess a new portable device for the quantitative measurement of iron content of fortified sauces that could be used to control fortification levels. The linearity, detection limits, and inter- and intraassay variability of this device were assessed on fish sauce and soy sauce fortified with ferrous sulfate, ferrous fumarate, and sodium iron ethylenediaminetetraacetate (NaFeEDTA); the accuracy of the results was determined by comparing them with the results obtained by atomic absorption spectrophotometry. Measurements required a minimum incubation time of 1 hour for iron sulfate or iron fumarate and 24 hours for NaFeEDTA. Linearity of the results ranged from 2 to 10 mg iron/L for ferrous sulfate or ferrous fumarate and from 1 to 10 mg iron/L for NaFeEDTA, implying the need for proper dilution, as the iron contents of fortified sauce are usually in the range of 150 to 1,000 mg/L. Depending on incubation time, iron compounds, and sauces, the coefficient of variation (CV) of intraassay precision was between 1.5% and 7.6% and the CV of interassay precision was between 2.9% and 7.4%. Comparison with results from atomic absorption spectrophotometry showed high agreement between both methods, with R = 0.926 and R = 0.935 for incubation times of 1 hour and 24 hours, respectively. The Bland-Altman plots showed limits of agreement between the two methods of +/- 70 mg/L in the range of fortification levels tested (100 to 500 mg/L). CONCLUSIONS; This device offers a viable method for field monitoring of iron fortification of soy and fish sauces after incubation times of 1 hour for ferrous sulfate or ferrous fumarate and 24 hours for NaFeEDTA.

  12. Monomeric Yeast Frataxin is an Iron-Binding Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook,J.; Bencze, K.; Jankovic, A.

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly)more » share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less

  13. Monomeric Yeast Frataxin is an Iron Binding Protein†

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Bencze, K; Jankovic, A

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) sharemore » requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less

  14. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  15. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  16. Estimating iron and aluminum content of acid mine discharge from a north-central Pennsylvania coal field by use of acidity titration curves

    USGS Publications Warehouse

    Ott, A.N.

    1986-01-01

    Determination of acidity provides a value that denotes the quantitative capacity of the sample water to neutralize a strong base to a particular pH. However, much additional information can be obtained from this determination if a titration curve is constructed from recorded data of titrant increments and their corresponding pH values. The curve can be used to identify buffer capabilities, the acidity with respect to any pH value within the curve limit, and, in the case of acid mine drainage from north-central Pennsylvania, the identification and estimation of the concentration of dissolved ferrous iron, ferric iron, and aluminum. Through use of titration curves, a relationship was observed for the acid mine drainage between: (1) the titratable acidity (as milligrams per liter calcium carbonate) to pH 4.0 and the concentration of dissolved ferric iron; and (2) the titratable acidity (as milligrams per liter calcium carbonate) from pH 4.0 to 5.0 and the concentration of dissolved aluminum. The presence of dissolved ferrous iron can be detected by the buffering effect exhibited in the area between pH 5.5 to 7.5. The concentration of ferrous iron is estimated by difference between the concentrations of ferric iron in an oxidized and unoxidized sample. Interferences in any of the titrations from manganese, magnesium, and aluminate, appear to be negligible within the pH range of interest.

  17. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  18. Geomorphic record of historical ferrous metallurgy in Mała Panew and Czarna River valleys (Poland) - Analysis of DEM from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Rutkiewicz, Paweł; Malik, Ireneusz; Gawior, Daniel; Woskowicz-Ślezak, Beata; Kryszczuk, Paweł

    2017-11-01

    Ferrous metallurgy, through the centuries of its activity contributed the transformation of the natural landscape. We can find information on the time of functioning of iron works in historical sources. Among historians, there is an opinion that the traces of iron works activity are not visible in the field, but using GIS methods we can identify different types of objects related to ferrous metallurgy like dams, canals, smelter ponds and charcoal kilns. The aim of the study was to identify imprints of ferrous metallurgy in relief of two valleys in Southern Poland. The study was conducted in Mała Panew and Czarna River valleys where ferrous metallurgy, based on historical sources, has started in the 14th century and declined in the end of the 19th century. The tools used for identification objects related to ferrous metallurgy were standard shaded relief visualization techniques. We created models of terrain elevation with hillshading and spatial density of 0.2 m. During the analysis of DEM images we detected objects interpreted as traces of smelter ponds with accompanying dams and canals, and oval objects recognized as remnants of charcoal kilns. Large number and vast distribution of relief features related to ferrous metallurgy, charcoal kilns in particular, clearly indicate that the historical smelting and ironwork activity natural environment of studied areas was transformed. Relief of valley floors, in particular, was a subject of change.

  19. Rebalancing electrolytes in redox flow battery systems

    DOEpatents

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  20. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability.

    PubMed

    Carpenter, Chandra; Payne, Shelley M

    2014-04-01

    Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous... under section 412(a)(2) of the act (21 U.S.C. 350a(a)(2)). (d) Prior sanctions for this ingredient...

  2. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous... under section 412(a)(2) of the act (21 U.S.C. 350a(a)(2)). (d) Prior sanctions for this ingredient...

  3. Magnetic properties of Apollo samples and implications for regolith formation

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Strangway, D. W.; Gose, W. A.

    1974-01-01

    The magnetic properties of a number of Apollo 17 samples have been measured and confirm that regoliths of mare sites (Apollo 11, 12, 15 valley, and 17 valley) differ markedly from those of highland sites (Apollo 14, 16, and 17 massif) in the ratio of content of metallic to ferrous iron and in the grain size of metallic iron. The ratio of metallic to ferrous iron is correlated with mean particle size, a parameter representing maturity, for soils of Apollo 16 and roughly correlated with the age of the sites for soils of different sites. It is suggested that the ratio of metallic to ferrous iron may be an effective indicator of relative soil maturity for any one site and of the age of the soil material for any sites.

  4. The Global Redox Responding RegB/RegA Signal Transduction System Regulates the Genes Involved in Ferrous Iron and Inorganic Sulfur Compound Oxidation of the Acidophilic Acidithiobacillus ferrooxidans

    PubMed Central

    Moinier, Danielle; Byrne, Deborah; Amouric, Agnès; Bonnefoy, Violaine

    2017-01-01

    The chemical attack of ore by ferric iron and/or sulfuric acid releases valuable metals. The products of these reactions are recycled by iron and sulfur oxidizing microorganisms. These acidophilic chemolithotrophic prokaryotes, among which Acidithiobacillus ferrooxidans, grow at the expense of the energy released from the oxidation of ferrous iron and/or inorganic sulfur compounds (ISCs). In At. ferrooxidans, it has been shown that the expression of the genes encoding the proteins involved in these respiratory pathways is dependent on the electron donor and that the genes involved in iron oxidation are expressed before those responsible for ISCs oxidation when both iron and sulfur are present. Since the redox potential increases during iron oxidation but remains stable during sulfur oxidation, we have put forward the hypothesis that the global redox responding two components system RegB/RegA is involved in this regulation. To understand the mechanism of this system and its role in the regulation of the aerobic respiratory pathways in At. ferrooxidans, the binding of different forms of RegA (DNA binding domain, wild-type, unphosphorylated and phosphorylated-like forms of RegA) on the regulatory region of different genes/operons involved in ferrous iron and ISC oxidation has been analyzed. We have shown that the four RegA forms are able to bind specifically the upstream region of these genes. Interestingly, the phosphorylation of RegA did not change its affinity for its cognate DNA. The transcriptional start site of these genes/operons has been determined. In most cases, the RegA binding site(s) was (were) located upstream from the −35 (or −24) box suggesting that RegA does not interfere with the RNA polymerase binding. Based on the results presented in this report, the role of the RegB/RegA system in the regulation of the ferrous iron and ISC oxidation pathways in At. ferrooxidans is discussed. PMID:28747899

  5. Dry cereals fortified with electrolytic iron or ferrous fumarate are equally effective in breast-fed infants.

    PubMed

    Ziegler, Ekhard E; Fomon, Samuel J; Nelson, Steven E; Jeter, Janice M; Theuer, Richard C

    2011-02-01

    Precooked, instant (dry) infant cereals in the US are fortified with electrolytic iron, a source of low reactivity and suspected low bioavailability. Iron from ferrous fumarate is presumed to be more available. In this study, we compared a dry infant rice cereal (Cereal L) fortified with electrolytic iron (54.5 mg iron/100 g cereal) to a similar cereal (Cereal M) fortified with ferrous fumarate (52.2 mg Fe/100 g) for efficacy in maintaining iron status and preventing iron deficiency (ID) in breast-fed infants. Ascorbic acid was included in both cereals. In this prospective, randomized double-blind trial, exclusively breast-fed infants were enrolled at 1 mo and iron status was determined periodically. At 4 mo, 3 infants had ID anemia and were excluded. Ninety-five infants were randomized at 4 mo, and 69 (36 Cereal L, 33 Cereal M) completed the intervention at 9 mo. From 4 to 9 mo, they consumed daily one of the study cereals. With each cereal, 2 infants had mild ID, a prevalence of 4.2%, but no infant developed ID anemia. There were no differences in iron status between study groups. Iron intake from the study cereals was (mean ± SD) 1.21 ± 0.31 mg⋅kg(-1)⋅d(-1) from Cereal L and 1.07 ± 0.40 mg⋅kg(-1)⋅d(-1) from Cereal M. Eleven infants had low birth iron endowment (plasma ferritin < 55 μg/L at 2 mo) and 54% of these infants had ID with or without anemia by 4 mo. We conclude that electrolytic iron and ferrous fumarate were equally efficacious as fortificants of this infant cereal.

  6. Iron isotope biogeochemistry of Neoproterozoic marine shales

    NASA Astrophysics Data System (ADS)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by < 1 ‰ , suggesting that water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size, allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.

  7. Safety and efficacy of lactoferrin versus ferrous sulphate in curing iron deficiency and iron deficiency anaemia in hereditary thrombophilia pregnant women: an interventional study.

    PubMed

    Paesano, Rosalba; Pacifici, Enrica; Benedetti, Samanta; Berlutti, Francesca; Frioni, Alessandra; Polimeni, Antonella; Valenti, Piera

    2014-10-01

    Objective Evaluate the safety and efficacy of bovine lactoferrin (bLf) versus the ferrous sulphate standard intervention in curing iron deficiency (ID) and ID anaemia (IDA) in pregnant women affected by hereditary thrombophilia (HT). Design Interventional study. Setting Secondary-level hospital for complicated pregnancies in Rome, Italy. Population 295 HT pregnant women (≥18 years) suffering from ID/IDA. Methods Women were enrolled in Arm A or B in accordance with their personal choice. In Arm A, 156 women received oral administration of 100 mg of bLf twice a day; in Arm B, 139 women received 520 mg of ferrous sulphate once a day. Therapies lasted until delivery. Main outcome measures Red blood cells, haemoglobin, total serum iron, serum ferritin (haematological parameters) were assayed before and every 30 days during therapy until delivery. Serum IL-6, key factor in inflammatory and iron homeostasis disorders, was detected at enrolment and after therapy at delivery. Possible maternal, foetal, and neonatal adverse effects were assessed. Results Haematological parameters were significantly higher in Arm A than in Arm B pregnant women (P ≤ 0.0001). Serum IL-6 significantly decreased in bLf-treated women and increased in ferrous sulphate-treated women. BLf did not exert any adverse effect. Adverse effects in 16.5 % of ferrous sulphate-treated women were recorded. Arm A women experienced no miscarriage compared to five miscarriages in Arm B women. Conclusions Differently from ferrous sulphate, bLf is safe and effective in curing ID/IDA associated with a consistent decrease of serum IL-6. The absence of miscarriage among bLf-treated women provided an unexpected benefit. ClinicalTrials.gov Identifier NCT01221844.

  8. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).

    PubMed

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara

    2017-01-01

    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  9. Lyophilization decreases the formation of dialyzable iron by extraction and digestion of chicken breast muscle.

    PubMed

    Karava, Nilesh B; Mahoney, Raymond R

    2011-06-01

    We studied the effect of lyophilization of chicken breast muscle on the formation of dialyzable iron from ferric iron. Chicken breast muscle was used chilled, frozen or lyophilized and was analyzed for sulfhydryl and histidine content. It was then homogenized and mixed with ferric iron. The mixture was extracted with acid or digested with pepsin and pancreatin. The extracts and digests were analyzed for dialyzable ferrous and dialyzable total iron and also for protein. In the chilled muscle, similar amounts of dialyzable iron were formed after acid extraction and after proteolytic digestion; however, digestion led to more dialyzable ferrous iron. Freezing had no effect but lyophilization of the homogenized muscle caused large decreases in dialyzable iron and dialyzable ferrous iron for both extraction and digestion processes. Lyophilization also resulted in decreased extraction of peptides, decreased digestion of muscle proteins and reduced levels of sulfhydryl and histidine residues. Our results demonstrate that dialyzable iron is produced both by acid-soluble low molecular weight muscle component(s) and also by peptides resulting from digestion of muscle proteins: both of which reduce and chelate iron. Reduced formation of dialyzable iron by both mechanisms following lyophilization could be explained by sulfhydryl oxidation and impaired digestion due to protein crosslinking.

  10. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  11. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  12. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing.

    PubMed

    Ganigué, Ramon; Jiang, Guangming; Liu, Yiqi; Sharma, Keshab; Wang, Yue-Cong; Gonzalez, José; Nguyen, Tung; Yuan, Zhiguo

    2018-05-15

    Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto-regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bacterial oxidation of ferrous iron at low temperatures.

    PubMed

    Kupka, Daniel; Rzhepishevska, Olena I; Dopson, Mark; Lindström, E Börje; Karnachuk, Olia V; Tuovinen, Olli H

    2007-08-15

    This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C. (c) 2007 Wiley Periodicals, Inc.

  14. Preparation, physical characterization, and stability of Ferrous-Chitosan microcapsules using different iron sources

    NASA Astrophysics Data System (ADS)

    Handayani, Noer Abyor; Luthfansyah, M.; Krisanti, Elsa; Kartohardjono, Sutrasno; Mulia, Kamarza

    2017-11-01

    Dietary modification, supplementation and food fortification are common strategies to alleviate iron deficiencies. Fortification of food is an effective long-term approach to improve iron status of populations. Fortification by adding iron directly to food will cause sensory problems and decrease its bioavailability. The purpose of iron encapsulation is: (1) to improve iron bioavailability, by preventing oxidation and contact with inhibitors and competitors; and (2) to disguise the rancid aroma and flavor of iron. A microcapsule formulation of two suitable iron compounds (iron II fumarate and iron II gluconate) using chitosan as a biodegradable polymer will be very important. Freeze dryer was also used for completing the iron microencapsulation process. The main objective of the present study was to prepare and characterize the iron-chitosan microcapsules. Physical characterization, i.e. encapsulation efficiency, iron loading capacity, and SEM, were also discussed in this paper. The stability of microencapsulated iron under simulated gastrointestinal conditions was also investigated, as well. Both iron sources were highly encapsulated, ranging from 71.5% to 98.5%. Furthermore, the highest ferrous fumarate and ferrous gluconate loaded were 1.9% and 4.8%, respectively. About 1.04% to 9.17% and 45.17% to 75.19% of Fe II and total Fe, were released in simulated gastric fluid for two hours and in simulated intestinal fluid for six hours, respectively.

  15. Characterization of a New Ferritin Protein from the Polychaete Chaetopterus Sp.

    NASA Astrophysics Data System (ADS)

    Hamlish, N.; Deheyn, D.; De Meulenaere, E.

    2016-02-01

    The marine polychaete worm Chaetopterus sp. secretes a sticky mucus that exhibits a soft blue long-lasting bioluminescence. Iron (both ferrous and ferric) and riboflavin have been found abundant in the mucus and identified as potential cofactors involved in the control of the light production. The Deheyn lab has recently identified a novel ferritin protein (ChF) from fractions of the worm mucus still able to produce bioluminescence after purification by chromatography. Ferritin proteins are ubiquitous across the animal kingdom and exhibit ferroxidase activity, converting ferrous iron into a ferric form that is stably stored and soluble in the ferritin. Here, ferritin may serve as a source of biological iron for the worm through a process of iron acquisition, storage, and release during the light production process. This study addresses these options by assessing foundational data that characterize the ferroxidase activity of recombinant ChF with respect to human heavy-chain ferritin (HuHF). ChF exhibits faster initial rates of iron oxidation than HuHF, but reaches an equilibrium state with detectable levels of ferrous iron still in solution; in contrast this was was not observed for HuHF that oxidizes all available iron in solution. This may support the hypothesis that ChF has a reducing activity. This could involve the release of ferric iron, which may be reduced by flavin molecules found in the mucus; the resulting ferrous iron could then subsequently undergo a Fenton reaction, acting as a source of electrons for long-lasting mucus bioluminescence. Word Count: 240

  16. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  17. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.

    PubMed

    Mesa, M M; Macías, M; Cantero, D

    2002-01-01

    Microbial oxidation of ferrous iron may be a viable alternative method of producing ferric sulfate, which is a reagent used for removal of H(2)S from biogas. The paper introduces a kinetic study of the biological oxidation of ferrous iron by Thiobacillus ferrooxidans immobilized on biomass support particles (BSP) composed of polyurethane foam. On the basis of the data obtained, a mathematical model for the bioreactor was subsequently developed. In the model described here, the microorganisms adhere by reversible physical adsorption to the ferric precipitates that are formed on the BSP. The model can also be considered as an expression for the erosion of microorganisms immobilized due to the agitation of the medium by aeration.

  18. The effect of oxidant addition on ferrous iron removal from multi-element acidic sulphate solutions

    NASA Astrophysics Data System (ADS)

    Mbedzi, Ndishavhelafhi; Ibana, Don; Dyer, Laurence; Browner, Richard

    2017-01-01

    This study was an investigation on the hydrolytic precipitation of iron from simulated pregnant leach solution (PLS) of nickel laterite atmospheric leaching. The effect of equilibrium pH, temperature and the addition of oxidant on total iron (ferrous (Fe (II)) and ferric (Fe (III)), aluminium and chromium removal was investigated together with the associated nickel and cobalt losses to the precipitate. Systematic variations of the experimental variables revealed ≥99% of the ferric iron can be removed from solution at conditions similar to those used in standard partial neutralisation in zinc and nickel production, pH of 2.5 and temperature less than 100 °C with minimal losses (<0.5%) of both nickel and cobalt. Temperature variation from 55 to 90 °C had no significant effect on the magnitude of Fe (III) precipitation but led to a significant increase in aluminium removal from 67% to 95% and improved the filterability of the precipitates. There was no ferrous iron precipitation even at a pH of 3.75 in the absence of an oxidant with its removal (98%) achieved by oxidative precipitation with oxygen gas at pH 3.5. Unlike Fe (III) precipitation, the operating temperature significantly affects oxidative precipitation of Fe (II). Hence, in practical application, the hydrolytic precipitation and oxidation to remove iron must be operated at 85 °C to ensure both ferrous and ferric iron are precipitated.

  19. Sugars Increase Non-Heme Iron Bioavailability in Human Epithelial Intestinal and Liver Cells

    PubMed Central

    Christides, Tatiana; Sharp, Paul

    2013-01-01

    Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076

  20. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    PubMed

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  1. High Consumption of Iron Exacerbates Hyperlipidemia, Atherosclerosis, and Female Sterility in Zebrafish via Acceleration of Glycation and Degradation of Serum Lipoproteins.

    PubMed

    Kim, So-Hee; Yadav, Dhananjay; Kim, Suk-Jeong; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2017-07-02

    Elevated serum iron level is linked with an increased risk of diabetes and atherosclerosis. However, the pathological mechanism by which iron affects serum lipoprotein levels is unknown. To elucidate the mechanism, a high dose of ferrous ion was applied (final 60 µM, 120 µM) to human serum lipoproteins, macrophages, and human dermal fibroblast (HDF) cells. Iron-treated lipoproteins showed loss of antioxidant ability along with protein degradation and multimerization, especially co-treatment with fructose (final 10 mM). In the presence of fructose, HDF cells showed 3.5-fold more severe cellular senescence, as compared to the control, dependent on the dosage of fructose. In macrophages, phagocytosis of acetylated low-density lipoprotein (acLDL) was more accelerated by ferrous ion, occurring at a rate that was up to 1.8-fold higher, than acLDL alone. After 24 weeks supplementation with 0.05% and 0.1% ferrous ion in the diet (wt/wt), serum total cholesterol (TC) level was elevated 3.7- and 2.1-fold, respectively, under normal diet (ND). Serum triglyceride (TG) was elevated 1.4- and 1.7-fold, respectively, under ND upon 0.05% and 0.1% ferrous ion supplementation. Serum glucose level was elevated 2.4- and 1.2-fold under ND and high cholesterol diet (HCD), respectively. However, body weight was decreased by the Fe 2+ consumption. Iron consumption caused severe reduction of embryo laying and reproduction ability, especially in female zebrafish via impairment of follicular development. In conclusion, ferrous ion treatment caused more pro-atherogenic, and pro-senescence processes in human macrophages and dermal cells. High consumption of iron exacerbated hyperlipidemia and hyperglycemia as well as induced fatty liver changes and sterility along with reduction of female fertility.

  2. The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (Ctenopharyngodon idella).

    PubMed

    Guo, Yan-Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-06-01

    This study was conducted to investigate the effects of dietary iron on the growth, and immune function and structural integrity in head kidney, spleen and skin as well as the underlying signaling of young grass carp (Ctenopharyngodon idella). Total 630 grass carp (242.32 ± 0.58 g) were fed diets containing graded levels of iron at 12.15 (basal diet), 35.38, 63.47, 86.43, 111.09, 136.37 mg/kg (diets 2-6 were added with ferrous fumarate) and 73.50 mg/kg (diet 7 was added with ferrous sulfate) diet for 60 days. Then, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results firstly showed that compared with optimal iron level, iron deficiency decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and down-regulated the mRNA levels of antibacterial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated the mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65, IκB kinases β (IKKβ) and eIF4E-binding protein (4E-BP) in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired immune function in head kidney and spleen of fish. Secondly, iron deficiency down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), and inhibitor of apoptosis protein (IAP), and decreased activities and mRNA levels of antioxidant enzymes, down-regulated the mRNA levels of NF-E2-related factor 2 (Nrf2) and tight junction complexes, and up-regulated mRNA levels of cysteinyl aspartic acid-protease (caspase) -2, -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), Fas ligand (FasL), p38 mitogen-activated protein kinase (p38MAPK), Kelch-like ECH-associating protein (Keap) 1a, Keap1b, claudin-12 and myosin light chain kinase (MLCK), and increased malondialdehyde (MDA), protein carbonyl (PC) and reactive oxygen species (ROS) contents in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired structural integrity in head kidney and spleen of fish. Thirdly, iron deficiency increased skin hemorrhage and lesion morbidity, and impaired immune function and structural integrity in skin of fish. Fourthly, iron excess decreased growth and impaired the immune function and structural integrity in head kidney, spleen and skin of fish. Besides, in young grass carp, based on PWG and ability against skin hemorrhage and lesion, the efficacy of ferrous fumarate relative to ferrous sulfate was 140.32% and 126.48%, respectively, and the iron requirements based on PWG, ability against skin hemorrhage and lesion, ACP activities and MDA contents in head kidney and spleen were estimated to be 75.65, 87.03, 79.74, 78.93, 83.17 and 82.14 mg/kg diet (based on ferrous fumarate), respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments123

    PubMed Central

    Chen, Huijun; Miranda, Constanza; Janser, Heinz; Elsenhans, Bernd; Núñez, Marco T.; Pizarro, Fernando; Schümann, Klaus

    2012-01-01

    Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC 59Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency. PMID:22259191

  4. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster

    PubMed Central

    Lang, Minglin; Braun, Caroline L.; Kanost, Michael R.; Gorman, Maureen J.

    2012-01-01

    Multicopper ferroxidases catalyze the oxidation of ferrous iron to ferric iron. In yeast and algae, they participate in cellular uptake of iron; in mammals, they facilitate cellular efflux. The mechanisms of iron metabolism in insects are still poorly understood, and insect multicopper ferroxidases have not been identified. In this paper, we present evidence that Drosophila melanogaster multicopper oxidase-1 (MCO1) is a functional ferroxidase. We identified candidate iron-binding residues in the MCO1 sequence and found that purified recombinant MCO1 oxidizes ferrous iron. An association between MCO1 function and iron homeostasis was confirmed by two observations: RNAi-mediated knockdown of MCO1 resulted in decreased iron accumulation in midguts and whole insects, and weak knockdown increased the longevity of flies fed a toxic concentration of iron. Strong knockdown of MCO1 resulted in pupal lethality, indicating that MCO1 is an essential gene. Immunohistochemistry experiments demonstrated that MCO1 is located on the basal surfaces of the digestive system and Malpighian tubules. We propose that MCO1 oxidizes ferrous iron in the hemolymph and that the resulting ferric iron is bound by transferrin or melanotransferrin, leading to iron storage, iron withholding from pathogens, regulation of oxidative stress, and/or epithelial maturation. These proposed functions are distinct from those of other known ferroxidases. Given that MCO1 orthologues are present in all insect genomes analyzed to date, this discovery is an important step toward understanding iron metabolism in insects. PMID:22847425

  5. Evaluating the Mobility of Arsenic in Synthetic Iron-containing Solids Using a Modified Sequential Extraction Method.

    PubMed

    Shan, Jilei; Sáez, A Eduardo; Ela, Wendell P

    2010-02-01

    Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g. the toxicity characteristic leaching procedure, TCLP) and, consequently, require stabilization to ensure benign behavior after disposal. In this work, a four-step sequential extraction method was developed in an effort to determine the proportion of arsenic in various phases in untreated as well as stabilized iron-based solid matrices. The solids synthesized using various potential stabilization techniques included: amorphous arsenic-iron sludge (ASL), reduced ASL via reaction with zero valent iron (RASL), amorphous ferrous arsenate (PFA), a mixture of PFA and SL (M1), crystalline ferrous arsenate (HPFA), and a mixture of HPFA and SL (M2). The overall arsenic mobility of the tested samples increased in the following order: ASL > RASL > PFA > M1 > HPFA > M2.

  6. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  7. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride

    Treesearch

    Thomas L. Eberhardt; Soo-Hong Min; James S. Han

    2006-01-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...

  8. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct iron addition to milk led to lipid oxidation during storage at 4°C. Oxidation level was positively associated with the concentration of added iron. Minerals (Mg, P, Na, K, Ca, Zn) in milk were not affected by the added iron in milk. This study indicated that a small amount of iron contamination in bovine drinking water at the farm or incidental iron addition from potable water sources causes oxidation, affects milk protein composition and stability, and affects final milk quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Vibrio cholerae VciB Mediates Iron Reduction

    PubMed Central

    Peng, Eric D.

    2017-01-01

    ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria. PMID:28348025

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang

    The physical properties of silicate melts within Earth's mantle affect the chemical and thermal evolution of its interior. Chemistry and coordination environments affect such properties. We have measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to ~120 GPa and ~100 GPa, respectively, in a neon pressure medium using time domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings. Absence of detectable ferric iron was confirmed with optical absorption spectroscopy. The sites with relatively high and intermediate quadrupole splittings are likely a result ofmore » fivefold and sixfold coordination environments of ferrous iron that transition to higher coordination with increasing pressure. The ferrous site with a relatively low quadrupole splitting and isomer shift at low pressures may be related to a fourfold or a second fivefold ferrous iron site, which transitions to higher coordination in basaltic glass, but likely remains in low coordination in rhyolitic glass. These results indicate that iron experiences changes in its coordination environment with increasing pressure without undergoing a high-spin to low-spin transition. We compare our results to the hyperfine parameters of silicate glasses of different compositions. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.« less

  11. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages.

    PubMed

    Portier, Emilie; Zheng, Huaixin; Sahr, Tobias; Burnside, Denise M; Mallama, Celeste; Buchrieser, Carmen; Cianciotto, Nicholas P; Héchard, Yann

    2015-04-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  13. Bioavailability of iron from a traditional Tunisian meal with chickpeas fed to healthy rats.

    PubMed

    Hamdaoui, M; Doghri, T; Tritar, B

    1992-01-01

    The influence of a diet of couscous with chickpeas, a traditional Tunisian meal, or one providing iron as ferrous sulfate, on the utilization of 59Fe was evaluated in studies with rats. The iron content of the couscous and chickpea preparation was 30 mg/kg dry weight. There was no difference in the relative absorption of iron from ferrous sulfate or couscous with chickpeas, suggesting that iron from this preparation may be a good dietary source of nonheme iron for rats. Couscous and chickpeas consumption in Tunisia are estimated at 13.3 and 3.2 kg per capita/year, respectively. Our results in rats indicate that these foods could contribute a large proportion of an individual's iron requirement. We conclude that the plant foods, especially the chickpeas, can be excellent sources of dietary-available iron.

  14. A Comparative Study of Iron Uptake Mechanisms in Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step1[W][OA

    PubMed Central

    Sutak, Robert; Botebol, Hugo; Blaiseau, Pierre-Louis; Léger, Thibaut; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2012-01-01

    We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface. PMID:23033141

  15. Iron Isotope Systematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauphas, Nicolas; John, Seth G.; Rouxel, Olivier

    Iron is a ubiquitous element with a rich (i.e., complex) chemical behavior. It possesses three oxidation states, metallic iron (Fe0), ferrous iron (Fe2+) and ferric iron (Fe3+). The distribution of these oxidation states is markedly stratified in the Earth.

  16. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... iron. It occurs as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate... § 170.3(o)(24) of this chapter, with no limitation other than current good manufacturing practice. The...

  17. Pharmacokinetics of Dolutegravir When Administered With Mineral Supplements in Healthy Adult Subjects

    PubMed Central

    Song, Ivy; Borland, Julie; Arya, Niki; Wynne, Brian; Piscitelli, Stephen

    2015-01-01

    All commercially available integrase inhibitors are 2-metal binders and may be affected by co-administration with metal cations. The purpose of this study was to evaluate the effect of calcium and iron supplements on dolutegravir pharmacokinetics and strategies (dose separation and food) to attenuate the effects if significant reductions in dolutegravir exposure were observed. This was an open-label, crossover study that randomized 24 healthy subjects into 1 of 2 cohorts to receive 4 treatments: (1) dolutegravir alone, fasting; (2) dolutegravir with calcium carbonate or ferrous fumarate, fasting; (3) dolutegravir with calcium carbonate or ferrous fumarate with a moderate-fat meal; (4) dolutegravir administered 2 hours before calcium carbonate or ferrous fumarate, fasting. Plasma dolutegravir AUC(0–∞), Cmax, and C24 were reduced by 39%, 37%, and 39%, respectively, when co-administered with calcium carbonate while fasting and were reduced by 54%, 57%, and 56%, respectively, when co-administered with ferrous fumarate while fasting. Dolutegravir administration 2 hours before calcium or iron supplement administration (fasted), as well as administration with a meal, counteracted the effect. Dolutegravir and calcium or iron supplements can be co-administered if taken with a meal. Under fasted conditions, dolutegravir should be administered 2 hours before or 6 hours after calcium or iron supplements. PMID:25449994

  18. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  19. Effect of angiotensin II on iron-transporting protein expression and subsequent intracellular labile iron concentration in human glomerular endothelial cells.

    PubMed

    Tajima, Soichiro; Tsuchiya, Koichiro; Horinouchi, Yuya; Ishizawa, Keisuke; Ikeda, Yasumasa; Kihira, Yoshitaka; Shono, Masayuki; Kawazoe, Kazuyoshi; Tomita, Shuhei; Tamaki, Toshiaki

    2010-07-01

    Angiotensin II (Ang II)-induced endothelial injury, which is associated with atherosclerosis, is believed to be mediated by intracellular reactive oxygen species (ROS) through stimulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX). Iron is essential for the amplification of oxidative stress. In this study, we investigated whether Ang II altered iron metabolism and whether the Ang II-induced endothelial injury is attributable to changes in iron metabolism of human glomerular endothelial cells (HGECs). When 90% iron-saturated human transferrin (90% Tf) was applied to HGECs without Ang II, the labile ferrous iron level was same as the effect of control in spite of a significant increase in the total cellular iron concentration. Treatment with Ang II and 30% Tf or 90% Tf significantly (P<0.01) increased the intracellular iron concentration, as well as labile ferrous iron and protein oxidation levels, compared with the effect of separate administration of each compound. Ang II treatment facilitated the protein expression of the Tf receptor, divalent metal transporter 1, and ferroportin 1 in a dose- and time-dependent manner. It was also found that simultaneous exposure of HGECs to Ang II and 90% Tf accelerated hydroxyl radical production, as shown by using an electron paramagnetic resonance spectrometer. These results suggest that Ang II not only induces production of ROS by NOX activation but also iron incorporation followed by an increase in labile iron in HGECs. Both of these events may participate in the progression of oxidative stress because of endothelial cell dysfunction through ferrous iron-mediated ROS generation.

  20. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    PubMed Central

    Borman, Christopher J.; Sullivan, B. Patrick; Eggleston, Carrick M.; Colberg, Patricia J. S.

    2009-01-01

    An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe2+(aq) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe2+(aq). Slopes of the response curves from ferrous iron standards (1 – 100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter. PMID:22408532

  1. Iron supplementation reduces the erosive potential of a cola drink on enamel and dentin in situ.

    PubMed

    Kato, Melissa Thiemi; Buzalaf, Marília Afonso Rabelo

    2012-01-01

    Iron has been suggested to reduce the erosive potential of cola drinks in vitro. The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-ColaTM, pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). The mean wear (±se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8±1.0 µm; ferrous sulfate: 2.8±0.6 µm) and dentin (control: 4.8±0.8 µm; ferrous sulfate: 1.7±0.7 µm). The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.

  2. Comparison of home fortification with two iron formulations among Kenyan children: Rationale and design of a placebo-controlled non-inferiority trial.

    PubMed

    Teshome, Emily M; Otieno, Walter; Terwel, Sofie R; Osoti, Victor; Demir, Ayşe Y; Andango, Pauline E A; Prentice, Andrew M; Verhoef, Hans

    2017-09-01

    Home fortification powders containing iron and other micronutrients have been recommended by World Health Organisation to prevent iron deficiency anaemia in areas of high prevalence. There is evidence, however, that home fortification at this iron dose may cause gastrointestinal adverse events including diarrhoea. Providing a low dose of highly absorbable iron (3 mg iron as NaFeEDTA) may be safer because the decreased amount of iron in the gut lumen can possibly reduce the burden of these adverse effects whilst resulting in similar or higher amounts of absorbed iron. To show non-inferiority of home fortification with 3 mg iron as NaFeEDTA compared with 12.5 mg iron as encapsulated ferrous fumarate, with haemoglobin response as the primary outcome. 338 Kenyan children aged 12-36 months will be randomly allocated to daily home fortification with either: a) 3 mg iron as NaFeEDTA (experimental treatment), b) 12.5 mg iron as encapsulated ferrous fumarate (reference), or c) placebo. At baseline, after 30 days of intervention and within 100 days post-intervention, blood samples will be assessed for primary outcome (haemoglobin concentration), iron status markers, Plasmodium parasitaemia and inflammation markers. Urine and stool samples will be assessed for hepcidin concentrations and inflammation, respectively. Adherence will be assessed by self-reporting, sachet counts and by an electronic monitoring device. If daily home fortification with a low dose of iron (3 mg NaFeEDTA) has similar or superior efficacy to a high dose (12.5 mg ferrous fumarate) then it would be the preferred choice for treatment of iron deficiency anaemia in children.

  3. Evaluating the Mobility of Arsenic in Synthetic Iron-containing Solids Using a Modified Sequential Extraction Method

    PubMed Central

    Shan, Jilei; Sáez, A. Eduardo; Ela, Wendell P.

    2013-01-01

    Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g. the toxicity characteristic leaching procedure, TCLP) and, consequently, require stabilization to ensure benign behavior after disposal. In this work, a four-step sequential extraction method was developed in an effort to determine the proportion of arsenic in various phases in untreated as well as stabilized iron-based solid matrices. The solids synthesized using various potential stabilization techniques included: amorphous arsenic-iron sludge (ASL), reduced ASL via reaction with zero valent iron (RASL), amorphous ferrous arsenate (PFA), a mixture of PFA and SL (M1), crystalline ferrous arsenate (HPFA), and a mixture of HPFA and SL (M2). The overall arsenic mobility of the tested samples increased in the following order: ASL > RASL > PFA > M1 > HPFA > M2. PMID:23459695

  4. Lactoferrin or ferrous salts for iron deficiency anemia in pregnancy: A meta-analysis of randomized trials.

    PubMed

    Abu Hashim, Hatem; Foda, Osama; Ghayaty, Essam

    2017-12-01

    This systematic review and meta-analysis aimed to evaluate the efficacy of daily oral bovine lactoferrin versus daily oral ferrous iron preparations for treatment of iron deficiency anemia (IDA) during pregnancy. Searches were conducted on PubMed, ScienceDirect, ClinicalTrials.gov and CENTRAL databases from inception to February 2017 and the bibliographies of retrieved articles were screened. The PRISMA Statement was followed. Published English language randomized trials comparing lactoferrin with oral ferrous iron preparations in pregnant women with iron deficiency anemia were included. Quasi-randomized, non- randomized or studies including other known cause of anemia, gestational or pre-existent maternal diseases were excluded. Accordingly, 4 eligible trials (600 women) were analyzed. Primary outcome was change in hemoglobin level at 4 weeks of treatment. Secondary outcomes were; change in serum ferritin and iron, rates of gastrointestinal side effects, preterm birth, low birthweight, neonatal death and mean birthweight. Quality assessment was performed by the Cochrane risk of bias tool. Odds ratio and mean difference were used to integrate dichotomous and continuous outcomes respectively. Pooled estimates for change in hemoglobin levels at four weeks favored daily oral lactoferrin over daily oral ferrous sulphate (mean difference 0.77; 95% confidence interval [CI] 0.04-1.55; P=0.04, 4 trials, 600 women). However, after subgroup analysis (degree of anemia), no significant difference in hemoglobin levels were found between both groups in mild anemia (mean difference 0.80; 95% CI -0.21 to 1.82, 3 trials, 372 women), but a significant increase favoring lactoferrin was reported in moderate anemia (mean difference 0.68; 95% CI 0.53-0.83; P<0.00001, one trial, 228 women). Significantly less gastrointestinal side effects were reported with lactoferrin treatment. No significant differences existed with regard to other outcomes. In conclusion, for pregnant women with IDA, daily oral bovine lactoferrin is just as good as ferrous sulfate in improving hematological parameters with fewer gastrointestinal side effects. Thereby, lactoferrin should be the iron replacement agent of choice for treatment of IDA in pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron... section 412(a)(2) of the act (21 U.S.C. 350a(a)(2)). (d) Prior sanctions for this ingredient different...

  6. The impact of aqueous washing on the ability of βFeOOH to corrode iron.

    PubMed

    Watkinson, D E; Emmerson, N J

    2017-01-01

    Controlling the corrosion of historical and archaeological ferrous metal objects presents a significant challenge to conservators. Chloride is a major corrosion accelerator in coastal areas for historic ferrous metal structures and for the many chloride-containing archaeological objects within museums. Corrosion reactions involve the formation of akaganéite (βFeOOH) which incorporates chloride within its crystal structure and adsorbs it onto its surface. The mobility of the surface-adsorbed chloride in aqueous systems and atmospheric moisture means βFeOOH can itself cause iron to corrode. The extraction of chloride from βFeOOH by aqueous Soxhlet hot wash and aqueous room temperature washing is measured. The impact of this washing on the ability of βFeOOH to corrode iron is quantitatively investigated by determining the oxygen consumption of unwashed, Soxhlet-washed and room temperature-washed samples of βFeOOH mixed with iron powder and exposed to 80 % relative humidity. This acts as a proxy measurement for the corrosion rate of iron. The results are discussed relative to climatic factors for outdoor heritage objects and the treatment of archaeological iron in museums. Delivering better understanding of the properties of βFeOOH supports the development of evidence-based treatments and management procedures in heritage conservation.

  7. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.

    PubMed

    Smith, Sarah L; Johnson, D Barrie

    2018-03-01

    Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.

  8. A Preliminary Study on the Vapor/Mist Phase Lubrication of a Spur Gearbox

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.

    1999-01-01

    Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work, however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formulation was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then used to vapor/mist phase lubricate a spur gearbox in a preliminary study.

  9. Corrosion and Passivation Studies of Iron and Ferrous Alloys

    DTIC Science & Technology

    1981-12-15

    OF IRON AND FERROUS ALLOYS It by Gholamabbas Nazri, Ernest Yeager and B. D. Cahan Prepared as part of the Ph.D. thesis of G. Nazri in Chemistry at...need to apply a pro- tective coating such as a paint, galvanizing or electrodeposited layer. Passivatiox., however, is poorly understood despite very...Genshaw, V. Brusic and H. Wroblowa, Electrochim. Acta 16, 1859 (1971). 30. V. Brusic, Ph.D. Thesis , University of Pennsylvania (1971). 31. C. Chen

  10. Iron Tolerant Cyanobacteria as an Effective Tool to Study Early Evolution of Life and the Development of Biosignatures

    NASA Technical Reports Server (NTRS)

    Brown, Igor; Mummey, Daniel; Sarkisova, Svetlana; Allen, Carlton; McKay, David S.

    2006-01-01

    We are currently conducting preliminary studies on the diversity of iron-tolerant cyanobacteria (CB) isolated from iron-depositing hot springs in and around Yellowstone National Park (WY, USA). In conclusion, there is no consensus on the divergence of cyanobacteria from a common ancestor for either anoxygenic or oxygenic phototrophs. Anoxygenic photosynthesis may have provided energy for the common ancestor, but it is unclear what environmental pressure induced the evolving of oxygenic phototrophs. It is supposed, however, that predecessors of contemporary CB were capable of oxidizing various substrates other than water , and it is likely that Fe2+ could be one of those substrates . If that were the case, the work of entire photosystems in Precambrian cyanobacteria and/or in their predecessors could follow three scenarios (at least): 1) ferrous iron may have been oxidized in PS II but without significant effects on oxygen evolution, and environmental iron could have been oxidized either enzymatically or chemically; 2) ferrous iron may have been oxidized only enzymatically by PS II, accompanied by the repression of O2 evolution; or 3) ferrous iron may have been oxidized by PS I upon the prevalence of anoxygenic photosynthesis or without any effect on PS II. All of these scenarios will be the subject of our future studies with the aim to understand which line-ages of CB could be typical for Precambrian time.

  11. Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier.

    PubMed

    Burkhart, Annette; Skjørringe, Tina; Johnsen, Kasper Bendix; Siupka, Piotr; Thomsen, Louiza Bohn; Nielsen, Morten Schallburg; Thomsen, Lars Lykke; Moos, Torben

    2016-12-01

    The mechanisms for iron transport through the blood-brain barrier (BBB) remain a controversy. We analyzed for expression of mRNA and proteins involved in oxidation and transport of iron in isolated brain capillaries from dietary normal, iron-deficient, and iron-reverted rats. The expression was also investigated in isolated rat brain endothelial cells (RBECs) and in immortalized rat brain endothelial (RBE4) cells grown as monoculture or in hanging culture inserts with defined BBB properties. Transferrin receptor 1, ferrireductases Steap 2 and 3, divalent metal transporter 1 (DMT1), ferroportin, soluble and glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin, and hephaestin were all expressed in brain capillaries in vivo and in isolated RBECs and RBE4 cells. Gene expression of DMT1, ferroportin, and soluble and GPI-anchored ceruloplasmin were significantly higher in isolated RBECs with induced BBB properties. Primary pericytes and astrocytes both expressed ceruloplasmin and hephaestin, and RBECs, pericytes, and astrocytes all exhibited ferrous oxidase activity. The coherent protein expression of these genes was demonstrated by immunocytochemistry. The data show that brain endothelial cells provide the machinery for receptor-mediated uptake of ferric iron-containing transferrin. Ferric iron can then undergo reduction to ferrous iron by ferrireductases inside endosomes followed by DMT1-mediated pumping into the cytosol and subsequently cellular export by ferroportin. The expression of soluble ceruloplasmin by brain endothelial cells, pericytes, and astrocytes that together form the neurovascular unit (NVU) provides the ferroxidase activity necessary to reoxidize ferrous iron once released inside the brain.

  12. A comparison of root iron uptake rates in Carya aquatica and Carya illinoinensis

    USDA-ARS?s Scientific Manuscript database

    Carya aquatica (water hickory) thrives in water saturated soils, where ferrous iron predominates. However, this species exhibits iron deficiency when grown in drier soils. Carya illinoinensis (pecan) is generally iron-adequate when grown in non-flooded areas, where iron is found predominantly in the...

  13. Ferrous ammonium phosphate (FeNH₄PO₄) as a new food fortificant: iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink.

    PubMed

    Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F

    2013-06-01

    The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p < 0.0001). Fe absorption from FAP was significantly lower than Fe absorption from ferrous sulfate, which was used as water-soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.

  14. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain

    PubMed Central

    Sen, Bhaswati

    2014-01-01

    Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore–ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used 55Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. 55Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore–ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation. PMID:24307666

  15. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  16. Treatment of highly polluted groundwater by novel iron removal process.

    PubMed

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  17. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.

    2017-12-01

    As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.

  18. Ferrous Sulfate (Iron)

    MedlinePlus

    ... the iron needed by the body to produce red blood cells. It is used to treat or prevent iron-deficiency anemia, a condition that occurs when the body has too few red blood cells because of pregnancy, poor diet, excess bleeding, ...

  19. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOEpatents

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  20. Transformation of Chlorinated Hydrocarbons on Synthetic Green Rusts

    EPA Science Inventory

    Green rusts (GRs) are layered double hydroxides that contain both ferrous and ferric ions in their structure. GRs can potentially serve as a chemical reductant for degradation of chlorinated hydrocarbons. GRs are found in zerovalent iron based permeable reactive barriers and in c...

  1. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs.

    PubMed

    Hurrell, Richard; Ranum, Peter; de Pee, Saskia; Biebinger, Ralf; Hulthen, Lena; Johnson, Quentin; Lynch, Sean

    2010-03-01

    Iron fortification of wheat flour is widely used as a strategy to combat iron deficiency. To review recent efficacy studies and update the guidelines for the iron fortification of wheat flour. Efficacy studies with a variety of iron-fortified foods were reviewed to determine the minimum daily amounts of additional iron that have been shown to meaningfully improve iron status in children, adolescents, and women of reproductive age. Recommendations were computed by determining the fortification levels needed to provide these additional quantities of iron each day in three different wheat flour consumption patterns. Current wheat flour iron fortification programs in 78 countries were evaluated. When average daily consumption of low-extraction (< or = 0.8% ash) wheat flour is 150 to 300 g, it is recommended to add 20 ppm iron as NaFeEDTA, or 30 ppm as dried ferrous sulfate or ferrous fumarate. If sensory changes or cost limits the use of these compounds, electrolytic iron at 60 ppm is the second choice. Corresponding fortification levels were calculated for wheat flour intakes of < 150 g/day and > 300 g/day. Electrolytic iron is not recommended for flour intakes of < 150 g/day. Encapsulated ferrous sulfate or fumarate can be added at the same concentrations as the non-encapsulated compounds. For high-extraction wheat flour (> 0.8% ash), NaFeEDTA is the only iron compound recommended. Only nine national programs (Argentina, Chile, Egypt, Iran, Jordan, Lebanon, Syria, Turkmenistan, and Uruguay) were judged likely to have a significant positive impact on iron status if coverage is optimized. Most countries use non-recommended, low-bioavailability, atomized, reduced or hydrogen-reduced iron powders. Most current iron fortification programs are likely to be ineffective. Legislation needs updating in many countries so that flour is fortified with adequate levels of the recommended iron compounds.

  2. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney

    PubMed Central

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Objective: Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger (Zingiber officinale) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. Materials and Methods: The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Results: Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. Conclusion: In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron. PMID:29299437

  3. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney.

    PubMed

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger ( Zingiber officinale ) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron.

  4. Prospects for Ukrainian ferrous metals in the post-soviet period

    USGS Publications Warehouse

    Levine, R.M.; Bond, A.R.

    1998-01-01

    Two specialists on the mineral industries of the countries of the former USSR survey current problems confronting producers of ferrous metals in Ukraine and future prospects for domestic production and exports. A series of observations documenting the importance of ferrous metals production to Ukraine's economy is followed by sections describing investment plans and needs in the sector, and the role played by Ukraine within the iron and steel industry of the Soviet Union. The focus then turns to assessment of the current regional and global competitive position of Ukrainian producers for each of the major commodities of the sector-iron ore, manganese ore, ferroalloys, steel, and the products of the machine manufacturing and metal working industries. In conclusion, the paper discusses a potential regional industrial integration strategy analogous to that employed in the United States' Great Lakes/Midwest region, which possesses similar types of iron ore deposits and similar transport cost advantages and metallurgical and manufacturing industries. Journal of Economic Literature, Classification Numbers: F14, L61, L72. 1 table, 26 references.

  5. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread.

    PubMed

    Rebellato, Ana Paula; Bussi, Jéssica; Silva, Joyce Grazielle Siqueira; Greiner, Ralf; Steel, Caroline Joy; Pallone, Juliana Azevedo Lima

    2017-04-01

    This study aimed at investigating the effect of iron compounds used in whole wheat flour (WWF) fortification, both on rheological properties of the dough and on bread technological quality. Furthermore, bioaccessibility of iron (Fe), zinc (Zn) and calcium (Ca) in the final breads was determined. Rheological properties (mainly dough development time, stability, mixing tolerance index, resistance to extension and ratio number) of the dough and the technological quality of bread (mainly oven spring and cut opening) were altered. However, producing roll breads fortified with different iron compounds was still possible. NaFeEDTA (ferric sodium ethylene diamine tetra acetic acid) proved to be the most effective iron compound in the fortification of WWF, since it presented the highest levels of solubility (44.80%) and dialysability (46.14%), followed by microencapsulated ferrous fumarate (FFm). On the other hand, the microencapsulated ferrous sulfate (FSm) and reduced iron presented the lowest solubility (5.40 and 18.30%, respectively) and dialysability (33.12 and 31.79%, respectively). Zn dialysis was positively influenced by NaFeEDTA, FSm, and ferrous fumarate. As for Ca, dialysis was positively influenced by FSm and negatively influenced by FFm. The data indicated that there is a competitive interaction for the absorption of these minerals in whole wheat roll breads, but all studied minerals can be considered bioaccessible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Iron Binding at Specific Sites within the Octameric HbpS Protects Streptomycetes from Iron-Mediated Oxidative Stress

    PubMed Central

    Wedderhoff, Ina; Kursula, Inari; Groves, Matthew R.; Ortiz de Orué Lucana, Darío

    2013-01-01

    The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress. PMID:24013686

  7. Effect of iron content on the tolerability of prenatal multivitamins in pregnancy.

    PubMed

    Nguyen, Patricia; Nava-Ocampo, Alejandro; Levy, Amalia; O'Connor, Deborah L; Einarson, Tom R; Taddio, Anna; Koren, Gideon

    2008-05-15

    Gastrointestinal irritability can deter pregnant women from starting or continuing prenatal multivitamin supplementation. In a previous study, suboptimal tolerability was observed among pregnant women taking a large tablet (18 mm x 8 mm x 8 mm) multivitamin with high elemental iron content (60 mg as ferrous fumarate). The objective of the present study was to compare rates of adherence and reported adverse events among pregnant women who were randomized to commence supplementation with a small-tablet prenatal multivitamin, containing either low or high iron content. Pregnant women who called the Motherisk Program (Hospital for Sick Children, Toronto) and had not started taking or had discontinued any multivitamin due to adverse events were included in this prospective, randomized, open-label, 2-arm study. Women were randomized to take a small-size (16 mm x 9 mm x 4 mm), low elemental iron content (35 mg as ferrous fumarate) multivitamin ('35 mg' group); or a small-size (5 mm radius, 5 mm thickness), high elemental iron content (60 mg as ferrous sulphate) multivitamin ('60 mg' group). Follow-up interviews documented pill intake and adverse events. Rates of adherence and adverse events were compared between groups using chi-squared tests and Kaplan-Meier survival curves. Of 167 randomized women, 92 in the '35 mg' group and 75 in the '60 mg' group were included in the analysis. Despite ideal conditions and regular follow-ups, mean adherence based on pill intake recall, in both groups was approximately 50%. No statistically significant difference was detected in proportions of women who actually started taking either multivitamin. Among those who started, no difference was detected in rates of adherence or reported adverse events. The present results suggest that iron content is not a major determinant of adherence to prenatal multivitamins. Combined with our previous study, tablet size may be the more definitive factor affecting adherence.

  8. Expression and purification of functionally active ferrous iron transporter FeoB from Klebsiella pneumoniae.

    PubMed

    Smith, Aaron T; Sestok, Alexandrea E

    2018-02-01

    The acquisition of ferrous iron (Fe 2+ ) is an important virulence factor utilized by several hospital-acquired (nosocomial) pathogens such as Klebsiella pneumoniae to establish infection within human hosts. Virtually all bacteria use the ferrous iron transport system (Feo) to acquire ferrous iron from their environments, which are often biological niches that stabilize Fe 2+ relative to Fe 3+ . However, the details of this process remain poorly understood, likely owing to the few expression and purification systems capable of supplying sufficient quantities of the chief component of the Feo system, the integral membrane GTPase FeoB. This bottleneck has undoubtedly hampered efforts to understand this system in order to target it for therapeutic intervention. In this study, we describe the expression, solubilization, and purification of the Fe 2+ transporter from K. pneumoniae, KpFeoB. We show that this protein may be heterologously overexpressed in Escherichia coli as the host organism. After testing several different commercially-available detergents, we have developed a solubilization and purification protocol that produces milligram quantities of KpFeoB with sufficient purity for enzymatic and biophysical analyses. Importantly, we demonstrate that KpFeoB displays robust GTP hydrolysis activity (k cat GTP of ∼10 -1 s -1 ) in the absence of any additional stimulatory factors. Our findings suggest that K. pneumoniae may be capable of using its Feo system to drive Fe 2+ import in an active manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    PubMed

    Guan, Jingyang; Berlinger, Sarah A; Li, Xiaozheng; Chao, Zhongmou; Sousa E Silva, Victor; Banta, Scott; West, Alan C

    2017-03-10

    Electrofuels processes are potentially promising platforms for biochemical production from CO 2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO 2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO 2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. THE INFLUENCE OF OXIDANT TYPE ON THE PROPERTIES OF IRON COLLOIDS AND SUSPENSIONS FORMED FROM FERROUS IRON

    EPA Science Inventory

    "Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distribution ...

  11. A comparison of root iron acquisition capabilities in Carya aquatica and Carya illinoinensis

    USDA-ARS?s Scientific Manuscript database

    Carya aquatica (water hickory) thrives in water-saturated soils where ferrous iron is prevalent. However, when grown in drier soils, this species exhibits iron deficiency. Carya illinoinensis (pecan), a closely related species to Carya aquatica, is generally iron-adequate when grown in non-flooded ...

  12. Clay Mineral Crystal Structure Tied to Composition

    NASA Image and Video Library

    2016-12-13

    This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148

  13. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    PubMed

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  14. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    PubMed Central

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir

    2018-01-01

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339

  15. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline.

    PubMed

    Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad

    2018-02-25

    Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  16. Ferrous iron phosphorus in sediments: development of a quantification method through 2,2'-bipyridine extraction.

    PubMed

    Li, Qingman; Wang, Xingxiang; Bartlett, Rebecca; Pinay, Gilles; Kan, Dan; Zhang, Wen; Sun, Jingxian

    2012-11-01

    The role of ferrous iron in the phosphorus cycle of an aquatic ecosystem is poorly understood because of a lack of suitable methods to quantitatively evaluate ferrous iron phosphorus (FIP) phases. Using sediments sampled from Fubao Bay of Dianchi Lake in China, a novel extraction method for FIP using 2,2'-bipyridine was explored. Total phosphorus and iron in the sediments ranged from 1.0 to 5.0 mg/g (dry weight) and 28.5 to 90.6 mg/g, respectively. Organic content (as indicated by loss on ignition or LOI) and iron(II) ranged from 3.1 to 27.0% and 26.5 to 64.9 mg/g, respectively. The dissolution dynamics of FIP extraction with a low solid/liquid ratio (1:25) indicated that a single application of 0.2% 2,2'-bipyridine extracted both iron(II) (Fe(II)) and phosphorus (as PO4(3-)) in sediments with different organic contents with low efficiency. The extraction efficiency of Fe(II) was improved by alteration of the solid/liquid ratio, but the effect was limited. However, addition of a 1:1000 solid/liquid ratio of 0.5 M potassium chloride to a 0.2% 2,2'-bipyridine solution significantly accelerated extraction of FIP with the release of Fe(II) and phosphorus toward equilibrium at approximately 150 hours. Further investigation demonstrated that 2,2'-bipyridine exhibited a higher selectivity in distinguishing FIP from phosphorus bound to ferric (Fe(III)) oxides or precipitated by calcium (Ca2+). Air-drying sediments significantly decreased the amount of extracted FIP, which indicates that fresh, wet sediment should be used in this type of FIP extraction. Based on experimental results using the proposed extraction protocol, (1) FIP in sediments of Fubao Bay had a predominant status in the lake sediment and accounted for 23.4 to 39.8% of total phosphorus, and (2) Fe(II)(FIP) released in the extraction is directly proportional to phosphorus(FIP) (Fe(II)(FIP) = 2.84 x P(FIP) + 0.0007; R2 = 0.97) with an average molar ratio of Fe(II)(FIP)/P(FIP) of 2.7. This study shows that FIP extraction with 2,2'-bipyridine is a robust method for releasing ferrous iron associated with phosphorus. Further, the high percentage of FIP in total phosphorus (40%) measured in the study site using this extraction method suggests that FIP might have been often underestimated in previous studies.

  17. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications.

  18. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen.

    PubMed

    Kyle, M E; Miccadei, S; Nakae, D; Farber, J L

    1987-12-31

    Superoxide dismutase, catalase and mannitol prevent the killing of cultured hepatocytes by acetaminophen in the presence of an inhibitor of glutathione reductase, BCNU. Under these conditions, the cytotoxicity of acetaminophen depends upon its metabolism, since beta-naphthoflavone, an inhibitor of mixed function oxidation, prevents the cell killing. In hepatocytes made resistant to acetaminophen by pretreatment with the ferric iron chelator, deferoxamine, addition of ferric or ferrous iron restores the sensitivity to acetaminophen. In such a situation, both superoxide dismutase and catalase prevent the killing by acetaminophen in the presence of ferric iron. By contrast, catalase, but not superoxide dismutase, prevents the cell killing dependent upon addition of ferrous iron. These results document the participation of both superoxide anion and hydrogen peroxide in the killing of cultured hepatocytes by acetaminophen and suggest that hydroxyl radicals generated by an iron catalyzed Haber-Weiss reaction mediate the cell injury.

  19. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  20. Management of iron deficiency anemia: a survey of pediatric hematology/oncology specialists.

    PubMed

    Powers, Jacquelyn M; McCavit, Timothy L; Buchanan, George R

    2015-05-01

    Iron deficiency anemia (IDA) is the most common hematologic condition in children and adolescents in the United States (US). No prior reports have described the management of IDA by a large cohort of pediatric hematology/oncology specialists. A 20-question electronic survey that solicited responses to two hypothetical cases of IDA was sent to active members of the American Society of Pediatric Hematology/Oncology (ASPHO) in the US. Of 1,217 recipients, 398 (32.7%) reported regularly treating IDA and completed the survey. In a toddler with nutritional IDA, 15% (N = 61) of respondents reported ordering no diagnostic test beyond a complete blood count. Otherwise, wide variability in laboratory testing was reported. For treatment, most respondents would prescribe ferrous sulfate (N = 335, 84%) dosed at 6 mg/kg/day (N = 248, 62%) divided twice daily (N = 272, 68%). The recommended duration of iron treatment after resolution of anemia and normalized serum ferritin varied widely from 0 to 3 months. For an adolescent with heavy menstrual bleeding and IDA, most respondents recommended ferrous sulfate (N = 327, 83%), with dosing based on the number of tablets daily. For IDA refractory to oral treatment, intravenous iron therapy was recommended most frequently, 48% (N = 188) using iron sucrose, 17% (N = 68) ferric gluconate, and 15% (N = 60) low molecular weight iron dextran. The approach to diagnosis and treatment of IDA in childhood was widely variable among responding ASPHO members. Given the lack of an evidence base to guide clinical decision making, further research investigating IDA management is needed. © 2015 Wiley Periodicals, Inc.

  1. Recycling ferrous sulfate via super-oxidant synthesis

    NASA Astrophysics Data System (ADS)

    Kanari, N.; Evrard, O.; Neveux, N.; Ninane, L.

    2001-11-01

    Hydrated ferrous sulfate, a by-product of the titanium-dioxide and steel-surface-treatment industries, is usually disposed of as waste at a significant extra cost for these industries. Due to tight environmental regulations in the European countries, waste disposal of ferrous sulfate will not be an acceptable solution in the near future. Consequently, the waste will have to be treated. Recently, ferrous sulfate was successfully used to synthesize a novel superoxidant material (potassium ferrate) containing iron in hexavalent state (FeVI). With ferrates synthesis, innovative applications are possible in different industrial sectors, such as treatment of water and wastewater and effluent decontamination.

  2. IN-SITU CR(VI) SOURCE AND PLUME TREATMENT USING A FERROUS IRON BASED REDUCTANT

    EPA Science Inventory

    A large volume of chromite ore processing residue (COPR) generated from ferrochrome production operations is present at the Macalloy Corporation Superfund site in Charleston, S.C. Groundwater hexavalent chromium (Cr(VI)) concentrations in the approximately 20 acre-foot COPR satu...

  3. MICROCOSM STUDY OF DEGRADATION OF CHLORINATED SOLVENTS ON SYNTHETIC GREEN RUST MINERALS

    EPA Science Inventory

    Green rust minerals contain ferrous ion in their structure that can potentially serve as a chemical reductant for degradation of chlorinated solvents. Green rusts are found in zerovalent iron based permeable reactive barriers and in certain soil and sediments. Some previous labor...

  4. IN-SITU CR(VI) SOURCE AND PLUME TREATMENT USING A FERROUS IRON-BASED REDUCTANT

    EPA Science Inventory

    A large volume of chromite ore processing residue (COPR) generated from ferrochrome production operations is present at the Macalloy Corporation Superfund site in Charleston, S.C. Groundwater hexavalent chromium (Cr(VI)) concentrations in the approximately 20 acre-foot COPR sat...

  5. TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES

    EPA Science Inventory

    Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...

  6. Redox Conditions Among the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    2004-01-01

    Early solar system conditions should have been extremely reducing. The redox state of the early solar nebula was determined by the H2O/H2 of the gas, which is calculated (based on solar composition) to have been about IW-5. At high temperature under such conditions, ferrous iron would exist only as a trace element in silicates and the most common type of chondritic material should have been enstatite chondrites. The observation that E-chondrites form only a subset of the chondrite suite and that the terrestrial planets (Earth, Moon, Mars, Venus, 4 Vesta) contain ferrous and ferric iron as major and minor elements, respectively, implies that either most chondritic materials formed under conditions that were not solar or that early-formed metals oxidized at low temperature, producing FeO. For example, equilibrated ordinary chondrites (by definition, common chondritic materials), by their phase assemblage of olivine, orthopyroxene and metal, must fall not far from the QFI (Quartz-Fayalite-Iron) oxygen buffer. The QFI buffer is about IW-0.5 and, as we shall see, this fo2 is close to that inferred for many materials in the inner solar system.

  7. Supplementation with a dietary multicomponent (Lafergin(®)) based on Ferric Sodium EDTA (Ferrazone(®)): results of an observational study.

    PubMed

    Cignini, Pietro; Mangiafico, Lucia; Padula, Francesco; D'Emidio, Laura; Dugo, Nella; Aloisi, Alessia; Giorlandino, Claudio; Vitale, Salvatore Giovanni

    2015-01-01

    During pregnancy, iron deficiency anemia is recognized as a specific risk factor for both adverse maternal and perinatal outcome. We decided to test the hypothesis that the daily administration of Lafergin(®), a dietary multicomponent based on Ferrazone(®) (Ferric Sodium EDTA), Lactoferrin, Vitamin C and Vitamin B12, from first trimester of pregnancy until the end of gestation, may significantly reduce, in anemic women, the severity of anemia compared to controls who received ferrous sulfate or liposomal iron.

  8. Minerals Price Increases and Volatility: Causes and Consequences

    DTIC Science & Technology

    2008-10-03

    goods , used to make final products, rose 8%. Both rates are triple those at this time [in 2007].8 A 2008 report for Lehman Brothers, a New York-based...products, which are the most widely used intermediate goods produced from iron ore (all ferrous scrap was originally processed from iron ore). Some...prices, even though demand for final goods using steel products was not nearly so robust. The clearest example is in sheet steel, which, in the first

  9. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    PubMed Central

    Gaensly, Fernanda; Picheth, Geraldo; Brand, Debora; Bonfim, Tania M.B.

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended. PMID:25242932

  10. Determination of Iron in Water. Training Module 5.210.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the spectrophotometric analysis of total iron, filtrable iron and ferrous iron in a water supply. Included are objectives, an instructor guide, student handouts, and transparency masters. A video tape is also available from the…

  11. THE EFFECT OF ORTHO- AND POLY-PHOSPHATES ON THE PROPERTIES OF IRON PARTICLES AND SUSPENSIONS FORMED FROM THE OXYGENATION OF FERROUS IRON

    EPA Science Inventory

    "Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distributio...

  12. Iron prophylaxis in pregnancy--general or individual and in which dose?

    PubMed

    Milman, Nils

    2006-12-01

    Iron is mandatory for normal fetal development, including the brain. Iron deficiency may have deleterious effects for intelligence and behavioral development. It is important to prevent iron deficiency in the fetus by preventing iron deficiency in the pregnant woman. Iron deficiency anemia during pregnancy is a risk factor for preterm delivery and low birth weight. In the Western countries there is no consensus on iron prophylaxis to pregnant women. An adequate iron balance during pregnancy implies body iron reserves of >or=500 mg at conception. The physiologic iron requirements in the second half of gestation cannot be fulfilled solely through dietary iron. Iron supplements during gestation consistently increase serum ferritin and hemoglobin and reduce the prevalence of iron deficiency anemia. Iron has a negative influence on absorption of other divalent metals and increases oxidative stress in pregnancy, for which reason minimum effective iron dose should be advised. From a physiologic point of view, individual iron prophylaxis according to serum ferritin concentration should be preferred to general prophylaxis. Suggested guidelines are (1) ferritin>70 microg/l: no iron supplements; (2) ferritin 30-70 microg/l: 40 mg ferrous iron daily; and (3) ferritin<30 microg/l: 80-100 mg ferrous iron daily. In controlled studies, there are no documented side effects of iron supplements below 100 mg/day. Iron supplements should be taken at bedtime or between meals to ensure optimum absorption.

  13. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    EPA Science Inventory

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  14. Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice.

    PubMed

    Lin, Feifei; Wu, Haohao; Zeng, Mingyong; Yu, Guangli; Dong, Shiyuan; Yang, Huicheng

    2018-02-21

    Iron fortification has been associated with a modest increase in diarrhea risk among children. Herein, we investigate the correction for this unwanted side effect with probiotic/prebiotic supplementation in weaning mice. Iron fortification with 250 ppm and 500 ppm ferrous sulfate for 30 days significantly increased the species richness of the mouse gut microbiota compared to controls. The 500 ppm-FeSO 4 diet caused a significantly decreased abundance of potentially beneficial Lactobacillus. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), mice on the 500 ppm-FeSO 4 diet showed earlier appearance of poisoning symptoms, higher rates of weight and appetite loss, and lower survival rates, all of which were effectively reversed by supplementation with a probiotic (Lactobacillus acidophilus) or a prebiotic (inulin) for 7 days before infection. Iron fortification with 500 ppm ferrous sulfate also increased fecal shedding and spleen and liver load of viable S. Typhimurium, suggesting its promoting effect on pathogen colonization and translocation, and this negative effect was found to be well corrected by supplementation with Lactobacillus acidophilus or inulin. Light and transmission electron microscopic observation on the ileal villus structure revealed the histopathological impairment of the intestine by iron fortification with both 250 ppm and 500 ppm ferrous sulfate, and the intestinal lesions were markedly alleviated by supplementation with Lactobacillus acidophilus or inulin. These results provide experimental evidence for the increased diarrhea risk upon iron fortification with high pathogen load, and demonstrate that probiotic or prebiotic supplementation can be used to eliminate the potential harm of iron fortification on gut health.

  15. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    PubMed

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. O2 availability impacts iron homeostasis in Escherichia coli.

    PubMed

    Beauchene, Nicole A; Mettert, Erin L; Moore, Laura J; Keleş, Sündüz; Willey, Emily R; Kiley, Patricia J

    2017-11-14

    The ferric-uptake regulator (Fur) is an Fe 2+ -responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O 2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O 2 availability. We found that the intracellular, labile Fe 2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe 2+ availability drove the formation of more Fe 2+ -Fur and, accordingly, more DNA binding. O 2 regulation of Fur activity required the anaerobically induced FeoABC Fe 2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O 2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis.

  17. O2 availability impacts iron homeostasis in Escherichia coli

    PubMed Central

    Beauchene, Nicole A.; Mettert, Erin L.; Moore, Laura J.; Keleş, Sündüz; Willey, Emily R.; Kiley, Patricia J.

    2017-01-01

    The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled by O2 availability. We found that the intracellular, labile Fe2+ pool was higher under anaerobic conditions compared with aerobic conditions, suggesting that higher Fe2+ availability drove the formation of more Fe2+-Fur and, accordingly, more DNA binding. O2 regulation of Fur activity required the anaerobically induced FeoABC Fe2+ uptake system, linking increased Fur activity to ferrous import under iron-sufficient conditions. The increased activity of Fur under anaerobic conditions led to a decrease in expression of ferric import systems. However, the combined positive regulation of the feoABC operon by ArcA and FNR partially antagonized Fur-mediated repression of feoABC under anaerobic conditions, allowing ferrous transport to increase even though Fur is more active. This design feature promotes a switch from ferric import to the more physiological relevant ferrous iron under anaerobic conditions. Taken together, we propose that the influence of O2 availability on the levels of active Fur adds a previously undescribed layer of regulation in maintaining cellular iron homeostasis. PMID:29087312

  18. Iron Deficiency in Adolescents and Young Adults.

    ERIC Educational Resources Information Center

    Risser, William L.; Risser, Jan M. H.

    1990-01-01

    Reviews the prevalence, natural history, causes, impact on performance, diagnosis, and treatment of iron deficiency in adolescent and young adult athletes. All athletes should be screened and treated. The best diagnosis involves determining serum ferritin and hemoglobin levels. Treatment requires therapeutic doses of oral ferrous iron for several…

  19. Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Singer, Robert B.

    1991-01-01

    As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.

  20. Low Dose Ferrous Gluconate Supplement Fails to Alter the Iron Status of Female Officers-In-Training

    DTIC Science & Technology

    2005-07-01

    guidelines are that total dietary fat intake should contribute no more than 28% of dietary energy with no more than 10% being from saturated fatty...13 3.4 Does alcohol, dietary iron intake , initial iron status or inflammation influence the effect of the supplement...13 3.4.2 Dietary iron intake

  1. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil.

    PubMed

    Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Reducing iron deficiency anemia in Bolivian school children: calcium and iron combined versus iron supplementation alone.

    PubMed

    Miranda, Melissa; Olivares, Manuel; Brito, Alex; Pizarro, Fernando

    2014-01-01

    The aim of this study was to determine the effect of combined calcium and iron versus single iron supplementation on iron status in Bolivian schoolchildren. Children ages 6 to 10 y old (N = 195), were randomly assigned to receive either 700 mg Ca (as calcium carbonate) plus 30 mg Fe (as ferrous sulfate) (Ca + Fe group) or 30 mg Fe (as ferrous sulfate) (Fe group). The doses were administered daily, from Monday to Friday, between meals at school over 3 mo. Iron status was assessed at baseline and after intervention. Additionally, overall nutritional status was assessed by anthropometry and an estimation of dietary intake. At baseline, the prevalence of anemia in the Ca + Fe group and the Fe group were 15% and 21.5%, respectively. After 3 mo follow-up, the prevalence of iron deficiency anemia dropped significantly (P < 0.001) to 3% in both groups (χ(2) = NS). Iron dietary intake was within recommended levels, but calcium intake only covered 39% of the Recommended Daily Intake. Combined calcium and iron supplementation is equally as effective as single iron supplementation in reducing the prevalence of iron deficiency anemia in Bolivian school children. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ferrous and ferric ion generation during iron electrocoagulation.

    PubMed

    Lakshmanan, Divagar; Clifford, Dennis A; Samanta, Gautam

    2009-05-15

    Our research on arsenate removal by iron electrocoagulation (EC) produced highly variable results, which appeared to be due to Fe2+ generation without subsequent oxidation to Fe3+. Because the environmental technology literature is contradictory with regard to the generation of ferric or ferrous ions during EC, the objective of this research was to establish the iron species generated during EC with iron anodes. Experimental results demonstrated that Fe2+, not Fe3+, was produced at the iron anode. Theoretical current efficiency was attained based on Fe2+ production with a clean iron rod, regardless of current, dissolved-oxygen (DO) level, or pH (6.5-8.5). The Fe2+ remaining after generation and mixing decreased with increasing pH and DO concentration due to rapid oxidation to Fe3+. At pH 8.5, Fe2+ was completely oxidized, which resulted in the desired Fe(OH)3(s)/ FeOOH(s), whereas, at pH 6.5 and 7.5, incomplete oxidation was observed, resulting in a mixture of soluble Fe2+ and insoluble Fe(OH)3(s)/FeOOH(s). When compared with Fe2+ chemical coagulation, a transient pH increase during EC led to faster Fe2+ oxidation. In summary, for EC in the pH 6.5-7.5 range and at low DO conditions, there is a likelihood of soluble Fe2+ species passing through a subsequentfiltration process resulting in secondary contamination and inefficient contaminant removals.

  4. Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination is Stabilized by Hydrophobic Contacts Without Increased Inhibitor Potency

    PubMed Central

    Martell, Jeffrey D.; Li, Huiying; Doukov, Tzanko; Martásek, Pavel; Roman, Linda J.; Soltis, Michael; Poulos, Thomas L.; Silverman, Richard B.

    2010-01-01

    The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. PMID:20014790

  5. Dispersion Strengthening.

    DTIC Science & Technology

    1987-07-27

    June 1979. 22. p - V S~* ~~ " 17. " Strengthening Mechanisms in Martensitic Steels ", Peking University Institute for Iron and Steel Technology...directed towards studying the strengthening behavior of nickel-base superalloys, the strengthening behavior of ferrous martensite , and the kinetics of...coherency strain is not a dominant strengthening mechanism in nickel-base super- alloys with low volume fractions of -y The important conclusions

  6. Synthesis and Characterization of Chukanovite, Fe2CO3(OH)2(s): An Elusive Ferrous Iron Carbonate Hydroxide Mineral

    NASA Astrophysics Data System (ADS)

    Jang, J. J. H.; Kim, S.; Burton, H.; Knox, J.; Marrs, C.; Sisk-Scott, C.

    2017-12-01

    The long-term effectiveness of an underground waste repository relies on understanding the chemical reaction products between intrusive brine and the reactive media in the repository. One such component of the stored media, iron, forms mineral precipitates in brine through anoxic corrosion. Chukanovite, Fe2CO3(OH)2(s), could be one of the precipitates and not much is known regarding its formation and thermodynamic stability. Thus, we have investigated eight mixtures of FeCl2 and NaHCO3 with NaOH for the synthesis of chukanovite in an anoxic glovebox. X-ray diffraction (XRD) scans of ten-month aged samples showed the paragenesis of three ferrous iron minerals in all tested conditions; siderite (FeCO3(s)), ferrous iron hydroxide (Fe(OH)2(s)), and chukanovite. Chukanovite was present alongside the two other minerals in between the pH values of 6 and 11. Comparison of relative intensities of major XRD peak heights of three minerals illustrated that the highest phase purity of chukanovite was achieved when the solution pH was approximately 9. XRD and solubility analysis will be performed periodically to determine when the experiments in the eight conditions reach steady state. Solid samples will be further characterized using Mossbauer and Raman spectroscopy.

  7. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  8. Iron spin transitions in the lower mantle

    NASA Astrophysics Data System (ADS)

    McCammon, C.; Dubrovinsky, L.; Potapkin, V.; Glazyrin, K.; Kantor, A.; Kupenko, I.; Prescher, C.; Sinmyo, R.; Smirnov, G.; Chumakov, A.; Rüffer, R.

    2012-04-01

    Iron has the ability to adopt different electronic configurations (spin states), which can significantly influence mantle properties and dynamics. It is now generally accepted as a result of studies over the past decade that ferrous iron in (Mg,Fe)O undergoes a high-spin to low-spin transition in the mid-part of the lower mantle; however results on (Mg,Fe)(Si,Al)O3 perovskite, the dominant phase of the lower mantle, remain controversial. Identifying spin transitions in (Mg,Fe)(Si,Al)O3 perovskite presents a significant challenge. X-ray emission spectroscopy provides information on the bulk spin number, but cannot separate individual contributions. Nuclear forward scattering measures hyperfine interactions, but is not well suited to complex materials due to the non-uniqueness of fitting models. Energy-domain Mössbauer spectroscopy generally enables an unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high pressure measurements using conventional radioactive point sources require extremely long counting times. To solve this problem, we have developed an energy-domain synchrotron Mössbauer source that enables rapid measurement of spectra under extreme conditions (both high pressure and high temperature) with a quality generally sufficient to unambiguously deconvolute even highly complex spectra. We have used the newly developed method to measure high quality Mössbauer spectra of different compositions of (Mg,Fe)O and (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 122 GPa and temperatures up to 2400 K. Experiments were carried out at the European Synchrotron Radiation Facility on the nuclear resonance beamline ID18 equipped with a portable laser heating system for diamond anvil cells. Our results confirm previous observations for (Mg,Fe)O that show a broad spin crossover region at high pressures and high temperatures, and show unambiguously that ferric iron in (Mg,Fe)(Si,Al)O3 perovskite remains in the high-spin state at conditions throughout the lower mantle. Electrical conductivity data of (Mg,Fe)(Si,Al)O3 perovskite are known to show a drop in conductivity above 50 GPa, which combined with our new results suggests that the currently controversial high-pressure transition of ferrous iron is indeed due to a high-spin to intermediate-spin transition at conditions near the top of the lower mantle. Our current picture of iron in the lower mantle is therefore of a relatively homogeneous spin state in (Mg,Fe)(Si,Al)O3 perovskite throughout most of the lower mantle: intermediate-spin ferrous iron and high-spin ferric iron. Different spin states are expected in ferrous iron in (Mg,Fe)(Si,Al)O3 perovskite only at the very top of the lower mantle (high spin) and at the very bottom (low spin). There is a broad transition from high-spin to low-spin ferrous iron in (Mg,Fe)O in the mid part of the lower mantle. Implications of these results for mantle properties and dynamics will be presented.

  9. A key role for green rust in the Precambrian oceans and the genesis of iron formations

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Alesker, M.; Schuster, E. M.; Popovitz-Biro, R.; Feldman, Y.

    2017-01-01

    Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous-ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

  10. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  11. Interstitial-phase precipitation in iron-base alloys: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.

  12. Ferrous glycinate regulates cell energy metabolism by restrictinghypoxia-induced factor-1α expression in human A549 cells.

    PubMed

    Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo

    2018-06-04

    Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.

  13. Iron release from the Lucky Iron Fish®: safety considerations.

    PubMed

    Armstrong, Gavin R; Dewey, Cate E; Summerlee, Alastair Js

    2017-01-01

    The principal objective was to explore in greater detail safety issues with regard to the use of the Lucky Iron Fish® (fish) as a treatment for iron deficiency and iron deficiency anaemia in women in rural Cambodia. Experiments were done to determine: (1) purity of the iron in the fish by mass spectroscopy; (2) release of iron and contaminants released during boiling in water using inductive-ly-coupled plasma optical emission spectroscopy; (3) the impact of cooking time, acidity and number of fish in acidified water and two types of Khmer soups; and (4) drinkability of the water after boiling with different num-bers of fish. The fish is composed primarily of ferrous iron with less than 12% non-ferrous iron. Contaminants were either not detectable or levels were below the acceptable standards set by the World Health Organization. The length of time boiling the fish and the acidity of the water increased iron release but even with 5 fish boiled for 60 minutes, iron levels only approached levels where side effects are observed. Boiling one fish in water did not affect the perception of colour, smell or taste of the water but boiling in water with two or more fish resulted in the water being unpalatable which further limits the potential for iron toxicity from using the fish. The results suggest that the Lucky Iron Fish™ may be a safe treatment for iron deficiency.

  14. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenasemore » enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.« less

  15. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    PubMed

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  16. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis

    PubMed Central

    Veeranagouda, Yaligara; Husain, Fasahath; Boente, Renata; Moore, Jane; Smith, C. Jeffrey; Rocha, Edson R.; Patrick, Sheila; Wexler, Hannah M.

    2014-01-01

    Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear. Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole. Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo. Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis. PMID:25028451

  17. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  18. The role of biomineralization in microbiologically influenced corrosion

    NASA Technical Reports Server (NTRS)

    Little, B.; Wagner, P.; Hart, K.; Ray, R.; Lavoie, D.; Nealson, K.; Aguilar, C.

    1998-01-01

    Synthetic iron oxides (goethite, alpha-FeO.OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically.

  19. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  20. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  1. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values

    EPA Science Inventory

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed ...

  2. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats.

    PubMed

    Xiao, Chen; Lei, Xingen; Wang, Qingyu; Du, Zhongyao; Jiang, Lu; Chen, Silu; Zhang, Mingjie; Zhang, Hao; Ren, Fazheng

    2016-02-01

    This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.

  3. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution.

    PubMed

    Rantamäki, Susanne; Meriluoto, Jussi; Spoof, Lisa; Puputti, Eeva-Maija; Tyystjärvi, Taina; Tyystjärvi, Esa

    2016-12-01

    The Earth has had a permanently oxic atmosphere only since the great oxygenation event (GOE) 2.3-2.4 billion years ago but recent geochemical research has revealed short periods of oxygen in the atmosphere up to a billion years earlier before the permanent oxygenation. If these "whiffs" of oxygen truly occurred, then oxygen-evolving (proto)cyanobacteria must have existed throughout the Archaean aeon. Trapping of oxygen by ferrous iron and other reduced substances present in Archaean oceans has often been suggested to explain why the oxygen content of the atmosphere remained negligible before the GOE although cyanobacteria produced oxygen. We tested this hypothesis by growing cyanobacteria in anaerobic high-CO 2 atmosphere in a medium with a high concentration of ferrous iron. Microcystins are known to chelate iron, which prompted us also to test the effects of microcystins and nodularins on iron tolerance. The results show that all tested cyanobacteria, especially nitrogen-fixing species grown in the absence of nitrate, and irrespective of the ability to produce cyanotoxins, were iron sensitive in aerobic conditions but tolerated high concentrations of iron in anaerobicity. This result suggests that current cyanobacteria would have tolerated the high-iron content of Archaean oceans. However, only 1 % of the oxygen produced by the cyanobacterial culture was trapped by iron, suggesting that large-scale cyanobacterial photosynthesis would have oxygenated the atmosphere even if cyanobacteria grew in a reducing ocean. Recent genomic analysis suggesting that ability to colonize seawater is a secondary trait in cyanobacteria may offer a partial explanation for the sustained inefficiency of cyanobacterial photosynthesis during the Archaean aeon, as fresh water has always covered a very small fraction of the Earth's surface. If oxygenic photosynthesis originated in fresh water, then the GOE marks the adaptation of cyanobacteria to seawater, and the late-Proterozoic increase in oxygen concentration of the atmosphere is caused by full oxidation of the oceans.

  4. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.

    PubMed

    Sun, J L; Shang, C; Kikkert, G A

    2013-01-01

    A renewable granular iron-based technology for hydrogen sulfide removal from sediment and water in box culverts and storm drains is discussed. Iron granules, including granular ferric hydroxide (GFH), granular ferric oxide (GFO) and rusted waste iron crusts (RWIC) embedded in the sediment phase removed aqueous hydrogen sulfide formed from sedimentary biological sulfate reduction. The exhausted iron granules were exposed to dissolved oxygen and this regeneration process recovered the sulfide removal capacities of the granules. The recovery is likely attributable to the oxidation of the ferrous iron precipitates film and the formation of new reactive ferric iron surface sites on the iron granules and sand particles. GFH and RWIC showed larger sulfide removal capacities in the sediment phase than GFO, likely due to the less ordered crystal structures on their surfaces. This study demonstrates that the iron granules are able to remove hydrogen sulfide from sediment and water in box culverts and storm drains and they have the potential to be regenerated and reused by contacting with dissolved oxygen.

  5. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.

    PubMed

    Xenidis, Anthimos; Stouraiti, Christina; Papassiopi, Nymphodora

    2010-05-15

    The chemical immobilization of Pb and As in contaminated soil from Lavrion, Greece, using monocalcium phosphate and ferrous sulfate as stabilizing agents was investigated. Monocalcium phosphate was added to contaminated soil at PO(4) to Pb molar ratios equal to 0, 0.5, 1, 1.5 and 2.5, whereas ferrous sulfate was added at Fe to As molar ratios equal to 0, 2.5, 5, 10 and 20. Phosphates addition to contaminated soil decreased Pb leachability, but resulted in significant mobilization of As. Simultaneous immobilization of Pb and As was obtained only when soil was treated with mixtures of phosphates and ferrous sulfate. Arsenic uptake by plants was also seen to increase when soil was treated only with phosphates, but co-addition of ferrous sulfate was efficient in maintaining As phytoaccumulation at low levels. The addition of at least 1.5M/M phosphates and 10M/M iron sulfate to soil reduced the dissolved levels of Pb and As in the water extracts to values in compliance with the EU drinking water standards. However, both additives contributed in the acidification of soil, decreasing pH from 7.8 to values as low as 5.6 and induced the mobilization of pH sensitive elements, such as Zn and Cd. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Tularosa Basin Play Fairway Analysis: Hydrothermal Alteration Map

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done. This work was done under U.S. D.O.E. Contract #DE-EE0006730

  7. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    PubMed

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  8. Bronchoscopic and histological changes over time following acute ferrous sulphate tablet aspiration

    PubMed Central

    Maw, Matthew; Chiu, Robert; Lim, Albert Yick Hou

    2012-01-01

    An 84-year-old woman accidentally aspirated an iron tablet. She was successfully treated with early endobronchial removal of the iron tablet remnants, oral corticosteroids and antibiotics. We describe the bronchoscopic and histological changes over time following acute iron tablet aspiration and highlight the importance of early intervention to avoid complications. PMID:23257641

  9. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    PubMed

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)). Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site.

    PubMed

    Kwak, Yeonju; Schwartz, Jennifer K; Huang, Victor W; Boice, Emily; Kurtz, Donald M; Solomon, Edward I

    2015-12-01

    Ferritins and bacterioferritins (Bfrs) utilize a binuclear non-heme iron binding site to catalyze oxidation of Fe(II), leading to formation of an iron mineral core within a protein shell. Unlike ferritins, in which the diiron site binds Fe(II) as a substrate, which then autoxidizes and migrates to the mineral core, the diiron site in Bfr has a 2-His/4-carboxylate ligand set that is commonly found in diiron cofactor enzymes. Bfrs could, therefore, utilize the diiron site as a cofactor rather than for substrate iron binding. In this study, we applied circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field MCD (VTVH-MCD) spectroscopies to define the geometric and electronic structures of the biferrous active site in Escherichia coli Bfr. For these studies, we used an engineered M52L variant, which is known to eliminate binding of a heme cofactor but to have very minor effects on either iron oxidation or mineral core formation. We also examined an H46A/D50A/M52L Bfr variant, which additionally disrupts a previously observed mononuclear non-heme iron binding site inside the protein shell. The spectral analyses define a binuclear and an additional mononuclear ferrous site. The biferrous site shows two different five-coordinate centers. After O2 oxidation and re-reduction, only the mononuclear ferrous signal is eliminated. The retention of the biferrous but not the mononuclear ferrous site upon O2 cycling supports a mechanism in which the binuclear site acts as a cofactor for the O2 reaction, while the mononuclear site binds the substrate Fe(II) that, after its oxidation to Fe(III), migrates to the mineral core.

  11. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  12. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  13. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to <1mg/L. The system was highly effective in selectively removing iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. New Constraints on the Deposition and Alteration History of Mt. Sharp in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Horgan, B. H. N.; Fraeman, A.; Ackiss, S. E.

    2015-12-01

    The Mars Science Laboratory (MSL) rover is currently investigating the lower stratigraphy of northwestern Mt. Sharp, the 5 km thick stack of layered rock that makes up the central mound of Gale Crater. Previous near-infrared spectral investigations from orbit using CRISM have shown that this portion of the mound exhibits a diverse mineralogy that may indicate changing aqueous environments on early Mars. The relationship of these mineralogic units to stratigraphic units across the full extent of Mt. Sharp is not well understood, although such relationships are key to interpreting the depositional and digenetic history. Here we present new mineral maps derived from CRISM data, as well as detailed stratigraphic columns from around the mound, and we use these new results to constrain hypotheses for the modes of aqueous alteration. Our new CRISM mineral maps are projected and co-registered to HiRISE imagery and DEMs, and include Fe/Mg-smectites, poly- and mono-hydrated sulfates, iron oxides, high-Ca pyroxene, and a ferrous phase with a strong red spectral slope between 1.1-1.8 μm, which is consistent with ferrous alteration phases like ferrous clays. This latter unit consistently overlies Fe/Mg-smectites in NW and SW Mt. Sharp, and is located in topographic benches that are either immediately stratigaphically above hematite-bearing ridges. The presence of ferrous alteration phases supports previous interpretations that hematite formed when an Fe2+-bearing fluid encountered an oxidizing environment. In this scenario, the reducing fluids were created by long-term oxygen limited alteration of Fe-bearing minerals in the near-surface. Downward movement of these fluids may have been limited by the underlying clay layer, forcing lateral flow. On emergence at the surface, the iron was oxidized by photochemical or other redox reactions. On Earth, similar pedogenic processes form hematite ironpans on slopes surrounding poorly-drained hilltops, as well as ancient banded iron formations in shallow coastal waters. The reducing environment inferred from the ferrous phases could be a site of high organic preservation potential, and the redox gradient inferred from the ferric/ferrous mineral relationship could have served as an energy source for chemolithotrophic microbes.

  15. Evolution of the Large Copper Smelter — 1800s to 2013

    NASA Astrophysics Data System (ADS)

    Mackey, P. J.

    Over the course of Dr. Robertson's career, the ferrous and non-ferrous plants have seen enormous changes in technology and increases in plant capacity, essentially amounting to a "technological revolution". In iron and steel, the "mega" blast furnace of some 6,000 m3 working volume is now standard ( 10,000 tonnes (mt) of pig iron/day). Similar huge changes in process technology and plant size have occurred in the non-ferrous industry. As an example, the fuel-fired reverberatory furnace, once the mainstay of the copper industry, has disappeared — replaced by large capacity flash and bath smelting technologies. The energy consumption per unit mass of metal produced has also been reduced considerably. Our understanding of the thermodynamics and mechanisms of metallurgical reactions, a field to which Dr. Robertson has significantly contributed, has made great strides. This paper reviews these changes with particular reference to the copper smelting industry, providing also comments on expected future trends.

  16. Impact of iron source and concentration on rice flavor using a simulated rice kernel micronutrient delivery system.

    USDA-ARS?s Scientific Manuscript database

    An extruded grain designed to look like a rice kernel fortified with one of two sources of iron (elemental iron and ferrous sulfate), with and without multiple fortificant (zinc, thiamin and folic acid) was mixed with milled Calrose rice at low (1:200), medium (1:100) and high (1:50) concentrations....

  17. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  18. Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system.

    PubMed

    Katuwavila, Nuwanthi P; Perera, A D L C; Dahanayake, Damayanthi; Karunaratne, V; Amaratunga, Gehan A J; Karunaratne, D Nedra

    2016-11-20

    A novel, efficient delivery system for iron (Fe 2+ ) was developed using the alginate biopolymer. Iron loaded alginate nanoparticles were synthesized by a controlled ionic gelation method and was characterized with respect to particle size, zeta potential, morphology and encapsulation efficiency. Successful loading was confirmed with Fourier Transform Infrared spectroscopy and Thermogravimetric Analysis. Electron energy loss spectroscopy study corroborated the loading of ferrous into the alginate nanoparticles. Iron encapsulation (70%) was optimized at 0.06% Fe (w/v) leading to the formation of iron loaded alginate nanoparticles with a size range of 15-30nm and with a negative zeta potential (-38mV). The in vitro release studies showed a prolonged release profile for 96h. Release of iron was around 65-70% at pH of 6 and 7.4 whereas it was less than 20% at pH 2.The initial burst release upto 8h followed zero order kinetics at all three pH values. All the release profiles beyond 8h best fitted the Korsmeyer-Peppas model of diffusion. Non Fickian diffusion was observed at pH 6 and 7.4 while at pH 2 Fickian diffusion was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry.

    PubMed

    Theil, Elizabeth C

    2011-04-01

    The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity to include facilitated mineral growth. Ferritin protein cage differences include size, amino acid sequence, and location of the active sites, oxidant substrate and crystallinity of the iron mineral. Genetic regulation depends on iron and oxygen signals, which in animals includes direct ferrous signaling to RNA to release and to ubiquitin-ligases to degrade the protein repressors. Ferritin biosynthesis forms, with DNA, mRNA and the protein product, a feedback loop where the genetic signals are also protein substrates. The ferritin protein nanocages, which are required for normal iron homeostasis and are finding current use in the delivery of nanodrugs, novel nanomaterials, and nanocatalysts, are likely contributors to survival and success during the transition from anaerobic to aerobic life. Copyright © 2011. Published by Elsevier Ltd.

  20. Ferritin Protein Nanocages Use Ion Channels, Catalytic Sites, and Nucleation Channels To Manage Iron/Oxygen Chemistry

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity to include facilitated mineral growth. Ferritin protein cage differences include size, amino acid sequence, and location of the active sites, oxidant substrate and crystallinity of the iron mineral. Genetic regulation depends on iron and oxygen signals, which in animals includes direct ferrous signaling to RNA to release and to ubiquitin-ligases to degrade the protein repressors. Ferritin biosynthesis forms, with DNA, mRNA and the protein product, a feedback loop where the genetic signals are also protein substrates. The ferritin protein nanocages, which are required for normal iron homeostasis and are finding current use in delivery of nanodrugs, novel nanomaterials, and nanocatalysts, are likely contributors to survival and success during the transition from anaerobic to aerobic life. PMID:21296609

  1. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    PubMed Central

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  2. Evaluation of the Retrieval of Metallurgical Document References using the Universal Decimal Classification in a Computer-Based System.

    ERIC Educational Resources Information Center

    Freeman, Robert R.

    A set of twenty five questions was processed against a computer-stored file of 9159 document references in the field of ferrous metallurgy, representing the 1965 coverage of the Iron and Steel Institute (London) information service. A basis for evaluation of system performance characteristics and analysis of system failures was provided by using…

  3. Iron Accumulates in Huntington’s Disease Neurons: Protection by Deferoxamine

    PubMed Central

    Chen, Jianfang; Lai, Barry; Zhang, Zhaojie; Duce, James A.; Lam, Linh Q.; Volitakis, Irene; Bush, Ashley I.; Hersch, Steven

    2013-01-01

    Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD. PMID:24146952

  4. A practical and successful desensitization protocol for immediate hypersensitivity reactions to iron salts.

    PubMed

    Demir, Semra; Olgac, Muge; Unal, Derya; Gelincik, Asli; Colakoglu, Bahauddin; Buyukozturk, Suna

    2014-01-01

    Orally administered iron salts (OAS) are widely used in the management of iron deficiency anemia and hypersensitivity reactions to OAS are not common. If an offending drug is the sole option or is significantly more effective than its alternatives, it can be readministered by desensitization. The oral desensitization protocols for iron published so far concern either desensitization that was completed only over a long period or did not attain the recommended therapeutic dose. We aimed to develop a more effective protocol. We report here on 2 patients who experienced hypersensitivity reactions to OAS. After confirming the diagnosis, both patients were desensitized to oral ferrous (II) glycine sulfate complex according to a 2-day desensitization protocol. A commercial suspension of oral ferrous glycine sulfate, which contains 4 mg of elemental iron in 1 ml, was preferred. We started with a dose as low as 0.1 ml from a 1/100 dilution (0.004 mg elemental iron) of the original suspension and reached the maximum effective dose in 2 days. Both patients were successfully desensitized and they went on to complete the 6-month iron treatment without any adverse effects. Although hypersensitvity reactions to iron are not common, there is no alternative for iron administration. Therefore, desensitization has to be the choice. This easy desensitization protocol seems to be a promising option. © 2014 S. Karger AG, Basel.

  5. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  6. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    NASA Technical Reports Server (NTRS)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  7. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  8. Evaluation of different iron compounds in chlorotic Italian lemon trees (Citrus lemon).

    PubMed

    Ortiz, Patricio Rivera; Castro Meza, Blanca I; de la Garza Requena, Francisco R; Flores, Guillermo Mendoza; Etchevers Barra, Jorge D

    2007-05-01

    The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.

  9. Iron bioavailability in 8-24-month-old Thai children from a micronutrient-fortified quick-cooking rice containing ferric ammonium citrate or a mixture of ferrous sulphate and ferric sodium ethylenediaminetetraacetic acid.

    PubMed

    Chavasit, Visith; Porasuphatana, Suparat; Suthutvoravut, Umaporn; Zeder, Christroph; Hurrell, Richard

    2015-12-01

    A quick-cooking rice, produced from broken rice, is a convenient ingredient for complementary foods in Thailand. The rice is fortified with micronutrients including iron during the processing procedure, which can cause unacceptable sensory changes. A quick-cooking rice fortified with ferric ammonium citrate (FAC) or a mixture of ferrous sulphate (FeSO4 ) and ferric sodium ethylenediaminetetraacetic acid (NaFeEDTA), with a 2:1 molar ratio of iron from FeSO4  : iron from NaFeEDTA (FeSO4  + NaFeEDTA), gave a product that was organoleptically acceptable. The study compared iron absorption by infants and young children fed with micronutrient-fortified quick-cooking rice containing the test iron compounds or FeSO4 . Micronutrient-fortified quick-cooking rice prepared as a traditional Thai dessert was fed to two groups of 15 8-24-month healthy Thai children. The iron fortificants were isotopically labelled with (57) Fe for the reference FeSO4 or (58) Fe for the tested fortificants, and iron absorption was quantified based on erythrocyte incorporation of the iron isotopes 14 days after feeding. The relative bioavailability of FAC and of the FeSO4  + NaFeEDTA was obtained by comparing their iron absorption with that of FeSO4 . Mean fractional iron absorption was 5.8% [±standard error (SE) 1.9] from FAC and 10.3% (±SE 1.9) from FeSO4  + NaFeEDTA. The relative bioavailability of FAC was 83% (P = 0.02). The relative bioavailability of FeSO4  + NaFeEDTA was 145% (P = 0.001). Iron absorption from the rice containing FAC or FeSO4  + NaFeEDTA was sufficiently high to be used in its formulation, although iron absorption from FeSO4  + NaFeEDTA was significantly higher (P < 0.00001). © 2015 John Wiley & Sons Ltd.

  10. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  11. Role of Fe-Oxidizing Bacteria in Metal Bio-Corrosion in the Marine Environment

    DTIC Science & Technology

    2015-06-30

    laboratory. This system allowed control of Oj levels, pH, flow rates, and supplemental iron additions, and was designed so steel coupons could be...2012. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Special Topics eBook for Frontiers in

  12. Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments

    PubMed Central

    Sun, Wenjie; Sierra-Alvarez, Reyes; Milner, Lily; Oremland, Ron; Field, Jim A.

    2014-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3− to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flow sand filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (SF1) or absence (SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 µg l−1 was reduced to 10.6 (±9.6) µg l−1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5–10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns was close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by XRD and XPS. The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxides coated sands with adsorbed As(V). PMID:19764221

  13. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    PubMed

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Fe behavior in iron-bearing phonolitic and pantelleritic melts and its significance for magma dynamics in the volcanic conduits

    NASA Astrophysics Data System (ADS)

    Borovkov, Nikita; Hess, Kai-Uwe; Fehr, Karl-Thomas; Cimarelli, Corrado; Dingwell, Donald Bruce

    2014-05-01

    The style of volcanic eruptions is determined entirely by dynamics of magma ascent in conduits. Physical properties of a silicate melt, particulary viscosity, are responsible for fragmentation processes, bubble growth and their ascent, which are in their turn related to explosivity of eruptions. Therefore, comprehension of the macroscopic properties of silicate melts is required for adequate conduit modelling. Considering eruptions of Mt. Vesuvius, Italy, we observe that eruption style varies from strombolian to plinean and sub-plinean which is related to the changes of melts viscosity in conduits. At Vesuvius the composition of volcanic deposits (III phase) is mainly phonolitic with 5 - 8 wt. % FeO. Fe changes the valence and coordination depending on oxidation state. The changing of iron coordination causes increasing or decreasing viscosity because of the presence of higher or lower amounts of Fe species coordinated with stronger covalence bonds. Mossbauer spectra of iron-bearing natural pantelleritic and phonolitic glasses were studied to get data on speciation and coordination state of iron. Mössbauer spectroscopy measures hyperfine interactions (isomer shift (IS)) and quadrupole splitting (QS)) at Fe atoms embedded in glass structure, which provide the amount of ferric and ferrous iron and their coordination state depending on Redox conditions. Based on these data, we have considered redox-viscosity relationships and also iron coordination effects on viscosity of both mentioned natural melt compositions. For glasses, due to short range order, the Mössbauer spectra were fitted using mathematical procedures based on functional analysis (extended Voight lineshape included in "Recoil" and "Mosslab" software). Mössbauer spectra are deconvoluted in two sites: ferrous iron (IS=0,79-1,00 mm/s; QS= 1,78-2,25 mm/s) and ferric iron (IS=0,26-0,50 mm/s; QS= 0,75-0,95 mm/s). For both sites we observe that IS and QS gradually decrease towards more oxidized conditions. From functional analysis of Mössbauer spectra this increasing is due to transformation of iron coordination: Fe2+ [5]-Fe2+ [4] and Fe3+ [5]-Fe3+ [4], depending on Redox conditions. XANES data helps us to prove coordination transformation of Fe clearly. This methods (Giuli et al., 2011) reveal that Fe3+ is always in tetrahedral coordination and Fe2+ is in the form of both [4] and [5] species. The presence of minor [5] or even [6] cannot be excluded. Combining Mössbauer and XANES methods, we can suggest that more reduced samples include more high coordinated Fe species. Under oxidized conditions Fe3+ tends to be [4] - coordinated completely and amount of Fe2+ [5] decreases. Viscosity for phonolitic and pantelleritic melts increases as well with more oxidized conditions, suggesting more polymerized structure. Under reduced conditions, low viscosity means that some higher coordinated Fe2+ and Fe3+ sites occur in structure and function as a depolymerizing factor. Therefore, in the presence of iron-bearing peralkaline melts, the prediction of an eruptive style requires knowledge of the dependence of viscosity on thermodynamic parameters as well as dependence on RedOx conditions, which are responsible for ferric and ferrous iron structural transformations.

  15. Paralogous Outer Membrane Proteins Mediate Uptake of Different Forms of Iron and Synergistically Govern Virulence in Francisella tularensis tularensis*

    PubMed Central

    Ramakrishnan, Girija; Sen, Bhaswati; Johnson, Richard

    2012-01-01

    Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a 55Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host. PMID:22661710

  16. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

    Treesearch

    Thomas L. Eberhardt; Soo-Hong Min

    2008-01-01

    Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...

  17. Humic acids enhance the microbially mediated release of sedimentary ferrous iron.

    PubMed

    Chang, Chun-Han; Wei, Chia-Cheng; Lin, Li-Hung; Tu, Tzu-Hsuan; Liao, Vivian Hsiu-Chuan

    2016-03-01

    Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.

  18. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less

  19. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  20. First-principles study of intermediate-spin ferrous iron in the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Wentzcovitch, Renata M.

    2014-11-01

    Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ˜95 vol% of the Earth's lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2 +) (with total electron spin S =1 ) and its possible role in the pressure-induced spin crossover in these lower-mantle minerals still remain controversial. Using density functional theory + self-consistent Hubbard U (DFT+Usc ) calculations, we investigate all possible types of IS states of Fe2 + in (Mg,Fe)O and (Mg,Fe)SiO3 perovskite. Among the possible IS states in these minerals, the most probable IS state has an electronic configuration that significantly reduces the electron overlap and the iron nuclear quadrupole splitting (QS). These most probable IS states, however, are still energetically disfavored, and their QSs are inconsistent with Mössbauer spectra. We therefore conclude that IS Fe2 + is highly unlikely in the Earth's lower mantle.

  1. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    PubMed

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    PubMed

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (P<0.05) improved in dispersions of hydrolysate fraction solutions (10 g protein L(-1)). Total iron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  3. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  4. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification.

    PubMed

    Zhang, Meng; Zheng, Ping; Li, Wei; Wang, Ru; Ding, Shuang; Abbas, Ghulam

    2015-03-01

    Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159±0.01 kg-N/(m(3) d) and 0.073±0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77±2.97%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis.

    PubMed

    Ito, Fumiya; Nishiyama, Takahiro; Shi, Lei; Mori, Masahiko; Hirayama, Tasuku; Nagasawa, Hideko; Yasui, Hiroyuki; Toyokuni, Shinya

    2016-08-05

    Iron is an essential nutrient for every type of life on earth. However, excess iron is cytotoxic and can lead to an increased cancer risk in humans. Catalytic ferrous iron [Fe(II)] is an initiator of the Fenton reaction, which causes oxidative stress by generating hydroxyl radicals. Recently, it became possible to localize catalytic Fe(II) in situ with a turn-on fluorescent probe, RhoNox-1. Here, we screened each organ/cell of rats to globally evaluate the distribution of catalytic Fe(II) and found that eosinophils showed the highest abundance. In various cells, lysosomes were the major organelle, sharing ∼40-80% of RhoNox-1 fluorescence. We then used an ovalbumin-induced allergic peritonitis model to study the dynamics of catalytic Fe(II). Peritoneal lavage revealed that the total iron contents per cell were significantly decreased, whereas an increase in the number of inflammatory cells (macrophages, neutrophils, eosinophils and lymphocytes) resulted in an increased total iron content of the peritoneal inflammatory cells. Notably, macrophages, eosinophils and neutrophils exhibited significantly increased catalytic Fe(II) with increased DMT1 expression and decreased ferritin expression, though catalytic Fe(II) was significantly decreased in the peritoneal lavage fluid. In conclusion, catalytic Fe(II) in situ more directly reflects cellular activity and the accompanying pathology than total iron does. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    USGS Publications Warehouse

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  8. Spectroscopic characterization of (57)Fe-enriched cytochrome c.

    PubMed

    Leu, Bogdan M; Ching, Tom H; Tran, Cuong; Sage, J Timothy

    2012-04-01

    Investigation of the heme iron dynamics in cytochrome c with Mössbauer spectroscopy and especially nuclear resonance vibrational spectroscopy requires the replacement of the natural abundant heme iron with the (57)Fe isotope. For demetallization, we use a safer and milder ferrous sulfate-hydrochloric acid method in addition to the harsher commonly used hydrofluoric acid-based procedure. The structural integrity of the (57)Fe-reconstituted protein in both oxidation states is confirmed from absorption spectra and a detailed analysis of the rich resonance Raman spectra. These results reinforce the application of metal-substituted heme c proteins as reliable models for the native proteins. Published by Elsevier Inc.

  9. Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase.

    PubMed

    Blake, R C; Shute, E A

    1994-08-09

    Rusticyanin is an acid-stable, soluble blue copper protein found in abundance in the periplasmic space of Thiobacillus ferrooxidans, an acidophilic bacterium capable of growing autotrophically on soluble ferrous sulfate. An acid-stable iron:rusticyanin oxidoreductase activity was partially purified from cell-free extracts of T. ferrooxidans. The enzyme-catalyzed, iron-dependent reduction of the rusticyanin exhibited three kinetic properties characteristic of aerobic iron oxidation by whole cells. (i) A survey of 14 different anions indicated that catalysis by the oxidoreductase occurred only in the presence of sulfate or selenate, an anion specificity identical to that of whole cells. (ii) Saturation with both sulfatoiron(II) and the catalyst produced a concentration-independent rate constant of 3 s-1 for the reduction of the rusticyanin, which is an electron transfer reaction sufficiently rapid to account for the flux of electrons through the iron respiratory chain. (iii) Values for the enzyme-catalyzed pseudo-first-order rate constants for the reduction of the rusticyanin showed a hyperbolic dependence on the concentration of sulfatoiron(II) with a half-maximal effect at 300 microM, a value similar to the apparent KM for iron shown by whole cells. On the basis of these favorable comparisons between the behavior patterns of isolated biomolecules and those of whole cells, this iron:rusticyanin oxidoreductase is postulated to be the primary cellular oxidant of ferrous ions in the iron respiratory electron transport chain of T. ferrooxidans.

  10. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives.

    PubMed

    Hu, Yuyan; Yang, Fan; Chen, Fangfang; Feng, Yuheng; Chen, Dezhen; Dai, Xiaohu

    2018-05-01

    Co-pyrolysis with sewage sludge was proved to be an efficient pre-treatment for sanitary landfill of municipal solid waste incineration (MSWI) fly ash (FA). In this study, to improve the stabilization effect of heavy metals, mixed ferrous/ferric sulfate was added into the FA/SS mixture before pyrolysis. To examine the feasibility of the landfill of co-pyrolysis char, toxicity characteristic leaching procedure (HJ/T300) was conducted. In addition, physio-chemical characteristics of char were also tested to explain the stability of heavy metals, including the speciation, mineralogical composition and the morphological features of them. The results indicated that within the range that the obtained char could meet the standard for landfill (GB16889-2008), the appropriate addition of mixed ferrous/ferric sulfates benefit to raising the FA ratio in the FA/SS mixture. The maximum ratio of 67 wt% is achieved when the additive was 1.5 wt% of dried SS (based on iron element) and the pyrolysis temperature was 500 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Evidence that a formyl-substituted iron porphyrin is the prosthetic group of myeloperoxidase: magnetic circular dichroism similarity of the peroxidase to Spirographis heme-reconstituted myoglobin.

    PubMed Central

    Sono, M; Bracete, A M; Huff, A M; Ikeda-Saito, M; Dawson, J H

    1991-01-01

    To probe the identity of the active site heme-type prosthetic group of myeloperoxidase, whose structure has not been established unambiguously [proposed structures are (i) a chlorin (dihydroporphyrin) or (ii) a formyl-substituted porphyrin such as present in heme a], Spirographis heme (2-formyl-4-vinyldeuteroheme IX) has been incorporated into apo-myoglobin as a possible iron porphyrin model. Comparison of parallel derivatives of these two green proteins with magnetic circular dichroism spectroscopy reveals considerable similarities between several derivatives of these proteins, including the pyridine hemochromogen, the native ferric, ferrous-oxy, and ferrous-CO forms. In contrast, the magnetic circular dichroism spectra of available iron chlorin (octaethylchlorin) model complexes in analogous ligation and oxidation states do not show any significant spectral similarities to myeloperoxidase. This finding provides important evidence in favor of a formyl-substituted porphyrin as the structure of the prosthetic group macrocycle of myeloperoxidase. PMID:1662385

  13. Tracking Changes in Iron Mineralogy Through Time in Gale Crater and Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Sheppard, R.; Milliken, R.; Russell, J. M.

    2017-12-01

    Iron and other redox-sensitive elements measured in ancient mudstones of Gale Crater, Mars by the Curiosity rover can provide information on past climate and interactions between water and the early atmosphere. Preserved ferrous mineralogy can constrain lake bottom water conditions and potentially the relative position of the oxycline and/or shoreline through the stratigraphic section. Multiple oxidation states in a given assemblage may also indicate a potential energy source for microbes. The X-ray amorphous fraction of all rocks measured in Gale Crater to date is also enigmatic: it can constitute up to 50 wt% of the sediment but the precise composition and formation conditions are unknown. Features similar to those in the martian mudstones are seen in sediments from the terrestrial redox-stratified Lake Towuti, including alternating ferrous and ferric mineralogy and an abundant Fe-rich X-ray amorphous phase. To constrain conditions in the water column and early diagenetic processes, we present trends in chemistry and mineralogy for sediment acquired from soils in the mafic/ultramafic catchment and lake bottom/core samples. The soils contain high abundances of crystalline Fe-oxides (e.g. magnetite, goethite, hematite), whereas sediment from the very surface of the lake bottom maintain high Fe but not in crystalline form based on XRD. This suggests Fe is being rapidly cycled to form amorphous phases after entering the lake. Sequential extractions to isolate highly reactive iron (e.g. ferrihydrite) will be used to confirm the relative abundance of poorly crystalline phases in catchment versus lake sediment. Sediments from a 150 m core representing 1 Myr lake history also maintain high Fe content and distinct alternating bands of red and green sediment, but there are no crystalline Fe-oxides discernible in XRD data. The process(es) and timescale for this switching is not yet known, but understanding the conditions that allow ferrous vs. ferric iron to form, and what other changes happen concurrently with silicates such as clay minerals, may help constrain how to interpret lake sediment chemistry and mineralogy in terms of climate on Earth and Mars.

  14. Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria

    PubMed Central

    Steiner, Michael; Lazaroff, Norman

    1974-01-01

    A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066

  15. Microanalysis of iron oxidation states in earth and planetary materials

    NASA Astrophysics Data System (ADS)

    Bajt, S.; Sutton, S. R.; Delaney, J. S.

    1995-02-01

    Initial studies have been made on quantifying Fe oxidation states in different iron-bearing minerals using K-edge XANES. The energy of a weak pre-edge peak in the XANES spectrum due to 1s-3d electron transition was used to quantify ferric/ferrous ratios with microprobe spatial resolution. The estimated accuracy of the technique was +/- 10% in terms of Fe3+/((Fe2+ + Fe3+)). The detection limit was ~ 100 ppm with a synchrotron beam of ~ 100 μm in diameter. The pre-edge peak energy in well-characterized samples with known Fe oxidation states was found to be a linear function of the ferric/(ferrous) ratio. The technique was applied to altered magnetics (ideally Fe3O4), and various silicates and oxides from meteorites.

  16. No effect of H2O degassing on the oxidation state of hydrous rhyolite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations in six obsidian samples from the Mexican and Cascade arcs

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2011-12-01

    The extent to which degassing affects the oxidation state of arc magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of magmas, and it has been proposed that degassing may induce either oxidation or reduction depending on the initial oxidation state. A commonly proposed oxidation reaction is related to H2O degassing: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt). Another mechanism by which H2O degassing can affect the iron redox state is if dissolved water affects the activity of ferrous and/or ferric iron in the melt. Although Moore et al. (1995) presented experiments showing no evidence of an affect of dissolved water on the activity of the ferric-ferrous ratio in silicate melts, other experimental results (e.g., Baker and Rutherford, 1996; Gaillard et al., 2001; 2003) indicate that there may be such an effect in rhyolite liquids. It has long been understood that rhyolites, owing to their low total iron concentrations, are more sensitive than other magma types to degassing-induced change in redox state. Therefore, a rigorous test of whether H2O degassing affects the redox state of arc magmas is best evaluated on rhyolites. In this study, a comparison is made between the pre-eruptive (pre-degassing) Fe2+ concentrations in six, phenocryst-poor (<5%), fresh, glassy obsidian samples with their post-eruptive (post-degassing) Fe2+ concentrations. Near-liquidus co-precipitation of two Fe-Ti oxides allows the pre-eruptive oxygen fugacity and temperature to be calculated in each rhyolite using the oxygen barometer and thermometer of Ghiorso and Evans (2008). Temperatures range from 793 (± 19) to 939 (± 15) °C, and ΔNNO values (log10fO2 of sample - log10fO2 of Ni-NiO buffer) range from -0.4 to +1.4. These ΔNNO values allow the ferric-ferrous ratio in the liquid to be calculated, using the experimental calibration of Kress and Carmichael (1991), which relates melt composition (not including dissolved water), oxygen fugacity and temperature to melt ferric-ferrous ratios. With temperature known, the plagioclase-liquid hygrometer of Lange et al. (2009) was applied and maximum melt water concentrations range from 4.2 to 7.5 wt%. Both the oxidation state and water concentration are known prior to eruption, at the time of phenocryst growth. After eruption, the rhyolites lost nearly all of their volatiles, as indicated by the low loss on ignition values (LOI ≤ 0.7 wt%). In order to test how much oxidation of ferrous iron occurred as a consequence of that degassing, we measured the ferrous iron concentration in the bulk samples by titration, using the Wilson (1960) method, which was successfully tested again three USGS and one Canadian Geological Survey standards. Our results indicate no detectable change within analytical error between pre- and post-eruptive FeO concentrations, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%. Our results show that H2O degassing has no effect on the redox state of rhyolite magmas, which requires that dissolved water has no resolvable affect on the activity ratio of the iron oxide components in melt.

  17. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  18. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    PubMed Central

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  19. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron.

    PubMed

    Mori, Masahiko; Ito, Fumiya; Shi, Lei; Wang, Yue; Ishida, Chiharu; Hattori, Yuka; Niwa, Masato; Hirayama, Tasuku; Nagasawa, Hideko; Iwase, Akira; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-12-01

    Ovarian endometriosis is a recognized risk for infertility and epithelial ovarian cancer, presumably due to iron overload resulting from repeated hemorrhage. To find a clue for early detection and prevention of ovarian endometriosis-associated cancer, it is mandatory to evaluate catalytic (labile) ferrous iron (catalytic Fe(II)) and to study iron manipulation in ovarian endometriotic lesions. By the use of tissues from women of ovarian endometriosis as well as endometrial tissue from women with and without endometriosis, we for the first time performed histological analysis and cellular detection of catalytic Fe(II) with a specific fluorescent probe (HMRhoNox-M), and further evaluated iron transport proteins in the human specimens and in co-culture experiments using immortalized human eutopic/ectopic endometrial stromal cells (ESCs) in the presence or absence of epithelial cells (EpCs). The amounts of catalytic Fe(II) were higher in ectopic endometrial stromal cells (ecESCs) than in normal eutopic endometrial stromal cells (n-euESCs) both in the tissues and in the corresponding immortalized ESCs. ecESCs exhibited higher transferrin receptor 1 expression both in vivo and in vitro and lower ferroportin expression in vivo than n-euESCs, leading to sustained iron uptake. In co-culture experiments of ESCs with iron-loaded EpCs, ecESCs received catalytic ferrous iron from EpCs, but n-euESCs did not. These data suggest that ecESC play a protective role for cancer-target epithelial cells by collecting excess iron, and that these characteristics are retained in the immortalized ecESCs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  1. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    PubMed

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  2. Iron Determination in Meat Using Ferrozine Assay

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert

    Chromogens are chemicals that react with compounds of interest and form colored products that can be quantified using spectroscopy. Several chromogens that selectively react with minerals are available. In this lab, ferrozine is used to measure ferrous iron in an ashed food sample. The relationship between the absorbance of the chromogen-mineral complex is described by Beer's Law; in this procedure, a standard curve is generated with a stock iron solution to quantify the mineral in beef samples.

  3. Study of the oxidative half-reaction catalyzed by a non-heme ferrous catalytic center by means of structural and computational methodologies

    NASA Astrophysics Data System (ADS)

    Cicero, Giancarlo; Carbonera, Chiara; Valegård, Karin; Hajdu, Janos; Andersson, Inger; Ranghino, Graziella

    Deacetoxycephalosporin C synthase (DAOCS) is a mononuclear ferrous enzyme that catalyzes the expansion of the five-membered thiazolidine ring of the penicillin nucleus into the six-membered dihydrothiazine ring of the cephalosporins. In the first half-reaction with dioxygen and 2-oxoglutarate, a reactive iron-oxygen species is produced that can subsequently react with the penicillin substrate to yield the cephalosporin. We describe quantum mechanical calculations of the first part of the reaction based on the high-resolution structures of the active site of DAOCS and its complexes with ligands. These studies are aimed at understanding how the reactive species can be produced and contained in the active site of the enzyme. The results demonstrate the priming of the active site by the co-substrate for oxygen binding and hint to the presence of a stable iron-peroxo intermediate in equilibrium with a more reactive ferryl species and the formation of CO2 as a leaving group by decarboxylation of 2-oxoglutarate. A conclusion from these studies is that substitution of CO2 by the penicillin substrate triggers the oxidation reaction in a booby-trap-like mechanism.

  4. Iron bioavailability in Wistar rats fed with fortified rice by Ultra Rice technology with or without addition of yacon flour (Smallanthus sonchifolius).

    PubMed

    Della Lucia, Ceres M; Vaz Tostes, Maria das Graças; Silveira, Carlos Mário M; Bordalo, Lívia A; Rodrigues, Fabiana C; Pinheiro-Sant'Ana, Helena Maria; Martino, Hércia S D; Costa, Neuza Maria B

    2013-03-01

    This study aimed to evaluate iron (Fe) bioavailability in Wistar rats fed with rice fortified with micronized ferric pyrophosphate (FP) by Ultra Rice (UR) technology with or without addition of yacon flour as a source of 7.5% of fructooligosaccharides (FOS). Diets were supplied with 12 mg iron/kg from the following sources: ferrous sulfate (FS - control diet), fortified rice with micronized ferric pyrophosphate (Ultra Rice) (UR diet), ferrous sulfate + yacon flour (FS + Y diet) or Ultra Rice + yacon flour (UR + Y diet). Blood samples were collected at the end of depletion and repletion stages for determination of hemoglobin concentration and calculation of the relative biological value (RBV). Also, the content of short chain fatty acids (SCFA) (acetic, propionic and butyric acids) from animals' stools and caecum weight were determined. The UR diet showed high iron bioavailability (RBV = 84.7%). However, the addition of yacon flour in the diet containing fortified rice (UR + Y diet) decreased RBV (63.1%) significantly below the other three groups (p < 0.05). Groups that received yacon flour showed higher acetic acid values compared to those who did not. In conclusion, fortified UR with micronized ferric pyrophosphate showed high iron bioavailability but the addition of yacon flour at 7.5% FOS reduced iron bioavailability despite increased caecum weight and SCFA concentration.

  5. Siderophores as iron storage compounds in the yeasts Rhodotorula minuta and Ustilago sphaerogena detected by in vivo Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Matzanke, B. F.; Bill, E.; Trautwein, A. X.; Winkelmann, G.

    1990-07-01

    In the yeasts Rhodotorula minuta and Ustilago sphaerogena siderophores represent the main intracellular iron pool. We suggest a ferritin substituting function of these siderophores in addition to their role as iron transport agents. In Rhodotorula transport and storage siderophore is the same compound whereas in Ustilago the iron-storage siderophore is ferrichrome. Besides siderophores, merely two iron metabolites can be observed. Other iron-requiring compounds are at least one order of magnitude less abundant in these yeasts. The ferrous metabolite has been detected in many other microbial systems and seems to be of general occurence and importance.

  6. Point-of-use fortification of foods with micronutrient powders containing iron in children of preschool and school-age.

    PubMed

    De-Regil, Luz Maria; Jefferds, Maria Elena D; Peña-Rosas, Juan Pablo

    2017-11-23

    Approximately 600 million children of preschool and school age are anaemic worldwide. It is estimated that at least half of the cases are due to iron deficiency. Point-of-use fortification of foods with micronutrient powders (MNP) has been proposed as a feasible intervention to prevent and treat anaemia. It refers to the addition of iron alone or in combination with other vitamins and minerals in powder form, to energy-containing foods (excluding beverages) at home or in any other place where meals are to be consumed. MNPs can be added to foods either during or after cooking or immediately before consumption without the explicit purpose of improving the flavour or colour. To assess the effects of point-of-use fortification of foods with iron-containing MNP alone, or in combination with other vitamins and minerals on nutrition, health and development among children at preschool (24 to 59 months) and school (five to 12 years) age, compared with no intervention, a placebo or iron-containing supplements. In December 2016, we searched the following databases: CENTRAL, MEDLINE, Embase, BIOSIS, Science Citation Index, Social Science Citation Index, CINAHL, LILACS, IBECS, Popline and SciELO. We also searched two trials registers in April 2017, and contacted relevant organisations to identify ongoing and unpublished trials. Randomised controlled trials (RCTs) and quasi-RCTs trials with either individual or cluster randomisation. Participants were children aged between 24 months and 12 years at the time of intervention. For trials with children outside this age range, we included studies where we were able to disaggregate the data for children aged 24 months to 12 years, or when more than half of the participants were within the requisite age range. We included trials with apparently healthy children; however, we included studies carried out in settings where anaemia and iron deficiency are prevalent, and thus participants may have had these conditions at baseline. Two review authors independently assessed the eligibility of trials against the inclusion criteria, extracted data from included trials, assessed the risk of bias of the included trials and graded the quality of the evidence. We included 13 studies involving 5810 participants from Latin America, Africa and Asia. We excluded 38 studies and identified six ongoing/unpublished trials. All trials compared the provision of MNP for point-of-use fortification with no intervention or placebo. No trials compared the effects of MNP versus iron-containing supplements (as drops, tablets or syrup).The sample sizes in the included trials ranged from 90 to 2193 participants. Six trials included participants younger than 59 months of age only, four included only children aged 60 months or older, and three trials included children both younger and older than 59 months of age.MNPs contained from two to 18 vitamins and minerals. The iron doses varied from 2.5 mg to 30 mg of elemental iron. Four trials reported giving 10 mg of elemental iron as sodium iron ethylenediaminetetraacetic acid (NaFeEDTA), chelated ferrous sulphate or microencapsulated ferrous fumarate. Three trials gave 12.5 mg of elemental iron as microencapsulated ferrous fumarate. Three trials gave 2.5 mg or 2.86 mg of elemental iron as NaFeEDTA. One trial gave 30 mg and one trial provided 14 mg of elemental iron as microencapsulated ferrous fumarate, while one trial gave 28 mg of iron as ferrous glycine phosphate.In comparison with receiving no intervention or a placebo, children receiving iron-containing MNP for point-of-use fortification of foods had lower risk of anaemia prevalence ratio (PR) 0.66, 95% confidence interval (CI) 0.49 to 0.88, 10 trials, 2448 children; moderate-quality evidence) and iron deficiency (PR 0.35, 95% CI 0.27 to 0.47, 5 trials, 1364 children; moderate-quality evidence) and had higher haemoglobin (mean difference (MD) 3.37 g/L, 95% CI 0.94 to 5.80, 11 trials, 2746 children; low-quality evidence).Only one trial with 115 children reported on all-cause mortality (zero cases; low-quality evidence). There was no effect on diarrhoea (risk ratio (RR) 0.97, 95% CI 0.53 to 1.78, 2 trials, 366 children; low-quality evidence). Point-of-use fortification of foods with MNPs containing iron reduces anaemia and iron deficiency in preschool- and school-age children. However, information on mortality, morbidity, developmental outcomes and adverse effects is still scarce.

  7. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  8. THE EFFECT OF WATER CHEMISTRY AND IRON PARTICLE PROPERTIES ON THE REMOVAL OF ARSENIC FOLLOWING THE OXIDATION OF FERROUS IRON

    EPA Science Inventory

    The current MCL for arsenic is being revised to a lower level by the USEPA. Many new utilities, particularly small utilities, will be forced to add an arsenic removal process or fine tune their curent water treatment process to meet the new MCL. Many arsenic removal processes rel...

  9. Stabilized-solubilized ferric pyrophosphate as a new iron source for food fortification. Bioavailability studies by means of the prophylactic-preventive method in rats.

    PubMed

    Salgueiro, M J; Arnoldi, S; Kaliski, M A; Torti, H; Messeri, E; Weill, R; Zubillaga, M; Boccio, J

    2009-02-01

    The purpose of the present work was to evaluate the iron bioavailability of a new ferric pyrophosphate salt stabilized and solubilized with glycine. The prophylactic-preventive test in rats, using ferrous sulfate as the reference standard, was applied as the evaluating methodology both using water and yogurt as vehicles. Fifty female Sprague-Dawley rats weaned were randomized into five different groups (group 1: FeSO(4); group 2: pyr; group 3: FeSO(4) + yogurt; group 4: pyr + yogurt and group 5: control). The iron bioavailability (BioFe) of each compound was calculated using the formula proposed by Dutra-de-Oliveira et al. where BioFe % = (HbFef - HbFei) x 100/ToFeIn. Finally, the iron bioavailability results of each iron source were also given as relative biological value (RBV) using ferrous sulfate as the reference standard. The results showed that both BioFe % and RBV % of the new iron source tested is similar to that of the reference standard independently of the vehicle employed for the fortification procedure (FeSO(4) 49.46 +/- 12.0% and 100%; Pyr 52.66 +/- 15.02% and 106%; FeSO(4) + yogurth 54.39 +/- 13.92% and 110%; Pyr + yogurt 61.97 +/- 13.54% and 125%; Control 25.30 +/- 6.60, p < 0.05). Therefore, the stabilized and soluble ferric pyrophosphate may be considered as an optimal iron source for food fortification.

  10. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. B. Johnson; N. Okibe; F. F. Roberto

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstonemore » strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.« less

  11. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants.

    PubMed

    Paganini, Daniela; Uyoga, Mary A; Cercamondi, Colin I; Moretti, Diego; Mwasi, Edith; Schwab, Clarissa; Bechtler, Salome; Mutuku, Francis M; Galetti, Valeria; Lacroix, Christophe; Karanja, Simon; Zimmermann, Michael B

    2017-10-01

    Background: Whether consumption of prebiotics increases iron absorption in infants is unclear. Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants. Design: Infants ( n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57 FeFum+Na 58 FeEDTA or ferrous sulfate ( 54 FeSO 4 ). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models. Results: There was a significant group-by-compound interaction on iron absorption ( P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO 4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, ( P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively ( P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA ( P = 0.047) in the Fe+GOS group but not from the FeSO 4 ( P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO 4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. ( P = 0.008) and Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.018); Lactobacillus / Pediococcus / Leuconostoc spp. decreased in the Fe group ( P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group ( P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH ( P < 0.001) and positively correlated with Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.001). Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417. © 2017 American Society for Nutrition.

  12. Cold-Drawn Bioabsorbable Ferrous and Ferrous Composite Wires: An Evaluation of Mechanical Strength and Fatigue Durability

    NASA Astrophysics Data System (ADS)

    Schaffer, Jeremy E.; Nauman, Eric A.; Stanciu, Lia A.

    2012-08-01

    Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125- μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.

  13. A Survival Strategy for Pseudomonas aeruginosa That Uses Exopolysaccharides To Sequester and Store Iron To Stimulate Psl-Dependent Biofilm Formation

    PubMed Central

    Yu, Shan; Wei, Qing; Zhao, Tianhu; Guo, Yuan

    2016-01-01

    ABSTRACT Exopolysaccharide Psl is a critical biofilm matrix component in Pseudomonas aeruginosa, which forms a fiber-like matrix to enmesh bacterial communities. Iron is important for P. aeruginosa biofilm development, yet it is not clearly understood how iron contributes to biofilm development. Here, we showed that iron promoted biofilm formation via elevating Psl production in P. aeruginosa. The high level of iron stimulated the synthesis of Psl by reducing rhamnolipid biosynthesis and inhibiting the expression of AmrZ, a repressor of psl genes. Iron-stimulated Psl biosynthesis and biofilm formation held true in mucoid P. aeruginosa strains. Subsequent experiments indicated that iron bound with Psl in vitro and in biofilms, which suggested that Psl fibers functioned as an iron storage channel in P. aeruginosa biofilms. Moreover, among three matrix exopolysaccharides of P. aeruginosa, Psl is the only exopolysaccharide that can bind with both ferrous and ferric ion, yet with higher affinity for ferrous iron. Our data suggest a survival strategy of P. aeruginosa that uses exopolysaccharide to sequester and store iron to stimulate Psl-dependent biofilm formation. IMPORTANCE Pseudomonas aeruginosa is an environmental microorganism which is also an opportunistic pathogen that can cause severe infections in immunocompromised individuals. It is the predominant airway pathogen causing morbidity and mortality in individuals affected by the genetic disease cystic fibrosis (CF). Increased airway iron and biofilm formation have been proposed to be the potential factors involved in the persistence of P. aeruginosa in CF patients. Here, we showed that a high level of iron enhanced the production of the key biofilm matrix exopolysaccharide Psl to stimulate Psl-dependent biofilm formation. Our results not only make the link between biofilm formation and iron concentration in CF, but also could guide the administration or use of iron chelators to interfere with biofilm formation in P. aeruginosa in CF patients. Furthermore, our data also imply a survival strategy of P. aeruginosa under high-iron environmental conditions. PMID:27565622

  14. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution. PMID:24765096

  15. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  16. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study.

    PubMed

    Wander, Matthew C F; Kerisit, Sebastien; Rosso, Kevin M; Schoonen, Martin A A

    2006-08-10

    Uranium is a pollutant whose mobility is strongly dependent on its oxidation state. While U(VI) in the form of the uranyl cation is readily reduced by a range of natural reductants, by contrast complexation of uranyl by carbonate greatly reduces its reduction potential and imposes increased electron transfer (ET) distances. Very little is known about the elementary processes involved in uranium reduction from U(VI) to U(V) to U(IV) in general. In this study, we examine the theoretical kinetics of ET from ferrous iron to triscarbonato uranyl in aqueous solution. A combination of molecular dynamics (MD) simulations and density functional theory (DFT) electronic structure calculations is employed to compute the parameters that enter into Marcus' ET model, including the thermodynamic driving forces, reorganization energies, and electronic coupling matrix elements. MD simulations predict that two ferrous iron atoms will bind in an inner-sphere fashion to the three-membered carbonate ring of triscarbonato uranyl, forming the charge-neutral ternary Fe(2)UO(2)(CO(3))(3)(H(2)O)(8) complex. Through a sequential proton-coupled electron-transfer mechanism (PCET), the first ET step converting U(VI) to U(V) is predicted by DFT to occur with an electronic barrier that corresponds to a rate on the order of approximately 1 s(-1). The second ET step converting U(V) to U(IV) is predicted to be significantly endergonic. Therefore, U(V) is a stabilized end product in this ET system, in agreement with experiment.

  17. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, Wayne L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  18. Fortification of wheat flour and maize meal with different iron compounds: results of a series of baking trials.

    PubMed

    Randall, Philip; Johnson, Quentin; Verster, Anna

    2012-12-01

    Wheat and maize flour fortification is a preventive food-based approach to improve the micronutrient status of populations. In 2009, the World Health Organization (WHO) released recommendations for such fortification, with guidelines on the addition levels for iron, folic acid, vitamin B12, vitamin A, and zinc at various levels of average daily consumption. Iron is the micronutrient of greatest concern to the food industry, as some believe there may be some adverse interaction(s) in some or all of the finished products produced from wheat flour and maize meal. To determine if there were any adverse interactions due to selection of iron compounds and, if differences were noted, to quantify those differences. Wheat flour and maize meal were sourced in Kenya, South Africa, and Tanzania, and the iron compound (sodium iron ethylenediaminetetraacetate [NaFeEDTA], ferrous fumarate, or ferrous sulfate) was varied and dosed at rates according to the WHO guidelines for consumption of 75 to 149 g/day of wheat flour and > 300 g/day of maize meal and tested again for 150 to 300 g/day for both. Bread, chapatti, ugali (thick porridge), and uji (thin porridge) were prepared locally and assessed on whether the products were acceptable under industry-approved criteria and whether industry could discern any differences, knowing that differences existed, by academic sensory analysis using a combination of trained and untrained panelists and in direct side-by-side comparison. Industry (the wheat and maize milling sector) scored the samples as well above the minimal standard, and under academic scrutiny no differences were reported. Side-by-side comparison by the milling industry did indicate some slight differences, mainly with respect to color, although these differences did not correlate with any particular iron compound. The levels of iron compounds used, in accordance with the WHO guidelines, do not lead to changes in the baking and cooking properties of the wheat flour and maize meal. Respondents trained to measure against a set benchmark and/or discern differences could not consistently replicate perceived difference observations.

  19. A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    NASA Astrophysics Data System (ADS)

    Perez, T. M.; Finkelstein, G. J.; Solomatova, N. V.; Jackson, J. M.

    2017-12-01

    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4*H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and suggested to occur near the surface of Venus [1,2]. It is not clear if these sulfates are a result of reactions occurring at depth driven by changes in the behavior of iron in the sulfate. To date, only a few high-pressure studies have been conducted on hydrated iron sulfates using Mössbauer spectroscopy. Our study represents a first step towards understanding of the electronic environment of iron in a monohydrated sulfate at pressure. Using a hydrostatic helium pressure-transmitting medium, the pressure dependence of iron's site-specific behavior in a synthetic szomolnokite powdered sample was explored up to about 100 GPa with time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source of Argonne National Laboratory. At 1 bar, the Mössbauer spectrum is well described by three Fe2+-like sites, consistent with conventional Mössbauer spectra reported in Dyar et al. [3]. At pressures up to 20 GPa, changes in the hyperfine parameters are most likely due to a structural phase transition. Above this pressure, a fourth site is required to explain the time-spectra. Changes in the electronic configuration of iron, such as those due to a phase transition and/or a spin crossover, will affect the material's compressibility and transport properties. We will compare our high-pressure trends with those of other iron-bearing phases and discuss the relative influence on the dynamics of terrestrial planetary interiors. 1. Bishop et al. (2014) What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Min. 99(8-9), 1580-1592. Wendt et al. (2011) Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213(1). 86-103. 2. Barsukov et al. (1982) The crust of Venus: theoretical models of chemical and mineral composition. JGR, 87(S01). 3. Dyar et al. (2013) Mössbauer parameters of iron in sulfate minerals. Am. Min. DOI: 10.2138/am.2013.4604.

  20. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Yu, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan; McGenity, Terry J.; Coleman, Max

    2008-06-01

    The solution chemistry during the initial (slow increase of dissolved iron and sulfate) and main stage (rapid increase of dissolved iron and sulfate) of pyrite leaching by Acidithiobacillus ferrooxidans (Af) at a starting pH of 2.05 shows significant differences. During the initial stage, ferrous iron (Fe2+) is the dominant iron species in solution and the molar ratio of produced sulfate (SO42-) and total iron (Fetot) is 1.1, thus does not reflect the stoichiometry of pyrite (FeS2). During the main stage, ferric iron (Fe3+) is the dominant iron species in solution and the SO42-:Fetot ratio is with 1.9, close to the stoichiometry of FeS2. Another difference between initial and main stage is an initial trend to slightly higher pH values followed by a drop during the main stage to pH 1.84. These observations raise the question if there are different modes of bioleaching of pyrite, and if there are, what those modes imply in terms of leaching mechanisms. Different oxygen and sulfur isotope trends of sulfate during the initial and main stages of pyrite oxidation confirm that there are two pyrite bioleaching modes. The biochemical reactions during initial stage are best explained by the net reaction FeS2 + 3O2 ⇒ Fe2+ + SO42- + SO2(g). The degassing of sulfur dioxide (SO2) acts as sink for sulfur depleted in 34S compared to pyrite, and is the cause of the SO42-:Fetot ratio of 1.1 and the near constant pH. During the exponential phase, pyrite sulfur is almost quantitatively converted to sulfate, according to the net reaction FeS2 + 15/4O2 + 1/2H2O ⇒ Fe3+ + 2SO42- + H+. We hypothesize that the transition between the modes of bioleaching of pyrite is due to the impact of the accumulation of ferrous iron, which induces changes in the metabolic activity of Af and may act as an inhibitor for the oxidation of sulfur species. This transition defines a fundamental change in the growth strategy of Af. A mode, where bacteria gain energy by oxidation of elemental sulfur to sulfite but show little growth is switched into a mode, where bacteria gain a smaller amount of energy by the oxidation of ferrous iron, but induce much faster pyrite leaching rates due to the production of ferric iron.

  1. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhang, Shasha; Liu, Lanlan; Zhou, Lixiang; Fan, Wenhua

    2015-01-01

    Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O solution at different supply rates. Specific surface area and arsenic (III) removal capacity of schwertmannite have also been studied. Results showed that pH decreased from ~3.48 to ~1.96, ~2.06, ~2.12, ~2.14, or ~2.17 after 60 h reaction when the ferrous ions solution received the following corresponding amounts of H2O2: 1.80 mL at 2 h (treatment 1); 0.90 mL at 2 h and 14 h (treatment 2); 0.60 mL at 2, 14, and 26 h (treatment 3); 0.45 mL at 2, 14, 26, and 38 h (treatment 4), or 0.36 mL at 2, 14, 26, 38, and 50 h (treatment 5). Slow H2O2 supply significantly inhibited the total iron precipitation efficiency but improved the specific surface area or arsenic (III) removal capacity of schwertmannite. For the initial 50.0 μg/L arsenic (III)-contaminated water under pH ~7.0 and using 0.25 g/L schwertmannite as an adsorbent, the total iron precipitation efficiency, specific surface area of the harvested schwertmannite, and schwertmannite arsenic(III) removal efficiency were 29.3%, 2.06 m2/g, and 81.1%, respectively, in treatment 1. However, the above parameters correspondingly changed to 17.3%, 16.30 m2/g, and 96.5%, respectively, in treatment 5.

  2. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    PubMed Central

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  3. Iron-based ferritin nanocore as a contrast agent.

    PubMed

    Sana, Barindra; Johnson, Eric; Sheah, Kenneth; Poh, Chueh Loo; Lim, Sierin

    2010-09-01

    Self-assembling protein cages have been exploited as templates for nanoparticle synthesis. The ferritin molecule, a protein cage present in most living systems, stores excess soluble ferrous iron in the form of an insoluble ferric complex within its cavity. Magnetic nanocores formed by loading excess iron within an engineered ferritin from Archaeoglobus fulgidus (AfFtn-AA) were studied as a potential magnetic resonance (MR) imaging contrast agent. The self-assembly characteristics of the AfFtn-AA were investigated using dynamic light scattering technique and size exclusion chromatography. Homogeneous size distribution of the assembled nanoparticles was observed using transmission electron microscopy. The magnetic properties of iron-loaded AfFtn-AA were studied using vibrating sample magnetometry. Images obtained from a 3.0 T whole-body MRI scanner showed significant brightening of T(1) images and signal loss of T(2) images with increased concentrations of iron-loaded AfFtn-AA. The analysis of the MR image intensities showed extremely high R(2) values (5300 mM(-1) s(-1)) for the iron-loaded AfFtn-AA confirming its potential as a T(2) contrast agent.

  4. Ferrous Analysis.

    ERIC Educational Resources Information Center

    Straub, William A.

    1989-01-01

    Elements covered in this review include: aluminum, antimony, arsenic, bismuth, boron, calcium, carbon, chromium, cobalt, copper, hydrogen, iron, lead, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, oxygen, phosphorus, platinum, rare earths, silicons, sulfur, tin, titanium, tungsten, vanadium, zinc, and zirconium. Analytical methods…

  5. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    PubMed

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  6. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    DOE PAGES

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.; ...

    2016-01-06

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessedmore » by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. In conclusion, our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.« less

  7. Microbial Metabolism Shifts Towards an Adverse Profile with Supplementary Iron in the TIM-2 In vitro Model of the Human Colon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortman, Guus A. M.; Dutilh, Bas E.; Maathuis, Annet J. H.

    Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 μmol/L ferrous sulfate, 50 or 250 μmol/L ferric citrate, or 50 μmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessedmore » by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and 1H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. In conclusion, our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.« less

  8. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  9. Iron amendments to reduce bioaccessible arsenic.

    PubMed

    Cutler, William G; El-Kadi, Aly; Hue, Nguyen V; Peard, John; Scheckel, Kirk; Ray, Chittaranjan

    2014-08-30

    Former sugarcane lands on the Island of Hawaii have elevated levels of soil arsenic (As) from historical use of arsenical pesticides. The bioaccessible fraction of total As (AsTOT), a measure of the potential for human As uptake by incidental ingestion of soil, is used in the assessment of human health risk and the determination of the need for remedial action. Ferric chloride plus lime and ferrous sulfate plus lime were applied to As-contaminated soils in a field plot setting to determine the potential for reducing in vitro bioaccessible As (AsIVBA) by increasing As sequestration by the formation of additional iron (Fe) oxyhydroxides. The two Fe sources performed similarly in reducing AsIVBA over a 2-year observation period, with 30-41% reduction in AsIVBA for 0.25wt% Fe dosing (dry soil basis) and 59-63% reduction for 0.5wt% Fe dosing. Addition of phosphate (PO4) to treated and untreated soils caused a significant increase in AsIVBA. Iron-treated and control soils showed more than twice the AsIVBA after the addition of 1500mgPkg(-1). The cost of in situ treatment of As-contaminated soil with ferrous sulfate plus lime to lower AsIVBA was estimated to be an order of magnitude less than excavation and landfill disposal on the Island of Hawaii, making the technology a viable alternative when remedial action objectives were based on AsIVBA levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been compared to mineralogical data from purely biotic (microaerophilic) and abiotic iron mineral formation processes.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theil, Elizabeth C.; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720

    Ferritins are protein nanocages that use iron and oxygen chemistry to concentrate iron and trap dioxygen or hydrogen peroxide in biominerals of hydrated ferric oxides, 5-8 nm in diameter, inside the cages. The proteins are found in nature from archea to humans. Protein catalytic sites are embedded in the protein cage and initiate mineralization by oxido-reduction of ferrous ions and dioxygen or hydrogen peroxide to couple two iron ions through a peroxo bridge, followed by decay to diferric oxo/hydroxyl mineral precursors; ferritin protein subdomains that fold/unfold independently of the protein cage control recovery of ferrous ions from the mineral. Earlymore » EXAFS (1978) was extremely useful in defining the ferritin mineral. More recent use of rapid freeze quench (RFQ) EXAFS spectroscopies, coupled with RFQ Moessbauer, Resonance Raman and rapid mixing UV-vis spectroscopy, have identified and characterized unusual ferritin protein catalytic intermediates and mineral precursors. EXAFS spectroscopy can play an important role in the future understanding of protein catalysis in metalloproteins such as ferritin, ribonucleotide reductase and methane monooxygenases. Needed are instrumentation improvements that will provide rapid-scan fluorescence spectra with high signal/noise ratios.« less

  12. Cooking and Fe fortification have different effects on Fe bioavailability of bread and tortillas.

    PubMed

    Hernández, Miguel; Sousa, Virginia; Villalpando, Salvador; Moreno, Ambar; Montalvo, Irene; López-Alarcón, Mardya

    2006-02-01

    To identify iron sources for wheat- (WF) and corn-flour (CF) fortification taking into account the effect of cooking. Sixty-six Fe-depleted rats were replete with various Fe sources. Fe bioavailability and utilization in wheat bread (WB) and corn tortillas (CT) fortified with various Fe sources was assessed after the depletion and repletion periods. Baking decreased the phytates content of WF by 97%. Improvements in Hb and FeHb were greater in rats fed unfortified WB than in those fed unfortified WF. Fe fortification had no benefit. In contrast, phytates content was unchanged by tortilla preparation, but fortification improved iron availability. Iron bioavailability indicators were best in rats fed CT fortified with ferrous sulfate and NaFe(III)EDTA than in those fed unfortified CT or CT plus reduced Fe. We concluded that baking WF bread improved the bioavailability of native Fe with no further effect of fortification. Pan-cooking of lime-treated CF did not improve Fe bioavailability, but addition of Ferrous sulfate or NaFe(III)EDTA did it, despite the high phytate and calcium content of tortillas.

  13. Immobilization of Acidithiobacillus ferrooxidans on sulfonated microporous poly(styrene-divinylbenzene) copolymer with granulated activated carbon and its use in bio-oxidation of ferrous iron.

    PubMed

    Koseoglu-Imer, Derya Yuksel; Keskinler, Bulent

    2013-01-01

    The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe(2+) biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe(2+) biooxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A Mössbauer spectroscopic study of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron(II)

    NASA Astrophysics Data System (ADS)

    Boso, Brian; Lang, George; Reed, Christopher A.

    1983-03-01

    Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.

  15. The Mismetallation of Enzymes during Oxidative Stress*

    PubMed Central

    Imlay, James A.

    2014-01-01

    Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity. PMID:25160623

  16. Catalytic degradation of picric acid by heterogeneous Fenton-based processes.

    PubMed

    Dulova, Niina; Trapido, Marina; Dulov, Aleksandr

    2011-01-01

    The efficiency of goethite, magnetite and iron powder (Fe0) in catalysing the Fenton-based oxidation of picric acid (PA) in aqueous solution was studied. The effect of pH, hydrogen peroxide concentration, and catalyst type and dosage on treatment efficacy was investigated. The adsorption of PA from aqueous solution by heterogeneous catalysts was also examined. The results demonstrated negligible PA removal in H2O2/alpha-FeOOH and H2O2/Fe3O4 systems independent of process pH, and hydrogen peroxide and catalyst dosage. The PA adsorption effects of both iron oxides turned out to be insignificant for all studied pH values and catalyst dosages. The H2O2/Fe0 system proved efficient at degrading PA, but only under acidic conditions (pH 3). The results indicated that, due to rather fast leaching of ferrous ions from the iron powder surface, PA degradation was carried out mainly by the classic Fenton oxidation mechanism in the bulk solution. The adsorption of PA onto the iron powder surface may also contribute to the overall efficiency of PA degradation.

  17. Potentially bioavailable ferrous iron nanoparticles in glacial sediments

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Benning, L. G.; Raiswell, R.; Kaulich, B.; Araki, T.; Abyaneh, M.; Koch-Müller, M.; Stockdale, A.; Tranter, M.; Wadham, J.

    2017-12-01

    Iron (Fe) is an essential nutrient for marine phytoplankton, the primary producers of the ocean. Despite it being the fourth most abundant element in the Earth's crust, it is highly insoluble, due in part to its rapid oxidation from ferric (Fe2+) to ferrous phases (Fe3+), which often leads to the formation of nanoparticulate iron oxyhydroxide phases1. The insoluble nature of Fe in oxygenated waters means Fe limitation of primary producers is prevalent in 30-50% of the world's oceans, including areas of high biological productivity proximal to significant glacial activity (e.g., the Southern Ocean). Glaciers and ice sheets are a significant source of nanoparticulate Fe, which may be important in sustaining the high productivity observed in the near coastal regions proximal to glacial coverage. The reactivity of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. Here we combined geochemical extractions, high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of reactive iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich nanoparticles in glacial meltwaters and icebergs. Fe(II) is thought to be highly bioavailable in marine environments. We argue that glaciers and ice sheets are therefore able to supply potentially bioavailable Fe(II)-containing nanoparticulate material for downstream ecosystems, including those in a marine setting. The flux of bioavailable particulate iron from Arctic glaciers may increase as rising air temperatures lead to higher meltwater export.

  18. Resistance to High-Temperature Oxidation and Wear of Various Ferrous Alloys Used in Rolling Mills

    NASA Astrophysics Data System (ADS)

    Delaunois, Fabienne; Stanciu, Victor Ioan; Sinnaeve, Mario

    2018-03-01

    Various materials are commonly used to manufacture work rolls for hot rolling mills, such as ICDP (Indefinite Chill Double Pour) cast irons, high-chromium white cast irons, and high speed steels (HSS). Various chemical compositions and microstructures are studied in order to optimize the in-use behavior of those grades of rolls. In this paper, six grades of ferrous alloys (an ICDP cast iron; an ICDP cast iron enriched in vanadium, niobium, and molybdenum; a HSS; a graphitic HSS; a high-chromium white cast iron (Hi-Cr); and a niobium-molybdenum-doped high-chromium white cast iron) were investigated. High-temperature oxidation tests with gravimetric means at 575 °C in water vapor atmosphere and sliding wear tests were carried out. The oxidation kinetics was followed during oxidation test. The microstructure was observed by optical and scanning electron microscopies. The oxides formed on the surface of the samples were analyzed by XRD and EDS. The thickness of the oxide scales and the mass gain were measured after oxidation test. The results showed that the behavior of all the grades differed. The oxide scale of HSS and HSS-G grades was fine and their friction coefficient was low. The weight gain after oxidation test of HSS was high. Hi-Cr and M-Hi-Cr grades presented highly porous oxide layer and an important increase of the friction coefficient during wear test. ICDP and M-ICDP had intermediate behavior.

  19. First Direct Dating for the Construction and Modification of the Baphuon Temple Mountain in Angkor, Cambodia.

    PubMed

    Leroy, Stéphanie; Hendrickson, Mitch; Delqué-Kolic, Emmanuelle; Vega, Enrique; Dillmann, Philippe

    2015-01-01

    Architecture represents key evidence of dynastic practice and change in the archaeological world. Chronologies for many important buildings and sequences, including the iconic temples of medieval Angkor in Cambodia, are based solely on indirect associations from inscriptions and architectural styles. The Baphuon temple, one of the last major buildings in Angkor without textual or scientifically-derived chronological evidence, is crucial both for the context and date of its construction and the period when its western façade was modified into a unique, gigantic Reclining Buddha. Its construction was part of a major dynastic change and florescence of the Hindu-Mahayana Buddhist state and the modification is the key evidence of Theravada Buddhist power after Angkor's decline in the 15th century. Using a newly-developed approach based on AMS radiocarbon dating to directly date four iron crampons integrated into the structure we present the first direct evidence for the history of the Baphuon. Comprehensive study of ferrous elements shows that both construction and modification were critically earlier than expected. The Baphuon can now be considered as the major temple associated with the imperial reformations and territorial consolidation of Suryavarman I (1010-1050 AD) for whom no previous building to legitimize his reign could be identified. The Theravada Buddhist modification is a hundred years prior to the conventional 16th century estimation and is not associated with renewed use of Angkor. Instead it relates to the enigmatic Ayutthayan occupation of Angkor in the 1430s and 40s during a major period of climatic instability. Accurately dating iron with relatively low carbon content is a decisive step to test long-standing assumptions about architectural histories and political processes for states that incorporated iron into buildings (e.g., Ancient Greece, medieval India). Furthermore, this new approach has the potential to revise chronologies related to iron consumption practices since the origins of ferrous metallurgy three millennia ago.

  20. First Direct Dating for the Construction and Modification of the Baphuon Temple Mountain in Angkor, Cambodia

    PubMed Central

    Leroy, Stéphanie; Hendrickson, Mitch; Delqué-Kolic, Emmanuelle; Vega, Enrique; Dillmann, Philippe

    2015-01-01

    Architecture represents key evidence of dynastic practice and change in the archaeological world. Chronologies for many important buildings and sequences, including the iconic temples of medieval Angkor in Cambodia, are based solely on indirect associations from inscriptions and architectural styles. The Baphuon temple, one of the last major buildings in Angkor without textual or scientifically-derived chronological evidence, is crucial both for the context and date of its construction and the period when its western façade was modified into a unique, gigantic Reclining Buddha. Its construction was part of a major dynastic change and florescence of the Hindu-Mahayana Buddhist state and the modification is the key evidence of Theravada Buddhist power after Angkor's decline in the 15th century. Using a newly-developed approach based on AMS radiocarbon dating to directly date four iron crampons integrated into the structure we present the first direct evidence for the history of the Baphuon. Comprehensive study of ferrous elements shows that both construction and modification were critically earlier than expected. The Baphuon can now be considered as the major temple associated with the imperial reformations and territorial consolidation of Suryavarman I (1010–1050 AD) for whom no previous building to legitimize his reign could be identified. The Theravada Buddhist modification is a hundred years prior to the conventional 16th century estimation and is not associated with renewed use of Angkor. Instead it relates to the enigmatic Ayutthayan occupation of Angkor in the 1430s and 40s during a major period of climatic instability. Accurately dating iron with relatively low carbon content is a decisive step to test long-standing assumptions about architectural histories and political processes for states that incorporated iron into buildings (e.g., Ancient Greece, medieval India). Furthermore, this new approach has the potential to revise chronologies related to iron consumption practices since the origins of ferrous metallurgy three millennia ago. PMID:26535895

  1. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be constructed from black iron or carbon steel. (c) A fuel tank encased in cellular plastic or in fiber reinforced plastic must not be constructed from a ferrous alloy. [CGD 74-209, 42 FR 5950, Jan. 31...

  2. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be constructed from black iron or carbon steel. (c) A fuel tank encased in cellular plastic or in fiber reinforced plastic must not be constructed from a ferrous alloy. [CGD 74-209, 42 FR 5950, Jan. 31...

  3. Catalytic coal hydroliquefaction process

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

  4. The interaction of natural organic matter with iron in a wetland (Tennessee Park, Colorado) receiving acid mine drainage

    USGS Publications Warehouse

    Peiffer, Stefan; Walton-Day, Katherine; Macalady, Donald L.

    1999-01-01

    Pore water from a wetland receiving acid mine drainage was studied for its iron and natural organic matter (NOM) geochemistry on three different sampling dates during summer 1994. Samples were obtained using a new sampling technique that is based on screened pipes of varying length (several centimeters), into which dialysis vessels can be placed and that can be screwed together to allow for vertical pore-water sampling. The iron concentration increased with time (through the summer) and had distinct peaks in the subsurface. Iron was mainly in the ferrous form; however, close to the surface, significant amounts of ferric iron (up to 40% of 2 mmol L-1 total iron concentration) were observed. In all samples studied, iron was strongly associated with NOM. Results from laboratory experiments indicate that the NOM stabilizes the ferric iron as small iron oxide colloids (able to pass a 0.45μm dialysis membrane). We hypothesize that, in the pore water of the wetland, the high NOM concentrations (>100 mg C L-1) allow formation of such colloids at the redoxcline close to the surface and at the contact zone to the adjacent oxic aquifer. Therefore, particle transport along flow paths and resultant export of ferric iron from the wetland into ground water might be possible.

  5. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    PubMed Central

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable. PMID:21602354

  6. DESCRIPTIVE ANALYSIS OF DIVALENT SALTS

    PubMed Central

    YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

    2005-01-01

    Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

  7. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  8. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  9. Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression

    PubMed Central

    Cronin, Michelle; Zomer, Aldert; Fitzgerald, Gerald; van Sinderen, Douwe

    2012-01-01

    Iron is an essential growth factor for virtually all organisms. However, iron is not readily available in most environments and microorganisms have evolved specialized mechanisms, such as the use of siderophores and high-affinity transport systems, to acquire iron when confronted with iron-limiting conditions. In general these systems are tightly regulated to prevent iron-induced toxicity and because they are quite costly to the microbe. Because of this tight regulation we chose to explore the response of Bifidobacterium breve UCC2003 to iron limitation. Through microarray and complementation analyses we identified and characterized a presumed ferrous iron uptake system, encoded by bfeUOB, from B. breve UCC2003 and exploited its regulated transcription to develop an inducible expression system for use in bifidobacteria. PMID:22179149

  10. Pathways of iron acquisition and utilization in Leishmania

    PubMed Central

    Flannery, Andrew R.; Renberg, Rebecca L.; Andrews, Norma W.

    2013-01-01

    Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage. PMID:23962817

  11. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies

    PubMed Central

    Tyrrell, Jean

    2016-01-01

    Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057

  12. Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere.

    PubMed

    Sleep, Norman H; Bird, Dennis K

    2008-08-27

    Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H(2) in lieu of an oxygen 'acceptor'. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The 'photobacterium' proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O(2) in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes.

  13. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    PubMed

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals

    NASA Astrophysics Data System (ADS)

    Johansen, Anne M.; Hoffmann, Michael R.

    2003-07-01

    Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 μg m-3. An additional crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m-3 and averaged 9.8 ± 3.4 ng m-3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter-monsoon and southwest monsoon of 1995.

  15. Undergraduate research studies program at participating institutions of the HBCU Fossil Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, S.C.; Cardelino, B.H.; Hall, J.H. Jr.

    1990-01-31

    This report consists of five quarterly progress reports from four participating universities. The titles of the projects are: Competition of NO and SO{sub 2} for OH generated within electrical aerosol analyzers; Dispersed iron catalysts for coal gasification; Catalytic gasification of coal chars by potassium sulfate and ferrous sulfate mixtures; Removal of certain toxic heavy metal ions in coal conversion process wastewaters; and Study of coal liquefaction catalysts. All reports have been indexed separately for inclusion on the data base. (CK)

  16. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    PubMed

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  17. In vitro dissolution profile of two commercially available iron preparations.

    PubMed

    Patrício, José P H; Santos, Cristina; Cerdeira, Rui

    2012-03-01

    Current scientific evidence indicates that anemia in pregnancy, regardless of severity, is associated with an increased risk of maternal and fetal mortality. There is little published information about the bioavailability and bioequivalence of formulations containing both iron and folic acid. However, in vitro dissolution studies can provide important information on the likely relative bioavailability of various formulations. The objective of our study was to compare the in vitro dissolution of two similar commercially available formulations of iron- and folic acid-containing supplements, Folifer® (Bialport - Produtos Farmacêuticos, S.A., Portugal) and Ferroliver® (SM Pharma c.a., Venezuela), in order to determine the in vitro availability of their iron content. Folifer® and Ferroliver® were chosen because they contained similar amounts of elemental iron. The amount of iron released from each tablet was evaluated over a 4-hour period in three dissolution media replicating gastric or intestinal juices with pH values ranging from 1.5 to 6.9. The samples were then titrated with a solution of cerium ammonium sulfate in order to calculate the amount of iron released in each specific pH condition. The percentage of dissolved iron was calculated as a cumulative frequency, using the percentage of dissolved iron at all timepoints. The dissolution similarity between the two commercially available formulations was evaluated using the &U0192;(2) statistic formula. During a 4-hour dissolution test, Folifer® released 59.4 mg of iron compared with 48.5 mg released by Ferroliver®. The value obtained for the similarity factor, an indicator of likely bioequivalence, was 41. These data suggest that Folifer® releases more iron than Ferroliver®, and that the two formulations are not equivalent in vitro. The superior dissolution of ferrous sulfate with Folifer® compared with ferrous fumarate in Ferroliver® might be responsible for the observed difference.

  18. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    PubMed

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    PubMed

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  20. Experimental determination of activities of FeO and Fe 2O 3 components in hydrous silicic melts under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Pichavant, Michel; Scaillet, Bruno

    2003-11-01

    The critical role of iron on crystal-silicate liquid relationships and melt differentiation is mainly controlled by the redox conditions prevailing in magmas, but the presently available database merely constrains the thermodynamic properties of iron-bearing components in strongly reduced and anhydrous molten silicate where iron is in the ferrous form. This paper provides new standard states for pure ferrous (FeOliq) and ferric (Fe2O3liq) molten iron oxides and extends the experimental database towards oxidizing and water-bearing domains. Iron-iridium, iron-platinum alloys, magnetite or hematite were equilibrated with synthetic silicic liquids at high temperature and high pressure under controlled oxygen fugacity (fO2) to determine activity-composition relationships for FeOliq and Fe2O3liq. Between 1000 and 1300°C, the fO2 ranges from that in air to 3-log units below that of the nickel-nickel oxide buffer (NNO). Experiments were performed on both anhydrous and hydrous melts containing up to 6-wt.% water. Incorporation of water under reducing conditions increases the activity coefficient of FeOliq but has an opposite effect on Fe2O3liq. As calcium is added to system, the effect of water becomes weaker and is inverted for Fe2O3liq. Under oxidizing conditions, water has a negligible effect on both activities of FeOliq and Fe2O3liq. In contrast, changes in redox conditions dominate the activity coefficients of both FeOliq and Fe2O3liq, which increase significantly with increasing fO2. The present results combined with the previous work provide a specific database on the energetics of iron in silicate melts that cover most of the condition prevailing in natural magmas.

  1. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization

    NASA Astrophysics Data System (ADS)

    Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang

    2014-01-01

    Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.

  2. Reactive iron transport in an acidic mountain stream in Summit County, Colorado: A hydrologic perspective

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, K.E.

    1989-01-01

    A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.

  3. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  4. ESR studies on the thermal decomposition of trimethylamine oxide to formaldehyde and dimethylamine in jumbo squid (Dosidicus gigas) extract.

    PubMed

    Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong

    2013-12-15

    The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The Effect of Citric Acid on the Oxidation of Organic Contaminants by Fenton's Reagent

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Javandel, I.; Lee, G.

    2003-12-01

    Combined with acids and iron catalysts, hydrogen peroxide (H2O2) as Fenton's reagent is proven to be effective in oxidizing halogenated volatile organic compounds (VOCs). The Fenton's reagent, traditionally used for waste water treatment technique, has been applied to the remediation of contaminated soil systems and numerous investigators have found intrinsic iron salts are effective source of iron catalyst for the reaction. Citric acid, which is naturally occurring nutrients to microorganisms and less destructive to soil chemical properties, is selected for an acidifying agent to create acidic soil condition. However, citric acid has been considered as a reaction inhibitant because it sequesters ferric iron from Fenton's catalytic cycle by forming strong chelates with iron. This paper presents the feasibility of using citric acid as an acidifying agent of soil matrix for the Fenton-like oxidation. Series of batch tests were performed to test disappearance of VOCs in various aqueous systems with two acidifying agents (citric acid or sulfuric acid) and three iron sources (iron sulfate, water soluble soil iron, or soil matrix). Batch results show that soluble iron is essential for near complete disappearance of VOCs and that citric acid performs similarly to sulfuric acid at low H2O2 dosage (< 1 wt%). The test soil provided water-soluble soil iron but also contained scavengers of the oxidizing agents, resulting in limited removals of VOCs. Column tests confirmed the results of the batch tests, suggesting citric acid is also as effective as sulfuric acid in providing acidic environment for the Fenton-like oxidation. The batch experiments also reveal that higher doses of H2O2 lower the degree of VOC removals in citric acid systems. Potential explanations for this declining include that excessive presence of H2O2 expedites the oxidation of ferrous to ferric iron, which then forms a strong complex with citrate, leading to the sequestration of the iron from the Fenton's reaction cycle. Consequently, additional supply of ferrous iron would be required for continuing oxidation of VOCs, as well as slow injection of H2O2. Detailed mechanistic study would be needed for factual understanding.

  6. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity seems to be necessary for maintaining reducing conditions in the environments studied. ?? 1958.

  7. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals.

    PubMed

    Zimmermann, Michael B; Biebinger, Ralf; Egli, Ines; Zeder, Christophe; Hurrell, Richard F

    2011-04-01

    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P < 0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P < 0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately 'target' Fe-deficient individuals in a population.

  8. Iron acquisition pathways and colonization of the inflamed intestine by Salmonella enterica serovar Typhimurium

    PubMed Central

    Costa, Luciana F.; Mol, Juliana P. S.; Silva, Ana Patricia C.; Macêdo, Auricélio A.; Silva, Teane M. A.; Alves, Geraldo E. S.; Winter, Sebastian; Winter, Maria G.; Velazquez, Eric M.; Byndloss, Mariana X.; Bäumler, Andreas J.; Tsolis, Renée M.; Paixão, Tatiane A.; Santos, Renato L.

    2016-01-01

    Salmonella enterica serotype Typhimurium is able to expand in the lumen of the inflamed intestine through mechanisms that have not been fully resolved. Here we utilized streptomycin-pretreated mice and dextran sodium sulfate (DSS)-treated mice to investigate how pathways for S. Typhimurium iron acquisition contribute to pathogen expansion in the inflamed intestine. Competitive infection with an iron uptake-proficient S. Typhimurium strain and mutant strains lacking tonB feoB, feoB, tonB or iroN in streptomycin pretreated mice demonstrated that ferric iron uptake requiring IroN and TonB conferred a fitness advantage during growth in the inflamed intestine. However, the fitness advantage conferred by ferrous iron uptake mechanisms was independent of inflammation and was only apparent in models where the normal microbiota composition had been disrupted by antibiotic treatment. PMID:27760693

  9. Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells

    NASA Astrophysics Data System (ADS)

    Cioloboc, Daniela

    Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function as 'Trojan horse' nanocarriers for inorganic drugs.

  10. Magnetic Flux-Load Current Interactions in Ferrous Conductors

    DTIC Science & Technology

    1992-06-01

    the normal conducting homopolar motor , an increase in resistivity of the current carrying iron bars will increase heat production and lower the...determining the actual H that exists in the iron for any given B-radial seen by the homopolar motor for a particular axial current case. The...This is the data that was used the homopolar motor overall model. 34 RESULTS The plots in Fig. 21 and the data in Table 1 represent the final product

  11. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations.

    PubMed

    Holanda, Roseanne; Hedrich, Sabrina; Ňancucheo, Ivan; Oliveira, Guilherme; Grail, Barry M; Johnson, D Barrie

    2016-09-01

    Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  13. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    NASA Astrophysics Data System (ADS)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  14. The spectroscopic chemical and photophysical properties of Martian soils and their analogs

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.

    1987-01-01

    The program of research outlined should advance significantly the understanding of the spectral signal of montmorillonites in general and the variations produced in it by structural and surface ferric and ferrous iron and interlayer water as a function of several environmental conditions that are different between Earth and Mars. In addition, an extensive data base was collected providing spectral characterization of several features (iron, both surface and structural, OH-groups, both structural and from adsorbed water and O(-) centers) that are known, or thought to be, influential in directing the surface activity of these important materials. With this data base with which to assess the results of the Viking labeled release simulation studies, it should be possible to gain important insights into the mechanisms of surface reactivity for this important chemical reaction. The results to be gained from these studies will provide a significant body of ground base truth from which to assess: the presence of smectite clays on Mars; the mineralogical form in which the Martian iron is bound; establish upper limits on the present surface water content of Martian soils; perhaps provide insights on the Martian surface radiation history; and to make strong predictions about the nature of surface chemistry on Mars, if iron-bearing clays are a significant component of the surface mineralogical assemblage.

  15. An alternative approach for nitrate and arsenic removal from wastewater via a nitrate-dependent ferrous oxidation process.

    PubMed

    Zhang, Meilin; Li, Yingfen; Long, Xinxian; Chong, Yunxiao; Yu, Guangwei; He, Zihao

    2018-05-18

    Owing to the high efficiency of converting nitrate to nitrogen gas with ferrous iron as the electron donor, the process of nitrate-dependent ferrous oxidation (NDFeO) has been considered suitable to treat wastewater that contains nitrate but lacks organic matter. Meanwhile, arsenic immobilization often has been found during the NDFeO reaction. Thus, it was strongly expected that nitrate and arsenic could be removed simultaneously in co-contaminated wastewater through the NDFeO process. However, in the current work, arsenic was not removed during the NDFeO process when the pH was high (above 8), though the nitrate reduction rate was over 90%. Meanwhile, the biosolid particles from the NDFeO process demonstrated strong adsorption ability for arsenic when the pH was below 6. Yet, the adsorption became weak when the pH was above 7. Fourier transform infrared (FTIR) spectroscopy analysis revealed that the main activated component for arsenic adsorption was iron oxide in these particles, which was easily crippled under high pH conditions. These results implied that co-removal of nitrate and arsenic in wastewater treatment using NDFeO was difficult to carry out under high pH conditions. Thus, a two-step approach in which nitrate was removed first by NDFeO followed by arsenic adsorption with NDFeO biosolids was more feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Efficacy of a low-dose ferric-EDTA in reducing iron deficiency anaemia among underfive children living in malaria-holoendemic district of Mvomero, Tanzania.

    PubMed

    Mosha, Theobald C E; Laswai, Henry H; Assey, John; Bennink, Maurice R

    2014-04-01

    Iron deficiency anaemia is a public health problem in Tanzania especially among children under the age of five years. In malaria holoendemic areas, control of anaemia by supplementation with iron has been reported to increase serious adverse events. The World Health Organization recommends that, programs to control anaemia in such areas should go concurrently with malaria control programmes. The objectives of the study were to: (i) to determine if a supplement providing 2.5 mg of iron as ferric EDTA and 2.5 mg of iron as ferrous lactate (low dose) is as effective in correcting anaemia as a supplement providing the standard 10 mg of iron as ferrous lactate (high dose); and ii) determine if iron supplementation increased the risk of malaria. This study was carried out in Mvomero District of east-central Tanzania. Two groups (69 and 70 subjects per treatment) of moderately anaemic children (7.0-9.1 g of Hb/dl), received one of the two micronutrient supplements differing only in iron content for a period of 60 days. Results showed that, the average haemoglobin (Hb) concentration improved from 8.30 ± 0.60 g/dl to 11.08 ± 1.25 g/dl. The average weight-for-age for all children increased from 16.0 to 20.6% while their weight-for-height increased from 4.0 to 13.3%. The incidence of asymptomatic and symptomatic malaria ranged from 10.0 to 10.4% at all time points with no apparent increase in malaria severity due to iron supplementation. Overall, there was a significant reduction in anaemia during the 60 day supplementation period. This study demonstrated that, micronutrient supplements containing low-dose ferric-EDTA is just as effective as the high dose iron in reducing anaemia and can be safely utilized in malaria holoendemic areas to control iron deficiency anaemia. It is recommended that, a large study should be conducted to affirm the effectiveness of the low-dose ferric-EDTA in controlling iron deficiency anaemia among underfive children.

  17. Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2013-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the aqueous phase on days 1, 3, 8, 15, 22, 29 and 38 from the start of the experiment.

  18. Hematitic concretions at Meridiani Planum, Mars: Their growth timescale and possible relationship with iron sulfates

    NASA Astrophysics Data System (ADS)

    Sefton-Nash, Elliot; Catling, David C.

    2008-05-01

    Using diffusion-based models for concretion growth, we calculate growth times of hematitic concretions that have been found in the Burns formation at Meridiani Planum, Mars, by NASA's Opportunity Mars Exploration Rover. Growth times of ~ 350-1900 terrestrial years are obtained for the observed size range of the concretions over a range of parameters representing likely diagenetic conditions and allowing for an iron source from diagenetic redistribution. This time scale is consistent with radiometric age constraints for the growth time of iron oxide concretions in sandy sediments of the acid-saline Lake Brown in Western Australia (< 3000 yr) reported elsewhere. We consider the source of the iron for Meridiani concretions by calculating the constraints on the supply of Fe 3+ to growing concretions from the dissolution and oxidation rates of iron minerals on early Mars. Mass balance arguments suggest that acid dissolution of jarosite ((H 3O,K)(Fe 3+3(OH) 6(SO 4) 2) and minor ferric sulfates is probably the most plausible dominant contributor to Fe 3+ in the concretions. Ferrous iron released from melanterite (Fe 2+SO 4·7H 2O) that is subsequently oxidized could also have been an important iron source if melanterite existed prior to diagenesis. Our conclusion that the iron is sourced from iron sulfates may explain the global observation from orbiters that grey crystalline hematite occurs in association with sulfate deposits.

  19. Tracing iron-carbon redox from surface to core

    NASA Astrophysics Data System (ADS)

    McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.

    2017-12-01

    Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.

  20. Iron homeostasis and eye disease

    PubMed Central

    Loh, Allison; Hadziahmetovic, Majda; Dunaief, Joshua L.

    2009-01-01

    Summary Iron is necessary for life, but excess iron can be toxic to tissues. Iron is thought to damage tissues primarily by generating oxygen free radicals through the Fenton reaction. We present an overview of the evidence supporting iron's potential contribution to a broad range of eye disease using an anatomical approach. Firstly, iron can be visualized in the cornea as iron lines in the normal aging cornea as well as in diseases like keratoconus and pterygium. In the lens, we present the evidence for the role of oxidative damage in cataractogenesis. Also, we review the evidence that iron may play a role in the pathogenesis of the retinal disease age-related macular degeneration. Although currently there is no direct link between excess iron and development of optic neuropathies, ferrous iron's ability to form highly reactive oxygen species may play a role in optic nerve pathology. Lastly, we discuss recent advances in prevention and therapeutics for eye disease with antioxidants and iron chelators,. PMID:19059309

  1. Apoprotein isolation and activation, and vibrational structure of the Helicobacter mustelae iron urease

    PubMed Central

    Carter, Eric L.; Proshlyakov, Denis A.; Hausinger, Robert P.

    2011-01-01

    The micro-aerophilic pathogen Helicobacter mustelae synthesizes an oxygen-labile, iron-containing urease (UreA2B2) in addition to its standard nickel-containing enzyme (UreAB). An apoprotein form of the iron urease was prepared from ureA2B2-expressing recombinant Escherichia coli cells that were grown in minimal medium. Temperature-dependent circular dichroism measurements of holoprotein and apoprotein demonstrate an enhancement of thermal stability associated with the UreA2B2 metallocenter. In parallel to the situation reported for nickel activation of the standard urease apoprotein, incubation of UreA2B2 apoprotein with ferrous ions and bicarbonate generated urease activity in a portion of the nascent active sites. In addition, ferrous ions were shown to be capable of reductively activating the oxidized metallocenter. Resonance Raman spectra of the inactive, aerobically-purified UreA2B2 holoprotein exhibit vibrations at 495 cm−1 and 784 cm−1, consistent with νs and νas modes of an Fe(III)-O-Fe(III) center; these modes undergo downshifts upon binding of urea and were unaffected by changes in pH. The low-frequency mode also exhibits an isotopic shift from 497 to 476 cm−1 upon 16O/18O bulk water isotope substitution. Expression of subunits of the conventional nickel-containing Klebsiella aerogenes urease in cells grown in rich medium without nickel resulted in iron incorporation into a portion of the protein. The inactive iron-loaded species exhibited a UV-visible spectrum similar to oxidized UreA2B2 and was capable of being reductively activated under anoxic conditions. Results from these studies more clearly define the formation and unique properties of the iron urease metallocenter. PMID:22196017

  2. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  3. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport.

    PubMed

    González, A; Sevilla, E; Bes, M T; Peleato, M L; Fillat, M F

    2016-01-01

    Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms. © 2016 Elsevier Ltd. All rights reserved.

  4. Composition and process for organic and metal contaminant fixation in soil

    DOEpatents

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  5. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    PubMed

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  6. Bench-scale evaluation of ferrous iron oxidation kinetics in drinking water: effect of corrosion control and dissolved organic matter.

    PubMed

    Rahman, Safiur; Gagnon, Graham A

    2014-01-01

    Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.

  7. Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion.

    PubMed

    Khandarkhaeva, Marina; Batoeva, Agniya; Aseev, Denis; Sizykh, Marina; Tsydenova, Oyuna

    2017-03-01

    The oxidation of s-triazines (using atrazine (ATZ) as a model compound) by a solar-enhanced Fenton-like process involving persulfate and ferrous ion was studied. A flow-through tubular photoreactor was employed for the experiments. The solar-enhanced oxidative system involving ferrous ion and persulfate (Solar/S 2 O 8 2- /Fe 2+ ) showed the highest ATZ degradation efficiency when compared with other treatments (unactivated S 2 O 8 2- , Solar - sunlight only, S 2 O 8 2- /Fe 2+ , Solar/S 2 O 8 2- ). Complete degradation of ATZ and 20% reduction in total organic carbon (TOC) content were observed after 30min of the treatment. The in situ generated • ОН and SO 4 -• radicals were shown to be involved in ATZ oxidation using the radical scavengers methanol and tert-butyl alcohol. Furthermore, iron compounds were shown to act not only as catalysts but also as photo-sensitizers, as the introduction of ferrous ion into the reaction mixture led to an increased absorbance of the solution and expansion of the absorption spectrum into the longer wavelength spectral region. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. CHEMICAL DESTRUCTION OF MTBE USING FENTON'S REAGENT: EFFECT OF FERROUS IRON/HYDROGEN PEROXIDE RATIO

    EPA Science Inventory

    In previous laboratory experiments Fenton's Reagent (FR) was successfully used as the source of hydroxyl radicals (OH*) for chemical treatment of low concentrations of methyl tert-butyl ether (MTBE) in water. Although under certain conditions MTBE degradation levels as high as 99...

  9. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  10. BIOGEOCHEMICAL PROCESSES CONTROLLING MIDDAY FERROUS IRON MAXIMA IN STREAM WATERS AFFECTED BY ACID ROCK DRAINAGE. (R829640)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. USE OF FENTON'S REAGENT AS DISINFECTING AGENT

    EPA Science Inventory

    This project was conducted as an EPA in-house research, assisted by the on-site contractor, US Infrastructure, Inc. (USI) located in Edison, NJ. The Fenton's reagent (e.g., H2O2, ferrous iron Fe(aq)+2) is an alternative method of chemical oxidation. Hydroxyl radicals (OH ), gen...

  12. First-principles investigations of iron-based alloys and their properties

    NASA Astrophysics Data System (ADS)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  13. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  14. Mechanisms for naphthalene removal during electrolytic aeration.

    PubMed

    Goel, Ramesh K; Flora, Joseph R V; Ferry, John

    2003-02-01

    Batch tests were performed to investigate chemical and physical processes that may result during electrolytic aeration of a contaminated aquifer using naphthalene as a model contaminant. Naphthalene degradation of 58-66% took place electrolytically and occurred at the same rates at a pH of 4 and 7. 1,4-naphthoquinone was identified as a product of the electrolysis. Stripping due to gases produced at the electrodes did not result in any naphthalene loss. Hydrogen peroxide (which may be produced at the cathode) did not have any effect on naphthalene, but the addition of ferrous iron (which may be present in aquifers) resulted in 67-99% disappearance of naphthalene. Chlorine (which may be produced from the anodic oxidation of chloride) can effectively degrade naphthalene at pH of 4, but not at a pH of 7. Mono-, di- and poly chloronaphthalenes were identified as oxidation products. Ferric iron coagulation (due to the oxidation of ferrous iron) did not significantly contribute to naphthalene loss. Overall, electrolytic oxidation and chemical oxidation due to the electrolytic by-products formed are significant abiotic processes that could occur and should be accounted for if bioremediation of PAH-contaminated sites via electrolytic aeration is considered. Possible undesirable products such as chlorinated compounds may be formed when significant amounts of chlorides are present.

  15. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  16. Revisiting the iron pools in cucumber roots: identification and localization.

    PubMed

    Kovács, Krisztina; Pechoušek, Jiří; Machala, Libor; Zbořil, Radek; Klencsár, Zoltán; Solti, Ádám; Tóth, Brigitta; Müller, Brigitta; Pham, Hong Diep; Kristóf, Zoltán; Fodor, Ferenc

    2016-07-01

    Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

  17. Soybean hulls as an iron source for bread enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.; Berry, M.F.; Weaver, C.M.

    Soybean hulls, a concentrated source of iron, may have potential as a source of iron fortification in baked products. Retention of /sup 59/Fe in rats from white bread containing intrinsically labeled soybean hulls did not differ significantly (p<0.05) from extrinsically labeled white bread fortified with bakery grade ferrous sulfate (70.4 and 63.1%, respectively). Physical and sensory evaluations of bread containing up to 5% soybean hulls did not differ from white bread in loaf volume, cross-sectional area, tenderness or overall acceptance. These results suggest that soybean hulls are a good source of available iron and may be added to bakery productsmore » without deleterious effects in baking performance and sensory acceptability.« less

  18. Novel Flaxseed Gum Nanocomposites Are Slow Release Iron Supplements.

    PubMed

    Liang, Shan; Huang, Yu; Shim, Youn Young; Ma, Xiang; Reaney, Martin J T; Wang, Yong

    2018-05-23

    Nanocomposites, based on iron salts and soluble flaxseed gum (FG), were prepared as potential treatments of iron deficiency anemia (IDA). FG was extracted, characterized, and formulated into iron-loading nanocomposites via ion-exchange against FeCl 3 , Fe 2 (SO 4 ) 3 , FeCl 2 , and FeSO 4 ·7H 2 O. FG-iron nanocomposites preparation condition was optimized, and physicochemical properties of the nanocomposites were investigated. In vitro release kinetics of iron in simulated gastric fluid (SGF) was also evaluated. FG heteropolysaccharide, consisting of rhamnose (33.73%), arabinose (24.35%), xylose (14.23%), glucose (4.54%), and galactose (23.15%) monosaccharides, linked together via varieties of glycosidic bonds, was a good recipient for both ferric and ferrous irons under screened conditions (i.e., 80 °C, 2 h, I/G = 1:2). Iron loaded contents in the nanocomposites prepared from FG-FeCl 3 , FG-Fe 2 (SO 4 ) 3 , FG-FeCl 2 , and FG-FeSO 4 ·7H 2 O were 25.51%, 10.36%, 5.83%, and 22.83%, respectively. Iron in these nanocomposites was mostly in a bound state, especially in FG-FeCl 3 , due to chelation forming bonds between iron and polysaccharide hydroxyl or carboxyl groups and formed stable polysaccharide-iron crystal network structures. Free iron ions were effectively removed by ethanol treatments. Because of chelation, the nanocomposites delayed iron release in SGF and the release kinetics were consistent with Korsmeyer-Peppas model. This indicates that such complexes might reduce side effects of free iron in human stomach. Altogether, this study indicates that these synthetic FG-iron nanocomposites might be developed as novel iron supplements for iron deficiency, in which FG-FeCl 3 is considered as the best option.

  19. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations

    USGS Publications Warehouse

    Hohn, R.; Isenbeck-Schroter, M.; Kent, D.B.; Davis, J.A.; Jakobsen, R.; Jann, S.; Niedan, V.; Scholz, C.; Stadler, S.; Tretner, A.

    2006-01-01

    To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7????M) and bromide (1.6??mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br-), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104??days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly formed hydrous iron oxides. Approximately one week after terminating the injection, anoxic conditions had been reestablished and increases in As(III) concentrations were observed within 1??m of the injection. During the observation period, As(III) and As(V) were transported to a distance of 4.5??m downgradient indicating significant retardation by sorption processes for both species. Sediment assays as well as elevated concentrations of hydrogen reflected the presence of As(V) reducing microorganisms. Thus, microbial As(V) reduction was thought to be one major process driving the release of As(III) during the tracer test in the Cape Cod aquifer. ?? 2006 Elsevier B.V. All rights reserved.

  20. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency.

    PubMed

    Podder, Rajib; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; DellaValle, Diane M; Vandenberg, Albert

    2017-08-11

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil ( Lens culinaris Medik.) dal with FeSO₄·7H₂O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO₄·H₂O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13-14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g -1 , respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2-36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency.

  1. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency

    PubMed Central

    Podder, Rajib; Tar’an, Bunyamin; Tyler, Robert T.; Henry, Carol J.; Vandenberg, Albert

    2017-01-01

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil (Lens culinaris Medik.) dal with FeSO4·7H2O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO4·H2O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13–14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g−1, respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2–36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency. PMID:28800117

  2. Comparative study of the oral absorption of microencapsulated ferric saccharate and ferrous sulfate in humans.

    PubMed

    Contreras, Carlos; Barnuevo, María Dolores; Guillén, Isabel; Luque, Antonio; Lázaro, Elisabet; Espadaler, Jordi; López-Román, Javier; Villegas, José A

    2014-01-01

    Our objective was to compare the absorption of microencapsulated ferric saccharate (MFS) and ferrous sulfate (FS) in a fortified milk product, using a crossover design. Seventeen non-iron-deficient healthy adults from both sexes participated in the study. On each intervention day (days 1 and 8), after an overnight fast, the volunteers consumed one type of product (test or control) and blood sampling was carried out at different times. The interventions days were separated by 7-day washout periods. This study was double blinded, crossover and randomized for nature of the test meals. The primary outcomes of the study were total serum iron and transferrin saturation. No significant differences could be observed in serum iron concentration during the 6-h postprandial study due to the type of milk product consumed, and there was neither an effect of time nor an interaction between the type of milk product and time. Transferrin saturation significantly increased after the intake of both products (P < 0.005), reaching a peak value between hours 2 and 4. No significant differences were detected between MFS and FS, indicating that iron absorption from MFS is equivalent to absorption from FS. MFS is a new ingredient that allows the fortification of a wide range of food products, including heat-processed and non-acidic products with similar absorption to FS, designed to produce neither organoleptic changes nor off-color development during storage of fortified food.

  3. Green Rust Reduction of Chromium Part 2: Comparison of Heterogeneous and Homogeneous Chromate Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wander, Matthew C.; Schoonen, Martin A.

    White and green rusts are the active chemical reagents of buried scrap iron pollutant remediation. In this work, a comparison of the initial electron-transfer step for the reduction of CrO{sub 4}{sup -2} by Fe{sub (aq)}{sup 2+} and Fe(OH){sub 2}(s) is presented. Using hybrid density functional theory and Hartree-Fock cluster calculations for the aqueous reaction, the rate constant for the homogeneous reduction of chromium by ferrous iron was determined to be 5 x 10{sup -2} M{sup -1} s{sup -1} for the initial electron transfer. Using a combination of Hartree-Fock slab and cluster calculations for the heterogeneous reaction, the initial electron transfermore » for the heterogeneous reduction of chromium by ferrous iron was determined to be 1 x 10{sup 2} s{sup -1}. The difference in rates is driven by the respective free energies of reaction: 33.4 vs -653.2 kJ/mol. This computational result is apparently the opposite of what has been observed experimentally, but further analysis suggests that these results are fully convergent with experiment. The experimental heterogeneous rate is limited by surface passivation from slow intersheet electron transfer, while the aqueous reaction may be an autocatalytic heterogeneous reaction involving the iron oxyhydroxide product. As a result, it is possible to produce a clear model of the pollutant reduction reaction sequence for these two reactants.« less

  4. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    PubMed Central

    Gokhale, Aditya S.; Mahoney, Raymond R.

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron. PMID:26904627

  5. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins.

    PubMed

    Gokhale, Aditya S; Mahoney, Raymond R

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.

  6. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less

  7. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    DOE PAGES

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin; ...

    2017-11-20

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less

  8. Mineralogy and crystal chemistry of iron in the Timan bauxite and products of their technological processing

    NASA Astrophysics Data System (ADS)

    Kotova, O.; Silaev, V.; Lutoev, V.; Vakhrushev, A.

    2016-04-01

    Mineralogical and geochemical features of two series of samples of typical bauxites from two deposits of Middle Timan mining area (Vezhayu-Vorykva and Svetlinskoe) were studied. The phase composition of ferrous bauxites generally is boehmite, hematite, ultradisperse low-ordered goethite and berthierine. In a boehmite and kaolinite structural impurity of iron to 10%, and in the iron oxidehydroxides aluminum impurity is revealed. On iron content bauxites are subdivided into three mineral types for which quantitative data on valence states of ions of iron and proportions of their distribution last on nonequivalent structural positions in hematite, goethite and berthierine are obtained. Noble metals (Ag, Au, Ir, Rh, Pd) concentrating in bauxites are revealed for the first time. Obtained data can lead to decrease of power consumption during aluminum production and high quality ceramics, to provide production of valuable iron oxide, and also to minimize the ecological harm from accumulation of bauxite wastes.

  9. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in polluted soils and specific industrial dusts. Fly ashes were composed mainly of anhydrite (2-46%), quartz (18-33%), muscovite (0-8%), feldspar (0-8%) and hematite (2-8%), while different spinels (19-53%), hematite (0-38%), wüstite (0-40%) and additives of calcite, halite, sylvine and graphite are the components of metallurgical dusts. Dusts from non-ferrous metal smelting contain Pb and Zn minerals: zincite (1-95%), lanarkite (0-45%), gordaite (0-10%), challacoloite and sphalerite. Additionally, some rare minerals were found in these dusts, such as: anglesite, sphalerite, galena, metasideronatrite and in soil, coronadite. Acknowledgements: The research project received funding from the National Science Centre of Poland on the basis of the decision number DEC-2013/09/B/ST10/02227.

  10. Iron and Sulfur Geochemistry in Serpentinizing Groundwaters: Relationships to Microbiological Processes

    NASA Astrophysics Data System (ADS)

    Sabuda, M.; Kubo, M. D.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.; Schrenk, M. O.

    2016-12-01

    Serpentinization of ultramafic rock in ophiolite complexes along continental margins leads to the mobilization of volatiles and reduced carbon compounds that can be used as sources of nutrients and energy by subsurface microbial communities. Simultaneously, the highly reducing character of serpentinite-associated fluids can lead to limitations in the availability of oxidants to support growth. The extent to which iron and sulfur compounds can serve as alternative electron acceptors in serpentinizing systems remains to be elucidated. Heterogeneous mineralogy, meteoric and groundwater source mixing, ancient marine sediment influence, and microbial metabolic activities likely contribute to variability in the identity and abundance of Fe and S compounds in serpentinite groundwater. At the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California, the aqueous geochemistry of sulfur and iron in the alkaline groundwater was investigated at multiple time points taken from 12 wells located in two clusters, Core Shed and Quarry Valley, with individual boreholes sampling different depths. Colorimetric methods (HS-, ferrous and total iron), ion chromatography (SO42-), and ICP-MS (total Fe and S) were utilized and on average, both sulfate and sulfide are highest in the CSW wells (300 μM and 15 μM respectively), and lowest in the N08 wells (95 μM, 1.2 μM) within the Quarry Valley area. Ferrous iron measured <0.7 μM in all boreholes, likely due to the poor solubility of dissolved iron at high pH. Bioenergetic calculations were generated using CROMO geochemical data to investigate the favorability of various Fe and S red-ox reactions. Additionally, the presence of key genes in sulfur and iron metabolic pathways was examined in metagenomic assemblies from CROMO. Combined, these data reinforce the critical role that sulfur-associated metabolisms, in particular, play in serpentinite groundwater. Consequently, the sulfur biogeochemistry of such systems may influence geochemical cycles and ultimately be preserved in the rock record.

  11. Oxidation-reduction processes in ground water at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Jones, S.A.; Braun, Christopher L.; Lee, Roger W.

    2003-01-01

    Concentrations of trichloroethene in ground water at the Naval Weapons Industrial Reserve Plant in Dallas, Texas, indicate three source areas of chlorinated solvents?building 1, building 6, and an off-site source west of the facility. The presence of daughter products of reductive dechlorination of trichloroethene, which were not used at the facility, south and southwest of the source areas are evidence that reductive dechlorination is occurring. In places south of the source areas, dissolved oxygen concentrations indicated that reduction of oxygen could be the dominant process, particularly south of building 6; but elevated dissolved oxygen concentrations south of building 6 might be caused by a leaking water or sewer pipe. The nitrite data indicate that denitrification is occurring in places; however, dissolved hydrogen concentrations indicate that iron reduction is the dominant process south of building 6. The distributions of ferrous iron indicate that iron reduction is occurring in places south-southwest of buildings 6 and 1; dissolved hydrogen concentrations generally support the interpretation that iron reduction is the dominant process in those places. The generally low concentrations of sulfide indicate that sulfate reduction is not a key process in most sampled areas, an interpretation that is supported by dissolved hydrogen concentrations. Ferrous iron and dissolved hydrogen concentrations indicate that ferric iron reduction is the primary oxidation-reduction process. Application of mean first-order decay rates in iron-reducing conditions for trichloroethene, dichloroethene, and vinyl chloride yielded half-lives for those solvents of 231, 347, and 2.67 days, respectively. Decay rates, and thus half-lives, at the facility are expected to be similar to those computed. A weighted scoring method to indicate sites where reductive dechlorination might be likely to occur indicated strong evidence for anaerobic biodegradation of chlorinated solvents at six sites. In general, scores were highest for samples collected on the northeast side of the facility.

  12. Dissolution of Nickel Ferrite in Aqueous Solutions Containing Oxalic Acid and Ferrous Salts.

    PubMed

    Figueroa, Carlos A.; Sileo, Elsa E.; Morando, Pedro J.; Blesa, Miguel A.

    2000-05-15

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.

  13. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  14. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  15. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  16. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    PubMed

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H 2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  17. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  18. Empire Without A Voice Phoenician Iron Metallurgy and Imperial Strategy at Carthage

    NASA Astrophysics Data System (ADS)

    Kaufman, Brett Sanford

    The role of iron in the emergence of Iron Age states in North Africa and the Near East has been poorly understood due to a paucity of contemporary, diachronic ferrous archaeometallurgical data. Excavations at Phoenician and Punic Carthage in the 2000s recovered one of the largest and most diverse corpora of Iron Age iron production material culture from North Africa and the Near East, spanning the entire history of Carthage from its Tyrian colonial foundations to its destruction by Rome (historical dates 814--146 BC). Analysis of the materials employing metallography, portable X-ray fluorescence spectroscopy (pXRF), and variable pressure scanning electron microscopy coupled with energy x-ray dispersive spectroscopy (VPSEM-EDS) indicates that Carthaginian smiths were smelting and smithing wrought iron and steel as an exchange good or tribute commodity to Tyre and the Assyrian empire, as well as producing, refining, and consuming tin and arsenical bronzes, leaded bronzes, lead, and cobalt. Archaeological evidence demonstrates a state industry of iron production, including the commissioning, decommissioning, and outsourcing of metallurgical precincts. There is an overwhelming difference exhibited between output capacity at industrial and household production sites. Epigraphic evidence in Punic illustrates the inherent economic and familial affiliations between the Carthaginian state and metalworkers. Ironsmiths, bronze casters, and goldsmiths were privileged engineers of one of the state's most strategic industries, and were stratified in a hierarchy of technical specialties and ranks. In order to conserve fuel and succeed in properly vitrifying ore or bloom impurities into slag, they recycled industrial byproducts in the form of murex shells from purple dye production as a metallurgical flux and lined the furnaces with quartz-rich heat insulation. Carthage was one colony in the Phoenician commodity procurement network, whose task it was to convert iron blooms into final products. By the time this colony became independent of Tyre ca. 650--550 BC, the smiths of Carthage already had around a century of expertise in the production of iron and steel implements which gave the state a competitive advantage in the strategic arena of ferrous technologies and the formation of empire.

  19. 9 CFR 147.14 - Procedures to determine status and effectiveness of sanitation monitored program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... coliforms. Such eggs should also be cultured for the dependable recovery of salmonellae. Culturing for the dependable recovery of salmonellae should include the use of: (i) Preenrichment broths supplemented with 35 mg ferrous sulfate per 1,000 ml preenrichment to block iron-binding, Salmonella-inhibiting effects of...

  20. 9 CFR 147.14 - Procedures to determine status and effectiveness of sanitation monitored program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... coliforms. Such eggs should also be cultured for the dependable recovery of salmonellae. Culturing for the dependable recovery of salmonellae should include the use of: (i) Preenrichment broths supplemented with 35 mg ferrous sulfate per 1,000 ml preenrichment to block iron-binding, Salmonella-inhibiting effects of...

  1. 9 CFR 147.14 - Procedures to determine status and effectiveness of sanitation monitored program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... coliforms. Such eggs should also be cultured for the dependable recovery of salmonellae. Culturing for the dependable recovery of salmonellae should include the use of: (i) Preenrichment broths supplemented with 35 mg ferrous sulfate per 1,000 ml preenrichment to block iron-binding, Salmonella-inhibiting effects of...

  2. 9 CFR 147.14 - Procedures to determine status and effectiveness of sanitation monitored program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... coliforms. Such eggs should also be cultured for the dependable recovery of salmonellae. Culturing for the dependable recovery of salmonellae should include the use of: (i) Preenrichment broths supplemented with 35 mg ferrous sulfate per 1,000 ml preenrichment to block iron-binding, Salmonella-inhibiting effects of...

  3. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume

    USGS Publications Warehouse

    Gschwend, Philip M.; Reynolds, Matthew D.

    1987-01-01

    Groundwater samples collected near a secondary-sewage infiltration site on Cape Cod, Massachusetts were examined for colloidal materials (10–1000 nm). In two wells the water contained a population of monodisperse 100-nm particles, detected using laser-light scattering and autocorrelation data processing. SEM and SEM-EDAX analysis of these colloidal materials collected on ultrafilters confirmed the laser light scattering result and revealed that these microparticles consisyed of primarily iron and phosphorus in a 1.86 Fe to 1.0 P stoichiometric ratio. Chemical analyses of the water samples, together with equilibrium solubility calculations, strongly suggest that the ion-activity product should exceed the solubility product of a 100-nm diameter predominantly vivianite-type (Fe3(PO4)2 · 8H2O) colloidal phase. In light of our results, we conclude that these microparticles were formed by sewage-derived phosphate combining with ferrous iron released from the aquifer solids, and that these colloids may be moving in the groundwater flow. Such a subsurface transport process could have major implications regarding the movement of particle-reactive pollutants traditionally viewed as non-mobile in groundwater.

  4. Corrosion behavior of metals and alloys in marine-industrial environment

    PubMed Central

    Natesan, Mariappan; Selvaraj, Subbiah; Manickam, Tharmakkannu; Venkatachari, Gopalachari

    2008-01-01

    This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn), were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy. PMID:27878030

  5. Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.

    PubMed

    Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D

    2003-11-01

    Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.

  6. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

  7. Iron deficiency, but not anemia, upregulates iron absorption in breast-fed peruvian infants.

    PubMed

    Hicks, Penni D; Zavaleta, Nelly; Chen, Zhensheng; Abrams, Steven A; Lönnerdal, Bo

    2006-09-01

    Iron absorption in adults is regulated by homeostatic mechanisms that decrease absorption when iron status is high. There are few data, however, regarding the existence of a similar homeostatic regulation in infants. We studied 2 groups of human milk-fed infants using (57)Fe (given as ferrous sulfate without any milk) and (58)Fe (given at the time of a breast-milk feeding) stable isotopes to determine whether healthy infants at risk for iron deficiency would regulate their iron absorption based on their iron status. We studied 20 Peruvian infants at 5-6 mo of age and 18 infants at 9-10 mo of age. We found no effect of infant hemoglobin concentration on iron absorption with 5-6 mo-old infants absorbing 19.2 +/- 2.1% and 9- to 10-mo-old infants absorbing 25.8 +/- 2.6% of the (57)Fe dose. For (58)Fe, 5- to 6-mo-old infants absorbed 42.6 +/- 5.0% and 9 to 10-mo-old infants absorbed 51.9 +/- 10.3%. Following log transformation, iron absorption from (57)Fe (r = -0.61, P = < 0.001) and (58)Fe (r = -0.61, P = < 0.001) were inversely correlated to serum ferritin (S-Ft). For both the (57)Fe and (58)Fe doses, infants with S-Ft <12 mg/L (n = 11) had significantly higher iron absorption than those with S-Ft >12 mg/L. We concluded that iron absorption in infants is related to iron status as assessed by serum ferritin but not hemoglobin concentration. Infants with low iron status upregulate iron absorption from breast milk at both 5-6 and 9-10 mo of age.

  8. FURTHER STUDIES ON CHEMICAL EVALUATION OF LAUHA BHASMA III

    PubMed Central

    Keshri, A.; Verma, P.R.P.; Prasad, C.M

    1996-01-01

    Samples of marketed Lauha bhasma from different manufactures were evaluated chemically. Apart from the 81 -85% iron content, the 15-19% other constituents were determined therein. Ferrous ferric and total iron in a single aliquot were determined spectrophotometrically, Qualitative and chromatographic analysis indicate the presence of sodium, potassium, calcium copper and cobalt in the samples, silicious matter and traces of ascorbic acid were present while tannin was absent in Lauha bhasma . Quantitatively sodium and potassium were determined by flame spectrometry. Upon fractionation, water soluble and acid soluble contents were determined. PMID:22556767

  9. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  10. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.

    PubMed

    Zhou, H; Zhang, R; Hu, P; Zeng, W; Xie, Y; Wu, C; Qiu, G

    2008-08-01

    To isolate Ferroplasma thermophilum L1(T) from a low pH environment and to understand its role in bioleaching of chalcopyrite. Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1(T), was isolated from a chalcopyrite-leaching bioreactor. The morphological, biochemical and physiological characteristics of strain L1(T) and its role in bioleaching of chalcopyrite were studied. Strain L1(T) was a nonmotile coccus that lacked cell wall. Strain L1(T) had a temperature optimum of 45 degrees C and the optimum pH for growth was 1.0. Strain L1(T) was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA-DNA hybridization, G+C content, and analysis based on 16S rRNA gene sequence indicated that strain L1(T) should be grouped in the genus Ferroplasma, and represented a new species, Ferroplasma thermophilum. Ferroplasma thermophilum in combination with Acidithiobacillus caldus and Leptospirillum ferriphilum could improve the copper dissolution in bioleaching of chalcopyrite. A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH. This study contributes to understand the characteristics of F. thermophilum L1(T) and its role in bioleaching of sulfide ores.

  11. Higher bioavailability of iron from whole wheat bread compared with iron-fortified white breads in caco-2 cell model: an experimental study.

    PubMed

    Nikooyeh, Bahareh; Neyestani, Tirang R

    2017-06-01

    Bread, as the staple food of Iranians, with average per capita consumption of 300 g d -1 , could potentially be a good vehicle for many fortificants, including iron. In this study, iron bioavailability from flat breads (three fortified and one whole wheat unfortified) was investigated using in vitro simulation of gastrointestinal digestion and absorption in a caco-2 cell model. Despite having a lower ferritin/protein ratio in comparison with fortified breads, whole wheat bread showed higher iron bioavailability than the other three types of bread. Assuming iron bioavailability from the ferrous sulfate supplement used as standard was about 10%, the estimated bioavailability of iron from the test breads was calculated as 5.0-8.0%. Whole wheat bread (∼8%), as compared with the fortified breads (∼5-6.5%), had higher iron bioavailability. Iron from unfortified whole wheat bread is more bioavailable than from three types of iron-fortified breads. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Neurodegenerative disease and iron storage in the brain.

    PubMed

    Thomas, Madhavi; Jankovic, Joseph

    2004-08-01

    Iron is very important for normal regulation of various metabolic pathways. Neurons store iron in the form of ferrous ion or neuromelanin. In specific disorders the axonal transport of iron is impaired, leading to iron deposition which in the presence of reactive oxygen species results in neurodegeneration. Recent developments in genetics, including the finding of mutations in the pantothenate kinase gene and ferritin light chain gene, have demonstrated a direct relationship between the presence of a mutation in the iron-regulatory pathways and iron deposition in the brain resulting in neurodegeneration. These two disorders now add to our understanding of the mechanism of disease due to dysfunction of iron-regulatory pathways. In addition to these disorders there may be several other mutations of iron-regulatory genes or related genes that are yet to be found. The animal models of disease have also added value to this area. In this review we provide a summary of recent developments in the field of movement disorders with abnormalities in iron transport, and the current evidence in neurodegenerative disorders such as Parkinson's disease.

  13. Heavy metal mining using microbes.

    PubMed

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.

  14. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Zhang, Xiwang; Yuan, Zhiguo

    2014-12-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel method based on combined conditioning with zero-valent iron (ZVI) and hydrogen peroxide (HP) at pH 2.0 to improve dewaterability of a full-scale waste activated sludge (WAS). The combination of ZVI (0-750mg/L) and HP (0-750mg/L) at pH 2.0 substantially improved the WAS dewaterability due to Fenton-like reactions. The highest improvement in WAS dewaterability was attained at 500mg ZVI/L and 250mg HP/L, when the capillary suction time of the WAS was reduced by approximately 50%. Particle size distribution indicated that the sludge flocs were decomposed after conditioning. Economic analysis showed that combined conditioning with ZVI and HP was a more economically favorable method for improving WAS dewaterability than the classical Fenton reaction based method initiated by ferrous salts and HP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    PubMed Central

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  16. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    PubMed

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  17. DevS Oxy Complex Stability Identifies this Heme Protein as a Gas Sensor in Mycobacterium tuberculosis Dormancy†

    PubMed Central

    Ioanoviciu, Alexandra; Meharenna, Yergalem T.; Poulos, Thomas L.; Ortiz de Montellano, Paul R.

    2009-01-01

    DevS is one of the two sensing kinases responsible for DevR activation and the subsequent entry of Mycobacterium tuberculosis into dormancy. Full length wild-type DevS forms a stable oxy-ferrous complex. The DevS autooxidation rates are extremely low (half-lives > 24 h) in the presence of cations such as K+, Na+, Mg2+, and Ca2+. At relatively high concentrations (100 µM), Fe3+ mildly increases the autooxidation rate (six-fold increase) while Cu2+ accelerates autooxidation more than 1500-fold. Contrary to expectations, removal of the key hydrogen bond between the iron-coordinated oxygen and Tyr171 in the Y171F mutant provides a protein of comparable stability to autooxidation and similar oxygen dissociation rate. This correlates with our earlier finding that the Y171F mutant and wild-type kinase activities are similarly regulated by the binding of oxygen: namely, the ferrous 5c complex is active whereas the oxy ferrous 6c species is inactive. Our results indicate that DevS is a gas sensor in vivo rather than a redox sensor and that the stability of its ferrous-oxy complex is enhanced by inter-domain interactions. PMID:19463006

  18. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.

    PubMed

    Zhou, Yan-Li; Yang, Ying; Chen, Mo; Zhao, Zhi-Wei; Jiang, He-Long

    2014-05-01

    Effects of iron oxide amendment into freshwater sediments on performance of sediment microbial fuel cell (SMFC) were investigated. It was found that amending amorphous bulk ferric oxyhydroxide, and crystalline goethite and magnetite did not affect SMFC operation. However, amendment of the mixed solution including soluble ferric citrate and colloidal iron oxyhydroxide, stably improved SMFC performance with voltage outputs up to threefolds higher than those without amendment. The enhanced voltage production corresponded to lower anode potential, but was not related to organic matter removal in sediments. Further experiments demonstrated that colloidal iron oxyhydroxide instead of soluble ferric iron played an important role in voltage production through maintaining high-concentration ferrous iron in pore water of sediments as electron shuttle and for chemical oxidation on the anode. Thus, colloidal iron oxyhydroxide amendment was a promising strategy to improve power production from SMFC employed in sediments especially with low content of organic matters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  20. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury.

    PubMed

    Patel, Bharatkumar N; Dunn, Robert J; Jeong, Suh Young; Zhu, Qinzhang; Julien, Jean-Pierre; David, Samuel

    2002-08-01

    Ceruloplasmin is a ferroxidase that oxidizes toxic ferrous iron to its nontoxic ferric form. We have previously reported that a glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed in the mammalian CNS. To better understand the role of ceruloplasmin in iron homeostasis in the CNS, we generated a ceruloplasmin gene-deficient (Cp(-/-)) mouse. Adult Cp(-/-) mice showed increased iron deposition in several regions of the CNS such as the cerebellum and brainstem. Increased lipid peroxidation was also seen in some CNS regions. Cerebellar cells from neonatal Cp(-/-) mice were also more susceptible to oxidative stress in vitro. Cp(-/-) mice showed deficits in motor coordination that were associated with a loss of brainstem dopaminergic neurons. These results indicate that ceruloplasmin plays an important role in maintaining iron homeostasis in the CNS and in protecting the CNS from iron-mediated free radical injury. Therefore, the antioxidant effects of ceruloplasmin could have important implications for various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease in which iron deposition is known to occur.

  1. Iron and gallium increase iron uptake from transferrin by human melanoma cells: further examination of the ferric ammonium citrate-activated iron uptake process.

    PubMed

    Richardson, D R

    2001-04-30

    Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).

  2. Sizing criteria for a low footprint passive mine water treatment system.

    PubMed

    Sapsford, D J; Williams, K P

    2009-02-01

    The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.

  3. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    PubMed Central

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to assemble iron sulfur clusters in Bfd before the iron stored in BfrB can be mobilized and utilized. PMID:19575528

  4. Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin state crossover in ferropericlase: Stresses and HS-LS Crossover in (Mg,Fe)O

    DOE PAGES

    Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; ...

    2016-05-30

    Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostaticstresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) uponcompression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). Here, we observe aninfluence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirablestresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects ofintergrain interaction. And while the former leads to a pressure overestimation, the latter one lowers the pressure ofthe onset for the high-spin to low-spin electronic transition in Fe 2+more » in ferropericlase (Mg, Fe)O with respect tohydrostatic conditions.« less

  5. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  6. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  7. Iron binding to human heavy-chain ferritin.

    PubMed

    Pozzi, Cecilia; Di Pisa, Flavio; Bernacchioni, Caterina; Ciambellotti, Silvia; Turano, Paola; Mangani, Stefano

    2015-09-01

    Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.

  8. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    PubMed

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in environments where beans are grown in alkaline soils, while the QTL for iron reductase under sufficiency conditions may be useful for selecting for enhanced seed nutritional quality.

  9. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.

    PubMed

    Morrison, Stan J; Metzler, Donald R; Dwyer, Brian P

    2002-05-01

    Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.

  10. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.

    PubMed

    Pozzi, Cecilia; Di Pisa, Flavio; Lalli, Daniela; Rosa, Camilla; Theil, Elizabeth; Turano, Paola; Mangani, Stefano

    2015-04-01

    Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.

  11. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.

    PubMed

    Zhao, Ling; Zhu, Nan-Wen; Wang, Xiao-Hui

    2008-01-01

    Bioleaching of spent Ni-Cd batteries using acidified sewage sludge was carried out in a continuous flow two-step leaching system including an acidifying reactor and a leaching reactor. Two systems operated about 30d to achieve almost complete dissolution of heavy metals Ni, Cd and Co in four Ni-Cd batteries. Ferrous sulphate and elemental sulfur were used as two different substrates to culture indigenous thiobacilli in sewage sludge. pH and ORP of the acidifying reactor was stabilized around 2.3 and 334mV for the iron-oxidizing system and 1.2 and 390mV for the sulfur-oxidizing system. It was opposite to the acidifying reactor, the pH/ORP in the leaching reactor of the iron-oxidizing system was relatively lower/higher than that of the sulphur-oxidizing system in the first 17d. The metal dissolution, in the first 12-16d, was faster in the iron-oxidizing system than in the sulphur-oxidizing system due to the lower pH. In the iron-oxidizing system, the maximum solubilization of cadmium (2500mg l(-1)) and cobalt (260mg l(-1)) can be reached at day 6-8 and the most of metal nickel was leached in the first 16d. But in the sulphur-oxidizing system there was a lag period of 4-8d to reach the maximum solubilization of cadmium and cobalt. The maximum dissolution of nickel hydroxide (1400mg l(-1)) and metallic nickel (2300mg l(-1)) occurred at about day 12 and day 20, respectively.

  12. Prepartum anaemia: prevention and treatment.

    PubMed

    Milman, Nils

    2008-12-01

    This review focuses on the occurrence, prevention and treatment of anaemia during pregnancy in Western societies. Iron deficiency anaemia (IDA) is the most prevalent deficiency disorder and the most frequent form of anaemia in pregnant women. Minor causes of anaemia are folate and vitamin B12 deficiency, haemoglobinopathy and haemolytic anaemia. Anaemia is defined as haemoglobin of <110 g/L in the first and third trimester and <105 g/L in the second trimester. The diagnosis relies on haemoglobin, a full blood count and plasma ferritin, which can be supported by plasma transferrin saturation and serum soluble transferrin receptor. Among fertile, non-pregnant women, approximately 40% have ferritin of or=10 g/L, oral iron therapy has proved effective and should continue. Treatment with intravenous iron is superior to oral iron with respect to the haematological response. Intravenous iron is considered safe in the second and third trimester, while there is little experience in the first trimester. Intravenous iron of 600-1,200 mg should be considered: (1) as second option if oral iron fails to increase haemoglobin within 2 weeks; (2) as first option at profound IDA, i.e. haemoglobin of <90 g/L in any trimester beyond 14 weeks gestation; and (3) as first option for IDA in third trimester. Profound IDA has serious consequences for both woman and foetus and requires prompt intervention with intravenous iron. This is especially important for the safety of women who for various reasons oppose blood transfusions.

  13. Relative bioavailability of iron and folic acid from a new powdered supplement compared to a traditional tablet in pregnant women

    PubMed Central

    Hartman-Craven, Brenda; Christofides, Anna; O'Connor, Deborah L; Zlotkin, Stanley

    2009-01-01

    Background Deficiencies of iron and folic acid during pregnancy can lead to adverse outcomes for the fetus, thus supplements are recommended. Adherence to current tablet-based supplements is documented to be poor. Recently a powdered form of micronutrients has been developed which may decrease side-effects and thus improve adherence. However, before testing the efficacy of the supplement as an alternate choice for supplementation during pregnancy, the bioavailability of the iron needs to be determined. Our objective was to measure the relative bioavailability of iron and folic acid from a powdered supplement that can be sprinkled on semi-solid foods or beverages versus a traditional tablet supplement in pregnant women. Methods Eighteen healthy pregnant women (24 – 32 weeks gestation) were randomized to receive the supplements in a crossover design. Following ingestion of each supplement, the changes (over baseline) in serum iron and folate over 8 hours were determined. The powdered supplement contained 30 mg of iron as micronized dispersible ferric pyrophosphate with an emulsifier coating and 600 μg folic acid; the tablet contained 27 mg iron from ferrous fumarate and 1000 μg folic acid. Results Overall absorption of iron from the powdered supplement was significantly lower than the tablet (p = 0.003). There was no difference in the overall absorption of folic acid between supplements. Based on the differences in the area under the curve and doses, the relative bioavailability of iron from powdered supplement was lower than from the tablet (0.22). Conclusion The unexpected lower bioavailability of iron from the powdered supplement is contrary to previously published reports. However, since pills and capsules are known to be poorly accepted by some women during pregnancy, it is reasonable to continue to explore alternative micronutrient delivery systems and forms of iron for this purpose. Trial Registration ClinicalTrials.gov NCT00789490 PMID:19635145

  14. Effects of acid-mine wastes on aquatic ecosystems

    Treesearch

    John David Parsons

    1976-01-01

    The Cedar Creek Basin (39th N parallel 92nd W meridian) was studied for the period June 1952 through August 1954 to observe the effects of both continuous and periodic acid effluent flows on aquatic communities. The acid strip-mine effluent contained ferric and ferrous iron, copper, lead, zinc, aluminum, magnesium, titratable acid, and elevated hydrogen ion...

  15. THE EFFECT OF OXIDANTS ON THE PROPERTIES OF FE (III) PARTICLES AND SUSPENSIONS FORMED FROM THE OXIDATION OF FE (II)

    EPA Science Inventory

    Oxidation of Fe(II) to Fe(III) is an important reaction in drinking water treatment and distribution systems, and the ferric particles that form are a major source of consumer complaints of colored water. Ferrous iron is found naturally in many ground waters and can be released ...

  16. Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentrations in women and children.

    PubMed

    Martorell, Reynaldo; Ascencio, Melany; Tacsan, Luis; Alfaro, Thelma; Young, Melissa F; Addo, O Yaw; Dary, Omar; Flores-Ayala, Rafael

    2015-01-01

    Food fortification is one approach for addressing anemia, but information on program effectiveness is limited. We evaluated the impact of Costa Rica's fortification program on anemia in women aged 15-45 y and children aged 1-7 y. Reduced iron, an ineffective fortificant, was replaced by ferrous fumarate in wheat flour in 2002, and ferrous bisglycinate was added to maize flour in 1999 and to liquid and powdered milk in 2001. We used a one-group pretest-posttest design and national survey data from 1996 (baseline; 910 women, 965 children) and 2008-2009 (endline; 863 women, 403 children) to assess changes in iron deficiency (children only) and anemia. Data were also available for sentinel sites (1 urban, 1 rural) for 1999-2000 (405 women, 404 children) and 2008-2009 (474 women, 195 children), including 24-h recall data in children. Monitoring of fortification levels was routine. Foods were fortified as mandated. Fortification provided about one-half the estimated average requirement for iron in children, mostly and equally through wheat flour and milk. Anemia was reduced in children and women in national and sentinel site comparisons. At the national level, anemia declined in children from 19.3% (95% CI: 16.8%, 21.8%) to 4.0% (95% CI: 2.1%, 5.9%) and in women from 18.4% (95% CI: 15.8%, 20.9%) to 10.2% (95% CI: 8.2%, 12.2%). In children, iron deficiency declined from 26.9% (95% CI: 21.1%, 32.7%) to 6.8% (95% CI: 4.2%, 9.3%), and iron deficiency anemia, which was 6.2% (95% CI: 3.0%, 9.3%) at baseline, could no longer be detected at the endline. A plausible impact pathway suggests that fortification improved iron status and reduced anemia. Although unlikely in the Costa Rican context, other explanations cannot be excluded in a pre/post comparison. © 2015 American Society for Nutrition.

  17. Iron solubility driven by speciation in dust sources to the ocean

    USGS Publications Warehouse

    Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.

    2009-01-01

    Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.

  18. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2013-01-01

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by L-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. PMID:23258274

  19. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  20. [Iron from soil to plant products].

    PubMed

    Briat, Jean-François

    2005-11-01

    As an essential mineral, iron plays an important role in fundamental biological processes such as photosynthesis, respiration, nitrogen fixation and assimilation, and DNA synthesis. Iron is also a co-factor of many enzymes involved in the synthesis of plant hormones. The latter are involved in many pathways controling plant development or adaptative responses to environmental conditions. Iron reactivity with oxygen leads to its insolubility (responsible for deficiency) and potential toxicity, and complicates iron use by aerobic organisms. If plants lacked an active root system with which to acquire iron from the soil, most would experience iron deficiency and show physiological changes. In contrast, an excess of soluble iron, which can occur in flooded acidic soils, can lead to ferrous iron toxicity due to iron reactivity with reduced forms of oxygen and subsequent free radical production. An optimal iron concentration is thus required for a plant to grow and develop normally. This concentration depends on multiple regulatory mechanisms controlling iron uptake from soil by the roots, as well as iron transport and distribution to the various plant organs. Optimized seed iron content is a major biotechnological challenge identified by the World Health Organization, and it is therefore crucial to understand the underlying mechanisms. Iron delivery to seeds is tightly controlled, and depends on the nature of iron speciation in specific chelates, and their transport.

  1. Postpartum anemia II: prevention and treatment.

    PubMed

    Milman, Nils

    2012-02-01

    This review focuses on the prevention and treatment of anemia in women who have just given childbirth (postpartum anemia). The problem of anemia both prepartum and postpartum is far more prevalent in developing countries than in the Western societies. The conditions for mother and child in the postpartum, nursing, and lactation period should be as favorable as possible. Many young mothers have a troublesome life due to iron deficiency and iron deficiency anemia (IDA) causing a plethora of symptoms including fatigue, physical disability, cognitive problems, and psychiatric disorders. Routine screening for postpartum anemia should be considered as part of the national maternal health programs. Major causes of postpartum anemia are prepartum iron deficiency and IDA in combination with excessive blood losses at delivery. Postpartum anemia should be defined as a hemoglobin level of <110 g/l at 1 week postpartum and <120 g/l at 8 weeks postpartum. Bleeding exceeding normal blood losses of approximately 300 ml may lead to rapid depletion of body iron reserves and may, unless treated, elicit long-standing iron deficiency and IDA in the postpartum period. The prophylaxis of postpartum anemia should begin already in early pregnancy in order to ensure a good iron status prior to delivery. The most reliable way to obtain this goal is to give prophylactic oral ferrous iron supplements 30-50 mg daily from early pregnancy and take obstetric precautions in pregnancies at risk for complications. In the treatment of slight-to-moderate postpartum IDA, the first choice should be oral ferrous iron 100 to 200 mg daily; it is essential to analyze hemoglobin after approximately 2 weeks in order to check whether treatment works. In severe IDA, intravenous ferric iron in doses ranging from 800 to 1,500 mg should be considered as first choice. In a few women with severe anemia and blunted erythropoiesis due to infection and/or inflammation, additional recombinant human erythropoietin may be considered. Blood transfusion should be restricted to women who develop circulatory instability due to postpartum hemorrhage. National health authorities should establish guidelines to combat iron deficiency in pregnancy and postpartum in order to facilitate a prosperous future for both mothers and children in a continuing globalized world.

  2. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2016-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    USGS Publications Warehouse

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  4. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    For the ferrous burden of blast furnaces in China, sinter generally accounts for more than 70% and the sintering process accounts for approximately 6-10% of the total energy consumption of the iron and steel enterprise. Therefore, saving energy during the sintering process is important to reduce the energy consumption in the iron and steel industry. This paper aims to illustrate recent advances and the research status of energy conservation of iron ore sintering in China. It focuses on the development and application of energy-saving technologies such as the composite agglomeration process, sintering with high-proportion flue gas recirculation sintering, recovery of sensible heat from the sinter cooling process, homogeneous deep-bed sintering technology, and comprehensive treatment technology of leakage of sintering. Moreover, some suggestions for the future development of energy-saving technologies are put forward.

  5. Experimental research on the behavior of the pneumatic transport of fine-grained iron

    NASA Astrophysics Data System (ADS)

    Andrei, V.; Hritac, M.; Constantin, N.; Dobrescu, C.

    2017-01-01

    Mixed injection of fine-grained iron ore and pulverized coal in the furnace, involves determining the behavior of these materials during pneumatic transport in a dense state through the pipe and setting possibilities for adjusting the flow rate of material transported with the corresponding values of the process. Parameters of the pneumatic transport were determined for the main types of iron ore and chalk used in Arcelor Mittal Galati. Outside the intended purpose of injecting iron ore and flux, it was considered also the experimental check of the possibility for injecting ilmenite in the furnace for crucible protection purpose. The possibility of injecting cinder mill into the furnace was also considered. Injecting cinder could be taken into account for the recycling of ferrous waste in the furnace, also as additive for intensifying the combustion process around the tuyeres.

  6. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.

    PubMed

    Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr

    2015-10-21

    The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.

  8. ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS

    PubMed Central

    Razzell, W. E.; Trussell, P. C.

    1963-01-01

    Razzell, W. E. (British Columbia Research Council, Vancouver, Canada) and P. C. Trussell. Isolation and properties of an iron-oxidizing Thiobacillus. J. Bacteriol. 85:595–603. 1963. — An organism isolated from acidic copper-leaching waters has been shown to oxidize ferrous ions, sulfur, and metallic sulfides but exhibit peculiar responses to thiosulfate. The name Thiobacillus ferrooxidans has been used to describe it. A pH of 2.5 is optimal for growth on iron, sulfur, and metallic sulfides, but cells free from iron can be obtained from growth at pH 1.6, and sulfur cultures adjusted to pH 5.5 readily attain a pH of 1.8. A stationary cultivation procedure appears superior to percolation techniques for studying the oxidation of finely divided metallic sulfides. Concentrations of soluble copper in excess of 1 g per liter were obtained from chalcopyrite in less than 4 weeks. Chalcocite oxidation proceeded in the absence of iron. Sodium chloride inhibits iron oxidation without preventing oxidation of metallic sulfides by the organism. PMID:14042937

  9. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  10. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  11. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal.

    PubMed

    Gu, Zhimang; Fang, Jun; Deng, Baolin

    2005-05-15

    Granular activated carbon-based, iron-containing adsorbents (As-GAC) were developed for effective removal of arsenic from drinking water. Granular activated carbon (GAC) was used primarily as a supporting medium for ferric iron that was impregnated by ferrous chloride (FeCl2) treatment, followed by chemical oxidation. Sodium hypochlorite (NaClO) was the most effective oxidant, and carbons produced from steam activation of lignite were most suitable for iron impregnation and arsenic removal. Two As-GAC materials prepared by FeCl2 treatment (0.025 -0.40 M) of Dacro 20 x 50 and Dacro 20 x 40LI resulted in a maximum impregnated iron of 7.89% for Dacro 20 x 50 and 7.65% for Dacro 20 x 40Ll. Nitrogen adsorption-desorption analyses showed the BET specific surface area, total pore volume, porosity, and average mesoporous diameter all decreased with iron impregnation, indicating that some micropores were blocked. SEM studies with associated EDS indicated that the distribution of iron in the adsorbents was mainly on the edge of As-GAC in the low iron content (approximately 1% Fe) sample but extended to the center at the higher iron content (approximately 6% Fe). When the iron content was > approximately 7%, an iron ring formed at the edge of the GAC particles. No difference in X-ray diffraction patterns was observed between untreated GAC and the one with 4.12% iron, suggesting that the impregnated iron was predominantly in amorphous form. As-GAC could remove arsenic most efficiently when the iron content was approximately 6%; further increases of iron decreased arsenic adsorption. The removal of arsenate occurred in a wide range of pH as examined from 4.4 to 11, but efficiency was decreased when pH was higher than 9.0. The presence of phosphate and silicate could significantly decrease arsenate removal at pH > 8.5, while the effects of sulfate, chloride, and fluoride were minimal. Column studies showed that both As(V) and As(III) could be removed to below 10 microg/L within 6000 empty bed volume when the groundwater containing approximately 50 microg/L of arsenic was treated.

  12. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.

    PubMed

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-11-05

    Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characteristics and environmental aspects of slag: a review

    USGS Publications Warehouse

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.

  14. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.

  15. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic compounds. In summary, the information obtained by the present approach using a microbial model system provides important information to better understand the interactions between heavy metals and biofilms, and microbially formed Fe(III) minerals and heavy metals in complex natural environments.

  16. MTBE DEGRADATION USING FENTON'S REAGENT: THE EFFECT OF FERROUS AND FERRIC IRON MIXTURES ON THE EFFICIENCY OF THE OVERALL REACTION

    EPA Science Inventory

    The gasoline additive MTBE has been extensively used in the U.S. since the late 70's to increase the octane rating in reformulated gasoline, replacing toxic organo-lead compounds. However, its use was boosted during the late 80's, when the study of additional physico-chemical pro...

  17. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  18. MTBE DEGRADATION USING FENTON REAGENT: THE EFFECT OF FERROUS AND FERRIC IRON MIXTURES ON THE EFFICIENCY OF THE OVERALL REACTION

    EPA Science Inventory

    The gasoline additive MTBE has been extensively used in the U.S. since the late 70's to increase the octane rating in reformulated gasoline, replacing toxic organo-lead compounds. However, its use was boosted during the late 80's, when the study of additional physico-chemical pro...

  19. Organic molecules on meteoritic solid substrates

    NASA Technical Reports Server (NTRS)

    Sweeney, Michael A.

    1988-01-01

    The production of C1-C3 monocarboxylic acids from carbonaceous meteorites was investigated by the radiolysis of air-free CO2 and alkane solutions, utilizing a Cs-137 gamma-ray source. Samples were first loaded on a vacuum system, irradiated, and then analyzed by the Hewlett Packard model 5890A gas chromatograph. Moreover, the samples were irradiated with and without added ferrous iron.

  20. Management of MSW in Spain and recovery of packaging steel scrap.

    PubMed

    Tayibi, Hanan; Peña, Carmen; López, Félix A; López-Delgado, Aurora

    2007-01-01

    Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.

  1. Microstructural Examination of Oxidized Fe_(14-x) Nb5_x Alloy Produced from Powders Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Demirkıran, A. Şükran; Sen, Saduman; Ozdemir, Ozkan; Sen, Ugur

    In the present study, ferrous niobium, ferrous boron and iron were used as starting powders. The mixture of the powders which were calculated to give the designed compositions was prepared by using planetary high energy ball mill. Mechanically alloyed powders were pressed and sintered at 1350°C for 120 min in Ar atmosphere. The cyclic oxidation experiments were carried out in an electrical furnace at 650, 750 and 850 °C in open atmosphere for 96 h. The specimens were periodically weighed for the determination of weight change. Before and after oxidation, the present phases of the samples were determined by X-ray diffraction analysis (XRD). The microstructural characterizations were realized using scanning electron microscopy (SEM) with EDS attachment.

  2. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    PubMed Central

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  3. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

    PubMed

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P

    2015-01-06

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

  4. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    PubMed Central

    Rodriguez-Ramiro, Ildefonso; Perfecto, Antonio; Fairweather-Tait, Susan J.

    2017-01-01

    Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF) (www.luckyironfish.com/shop, Guelph, Canada) and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM) at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA) maintained the solubility of iron released from LIF (LIF-iron) at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS), similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen. PMID:28895913

  5. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  6. Role of indigenous iron in improving sludge dewaterability through peroxidation

    PubMed Central

    Zhou, Xu; Jiang, Guangming; Wang, Qilin; Yuan, Zhiguo

    2015-01-01

    Improvement of sludge dewaterability is important for reducing the total costs for the treatment and disposal of sludge in wastewater treatment plants. In this study, we investigate the use of hydrogen peroxide as an oxidizing reagent for the conditioning of waste activated sludge. Significant improvement to sludge dewaterability was attained after the addition of hydrogen peroxide at 30 mg/g TS and 28 mg/g TS under acidic conditions (pH = 3.0), with the highest reduction of capillary suction time being 68% and 56%, respectively, for sludge containing an iron concentration of 56 mg Fe/g TS and 25 mg Fe/g TS, respectively. The observations were due to Fenton reactions between the iron contained in sludge (indigenous iron) and hydrogen peroxide. For the sludge with an insufficient level of indigenous iron, the addition of ferrous chloride was found to be able to improve the sludge dewaterability. The results firstly indicated that indigenous iron can be utilized similarly as the externally supplied iron salt to improve sludge dewaterability through catalyzing the Fenton reactions. PMID:25559367

  7. Forty to fifty-five-year-old women and iron deficiency: clinical considerations and quality of life.

    PubMed

    Firquet, Anne; Kirschner, Wolf; Bitzer, Johannes

    2017-07-01

    Between the age of 40 and 55 years, women experience important changes in their lives. This period, which corresponds to the perimenopause for most women, is associated with the risk of iron deficiency anemia (IDA). The clinical presentation of anemia can be misleading, and the underlying cause, particularly bleeding, is frequently treated without concomitant iron prescription. Iron deficiency (ID) remains a social and economic burden in European countries. Underdiagnosed and undertreated, this problem has a strong negative impact on women's quality of life. The risk factors for ID are well known. The physician's role is essential in recognizing the symptoms, identifying the risk factors, detecting IDA by testing hemoglobin, and evaluating the degree of ID by measuring serum ferritin (SF). Iron therapy treats the anemia and restores iron stores, thus decreasing symptoms such as fatigue and restoring quality of life. Among the available forms of iron, evidence is in favor of ferrous sulfate in a slow release formulation, which is well-tolerated and results in good adherence, a key factor for efficacious supplementation.

  8. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes.

    PubMed

    Tran, Tam T T; Mangenot, Sophie; Magdelenat, Ghislaine; Payen, Emilie; Rouy, Zoé; Belahbib, Hassiba; Grail, Barry M; Johnson, D Barrie; Bonnefoy, Violaine; Talla, Emmanuel

    2017-01-01

    The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.

  9. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    PubMed

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  10. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  11. Use of ferrous iron by metallo-β-lactamases.

    PubMed

    Cahill, Samuel T; Tarhonskaya, Hanna; Rydzik, Anna M; Flashman, Emily; McDonough, Michael A; Schofield, Christopher J; Brem, Jürgen

    2016-10-01

    Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Iron deficiency anemia in patients with inflammatory bowel disease

    PubMed Central

    Goldberg, Neil D

    2013-01-01

    Iron deficiency anemia is the most common form of anemia worldwide, caused by poor iron intake, chronic blood loss, or impaired absorption. Patients with inflammatory bowel disease (IBD) are increasingly likely to have iron deficiency anemia, with an estimated prevalence of 36%–76%. Detection of iron deficiency is problematic as outward signs and symptoms are not always present. Iron deficiency can have a significant impact on a patient’s quality of life, necessitating prompt management and treatment. Effective treatment includes identifying and treating the underlying cause and initiating iron replacement therapy with either oral or intravenous iron. Numerous formulations for oral iron are available, with ferrous fumarate, sulfate, and gluconate being the most commonly prescribed. Available intravenous formulations include iron dextran, iron sucrose, ferric gluconate, and ferumoxytol. Low-molecular weight iron dextran and iron sucrose have been shown to be safe, efficacious, and effective in a host of gastrointestinal disorders. Ferumoxytol is the newest US Food and Drug Administration-approved intravenous iron therapy, indicated for iron deficiency anemia in adults with chronic kidney disease. Ferumoxytol is also being investigated in Phase 3 studies for the treatment of iron deficiency anemia in patients without chronic kidney disease, including subgroups with IBD. A review of the efficacy and safety of iron replacement in IBD, therapeutic considerations, and recommendations for the practicing gastroenterologist are presented. PMID:23766655

  13. Iron bioavailability studies as assessed by intrinsic and extrinsic labeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.

    Although soybeans are a rich source of iron and incorporation of soy protein into diets is increasing, the presence of phytate or fiber endogenous to the seeds may inhibit total iron absorption from diets including soy protein. Four studies on iron bioavailability as assessed by intrinsic and extrinsic labeling techniques in rats were completed. The effect of previous dietary protein on the absorption of intrinsically /sup 59/Fe labeled defatted soy flour was determined in rats. The results indicated that the type of dietary protein (animal vs. plant) in pre-test diets would have little influence on iron absorption from a singlemore » soy protein test meal. Therefore, adaptation of soy protein does not improve bioavailability of iron. Soybean hulls were investigated as a source of iron fortification in bread. The results indicated that retention of /sup 59/Fe from white bread baked with soy hulls did not differ from white bread fortified with bakery grade ferrous sulfate. The effect of endogenous soybean phytate on iron absorption in rats was measured using seeds of varying phytate content and intrinsically labeled with /sup 59/Fe. Increasing concentration of phytate in whole soybean flour had no significant effect on iron absorption.« less

  14. The kinetics of the oxidation of ferrous iron in synthetic and natural waters

    NASA Astrophysics Data System (ADS)

    Davison, W.; Seed, G.

    1983-01-01

    The rate of oxidation of ferrous iron in a seasonally anoxic lake was measured on 39 occasions with respect to both depth and time. Sample disturbance was minimal as only oxygen had to be introduced to initiate the reaction. The data were consistent with the simple rate law for homogeneous chemical kinetics previously established for synthetic solutions. The rate constant for the oxidation reaction in lake water was indistinguishable from that measured in synthetic samples. It did not appear to be influenced by changes in the microbial populations or by changes in any particulate or soluble components in the water, including iron and manganese. Analysis of the errors inherent in the kinetic measurements showed that the estimation of pH was the major source of inaccuracy and that values of the rate constant determined by different workers could easily differ by a factor of six. The present data, together with a comprehensive survey of the literature, are used to suggest a 'universal' rate constant of ca. 2 × 10 13 M -2 atm -1 min -1 (range 1.5-3 × 10 13) in the rate law -d[Fe II]/dt = k[Fe II]pO 2 (OH-) 2 for natural freshwaters in the pH range 6.5-7.4. Discrepancies in the effects of ionic strength and interfering substances reported in the literature are highlighted. Generally substances have only been found to interfere at concentrations which far exceed those in most natural waters.

  15. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature

    NASA Astrophysics Data System (ADS)

    Schaefer, Charles E.; Ho, Paul; Gurr, Christopher; Berns, Erin; Werth, Charles

    2017-11-01

    Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55 °C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0 × 10- 5 day- 1 at 20 °C, to 32 × 10- 5 day- 1 at 55 °C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91 kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.

  16. On the use of the optothermal window technique for the determination of iron (II) content in fortified commercial milk

    NASA Astrophysics Data System (ADS)

    Cardoso, S. L.; Dias, C. M. F.; Lima, J. A. P.; Massunaga, M. S. O.; da Silva, M. G.; Vargas, H.

    2003-01-01

    This work reports on the use of the optothermal window and a well-proven phenanthroline colorimetry method for determination of iron (II) content in a commercial fortified milk. Initially, iron (II) in distilled water was determined using a series of calibration samples with ferrous sulfate acting as the source of iron (II). In the following phase, this calibration methodology was applied to commercial milk as the sample matrix. The phenanthroline colorimetry [American Public Health Association, Washington, DC (1998)] was chosen in an attempt to achieve proper selectivity (i.e., to obtain the absorption band, the wavelength of which is centered near the radiation wavelength available for our experiments: Excitation wavelength at a 514-nm line of a 20-mW tunable Ar ion laser). Finally, samples of commercially available fortified milk were analyzed in an attempt to access Fe (II) content.

  17. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    NASA Astrophysics Data System (ADS)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  18. Mapping and Prediction of Coal Workers’ Pneumoconiosis with Bioavailable Iron Content in the Bituminous Coals

    PubMed Central

    Huang, Xi; Li, Weihong; Attfield, Michael D.; Nádas, Arthur; Frenkel, Krystyna; Finkelman, Robert B.

    2005-01-01

    Based on the first National Study of Coal Workers’ Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron’s bioavailability. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal’s toxicity, even before large-scale mining. PMID:16079064

  19. Iron-induced oligomerization of human FXN81-210 and bacterial CyaY frataxin and the effect of iron chelators

    PubMed Central

    Ahlgren, Eva-Christina; Fekry, Mostafa; Wiemann, Mathias; Söderberg, Christopher A.; Bernfur, Katja; Gakh, Olex; Rasmussen, Morten; Højrup, Peter; Emanuelsson, Cecilia; Isaya, Grazia

    2017-01-01

    Patients suffering from the progressive neurodegenerative disease Friedreich’s ataxia have reduced expression levels of the protein frataxin. Three major isoforms of human frataxin have been identified, FXN42-210, FXN56-210 and FXN81-210, of which FXN81-210 is considered to be the mature form. Both long forms, FXN42-210 and FXN56-210, have been shown to spontaneously form oligomeric particles stabilized by the extended N-terminal sequence. The short variant FXN81-210, on other hand, has only been observed in the monomeric state. However, a highly homologous E. coli frataxin CyaY, which also lacks an N-terminal extension, has been shown to oligomerize in the presence of iron. To explore the mechanisms of stabilization of short variant frataxin oligomers we compare here the effect of iron on the oligomerization of CyaY and FXN81-210. Using dynamic light scattering, small-angle X-ray scattering, electron microscopy (EM) and cross linking mass spectrometry (MS), we show that at aerobic conditions in the presence of iron both FXN81-210 and CyaY form oligomers. However, while CyaY oligomers are stable over time, FXN81-210 oligomers are unstable and dissociate into monomers after about 24 h. EM and MS studies suggest that within the oligomers FXN81-210 and CyaY monomers are packed in a head-to-tail fashion in ring-shaped structures with potential iron-binding sites located at the interface between monomers. The higher stability of CyaY oligomers can be explained by a higher number of acidic residues at the interface between monomers, which may result in a more stable iron binding. We also show that CyaY oligomers may be dissociated by ferric iron chelators deferiprone and DFO, as well as by the ferrous iron chelator BIPY. Surprisingly, deferiprone and DFO stimulate FXN81-210 oligomerization, while BIPY does not show any effect on oligomerization in this case. The results suggest that FXN81-210 oligomerization is primarily driven by ferric iron, while both ferric and ferrous iron participate in CyaY oligomer stabilization. Analysis of the amino acid sequences of bacterial and eukaryotic frataxins suggests that variations in the position of the acidic residues in helix 1, β-strand 1 and the loop between them may control the mode of frataxin oligomerization. PMID:29200434

  20. Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on rus Operon Transcription in Acidithiobacillus ferridurans.

    PubMed

    Bonnefoy, Violaine; Grail, Barry M; Johnson, D Barrie

    2018-04-01

    The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, IS Afd1 , which belongs to the IS Pepr1 subgroup of the IS 4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence IS Afd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS 66 family) was detected in the downstream inverted repeat of IS Afd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferridurans T to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile. IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation. Copyright © 2018 American Society for Microbiology.

  1. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    PubMed

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  2. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    PubMed

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  3. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication.

    PubMed

    Guan, Guohua; Pinochet-Barros, Azul; Gaballa, Ahmed; Patel, Sarju J; Argüello, José M; Helmann, John D

    2015-11-01

    Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4 -type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild-type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini-ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4 -type ATPases previously implicated in bacterial pathogenesis. © 2015 John Wiley & Sons Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof

    The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less

  5. Microbial control of mineral–groundwater equilibria:Macroscale to microscale

    USGS Publications Warehouse

    Bennett, Philip C.; Hiebert, Franz K.; Roger, Jennifer Roberts

    2000-01-01

    macroscaleprocesses that perturb general groundwater chemistry and therefore mineral–water equilibria; and microscale interactions, where attached organisms locally perturb mineral–water equilibria, potentially releasing limiting trace nutrients from the dissolving mineral.In the contaminated unconfined glacio-fluvial aquifer near Bemidji, Minnesota, USA, carbonate chemistry is influenced primarily at the macroscale. Under oxic conditions, respiration by native aerobic heterotrophs produces excess carbon dioxide that promotes calcite and dolomite dissolution. Aerobic microorganisms do not colonize dolomite surfaces and few occur on calcite. Within the anoxic groundwater, calcite overgrowths form on uncolonized calcite cleavage surfaces, possibly due to the consumption of acidity by dissimilatory iron-reducing bacteria. As molecular oxygen concentration increases downgradient of the oil pool, aerobes again dominate and residual hydrocarbons and ferrous iron are oxidized, resulting in macroscale carbonate-mineral dissolution and iron precipitation.

  6. National Waterways Study. Traffic Forecasting Methodology.

    DTIC Science & Technology

    1981-08-01

    non-ferrous). In general , the demand for domestic waterborne metallic ore transportation is projected to grow somewhat faster than iron ore...steady growth in imported tonnages. Industrial chemicals generally exhibit upward trends ranging from 2.5% per year to 4.6% per year for a broad mix...completion of Colonial pipeline system expansions in 1981. Internal traffic generally ex- hibts flat to 1% per year traffic increases, with growth

  7. Novel Insights into Fur Regulation in Helicobacter pylori

    DTIC Science & Technology

    2013-01-10

    Distribution of prominent bacterial phyla ...................................................... 271   Figure 27. β-diversity between PMP communities ...and can be readily acquired by most microbes that thrive in these situations. H. pylori encodes a single ferrous iron transport protein (FeoB...junctions. The approximate amplified regions are indicated by the small black bars (not drawn to scale ). (B) PCR amplification of the oorDA, oorAB, and

  8. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.

    PubMed

    Szecsody, J E; Girvin, D C; Devary, B J; Campbell, J A

    2004-08-01

    The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.

  9. Scoping Candidate Minerals for Stabilization of Arsenic-Bearing Solid Residuals

    PubMed Central

    Raghav, Madhumitha; Shan, Jilei; Sáez, A. Eduardo; Ela, Wendell P.

    2014-01-01

    Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite. These minerals were evaluated as to ease of synthesis, applicability to use of iron-based ABSRs as a starting material, and arsenic leachability. The Toxicity Characteristic Leaching Procedure (TCLP) was used for preliminary assessment of candidate mineral leaching. Minerals that passed the TCLP and whose synthesis route was promising were subjected to a more aggressive leaching test using a simulated landfill leachate (SLL) solution. Scorodite and arsenate hydroxyapatites were not considered further because their synthesis conditions were not found to be favorable for general application. Tooeleite and silica-amended tooeleite showed high TCLP arsenic leaching and were also not investigated further. The synthesis process and leaching of ferrous arsenate and arsenated-schwertmannite were promising and of these, arsenated-schwertmannite was most stable during SLL testing. The latter two candidate minerals warrant synthesis optimization and more extensive testing. PMID:24231323

  10. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOEpatents

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  11. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei

    2017-04-01

    The Xishimen iron skarn deposit in the Handan-Xingtai district, North China Craton, contains 256 Mt @ 43 % Fe (up to 65 %). The mineralization is dominated by massive magnetite ore along the contact zone between the early Cretaceous Xishimen diorite stock and middle Ordovician dolomite and dolomitic limestones with numerous intercalations of evaporitic beds. Minor lenticular magnetite-dominated bodies also occur in the carbonate rocks proximal to the diorite stock. Hydrothermal alteration is characterized by extensive albitization within the diorite stock and extreme development of magnesian skarn along the contact zone consisting of diopside, forsterite, serpentine, tremolite, phlogopite, and talc. Magmatic quartz and amphibole from the diorite and hydrothermal diopside from the skarns contain abundant primary or pseudosecondary fluid inclusions, most of which have multiple daughter minerals dominated by halite, sylvite, and opaque phases. Scanning electron microscopy (SEM) and laser Raman spectrometry confirm that pyrrhotite is the predominant opaque phase in most fluid inclusions, in both the magmatic and skarn minerals. These fluid inclusions have total homogenization temperatures of 416-620 °C and calculated salinities of 42.4-74.5 wt% NaCl equiv. The fluid inclusion data thus document a high-temperature, high-salinity, ferrous iron-rich, reducing fluid exsolved from a cooling magma likely represented by the Xishimen diorite stock. Pyrite from the iron ore has δ34S values ranging from 14.0 to 18.6 ‰, which are significantly higher than typical magmatic values (δ34S = 0 ± 5 ‰). The sulfur isotope data thus indicate an external source for the sulfur, most likely from the evaporitic beds in the Ordovician carbonate sequences that have δ34S values of 24 to 29 ‰. We suggest that sulfates from the evaporitic beds have played a critically important role by oxidizing ferrous iron in the magmatic-hydrothermal fluid, leading to precipitation of massive magnetite ore. A synthesis of available data suggests that oxidation of Fe2+-rich, magmatic-hydrothermal fluids by external sulfates could have been a common process in many of the world's iron skarn deposits and other magnetite-dominated ores, such as iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) systems.

  12. EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex.

    PubMed

    Bao, Guan-Hu; Xu, Jie; Hu, Feng-Lin; Wan, Xiao-Chun; Deng, Shi-Xian; Barasch, Jonathan

    2013-12-01

    Accumulated evidence indicates that the interconversion of iron between ferric (Fe(3+)) and ferrous (Fe(2+)) can be realized through interaction with reactive oxygen species in the Fenton and Haber-Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance. (-)-Epigallocatechin-3-gallate, the most active and most abundant catechin in tea, was found to be involved in the protection of a spectrum of renal injuries caused by oxidative stress. Most of studies suggested that EGCG works as an antioxidant. In this paper, Multivariate analysis of the LC-MS data of tea extracts and binding assays showed that the tea polyphenol EGCG can form stable complex with iron through the protein Ngal, a biomarker of acute kidney injury. UV-Vis and Luminescence spectrum methods showed that Ngal can inhibit the chemical reactivity of iron and EGCG through forming an Ngal-EGCG-iron complex. In thinking of the interaction of iron and ROS, we proposed that EGCG may work as both antioxidant and Ngal binding siderphore in protection of kidney from injuries.

  13. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.

    PubMed

    Kato, Souichiro; Nakamura, Ryuhei; Kai, Fumiyoshi; Watanabe, Kazuya; Hashimoto, Kazuhito

    2010-12-01

    Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the electron donor and electrodes (poised at 0.2 V versus Ag/AgCl) as the electron acceptors in the presence and absence of iron-oxide nanoparticles, and respiratory current generation and community structures were analysed. Irrespective of the iron-oxide species (hematite, magnetite or ferrihydrite), the supplementation with iron-oxide minerals resulted in large increases (over 30-fold) in current, while only a moderate increase (∼10-fold) was observed in the presence of soluble ferric/ferrous irons. During the current generation, insulative ferrihydrite was transformed into semiconductive goethite. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the soil microbial communities revealed that iron-oxide supplementation facilitated the occurrence of Geobacter species affiliated with subsurface clades 1 and 2. We suggest that subsurface-clade Geobacter species preferentially thrive in soil by utilizing (semi)conductive iron oxides for their respiration. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia

    PubMed Central

    Salsbury, Grace; Cambridge, Emma L.; McIntyre, Zoe; Arends, Mark J.; Karp, Natasha A.; Isherwood, Christopher; Shannon, Carl; Hooks, Yvette; Ramirez-Solis, Ramiro; Adams, David J.; White, Jacqueline K.; Speak, Anneliese O.

    2014-01-01

    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype. PMID:25127743

  15. Reduction experiment of iron scale by adding waste plastics.

    PubMed

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2009-01-01

    The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.

  16. Does DOM properties or the amount of DOC induces iron reduction in topsoil porewater?

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Perényi, Katalin; Jakab, Gergely

    2017-04-01

    Iron content of porewater in hydromorphic soils shows high temporal variability. This usually correlates with dissolved organic carbon (DOC) content, but the correlation can be weak in some cases. Some studies suggest that ferrous iron stabilizes organic carbon in dissolved state. On the contrary, other papers report about dissolved iron stabilization by dissolved organic matter (DOM). Present study focuses on this apparent contradiction and on the interaction of organic carbon and iron in hydromorphic soils. Studied gleyic Phaeozems (3 profiles) and mollic Gleysols (3 profiles) are located in Geresdi-dombság (Hungary) and in Danube-Tisza Interfluve (Hungary) respectively. Dynamics of porewater pH, EH, have been recorded by field stations at 20, 40 and 100 cm depth during the growing season with 10 min temporal resolution. Porewater occasionally have also been sampled in each depth. The presence of ferrous iron was detected by dipyridil field test. DOC, dissolved nitrogen (DN) and iron were measured by TOC analyser and fl-AAS. Molecular size and molecular weight were measured by photon correlation spectroscope (DLS and SLS). Textural and mineralogical properties of studied soils were also determined. Relationships among studied parameters were tested by Spearman's rank correlation. The seasonal dynamics of redox potential is primarily controlled by saturation, but spatial differences are also driven by vegetation. The environment is usually reductive for iron oxides between March and July, but intensive daily redox fluctuations could be measured in June and July in some topsoils. Short term temporal variability of redox conditions is depended on the physiological activity of plants. Most of the papers published a range between +100 and +50 mV for iron reduction in aquatic systems. Topsoil porewater measurements show three redox ranges where concentration of dissolved iron has been increased: +320 to +200, +80 to +20 and below-160 mV. These ranges were identified independently from each other in various topsoils and subsoils. DOC was correlated with dissolved iron only in the most oxidative topsoils. Therefore we did not find correlation between DOC and dissolved iron in the studied topsoils of Gleysols. Molecular size and molecular weight of DOM have correlated with dissolved iron in all topsoils. We did not find any relationship between dissolved iron and any other properties at 100 cm depth. Presence of colour reaction and the colour intensity of dipyridil test also did not show correlation with measured dissolved iron in all studied topsoils. High ratio of dithionite and oxalate extractable iron of the solid phase and the molecular size measurements suggest that this observation can be explained by an intensive complex formation of ferric iron with low molecular size DOM. This research was supported by Hungarian Scientific Research Fund (OTKA K100180) and Gergely Jakab was supported by János Bolyai Fellowship of the MTA.

  17. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization.

    PubMed

    Sharma, Savita K; Kim, Hyun; Rogler, Patrick J; A Siegler, Maxime; Karlin, Kenneth D

    2016-09-01

    A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.

  18. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation

    NASA Astrophysics Data System (ADS)

    Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  19. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    PubMed

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  20. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    PubMed

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Enhanced Nitrobenzene reduction by zero valent iron pretreated with H2O2/HCl.

    PubMed

    Yang, Zhe; Ma, Xiaowen; Shan, Chao; Fang, Zhuoyao; Pan, Bingcai

    2018-04-01

    In this study a novel iron-based reducing agent of highly effective reduction toward nitrobenzene (NB) was obtained by pretreating zero valent iron (ZVI) with H 2 O 2 /HCl. During the H 2 O 2 /HCl pretreatment, ZVI undergoes an intensive corrosion process with formation of various reducing corrosion products (e.g., Fe 2+ , ferrous oxides/hydroxides, Fe 3 O 4 ), yielding a synergetic system (prtZVI) including liquid, suspensions and solid phase. The pretreatment process remarkably enhances the reductive performance of ZVI, where a rapid reduction of NB (200 mg L -1 ) in the prtZVI suspension was accomplished in a broad pH range (3-9) and at low dosage. Nitrosobenzene and phenylhydroxylamine are identified as the intermediates for NB reduction with the end-product of aniline. Compared with the virgin ZVI as well as another nanosized ZVI, the prtZVI system exhibits much higher electron efficiency for NB reduction as well as higher utilization ratio of Fe 0 . A rapid reduction of various nitroaromatics in an actual pharmaceutical wastewater further demonstrated the feasibility of the prtZVI system in real wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization

    NASA Astrophysics Data System (ADS)

    Shankramma, K.; Yallappa, S.; Shivanna, M. B.; Manjanna, J.

    2016-10-01

    In the present study, we demonstrate magnetic iron (III) oxide nanoparticles (Fe2O3 NPs) uptake by the Solanum lycopersicum ( S. lycopersicum) plant. The S. lycopersicum seeds were coated with Fe2O3 NPs and allowed to germinate in moistened sand bed. The seedlings are observed for 20 days, and then, it was post-treated using different amounts of Fe2O3 NPs in hydroponic solution for 10 days. The plant was allowed to grow in green house for 3 months, and uptake of NPs through roots and translocation into different parts was studied. For this, we have segmented the plants and incubated with 10 % NaOH solution. It is found that the NPs are deposited preferentially in root hairs, root tips followed by nodal and middle zone of plant. The iron present in the whole plant was quantitatively estimated by treating dry biomass of the plant in acid. The Fe2+/Fetotal increased with increasing concentration of NPs and >45 % ferrous iron suggests the biomineralization of NPs due to rich phytochemicals in plants. We believe that the present study is useful to build a base line data for novel applications in agri-nanotechnology.

  3. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  4. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents.

    PubMed

    Dave, Shailesh R; Gupta, Kajal H; Tipre, Devayani R

    2008-11-01

    Four arsenic resistant ferrous oxidizers were isolated from Hutti Gold Mine Ltd. (HGML) samples. Characterization of these isolates was done using conventional microbiological, biochemical and molecular methods. The ferrous oxidation rates with these isolates were 16, 48, 34 and 34 mg L(-1)h(-1) and 15, 47, 34 and 32 mg L(-1)h(-1) in absence and presence of 20 mM of arsenite (As3+) respectively. Except isolate HGM 8, other three isolates showed 2.9-6.3% inhibition due to the presence of 20 mM arsenite. Isolate HGM 8 was able to grow in presence of 14.7 g L(-1) of arsenite, with 25.77 mg L(-1)h(-1) ferrous oxidation rate. All the four isolates were able to oxidize iron and arsenopyrite from 20 g L(-1) and 40 g L(-1) refractory gold ore and 20 g L(-1) refractory gold concentrate. Once the growth was established pH adjustment was not needed inspite of ferrous oxidation, which could be due to concurrent oxidation of pyrite. Isolate HGM 8 showed the final cell count of as high as 1.12 x 10(8) cells mL(-1) in 40 g L(-1) refractory gold ore. The isolates were grouped into one haplotypes by amplified ribosomal DNA restriction analysis (ARDRA). The phylogenetic position of HGM 8 was determined by 16S rDNA sequencing. It was identified as Acidithiobacillus ferrooxidans and strain name was given as SRHGM 1.

  5. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.

  6. Directional solidification at ultra-high thermal gradient

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Lee, D. S.; Neff, M. A.

    1980-01-01

    A high gradient controlled solidification (HGC) furnace was designed and operated at gradients up to 1800 C/cm to continuously produce aluminum alloys. Rubber '0' rings for the water cooling chamber were eliminated, while still maintaining water cooling directly onto the solidified metal. An HGC unit for high temperature ferrous alloys was also designed. Successful runs were made with cast iron, at thermal gradients up to 500 C/cm.

  7. Magnetic flux-load current interactions in ferrous conductors

    NASA Astrophysics Data System (ADS)

    Cannell, Michael J.; McConnell, Richard A.

    1992-06-01

    A modeling technique has been developed to account for interactions between load current and magnetic flux in an iron conductor. Such a conductor would be used in the active region of a normally conducting homopolar machine. This approach has been experimentally verified and its application to a real machine demonstrated. Additionally, measurements of the resistivity of steel under the combined effects of magnetic field and current have been conducted.

  8. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  9. Mahlmoodite, FeZr(PO4).4H2O, a new iron zirconium phosphate mineral from Wilson Springs, Arkansas

    USGS Publications Warehouse

    Milton, C.; McGee, J.J.; Evans, H.T.

    1993-01-01

    Small (<0.5 mm) cream white spheres observed in V ore have been identified as ferrous zirconium phosphate tetrahedrate, FeZr(PO4)2.4H2O. This new mineral, named mahlmoodite, occurs as spherules of radiating fibers usually perched on crystals of pyroxene in vugs. The optical and crystallographic properties of mahlmoodite are described. -after Authors

  10. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    PubMed Central

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  11. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.

    PubMed

    Huang, Jen-How

    2018-03-01

    A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔG rxn for arsenate and ferrihydrite reduction in non-growth conditions. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. The interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔG rxn , but instead was governed by other factors such as geochemical and microbial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    NASA Astrophysics Data System (ADS)

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M - 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV-visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001-0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  13. The formation environment of potassic-chloro-hastingsite in the nakhlites MIL 03346 and pairs and NWA 5790: Insights from terrestrial chloro-amphibole

    NASA Astrophysics Data System (ADS)

    Giesting, Paul A.; Filiberto, Justin

    2016-11-01

    Potassic-chloro-hastingsite has been found in melt inclusions in MIL 03346, its paired stones, and NWA 5790. It is some of the most chlorine-rich amphibole ever analyzed. In this article, we evaluate what crystal chemistry, terrestrial analogs, and experiments have shown about how chlorine-dominant amphibole (chloro-amphibole) forms and apply these insights to the nakhlites. Chloro-amphibole is rare, with about a dozen identified localities on Earth. It is always rich in potassium and iron and poor in titanium. In terrestrial settings, its presence has been interpreted to result from medium to high-grade alteration (>400 °C) of a protolith by an alkali and/or iron chloride-rich aqueous fluid. Ferrous chloride fluids exsolved from mafic magmas can cause such alteration, as can crustal fluids that have reacted with rock and lost H2O in preference to chloride, resulting in concentrated alkali chloride fluids. In the case of the nakhlites, an aqueous alkali-ferrous chloride fluid was exsolved from the parental melt as it crystallized. This aqueous chloride fluid itself likely unmixed into chloride-dominant and water-dominant fluids. Chloride-dominant fluid was trapped in some melt inclusions and reacted with the silicate contents of the inclusion to form potassic-chloro-hastingsite.

  14. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite

    PubMed Central

    Ohmura, Naoya; Kitamura, Keiko; Saiki, Hiroshi

    1993-01-01

    Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction. PMID:16349106

  15. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom.

    PubMed

    Kiger, Laurent; Tilleman, Lesley; Geuens, Eva; Hoogewijs, David; Lechauve, Christophe; Moens, Luc; Dewilde, Sylvia; Marden, Michael C

    2011-01-01

    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.

  16. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    PubMed Central

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2018-01-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6–8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover. PMID:29675340

  17. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders.

    PubMed

    Monnard, Arnaud; Moretti, Diego; Zeder, Christophe; Steingötter, Andreas; Zimmermann, Michael B

    2017-06-01

    Background: Ready-to-use-therapeutic foods (RUTFs) high in lipid, protein, and iron are used to treat malnutrition. Lipids increase gastric residence time, which could increase iron absorption, particularly from poorly soluble iron compounds and in combination with phytase. Objectives: The objectives were to 1 ) assess the effect on iron absorption of a lipid emulsion given 20 min before or together with an iron-fortified maize meal and 2 ) assess iron absorption from a micronutrient powder (MNP) given with a nutrient-dense RUTF and/or a microbial phytase. Design: A total of 41 women participated in 3 studies. They consumed a maize meal fortified with isotopically labeled ferrous sulfate (FeSO 4 ; study 1) or ferric pyrophosphate (FePP; study 2). In studies 1 and 2, a lipid emulsion was given with or 20 min before the meal. In study 3, with the use of a 2 × 2 factorial design, subjects consumed a maize meal fortified with an MNP containing labeled FeSO 4 (MNP) given with an RUTF (MNP+RUTF), with a phytase (MNP+phytase), or both (MNP+RUTF+phytase). Iron absorption was assessed by isotope incorporation in erythrocytes 14 d after the test meals. Results: The lipid emulsion given either before or with the meal significantly increased iron absorption from FePP by 2.55-fold (95% CI: 1.48-, 4.37-fold; P = 0.001) but not from FeSO 4 There was a trend to increase iron absorption with the MNP+RUTF meal, which did not reach significance (1.21-fold; 95% CI: 0.92-, 1.61-fold; P = 0.060). The addition of phytase to MNP and MNP+RUTF significantly increased iron absorption by 1.85-fold (95% CI: 1.49-, 2.29-fold; P < 0.001), with no interaction between phytase and RUTF. Conclusions: In iron-fortified maize-based meals, the addition of lipids more than doubles iron absorption from FePP. Our results suggest the possibility of an enhancing effect on iron absorption of lipid-rich RUTFs, but more research is needed to determine this. This trial was registered at clinicaltrials.gov as NCT01991626. © 2017 American Society for Nutrition.

  18. An Integrated 3D Hydrogeological, Geophysical, and Microbiological Investigation of Geochemical Gradients in a Pristine Aquifer Located in Laurentian Hills, ON, Canada

    NASA Astrophysics Data System (ADS)

    Shirokova, V.; Graves, L.; Stojanovic, S.; Enright, A. M.; Bank, C.; Ferris, F. G.

    2013-12-01

    A pristine glaciofluvial aquifer displaying naturally occurring geochemical gradients was investigated using hydrogeological, geophysical, and microbiological methods. A network of 25 piezometers was used to collect samples for groundwater chemical analysis, including parameters such as total iron (Fe), ferrous iron (Fe2+), sulphate (SO42-), sulfur (S2-), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), silica (SiO2), phosphate (PO43-), pH, and oxidation reduction potential (ORP). Ion concentration values between piezometers were interpolated using kriging and inverse distance weighting. Yearly analysis of the network shows spatially and temporally persistent plumes of iron and sulfur. A 3D model of the aquifer was compiled to aid in the understanding of the nature and origin of the geochemical gradients. The resulting maps showed zones with high concentrations of dissolved total iron (predominantly soluble ferric iron and complexed iron compounds), followed immediately downgradient by a high concentration of ferrous iron. Similarly, zones of high sulfide concentration were followed by areas of high sulfate concentration. There was some overlap between the iron and sulfur plumes, and ion concentrations were higher in years with a lower water table elevation. Metagenomic analysis revealed a diverse microbial community in the sediment, capable of the biogeochemical cycling of iron, sulfur, and nitrogen. The aquifer basin, as bounded by a till aquitard, was delineated using ground penetrating radar tomography from 45 lines. The plumes corresponded to an area where there is large, channel-like depression in the till boundary. Flow vectors from hydrogeological modelling indicated increased velocity followed by a slowing and convergence of groundwater in this location. Resistivity values from 20 lines varied in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. The resistivity surveys consistently showed low resistivity values in areas of ionic enrichment, the location of the geochemical plumes, and high resistivity values at the top of the vadose zone including below dry sand outcrops. Fluorescent microscopy suggests the plumes are associated with attached subsurface bacteria dominated by species such as Gallionella and Leptothrix. These bacteria are likely responsible for conductive anomalies (<200 Ohm.m), observed in the resistivity models, that were at the centre of areas with high ionic concentrations. The above aquifer chemical network is currently being computationally simulated, and attempts are being made to determine the extents to which biotic and abiotic processes contribute to the formation of the geochemical gradients.

  19. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12- to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial.

    PubMed

    Glinz, Dominik; Wegmüller, Rita; Ouattara, Mamadou; Diakité, Victorine G; Aaron, Grant J; Hofer, Lorenz; Zimmermann, Michael B; Adiossan, Lukas G; Utzinger, Jürg; N'Goran, Eliézer K; Hurrell, Richard F

    2017-07-14

    Iron deficiency anemia (IDA) is a major public health problem in sub-Saharan Africa. The efficacy of iron fortification against IDA is uncertain in malaria-endemic settings. The objective of this study was to evaluate the efficacy of a complementary food (CF) fortified with sodium iron EDTA (NaFeEDTA) plus either ferrous fumarate (FeFum) or ferric pyrophosphate (FePP) to combat IDA in preschool-age children in a highly malaria endemic region. This is a secondary analysis of a nine-month cluster-randomized controlled trial conducted in south-central Côte d'Ivoire. 378 children aged 12-36 months were randomly assigned to no food intervention ( n = 125; control group), CF fortified with 2 mg NaFeEDTA plus 3.8 mg FeFum for six days/week ( n = 126; FeFum group), and CF fortified with 2 mg NaFeEDTA and 3.8 mg FePP for six days/week ( n = 127; FePP group). The outcome measures were hemoglobin (Hb), plasma ferritin (PF), iron deficiency (PF < 30 μg/L), and anemia (Hb < 11.0 g/dL). Data were analyzed with random-effect models and PF was adjusted for inflammation. The prevalence of Plasmodium falciparum infection and inflammation during the study were 44-66%, and 57-76%, respectively. There was a significant time by treatment interaction on IDA ( p = 0.028) and a borderline significant time by treatment interaction on iron deficiency with or without anemia ( p = 0.068). IDA prevalence sharply decreased in the FeFum (32.8% to 1.2%, p < 0.001) and FePP group (23.6% to 3.4%, p < 0.001). However, there was no significant time by treatment interaction on Hb or total anemia. These data indicate that, despite the high endemicity of malaria and elevated inflammation biomarkers (C-reactive protein or α-1-acid-glycoprotein), IDA was markedly reduced by provision of iron fortified CF to preschool-age children for 9 months, with no significant differences between a combination of NaFeEDTA with FeFum or NaFeEDTA with FePP. However, there was no overall effect on anemia, suggesting most of the anemia in this setting is not due to ID. This trial is registered at clinicaltrials.gov (NCT01634945).

  20. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    PubMed

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P < 0.05) than the other compounds, and was much less soluble (P < 0.05) than either STPP or CPM. Mineral localization showed an even distribution of calcium, phosphorus, oxygen, and iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  1. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    PubMed

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  2. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  3. Mineralogy of the last lunar basalts: Results from Clementine

    USGS Publications Warehouse

    Staid, M.I.; Pieters, C.M.

    2001-01-01

    The last major phase of lunar volcanism produced extensive high-titanium mare deposits on the western nearside which remain unsampled by landing missions. The visible and near-infrared reflectance properties of these basalts are examined using Clementine multispectral images to better constrain their mineralogy. A much stronger 1 ??m ferrous absorption was observed for the western high-titanium basalts than within earlier maria, suggesting that these last major mare eruptions also may have been the most iron-rich. These western basalts also have a distinctly long-wavelength, 1 ??m ferrous absorption which was found to be similar for both surface soils and materials excavated from depth, supporting the interpretation of abundant olivine within these deposits. Spectral variation along flows within the Imbrium basin also suggests variations in ilmenite content along previously mapped lava flows as well as increasing olivine content within subsequent eruptions. Copyright 2001 by the American Geophysical Union.

  4. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  5. Age-associated variation in sensory perception of iron in drinking water and the potential for overexposure in the human population.

    PubMed

    Mirlohi, Susan; Dietrich, Andrea M; Duncan, Susan E

    2011-08-01

    Humans interact with their environment through the five senses, but little is known about population variability in the ability to assess contaminants. Sensory thresholds and biochemical indicators of metallic flavor perception in humans were evaluated for ferrous (Fe(2+)) iron in drinking water; subjects aged 19-84 years participated. Metallic flavor thresholds for individuals and subpopulations based on age were determined. Oral lipid oxidation and oral pH were measured in saliva as potential biochemical indicators. Individual thresholds were 0.007-14.14 mg/L Fe(2+) and the overall population threshold was 0.17 mg/L Fe(2+) in reagent water. Average thresholds for individuals younger and older than 50 years of age (grouped by the daily recommended nutritional guidelines for iron intake) were significantly different (p = 0.013); the population thresholds for each group were 0.045 mg/L Fe(2+) and 0.498 mg/L Fe(2+), respectively. Many subjects >50 and a few subjects <50 years were insensitive to metallic flavor. There was no correlation between age, oral lipid oxidation, and oral pH. Standardized olfactory assessment found poor sensitivity for Fe(2+) corresponded with conditions of mild, moderate, and total anosmia. The findings demonstrate an age-dependent sensitivity to iron indicating as people age they are less sensitive to metallic perception.

  6. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  7. First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    PubMed Central

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A.; Coleman, Dwight F.; Goodman-Tchernov, Beverly N.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  8. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    PubMed Central

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-01-01

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms. PMID:28344239

  9. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids.

    PubMed

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-07-31

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  10. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    PubMed Central

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-01-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic ‘enzyme latch’ theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an ‘iron gate’ against the ‘enzyme latch’ in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate. PMID:28649988

  11. Pressure Induced Iron Spin Crossover in MgGeO3 Perovskite and Post-perovskite

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Shukla, G.; Topsakal, M.

    2014-12-01

    MgGeO3-perovskite is known to be a low-pressure analog of MgSiO3-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this type of state change in Fe-bearing MgSiO3. Using DFT+U calculations, we have investigated pressure induced state changes in Fe-bearing MgGeO3 perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and interatomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. The effect of iron in the post-perovskite transition is also investigated.

  12. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  13. Oral iron acutely elevates bacterial growth in human serum.

    PubMed

    Cross, James H; Bradbury, Richard S; Fulford, Anthony J; Jallow, Amadou T; Wegmüller, Rita; Prentice, Andrew M; Cerami, Carla

    2015-11-23

    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses.

  14. Effects of spin crossover on iron isotope fractionation in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Qin, T.; Shukla, G.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Recent studies have revealed that the iron isotope composition of mid-ocean ridge basalts (MORBs) is +0.1‰ richer in heavy Fe (56Fe) relative to chondrites, while basalts from Mars and Vesta have similar Fe isotopic composition as chondrites. Several hypotheses could explain these observations. For instance, iron isotope fractionation may have occurred during core formation or Earth may have lost some light Fe isotope during the high temperature event in the early Earth. To better understand what drove these isotopic observations, it is important to obtain accurate Fe isotope fractionation factors among mantle and core phases at the relevant P-T conditions. In bridgmanite, the most voluminous mineral in the lower mantle, Fe can occupy more than one crystalline site, be in ferrous and/or ferric states, and may undergo a spin crossover in the lower mantle. Iron isotopic fractionation properties under spin crossover are poorly constrained, while this may be relevant to differentiation of Earth's magma ocean. In this study we address the effect of these multiple states on the iron isotope fractionation factors between mantle and core phases.

  15. Mineral resource of the month: vanadium

    USGS Publications Warehouse

    Magyar, Michael J.

    2007-01-01

    Vanadium, the name of which comes from Vanadis, a goddess in Scandinavian mythology, is one of the most important ferrous metals. Vanadium has many uses, but the metal’s metallurgical applications, such as an alloying element in iron and steel, account for more than 85 percent of U.S. consumption. The dominant nonmetallurgical use of the metal is as a catalyst for the production of maleic anhydride and sulfuric acid, ceramics, vanadium chemicals and electronics.

  16. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  17. Kinetics of Transferrin and Transferrin-Receptor during Iron Transport through Blood Brain Barrier

    NASA Astrophysics Data System (ADS)

    Khan, Aminul; Liu, Jin; Dutta, Prashanta

    2017-11-01

    Transferrin and its receptors play an important role during the uptake and transcytosis of iron by blood brain barrier (BBB) endothelial cells to maintain iron homeostasis in BBB endothelium and brain. In the blood side of BBB, ferric iron binds with the apo-transferrin to form holo-transferrin which enters the endothelial cell via transferrin receptor mediated endocytosis. Depending on the initial concentration of iron inside the cell endocytosed holo-transferrin can either be acidified in the endosome or exocytosed through the basolateral membrane. Acidification of holo-transferrin in the endosome releases ferrous irons which may either be stored and used by the cell or transported into brain side. Exocytosis of the holo-transferrin through basolateral membrane leads to transport of iron bound to transferrin into brain side. In this work, kinetics of internalization, recycling and exocytosis of transferrin and its receptors are modeled by laws of mass action during iron transport in BBB endothelial cell. Kinetic parameters for the model are determined by least square analysis. Our results suggest that the cell's initial iron content determines the extent of the two possible iron transport pathways, which will be presented in this talk Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  18. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels

    PubMed Central

    Mittra, Bidyottam; Cortez, Mauro; Haydock, Andrew; Ramasamy, Gowthaman; Myler, Peter J.

    2013-01-01

    During its life cycle, Leishmania undergoes extreme environmental changes, alternating between insect vectors and vertebrate hosts. Elevated temperature and decreased pH, conditions encountered after macrophage invasion, can induce axenic differentiation of avirulent promastigotes into virulent amastigotes. Here we show that iron uptake is a major trigger for the differentiation of Leishmania amazonensis amastigotes, independently of temperature and pH changes. We found that iron depletion from the culture medium triggered expression of the ferrous iron transporter LIT1 (Leishmania iron transporter 1), an increase in iron content of the parasites, growth arrest, and differentiation of wild-type (WT) promastigotes into infective amastigotes. In contrast, LIT1-null promastigotes showed reduced intracellular iron content and sustained growth in iron-poor media, followed by cell death. LIT1 up-regulation also increased iron superoxide dismutase (FeSOD) activity in WT but not in LIT1-null parasites. Notably, the superoxide-generating drug menadione or H2O2 was sufficient to trigger differentiation of WT promastigotes into fully infective amastigotes. LIT1-null promastigotes accumulated superoxide radicals and initiated amastigote differentiation after exposure to H2O2 but not to menadione. Our results reveal a novel role for FeSOD activity and reactive oxygen species in orchestrating the differentiation of virulent Leishmania amastigotes in a process regulated by iron availability. PMID:23382545

  19. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model

    PubMed Central

    Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una

    2016-01-01

    Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258

  20. Daily supplementation with iron increases lipid peroxidation in young women with low iron stores.

    PubMed

    King, Sarah M; Donangelo, Carmen M; Knutson, Mitchell D; Walter, Patrick B; Ames, Bruce N; Viteri, Fernando E; King, Janet C

    2008-06-01

    The aim of this study was to determine whether women with low iron stores (plasma ferritin

Top